
vBalance: Using Interrupt Load Balance to Improve I/O
Performance for SMP Virtual Machines

Luwei Cheng, Cho-Li Wang
Department of Computer Science

The University of Hong Kong
Pokfulam Road, Hong Kong, P.R. China

{lwcheng, clwang}@cs.hku.hk

ABSTRACT
A Symmetric MultiProcessing (SMP) virtual machine (VM)
enables users to take advantage of a multiprocessor infras-
tructure in supporting scalable job throughput and request
responsiveness. It is known that hypervisor scheduling ac-
tivities can heavily degrade a VM’s I/O performance, as
the scheduling latencies of the virtual CPU (vCPU) even-
tually translates into the processing delays of the VM’s I/O
events. As for a UniProcessor (UP) VM, since all its in-
terrupts are bound to the only vCPU, it completely relies
on the hypervisor’s help to shorten I/O processing delays,
making the hypervisor increasingly complicated. Regarding
SMP-VMs, most researches ignore the fact that the problem
can be greatly mitigated at the level of guest OS, instead of
imposing all scheduling pressure on the hypervisor.
In this paper, we present vBalance, a cross-layer soft-

ware solution to substantially improve the I/O performance
for SMP-VMs. Under the principle of keeping hypervisor
scheduler’s simplicity and efficiency, vBalance only requires
very limited help in the hypervisor layer. In the guest OS,
vBalance can dynamically and adaptively migrate the inter-
rupts from a preempted vCPU to a running one, and hence
avoids interrupt processing delays. The prototype of vBal-
ance is implemented in Xen 4.1.2 hypervisor, with Linux
3.2.2 as the guest. The evaluation results of both micro-level
and application-level benchmarks prove the effectiveness and
lightweightness of our solution.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design Studies; D.4.4
[Operating Systems]: Communications Management—In-
put/Output

General Terms
Design, Experimentation, Measurement, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOCC’12, October 14-17, 2012, San Jose, CA USA
Copyright 2012 ACM 978-1-4503-1761-0/12/10 ...$15.00.

Keywords
Virtualization, Xen, SMP, Cloud Computing

1. INTRODUCTION
Virtualization technology allows running multiple VMs on

one physical host by multiplexing the underlying physical re-
sources. Modern cloud data centers are increasingly adopt-
ing virtualization software such as VMware [41], Xen [15],
KVM [26] and Hyper-V [9], for the purpose of server consoli-
dation, flexible resource management, better fault tolerance,
etc. Each VM is given the illusion of owning dedicated com-
puting resources. A VM can be easily configured with dif-
ferent settings, such as the amount of CPU cycles, network
bandwidth, memory size and disk size. A virtual SMP in-
frastructure can be easily created by assigning the VM more
than one vCPU. Compared with UP-VMs which have only
one vCPU, a SMP-VM allows running multi-threaded or
multi-processed applications, by moving tasks among avail-
able vCPUs to balance the workload and thus more fully
utilizes the processing power. It is particularly attractive for
enterprise-class applications such as databases, mail servers,
content delivery network, etc.

Virtualization can cause performance problems which do
not exist in a non-virtualized environment. It is already
known that the hypervisor scheduler can significantly affect
a VM’s I/O performance, as the vCPU’s scheduling latencies
actually translate into the processing delays of the VM’s I/O
requests. The evaluation results [16, 42] have revealed the
very unpredictable network behaviors on Amazon’s EC2 [1]
cloud platform. The negative effect reflects as degraded I/O
throughput, as well as longer and unstable I/O latency for
applications. Most researches focus on improving the I/O
performance for UP-VMs [20, 21, 22, 25, 27, 32, 34, 45],
whereas little has been done to SMP-VMs, ignoring the fact
that the I/O problem in SMP-VMs is substantially different
from that in UP-VMs.

For a UP-VM, since all interrupts need to be processed
by the only one vCPU, once external events arrive, the only
way to avoid performance drop is to force the hypervisor
to schedule its vCPU as soon as possible. As a result, the
pressure of responding to I/O is completely imposed on the
hypervisor scheduler, leading to increasing complexity and
context switch overhead. SMP-VMs allow more flexible in-
terrupt assignment to vCPUs and are not that demanding
for the hypervisor’s help to process I/O requests. From the
perspective of the hypervisor, since a SMP-VM has multi-

