
Java with Auto-Parallelization on Graphics Coprocessing Architecture

Guodong Han, Chenggang Zhang, King Tin Lam, and Cho-Li Wang
Department of Computer Science

The University of Hong Kong
Hong Kong, China

{gdhan, cgzhang, ktlam, clwang}@cs.hku.hk

Abstract—GPU-based many-core accelerators have gained
a footing in supercomputing. Their widespread adoption
yet hinges on better parallelization and load scheduling
techniques to utilize the hybrid system of CPU and GPU
cores easily and efficiently. This paper introduces a new user-
friendly compiler framework and runtime system, dubbed
Japonica, to help Java applications harness the full power
of a heterogeneous system. Japonica unveils an all-round
system design unifying the programming style and language
for transparent use of both CPU and GPU resources,
automatically parallelizing all kinds of loops and scheduling
workloads efficiently across the CPU-GPU border. By means
of simple user annotations, sequential Java source code will
be analyzed, translated and compiled into a dual executable
consisting of CUDA kernels and multiple Java threads
running on GPU and CPU cores respectively. Annotated
loops will be automatically split into loop chunks (or tasks)
being scheduled to execute on all available GPU/CPU cores.
Implementing a GPU-tailored thread-level speculation (TLS)
model, Japonica supports speculative execution of loops with
moderate dependency densities and privatization of loops
having only false dependencies on the GPU side. Our sched-
uler also supports task stealing and task sharing algorithms
that allow swift load redistribution across GPU and CPU.
Experimental results show that Japonica, on average, can
run 10x, 2.5x and 2.14x faster than the best serial (1-thread
CPU), GPU-alone and CPU-alone versions respectively.

I. INTRODUCTION

General-purpose graphics processing units (GPGPUs or
GPUs for short) with hundreds to thousands of cores
are leading to a more cost-effective and energy-efficient
alternative to traditional CPUs for high-performance com-
puting. Programming on a heterogeneous NUMA architec-
ture, composed of multicore CPUs and GPUs, is inherently
difficult. To exploit GPU resources generally requires ap-
plication code porting using APIs like CUDA [1], adding
extra burden to programmers.

In this work, we introduce a new compiler and runtime
platform, called Japonica (Java with Auto-Parallelization
ON graphIcs Coprocessing Architecture), to make het-
erogeneous many-core programming more productive.
Japonica enables a Java program to scale transparently
on a GPU-based heterogeneous system. With transparent
runtime support, application developers can utilize both
CPU and GPU resources seamlessly while sticking to an
idiomatic Java programming model (except adding a few
annotations around selected loops). We adopt Java as the
target language for unifying CPU and GPU programming
in view of its popularity. Bridging the way for Java to
transparent GPU computing is an important milestone

welcoming a wide spectrum of legacy applications aboard
GPU. Japonica can help get them run on the heterogeneous
many-core machines effortlessly. Our methodology is to
dynamically detect and translate the data-parallel parts
(loop bodies) of the Java code to CUDA kernels for
GPU execution. With computation-intensive components
offloaded to GPU cores, the slowness of Java compared
to C/C++ is no longer a concern.

Syntactically, Japonica can be said as a Java port of
OpenACC [2]—latest programming standard using com-
piler directives for GPU computing. Performance-wise,
Japonica approaches the optimal by the trinity of profiling,
optimistic GPU execution and task scheduling. Based
on our previous work GPU-TLS [3], a GPU-aware TLS
execution engine, we add profiling support to the system
for tracking the data dependency density [4] across itera-
tions, which provides useful insights into the potential for
optimistic parallelization and algorithmic work scheduling.
With the knowledge about specific data dependencies, the
scheduler can decide on the execution model for each task:
sequential, speculatively parallel (TLS) or truly parallel.

In summary, the contributions of our work are two-fold:
• To our best knowledge, this work is the first Java

port of OpenACC. We made the first functional Java-
based code transformation framework for automati-
cally generating multiple Java threads to run on CPU,
CUDA kernels to run on GPU, and the code to profile
the GPU execution.

• With GPU-tailored TLS and privatization support,
our runtime can saturate the GPU with loops of
moderate levels of true (or false) dependency for the
best execution efficiency. We also design two profile-
guided task scheduling schemes, namely task sharing
and task stealing, to distribute loop chunks onto both
CPU and GPU in a way to best balance their usage.

The rest of this paper is organized as follows. Sec-
tion II presents the overall system design of Japonica.
The process of code translation and static analysis are
explained in Section III. In Section IV, we suggest how to
parallelize DOALL loops and loops of modest dependency
density using GPU-TLS. Section V presents the two task
scheduling schemes. We discuss related work in Section
VI and conclude in Section VII.

II. SYSTEM DESIGN OF JAPONICA

Figure 1 depicts the overall structure of our system.
The compile-time components include the code translator,

Sequential Java code
with user annotation

Code Translator

Static
analysis

Code
translation

Uncertain

Profiler

Dependency density
(DD) analysis

PDG
Intra-warp Inter-warp

DO-ALL Parallelizer

Speculator

GPU CPU
Communication

CPU: Multi-
threaded

GPU: Highly
threaded

GPU-TLS Privatization

Task Scheduler

Task Sharing

Task Stealing

CPU queue: low, high, zero DD

GPU queue: low, zero DD Zero DD: CPU & GPU

Low DD: CPU & GPU-TLS

High DD: CPU

Profiling results

CUDA kernels with GPU-TLS /
privatization & CPU single-threaded CUDA kernels & Java threads

Deterministically no dependency

TD FD

Figure 1: System Overview of Japonica

profiler, DOALL parallelizer and speculator while the
scheduler is a run-time component balancing the workload
on the heterogeneous platform. The compile-time compo-
nents take annotated loops as input, and parallelize them
via both static analysis and dynamic profiling. The run-
time scheduler distributes the parallelized loops to all CPU
and GPU cores according to the data dependency profile.

• Code Translator: it statically analyzes and counts
data dependencies in the target loops, marking those
loops carrying deterministic dependencies (detected
by static analysis) and dynamic dependencies (deter-
minable only at runtime) which need further analysis
by the profiler. Necessary API functions for profiling
are also inserted at this stage.

• Profiler: it gathers the dynamic information by ex-
ecuting the loops marked by the code translator
on GPU in parallel, and performs intra-warp and
inter-warp memory access dependency analyses at
run-time. After dependency profiling, a quantitative
model is used to compute the dependency density.
Data-flow and control-flow dependencies between
loops are also represented by the program depen-
dency graph (PDG) with which the scheduler can
flawlessly exploit task-level parallelism.

• DOALL Parallelizer: loops with zero loop-carried
dependency can be parallelized by this component.
It creates parallel code versions—CUDA kernels on
GPU and Java threads on CPU—for all the DOALL
loops deterministically found by static analysis. Data
communication functions are injected and optimized
to remove cyclic communication.

• Speculative Execution Engine (abbrev. Speculator):
after profiling, the speculator supports speculative
execution of loops with moderate true dependency
(TD) and privatization of loops carrying only false
dependency (FD) on the GPU by inserting function
calls to our lightweight GPU-TLS library [3] which
detects and recovers mis-speculation.

• Task Scheduler: it provides two dynamic schemes:

task sharing and task stealing. The task sharing
scheme divides the workload of the same task X
across CPU and GPU according to their computa-
tional capabilities and X’s dependency density. The
task stealing scheme resembles a classical master-
slave model: CPU and GPU have their respective task
queues to await tasks from the scheduler; the one
emptying its queue sooner can steal tasks from the
other side. The scheduler distributes tasks according
to the inter-task dependency derived from the PDG.

III. CODE TRANSLATION

The code translator (see Figure 1) is a key component of
our system. It includes static analysis of data dependency
for user-annotated loops, and code generation for profiling
on GPU. We implement our code translator based on
JavaR [5], a prototype Java restructuring compiler that can
be used to “externalize” the implicit parallelism in a Java
program by means of multithreading.