ple vCPUs, it is likely that when one vCPU is descheduled
another vCPU is still running; therefore, if the guest OS
can adaptively migrate the interrupt workload from the pre-
empted vCPU to a running one, it is unnecessary to bother
the hypervisor scheduler, saving a lot of context switch over-
head. From the perspective of SMP guest OS, even though
the whole VM gets CPU cycles, if the vCPU that is respon-
sible for the interrupts is not scheduled by the hypervisor
instead of other vCPUs, I/O processing delays can still hap-
pen. Inappropriate interrupt mapping inside the guest OS
can also cause performance problems: 1) if the interrupts
are statically mapped to a specific vCPU all the time, that
vCPU can be easily overloaded when I/O workload is heavy;
2) since the hypervisor scheduler treats each vCPU fairly by
allocating them an equal amount of CPU cycles, unbalanced
interrupt load among vCPUs results in an unequal use of
them, leading to suboptimal resource utilization.
In this paper, we will present vBalance, a cross-layer soft-

ware solution that can substantially improve the I/O perfor-
mance for SMP-VMs. vBalance bridges the knowledge gap
between the guest OS and the hypervisor scheduler: the hy-
pervisor dynamically informs the SMP-VM the scheduling
status of each vCPU, and the guest OS is always trying to
assign its interrupts to the running vCPUs. Unlike tradi-
tional approaches which totally count on altering the hyper-
visor scheduler, vBalance maximally exploits the guest-level
capability to accelerate I/O speed, and only needs very lim-
ited help from the hypervisor. As the hypervisor is expected
to be as lean as possible to keep its efficiency and scalabil-
ity, we believe it is the trend to paravirtualize the guest OS
more and more to adapt to the hypervisor.
The contributions of this paper can be summarized as:

(1) our design vBalance demonstrates that for SMP-VMs,
the guest OS has great potential to help improve the I/O
performance, leaving the hypervisor scheduler unbothered
most of the time; (2) we implement our vBalance prototype
in Xen 4.1.2 hypervisor and Linux 3.2.2 guest OS, involv-
ing less than 450 lines of code; (3) we thoroughly evaluate
the effectiveness of vBalance using both micro-benchmarks
and cloud-style application benchmarks. The results show
that vBalance brings significant improvement to both I/O
throughput and I/O responsiveness, in sacrifice of very lim-
ited context switch overhead in the hypervisor.
The rest of the paper is organized as follows. Section 2

presents a detailed analysis of the problem and discusses the
possible approaches. Section 3 presents the design principles
and vBalance’s architecture. The implementation is intro-
duced in Section 4. The solution is evaluated in section 5.
Section 6 describes the related work. Section 7 discusses the
future work. We conclude our research in Section 8.

2. PROBLEM ANALYSIS
In this section, we first illustrate the problem by compar-

ing the physical SMP with the virtual SMP. We then discuss
the possible approaches to address the problem.

2.1 IO-APIC vs. Event Channel
In the physical world, SMP system features an IO-APIC

(I/O Advanced Programmable Interrupt Controller) chip,
to which all processors are connected via an ICC (Interrupt
Controller Communication) bus, as shown in Figure 1 (a).

An SMP-aware OS enables a process/thread to run on any
CPU, whether it is a part of the kernel or part of a user
application. IO-APIC contains a redirection table, which
routes specific interrupts to a specific core or a set of cores,
by writing an interrupt vector to the Local-APICs. The OS
receives the interrupts from the Local-APICs and does not
communicate with IO-APIC until it sends an EOI (End Of
Interrupt) notification. IO-APIC is capable of delivering the
interrupts to any of the cores and even perform load balanc-
ing among them. By default it delivers all interrupts to core
0. Multiple interrupts will keep one of the cores overloaded
while the others remain relatively free. The OS scheduler
has no idea about this state of affairs, and assumes that all
interrupt handling cores are as busy as any other core. It is
the task of the interrupt balancing software (such as Linux’s
irqbalance [7]) to distribute this workload more evenly across
the cores: to determine which interrupts should go to which
core, and then fill this table for IO-APIC chipset to use. If
care is not taken to redistribute the interrupts properly, it
could lead to a decrease in the overall system performance by
overloading some processors and by not optimally utilizing
the remaining processors.