A. Static Analysis

The goal of static analysis is to resolve as many memory
accesses as possible and to reduce the overhead of dy-
namic profiling. Irresolvable memory accesses or accesses
that may conflict with one another will be further profiled
by inserting necessary functions. Based on different access
patterns, each variable in the annotated for loop can be
classified as one of the following: live-in, live-out and
temp. The temp variable is declared inside the for-loops
and cannot be accessed from outside. live-in and live-
out variables are both declared outside the loop; they
differ only in whether the variable will be updated in
the loop. We implement the variable classification based
on the Abstract Syntax Tree (AST) generated by JavaR.
Along the AST tree traversal, variables declared under
the for-loop node are classified as temp variable; variables
appeared at the left side of an assignment statement are
live-in variables; all other variables which only appeared
at the right side of an assignment statement are live-out
variables. The static analysis follows these rules: (1) we
compress the memory accesses into a linear constraint in
terms of loop iteration ID. If the memory access cannot
be compressed and exists on the live-out variables list,
it will be marked for profiling; (2) we check all pairs
of live-out variables to examine the possible write-after-
write conflicts; (3) we check all pairs comprising a live-
out variable and a live-in variable to evaluate the possible
read-write conflicts; (4) all the possible data conflicts will
be further examined in the profiling phase.

B. Code Generation

Loops with uncertain dependency (marked in static
analysis) are transformed into CUDA kernels to be pro-
filed on GPU. To ease static analysis and to make the
programming framework user-friendly, we retain JavaR’s
annotation approach to identifying implicit parallelism in
the program, and modify it to conform to the OpenACC
standard [2]. The user first has to identify the target for-
loops which need parallelization, and marks them with

Table I: Main clauses in user annotations

Clauses Description
parallel Start parallel execution on the heterogeneous platform

private(list) A copy of each variable in list is allocated for each
execution element

copyin(list) Allocate the data in list on the GPU and copies the
data from the host to the GPU when entering the loop

copyout(list) Allocates the data in list on the GPU and copies the
data from the GPU to the host when exiting the loop

create(list) Allocate the data in list on the GPU, but do not copy
data between the host and device

threads(n) Define the number of threads that must be used for
parallel execution

scheme(s) Choose the task scheduling scheme: sharing or stealing.
Default scheme is sharing

annotations in Table I. The declaration of annotation on
each for-loop follows the format:

/ ∗ acc parallel [clause [], clause []...] ∗ /

Users could define the specific array size by adding rela-
tive clause. The parameter for the memory allocation and
data management clauses has the format: arr[low:high],
which means the elements in array arr starting from low
and ending at high will be handled. For defined arrays
in the annotation, the translator would insert commu-
nication API calls into the host function. For instance,
copyin(arr[1 : 1024]) indicates array elements from arr[1]
to arr[1024] will be allocated and copied to GPU. If users
do not define the specific arrays which need transformation
in the annotated for-loop, our code translator could auto-
matically generate necessary data movement APIs for the
live-in and live-out varaibles generated by static analysis.

The loop index will also be remapped to the corre-
sponding CUDA thread ID; loop bodies are transformed
into kernel bodies as is the case of JavaR transformation.
After annotated for-loops are completely translated to
CUDA kernels and necessary data communication calls
are inserted, the original loops will be replaced by calls
to invoke the generated kernels through JNI.

IV. DOALL LOOP PARALLELIZATION AND GPU-TLS

Loops determined to be dependency-free during the
static analysis phase or profiling phase could be safely
parallelized without any software protection by our sys-
tem. Similar to code translator, the DOALL parallelizer
will generate transformed versions to be used in the task
scheduling phase: multithreaded Java for CPU and CUDA
kernels for GPU. Necessary communication calls and
invoking functions are inserted.

To exploit dynamic parallelism in loops with moderate
data dependency density on GPU, we proposed a software
Thread Level Speculation (TLS) library named GPU-TLS
[3]. GPU-TLS adopts an incremental solution dividing the
target loop into several sub-loops and each sub-loop is
coupled with a GPU kernel. The speculative execution of
a GPU kernel has four phases: Speculative Execution (SE),
Dependency Checking (DC), Commit and Mis-speculation
Recovery. In the first phase, GPU executes the iterations in
parallel as if there were no cross-iteration dependencies.
During the execution, each thread buffers the possibly

unsafe memory updates instead of updating the main mem-
ory. Some meta-data are taken around memory accesses to
aid later mis-spceulation checks. The DC phase determines
if the speculation is successful. With the memory access
tracking metadata, we can tell whether the speculative
execution has violated some inter-iteration dependencies.
This phase aims to find if there are dependency violations
and where they happen, if any (i.e. which threads have
fallen in violation). For those threads not found to have
violated dependencies, the commit phase copies their
buffered memory updates to the global memory.

V. PROFILE-GUIDED TASK SCHEDULING

In a heterogeneous system, CPU and GPU has disparate
computational capabilities. Most static schemes distribute
workload based on the raw peak performance of CPU and
GPU, which are however suboptimal since the practical
performance of CPU and GPU varies significantly across
applications. Therefore, we aim at developing more intel-
ligent and dynamic distribution schemes.

A. Task Sharing Scheme

We propose a novel preference-based solution by setting
a global boundary for cooperative execution on CPU and
GPU. Iterations before the boundary are preferential to
be executed on GPU and movement of related data to the
GPU will be done in advance and asynchronously with the
kernel execution to avoid cyclic communication [6] and to
hide some latency. Meanwhile, the iterations beyond the
boundary are more suited to the CPU. The left part of the
data set is divided into uniform chunks of moderate size,
which are executed on GPU in an ascending order, while
the right part is executed on CPU in a descending order.
We use the following formula to represent the boundary
value Cg∗Fg

Cg∗Fg+Cc∗Fc
, where Cc,g is the core count and Fc,g

is the frequency value. Our empirical experiments prove
that in most cases this value could guarantee sufficient
data for GPU computation and no extra data transfer.

Figure 2 (a) shows the execution model for loops
with different TD densities and figure 2 (b) shows the
execution workflow. Loops determined as DOALL by
static analysis are executed in mode A in Figure 2 (a).
Mode A distributes data to GPU for Parallel Execution
(PE) there while executing the rest on CPU by means of
multithreading (MT). Other loops will pass through the
profiler to compute the dependency density. The profiled
loops with low density will be executed in mode B:
execute on GPU in parallel with the help of our GPU-
TLS. When violation is found, the scheduler forwards
control to CPU and detects whether the following several
warps of threads contain TD in the profiling results.
If not, the scheduler launches another kernel from the
violating warp to continue execution on GPU. Otherwise,
these warps should be executed on CPU sequentially and
detection is repeated after execution finishes. For loops of
high TD density (implying that parallel execution cannot
benefit performance-wise), they are dispatched to CPU for
sequential execution (mode C). Profiled loops without TDs

GPU CPU

Boundary

PEPE PE MT

A
MT

B

GPU-TLS

Violation

CPU

GPU-TLS

GPUGPU

CPUC

GPU CPU

Boundary

PE(V)PE(V) PE(V)

D (D')

(a) Execution models

Loops
Determined

DOALL?

YES

A

True
Dependence

Density?
NO

YES

(Density > N) ?
High: Low

HIGH

C

LOW B

NO
Any False

Depemdence?

YES

NO D

 D'

(b) Workflow diagram

Figure 2: Our Task Sharing Scheme Design

will be checked for FDs and employ mode D (D’). Since
FD does not limit concurrency, we use Parallel Execution
(with Variable privatization), PE(V), to handle loops with
FD. The privatized variables are only updated after all
the iterations finish execution and data are copied back
to the host memory. However, since we check TDs on
GPU (lock-step SIMD), there may exist possible TDs
when executing on CPU in parallel. So mode D processes
the data on CPU sequentially and the boundary statically
divides the CPU and GPU data sets.

Algorithm 1: Task Stealing Scheme Distribution
1 GPUQ← ∅, CPUQ← ∅;
2 while jobPool 6= ∅ do
3 taskSet← getTasks(jobPool);
4 while taskSet 6= ∅ do
5 task ← getTask(taskSet);
6 push task to worker queue;

7 if GPUQ 6= ∅ ∧ (task ← steal(CPUQ)) 6= 0 then
8 push task to GPUQ;

9 if CPUQ 6= ∅ ∧ (task ← steal(GPUQ)) 6= 0 then
10 push task to CPUQ;

11 wait until all tasks in taskSet are done;