In the virtualization world, para-virtualization has been
adopted (e.g. in Xen [15]) to significantly shrink the cost and
complexity of I/O handling compared to using full device
emulation (e.g. QEMU [17]). In Xen’s para-virtualized exe-
cution environments, the functionality of IO-APIC chip for
VMs is totally replaced by a software event channel mech-
anism, as shown in Figure 1 (b). For each VM, there is
a global event channel table to record the detailed informa-
tion of each channel, such as event type, event state, notified
vCPU, etc. The guest OS can correlate these events with
its standard interrupt dispatch mechanisms. The events are
distributed among all vCPUs, and each vCPU maintains
its own event selection table (acting as the role of Local-
APIC). The guest OS informs the hypervisor event binding
information, e.g., which vCPU is responsible for network de-
vices, and which vCPU takes care of block devices, so that
the hypervisor can notify the corresponding vCPU when the
relative events arrive. After a vCPU is selected by the hyper-
visor to run, it will check its own event selection table to see
whether there are pending events. If yes, the corresponding
interrupt handlers will be called to process the events, by
copying data from shared memory and acknowledging the
backend (similar to sending EOI notification).

There are three main differences between the physical
SMP and the virtual SMP. First, the physical cores are al-
ways “online”, which means once an interrupt is received by
the local-APIC, the CPU immediately jumps to the inter-
rupt gate and fetch the IRQ handler from the IDT (Interrupt
Descriptor Table) to run, with almost no delay; however, in
a virtual SMP system, after an event is delivered to a specific
vCPU, it still needs to wait for the hypervisor’s schedule to
process the interrupts. The scheduling delays are in nature
inevitably as there are multiple vCPUs sharing the same
physical core. Second, most IO-APIC chips can be config-
ured to route an interrupt to a set of cores (one to many),
enabling more than one option for the interrupt’s delivery.
However, current event channel mechanism [15] can only de-
liver the events to a specific vCPU (one to one), thereby lim-
its the hypervisor’s delivering flexibility. Third, unlike the

IO-APIC Chip

Local APIC

CPU 0

External Interrupts

ICC Bus

IRQ Handler

1

2

4

2

3

5

5

Local APIC

CPU 1

IRQ Handler

Local APIC

CPU 2

IRQ Handler

Local APIC

CPU 3

IRQ Handler

EOIINT

(a) IO-APIC for SMP physical machine

Event Channel Table

CPU 0

vCPU 0

vCPU 1

vCPU 2

vCPU 3

Physical
CPUs

Virtual

CPUs

Hypervisor scheduler

CPU 1 CPU 2 CPU 3

delay

(b) Event channels for SMP virtual machine

Figure 1: Comparison of I/O mechanisms between physical SMP and virtual SMP

idle process in a traditional OS which consumes all the un-
used CPU cycles, the idle process in a paravirtualized guest
OS will cause the vCPU to voluntarily yield up its CPU
cycles to the hypervisor. As such, if the guest OS can not
evenly distribute the workload among all available vCPUs
to optimally utilize the CPU cycles, the resources allocated
to the whole VM will be wasted. Since OS schedulers are
mostly unaware of the interrupt load on each processor, an
extra effort must be paid to balance the interrupt load.
Due to insufficient understanding of the problems men-

tioned above, the seemingly faithful design of current I/O
virtualization techniques can result in very poor performance
under heavy I/O workload. In the physical SMP system, in-
terrupts are migrated to prevent a specific processor from
being overloaded. In the virtual SMP system, interrupts
have to be migrated to avoid the scheduling delays from the
hypervisor.

2.2 Possible Approaches
We group the possible approaches into two categories, de-

pending on the layer where the approach resides.

2.2.1 Hypervisor-level Solution
A non-intrusive approach at the hypervisor layer could be

to modify the hypervisor scheduler, by immediately schedul-
ing the vCPU that receives external events, regardless of its
priority, state, credits, etc.
This approach can mitigate the problem to some extent,

as it eliminates the scheduling delays of the targeted vCPU.
Unfortunately, it also brings several critical problems: first,
without interrupt load balancing from the guest OS, all
events will be delivered to only one vCPU (vCPU0 by de-
fault), or some specific vCPUs, making them easily over-
loaded; second, the interrupt-bind vCPUs will consume much
more CPU cycles than the others, leading to non-optimal
resource utilization; through we can modify the hypervisor
scheduler to give the targeted vCPU more CPU cycles than
the others (in this way, the vCPUs of the same SMP-VM are
not symmetric at all), how to determine the disproportion
parameter is also a problem, as the interrupt load is highly
unpredictable; third, the context switch overhead will sub-
stantially increase, because the hypervisor scheduler needs
to keep swapping the vCPUs in response to the incoming
events, making it too expensive in practice.
The hypervisor scheduler treats each vCPU as symmetric,

in the expectation that all vCPUs can behave symmetrically
and utilize the resources in a balanced manner. Without the
help from the guest OS, the hypervisor scheduler is not able
to fully address the I/O problem.