B. Task Stealing Scheme

We propose a workflow-aware task stealing scheme (See
Algorithm 3). Inter-loop dependencies are analyzed to
compose the PDG. Here a task or job refers to a loop
and the PDG gives us a workflow. The tasks created
by the parallelizing compiler form a job pool. Initially,
the task scheduler gets a batch of data-independent tasks
from the pool by topological sort (line 3). Then, the
scheduler distributes the tasks to the worker queue, CPUQ
or GPUQ, (in lines 5-6) according to the following rules:
it is obligatory for loops with high TD density and loops
without TD after profiling to be assigned to CPU and GPU
respectively; loops with mediate TD density are suited to
CPU while loops determined as DOALL at compile time
are suited to GPU. After distribution, the scheduler will
check if the GPU and CPU queues have tasks. If not, it
steals a preferential task and push it onto the empty queue
from another queue (line 7-10). The scheduler waits until
all these topological sorts of tasks are done (implemented
by adding synchronization at necessary points). During
execution, when one worker finishes all its assigned tasks,

it will steal a preferential task from the other queue if
some tasks are waiting for execution there.

C. Selection Criteria of the Scheduling Schemes

Every time only one scheme can be used for each
application. It is essential to choose a proper scheme
to make efficient use of the computing resources on the
heterogeneous platform. By the nature of the two schemes,
task sharing is preferable for applications with heavy
computations centralized in only one or few loops while
task stealing is more suitable for those with computations
evenly distributed across several data-independent loops.

VI. PERFORMANCE EVALUATION

A. Methodology

Our experiments were conducted on a platform
equipped with one Intel Xeon X5650 CPU (running at 2.66
GHz) and one Nvidia M2050 GPU (Fermi). Table II shows
the specific benchmarking applications. We compare the
performance of the two scheduling schemes against the
best available CPU or GPU implementations. For CPU
multithreaded implementations, we set the number of
threads as 16, which could achieve the best performance
among different thread count configurations on average.
We also reserve another two threads: one for managing
GPU and the other for CPU multithreaded management.
We take all the wall-clock time into consideration, which
includes the time taken to transfer data between CPU and
GPU when GPU kernels are launched. In the following
experiments, all the applications are divided into two
groups based on which scheduling scheme they adopt.
Applications with various characteristics are evaluated
with different strategies.

B. Evaluation of the Task Sharing Scheme

Performance of DOALL applications: Figure 3 shows
the speedup of four DOALL applications, including
GEMM, VectorAdd, BFS and MVT, using the task sharing
scheme over 16-thread CPU version. All the four appli-
cations have a compute-intensive loop which is annotated
for parallelization by our system. During the static analysis
phase, all the loops are marked as deterministic DOALL
and executed in mode A. We compare the performance
among the CPU 16-thread version, GPU-only version, a
simple cooperative version (50% workload to CPU and
the other 50% to GPU) and our task sharing scheme.

Table II: Summary of benchmarks used in our experiments

Benchmark Origin Description Input Serial SchemeProblem Size (n) Time(n=1)
GEMM PolyBench Dense matrix multiplication n*512*512 matrix 80597.8 ms Sharing

VectorAdd CUDA SDK Vector addition n*2048*2048 elements 3548.6 ms Sharing
BFS Rodinia K Breadth First Search n*65536 nodes 1423.7 ms Sharing
MVT PolyBench Matrix transpose n*2048*2048 matrix 379.7 ms Sharing

Guass-Seidel PolyBench Iterative method n*512 matrix 1139.37 ms Sharing
CFD Rodinia Computational fluid dynamics n*4096 edges 199.411 ms Sharing
Sepia Merge Modify RGB value n*2048*2048 image elements 334.8 ms Sharing

BlackScholes Intel RMS European option pricing n*5120 options 121.3 ms Sharing
BICG PolyBench Bi-Conjugate gradient method n*2048*2048 matrix 19.2 ms Stealing
2MM PolyBench 2 Matrix multiplications n*256*256 matrix 26414.0 ms Stealing
Crypt Java Grande IDEA encryption/decryption algorithm n*1024*1024 text elements 2231.5 ms Stealing