2.2.2 Guest-level Solution
At the guest layer, one approach is to monitor the inter-

rupt load of each vCPU, and periodically reassign all the
interrupts to achieve the load balance, like irqbalance [7].

This approach can easily make each vCPU consume ap-
proximately an equal amount of CPU cycles. However, the
main problem is that there is no way to make accurate de-
cisions: at which moment the interrupts should go to which
vCPU. Since the vCPUs can be preempted by the hyper-
visor at any time which is totally transparent to the guest
OS, if the interrupts are assigned to an offline vCPU, the
processing will be delayed. The knowledge gap between the
guest and the hypervisor eliminates the effectiveness of this
approach. For a virtual SMP system, the responsibility of in-
terrupt migration is not only to achieve load balancing, but
more importantly, to avoid the hypervisor scheduling delays
imposed on the interrupts’ processing. Therefore, without
the scheduling status information of each vCPU from the
hypervisor, it is impossible for the guest OS to precisely
determine interrupt migration strategies.

3. DESIGN
In this section, we describe the design goals of vBalance,

and present its components in detail.

3.1 Design Goals
The followings are the design goals of vBalance to enable

greater applicability as well as ease of use:

• High performance: the design should efficiently uti-
lize the advantage of SMP-VMs, that is, the ability of
leveraging more than one vCPU to process interrupts,
and therefore more easily to achieve high-throughput
and low-latency communication.

• Light-weight: to make it scalable to many guest do-
mains, the design must be quite light-weight in the
hypervisor layer. Also for ease of development, the
modifications required to the existing software must
be as few as possible.

• Application-level transparent: the deployment of
vBalance should not require any change to the appli-
cations, so that they can transparently enjoy the per-
formance benefits.

3.2 Main Concerns and Principles
Base on the discussion in Section 2.2 and the design goals

in Section 3.1, we prefer a solution that (1) maximally seeks
help from the guest OS to avoid interrupt processing delays,
(2) bothers the hypervisor as little as possbile, (3) makes
all vCPUs share the interrupt load evenly. By clearly iden-
tifying the responsibilities of the hypervisor scheduler and
the guest OS to handle interrupts, we are able to derive the
design principles of vBalance.
For hypervisor scheduler, since it is used very frequently

to manage all the guest domains, it is so important that
the design and implementation must be very lean and scal-
able. Therefore it should be made as simple as possible. We
argue that the main responsibility of the hypervisor sched-
uler is to perform CPU time proportional sharing among
VMs. It should not assume too much about the guest’s in-
terrupt processing characteristics, e.g., in favor of scheduling
one or some specific vCPUs. For a SMP-VM, the hypervi-
sor should guarantee that each vCPU receives relatively the
same amount of CPU cycles, so that all vCPUs look “sym-
metric” to the guest OS. This is the “mechanism” that the
hypervisor should provide to the SMP guest domains.
Based on the illusion that all vCPUs are“symmetric”, var-

ious“policy-level” load balancing strategies can be applied in
guest domains. Since the capability of one vCPU to process
interrupts is limited, the guest OS should endeavor to utilize
all vCPUs to handle interrupts. Unbalanced use of vCPUs
can cause low resource utilization, because the idle process
for each vCPU in the guest OS will voluntarily yield up the
CPU cycles to the hypervisor, and they are eventually real-
located to other domains or consumed by the idle domain.
Once a vCPU is descheduled, the guest OS should be capa-
ble to migrate the interrupts to a running vCPU to avoid
processing delay. So it is a must for the hypervisor sched-
uler to pass the necessary information to the guest OS, at
least the scheduling status of each vCPU. However, the guest
OS should not make any assumption about the scheduling
strategies of the underlying hypervisor, or instruct the hy-
pervisor to schedule a specific vCPU. The hypervisor always
has a higher privilege than the guest OS. For security rea-
sons, the control flow can only go from the hypervisor to the
guest OS, instead of the opposite direction.