0

5

10

15

20

25

30

GEMM

Sp
ee

du
p

ov
er

 1
6

CP
U

 th
re

ad
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

VectorAdd
0

0.2

0.4

0.6

0.8

1

1.2

MVT
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

BFS

 CPU-16 GPU Sharing CPU 50%+ GPU 50%

Figure 3: Speedup by task sharing for DOALL apps

The GEMM (dense matrix multiplication) is a famous
CPU-bound application. Since the performance of GPU
exceeds the 16-thread CPU version too much, the sharing
scheme does not contribute to a noticeable speedup over
the GPU-only version. Furthermore, the GPU has already
finished computing on its assigned data set, delimited by
the boundary, before the CPU finishes its work, and the
system will transfer more data to GPU, bringing about
extra overhead. The sharing scheme achieves much better
performance in VectorAdd, BFS and MVT. For Vectoradd,
it achieves a 1.56 times better speedup than the 16-thread
CPU version, 2.64 times better speedup than the GPU-
only version and 1.32 times better speedup than the simple
cooperative version. For BFS, our sharing scheme respec-
tively attains 1.12, 5.33 and 2.55 times better speedups
than the other three counterparts. In the MVT evaluation,
it achieves 1.47, 2.75 and 1.46 times better performance.

Performance of DOACROSS applications: The eval-
uation of loops with uncertain data dependency density
is shown in Figure 4. Guass-Seidel is a famous iterative
method containing high data dependency, so our system
distributes all the workloads to CPU (mode C). CFD and
Sepia are two applications containing non-deterministic
dependencies. However, after profiling, it turns out there is
no true dependency; but false dependency exists. Therefore
both applications are dispatched in mode D. Since part
of the workload is offloaded to CPU, the sharing scheme
achieves a better performance: 3.55 times better speedup
than the serial CPU-only version and 1.86 times better

0

1

2

3

4

5

6

Guass-Seidel CFD Sepia BlackScholes
Sp

ee
du

p
ov

er
 C

PU
 se

ria
l

CPU GPU Sharing

Figure 4: Speedup by task sharing for DOACROSS apps

speedup than the GPU-only version in CFD; 2.59 and 1.64
times better speedup than the CPU-only and GPU-only
versions respectively. Another application to be evaluated
is Blackscholes, which is used for European option pric-
ing, and the profiler detects little true dependency in it
(the data dependence value measured in our experiment is
about 0.012), therefore, our system uses GPU-TLS (mode
B) to accelerate the process, and speedup over sequential
execution is noticeable—5.1 times better.

C. Evaluation of the Task Stealing Scheme

We show the performance of task stealing in Fig-
ure 5. The BICG method contains two independent and
deterministic DOALL loops with similar workload. We
rewrite the BICG method and divide each loop into four
subloops evenly. According to the distribution rules, at
the beginning, all the eight loops are assigned to the GPU
queue. Then our scheduler finds that the CPU queue is
empty and moves one loop to it from the GPU queue.
After CPU finishes the loop in its queue, it will steal
another loop from the GPU queue. Eventually, the CPU
finishes 62.5% workload of all subloops and achieves 1.88
and 1.82 times better performance than the CPU 16-thread
and GPU-only versions. Another program we evaluated is
the 2MM application. There are two deterministic DOALL
loops; however, the second loop depends on the output
of the first. Therefore, our task stealing scheme divided
the two loops into two task batches and processed the
batches sequentially. As the two loops are DOALL, they
are assigned to GPU for execution. Here the GPU con-
tributes all the computations. Crypt contains two DOALL
loops: one for encryption and another for decryption.

0

0.5

1

1.5

2

2.5

BICG 2MM Crypt

Sp
ee

du
p

ov
er

 C
PU

 1
6

th
re

ad
s

16-CPU GPU Stealing

(a) Speedup

0

200

400

600

800

1000

1200

1400

1600

1024*1024 2048*1024 3072*1024 4096*1024 5120*1024

Ex
ec

ut
io

n
tim

e(
m

s)

Sharing Stealing

(b) Comparison with task sharing scheme

Figure 5: Performance of applications scheduled by the task stealing scheme

The decryption process depends on the encryption output.
Like BICG, we divide each loop into eight subloops
and eventually get 16 dependent loops. Following our
scheduler’s guidance, all the loops are efficiently executed
on GPU and CPU. The speedup is shown in Figure 5(a),
task stealing achieves 2.32 and 2.09 times better speedup
over CPU-only and GPU-only versions. Crypt is also used
to compare the performance of task stealing with task
sharing to evaluate its effectiveness in applications with
several loops containing close workload. The results in
Figure 5(b) show that task stealing is more efficient than
task sharing for Crypt.

VII. RELATED WORK

Prospector [7] proposed a stride-based dependency pro-
filing algorithm to advise how to parallelize the identified
sections. The algorithm, called SD3 [8], exhibits stride pat-
terns and computes data dependencies directly in a com-
pressed format. However, for irregular accessing, which
lacks a regular stride, the overhead of computing stride
patterns may dramatically increase. GRace [9] proposed a
mechanism to detect races in GPU programs. It combines
static analysis with a dynamic checker for logging and
analyzing information at runtime. Though with modest
overhead, GRace only focuses on data race detection and
leaves the burden of parallelization to programmers (it
simply reports where races may happen). Besides this,
coarse-grained data races could not reflect the real data
dependency which is a critical factor of parallelization.
Qilin [10] proposed adaptive mapping of computations
to processing elements on heterogeneous multiprocessors.
Qilin predicts application execution times on CPU and
GPU based on history analysis in order to define a
fractional variable for assigning workloads. Similar to
Qilin, Scogland, et al. [11] proposed a heterogeneous
task scheduling scheme for OpenMP-based applications.
Iterations are distributed according to the computational
capacity ratio of CPU to GPU. However, once the ratio is
defined, the workload distribution could not be changed
during execution.

VIII. CONCLUSION

In this paper, we design an automatic Java loop paral-
lelization and task scheduling solution for GPU-based het-
erogeneous many-core architectures. Thanks to the support

of GPU-TLS, privatization and data dependency profiling,
the Japonica system supports parallel execution of not only
deterministic DOALL loops but also the loops containing
modest level of non-deterministic data dependencies. We
implemented two efficient task scheduling schemes to
balance the overall workload across CPU and GPU in
different situations. The concept of setting a boundary in
the task sharing scheme could reduce the overhead caused
by cyclic communication and task dispatching. The task
stealing scheme can readily achieve balanced workload
among the data-flow independent loops.

ACKNOWLEDGMENT

This research is supported by Hong Kong RGC grant
HKU 7180/11E.

REFERENCES
[1] NVIDIA, “CUDA parallel computing platform,” 2012, http:

//www.nvidia.com/object/cuda home new.html.
[2] “The OpenACC application programming interface,” 2011,

http://www.openacc-standard.org/.
[3] C. Zhang, G. Han, and C.-L. Wang, “GPU-TLS: an efficient

runtime for speculative loop parallelization on GPUs,” ser.
CCGrid-13, 2013 (in press).

[4] C. von Praun, R. Bordawekar, and C. Cascaval, “Model-
ing optimistic concurrency using quantitative dependence
analysis,” ser. PPoPP ’08, 2008, pp. 185–196.

[5] A. J. C. Bik, J. E. Villacis, and D. B. Gannon, “JavaR:
a prototype Java restructuring compiler,” Concurrency:
Practice and Experience, vol. 9, no. 11, pp. 1181–1191,
1997.

[6] T. B. Jablin et al., “Automatic CPU-GPU communication
management and optimization,” SIGPLAN Not., vol. 46,
no. 6, pp. 142–151, 2011.

[7] M. Kim, H. Kim, and C.-K. Luk, “Prospector: a dynamic
data-dependence profiler to help parallel programming,”
ser. HotPar ’10, 2010.

[8] M. Kim, H. Kim, and C. Luk, “SD3: a scalable approach to
dynamic data-dependence profiling,” ser. MICRO-43, 2010,
pp. 535–546.

[9] M. Zheng, V. T. Ravi, F. Qin, and G. Agrawal, “GRace: a
low-overhead mechanism for detecting data races in GPU
programs,” ser. PPoPP ’11, 2011, pp. 135–146.

[10] C.-K. Luk, S. Hong, and H. Kim, “Qilin: exploiting par-
allelism on heterogeneous multiprocessors with adaptive
mapping,” ser. MICRO-42, 2009, pp. 45–55.

[11] T. Scogland, B. Rountree, W. Feng, and B. de Supinski,
“Heterogeneous task scheduling for accelerated OpenMP,”
ser. IPDPS ’12, 2012, pp. 144–155.