3.3 vBalance Architecture
vBalance is a cross-layer design residing in both guest

OS layer and hypervisor layer, as shown in Figure 2. The
component in hypervisor layer is responsible to inform the
guest kernel the scheduling status of each vCPU. The in-
terrupt remapping module in the guest OS always tries to
bind the interrupts to a running vCPU, meanwhile achieves
balanced interrupt load. vBalance does not violate Xen’s
split-driver model [15], in which the frontend communicates
with a counterpart backend driver in the driver domain, via
shared memory and event channels. The frontend driver in
the guest domain can be netfront, blkfront, etc. In the driver
domain, there may exists data multiplexing/demultiplexing
activities between the backend and hardware device driver.

backend

device

driver

frontend

Applications

Xen

Driver domain Guest domain (SMP-VM)

Hypervisor scheduler

sched_info
vCPU vCPU vCPUvCPU

device

Remap

… vBalance

Figure 2: vBalance architecture

For example, the netback driver usually adopts software net-
work bridge [8] or virtual switch utilities [12, 18] to multiplex
the network packets from/to guest domains. Since vBalance
does not modify the driver domain, we do not explicitly show
the multiplexer component in the figure.

3.3.1 Hypervisor Scheduler
Xen uses a credit scheduler [4] to allocate CPU time pro-

portionally according to each VM’s weight. The vCPUs on
each physical core are sorted according to their priorities
and remaining credit. If a vCPU has consumed more than
its allocation, it will get an OVER priority, otherwise it keeps
an UNDER priority. Each vCPU will receive a 30ms time slice
once it gets scheduled. In order to improve VM’s I/O perfor-
mance, the credit scheduler introduces a boost mechanism.
The basic idea is to temporarily give the vCPU that receives
external events a BOOST priority with preemption, which is
higher than other vCPUs in UNDER and OVER state. Credit
scheduler supports automatic load balancing to distribute
vCPUs across all available physical cores.

Normal Path. In most cases, the external events for
SMP-VMs can be properly delivered and timely processed
by the targeted vCPU, as the guest OS guarantees that the
receiver is always one of the running vCPUs. So for a SMP-
VM, as long as there is at least one vCPU running on the
physical core when external events arrive, the processing
delay will not happen. We call it normal path as no extra
reschedule operations are needed, and the current hypervisor
scheduler can easily satisfy this scenario without any mod-
ification. Since a SMP-VM has more than one vCPU, the
likelihood that all vCPUs are offline at the same moment is
much smaller than that of a UP-VM.

Fast Path. The only circumstance the hypervisor sched-
uler needs to consider is that, for a SMP-VM, it is possible
that all vCPUs are waiting in the runqueues when external
events arrive. In this rare case, the hypervisor scheduler
needs to explicitly force a reschedule to give the targeted
vCPU the opportunity to run. We call it fast path. Of
course, the more vCPUs a SMP-VM has, the more probably
the event handling follows the normal path. It also depends
on the proportion of CPU time that is allocated to the VM,
and the density of co-located VMs.

The limitation of current boost mechanism is that it only
boosts the blocked vCPU with the condition that it has

not used up its credit. This will introduce scheduling de-
lay for the vCPUs which are already waiting in the run-
queue. Based on the credit scheduler, we introduce another
priority SMP_BOOST with preemption, which is higher than
all the other priorities. For a SMP-VM, only when none of
its vCPUs can get a scheduling opportunity from the normal
path, the targeted vCPU receives a SMP_BOOST priority and
get scheduled at once.

3.3.2 Interrupt Remap Module in the Guest OS
The remap module of vBalance resides in the guest OS,

which is detailedly shown in Figure 3. Generally, it contains
three components: the IRQ Load Monitor is responsible to
collect interrupt load statistics of each vCPU; the Balance
Analyzer reads scheduling states of all vCPUs, and uses the
IRQ statistics to determine whether an interrupt imbalance
has happened; once an imbalance is identified, the interrupts
will be migrated to another online vCPU, and the IRQ Map
Manager will take the remap action.

IRQ Load
Monitor

IRQ Map
Manager

Balance
Analyzer

vCPU

sched_info

vCPU vCPU vCPU…

IRQ statistics

Remap
action

Figure 3: vBalance remap module in guest OS

Time-based interrupt load balance heuristic. The
method for balancing interrupt load among multiple vCPUs
basically involves generating a heuristic to assess the inter-
rupt imbalance. It can be based on one or more interrupt
sources such as network load or disk load. When the heuris-
tic satisfies a certain criterion, the interrupt imbalance is
identified and a new mapping of interrupts to vCPUs is gen-
erated. The heuristic can be generated based on one or more
quantities, including but not limited to, the average load per
interrupt on vCPUs, or the total load of each vCPU. Since
the interrupt load on each vCPU changes along with time,
the system heuristic must be determined at different times,
resulting in a time-based system heuristic. A baseline heuris-
tic is used to compare a given value to determine whether a
sufficiently large interrupt imbalance has occurred.
Measure an interrupt imbalance. In the guest OS,

using interrupt load data for vCPUs, a measurement of how
balanced the interrupts are across them can be determined.
Suppose that a SMP-VM has n vCPUs, denoted as the set
V C = {vc0, vc1, ..., vcn−1}. For each vCPU vci ∈ V C(0 ≤
i ≤ n−1), let ld(vci)t denote its interrupt load at time t. We
use the average interrupt load of all vCPUs as the baseline,
which can be expressed and calculated in equation 1.

ldavg(vc)t = avg(ld(vc0)t, ld(vc1)t, ..., ld(vcn−1)t) (1)

There are k online vCPUs (0 ≤ k ≤ n) at time t, de-

noted as OV Ct = {ovc0, ovc1, ..., ovck−1}, OV Ct ⊆ V C. If
a rebalance operation is needed, these online vCPUs are ac-
tually the eligible vCPUs for interrupts to be mapped to.
The online vCPUs are classified based on their current in-
terrupt load. Figure 4 shows the state transition diagram of
each vCPU. Generally there are two states for each vCPU:
online and offline, depending on whether the vCPU is
running on the physical core or not. To manage the online
vCPUs more efficiently, each online vCPU has three sub-
states: HOLD, LOW and HIGH. The vCPU that is holding the
interrupts is labeled as HOLD; for the others, if its current in-
terrupt load is above the average level, it is labeled as HIGH;
otherwise, it is labeled as LOW. In this way, the vCPUs can be
sorted in a more efficient way. The average load ldavg(vc)t
can be updated less frequently.

offline

LOW

HIGH

HOLD

online

IRQ is released &&
IRQ Load < average

IRQ Load is the lowest &&
imbalance > thresholddescheduled

by hypervisor

scheduled by
hypervisor IRQ Load >

average

IRQ Load <
average

IRQ Load is the lowest &&
the previous holder is offline

IRQ is released &&
IRQ Load > average

Figure 4: vCPU state machine diagram

To remap the interrupts from one vCPU to another, there
are two scenarios that need to be considered: first, the origi-
nal interrupt holder is already descheduled, then there must
be a remap operation; second, the original interrupt holder
is still running on the physical core, however, a sufficiently
large interrupt imbalance has occurred, thereby triggering
an interrupt migration. To determine an imbalanced condi-
tion, we define an imbalance ratio R:

Rt =
ldmax(ovc)t
ldmin(ovc)t

(2)

If Rt is detected to exceed a predefined threshold value,
the interrupts will be migrated to the online vCPU which
has the minimum interrupt load. Once the new mapping is
generated, the hypervisor is notified through hypercalls to
rebind the event channels to the new vCPU. The detailed
operations are presented in Algorithm 1.

4. IMPLEMENTATION
We have implemented a prototype of vBalance using 64-

bit Xen 4.1.2 as the hypervisor and 64-bit Linux 3.2.2 as
the paravirtualized guest operating system. The design of
vBalance is generic and hence applicable to many other hy-
pervisors (e.g. KVM [26], VMware ESX [41] and Hyper-V
[9]). Our implementation aims to minimize the footprint of
vBalance by reusing existing Xen and Linux code as much
as possible. vBalance only requires a few modifications to
the hypervisor layer, involving about 150 lines of code. The
implementation in Linux guest is highly modular, containing
less than 300 lines of code.

Algorithm 1: vBalance algorithm

Let prev vc denote the previous vcpu that holds the IRQs;
Let next vc denote the next vcpu that will hold the IRQs;

/* precompute the average IRQ load of all vcpus */
ldavg(vc)t ← avg(ld(vc0)t, ld(vc1)t, ..., ld(vcn−1)t);

Get online vcpus set OV Ct;
Sort online vcpus by their interrupt loads ld(ovc)t;

/* get the max/min IRQ load of onine vcpus */
ldmax(ovc)t ← max(ld(ovc0)t, ld(ovc1)t, ..., ld(ovck−1)t);
ldmin(ovc)t ← min(ld(ovc0)t, ld(ovc1)t, ..., ld(ovck−1)t);
for each online vcpu ovci do

if ld(ovci)t > ldavg(vc)t then
ovci.state← HIGH;

else
ovci.state← LOW ;

end
end

if prev vc is not online then
/* must map the irq to an online vcpu */

next vc← {ovc | ld(ovc)t = ldmin(ovc)t};
else

if prev vc.state is HIGH then
if ldmax(ovc)t > ldmin(ovc)t ∗ threshold then

/* the imbalance threshold is reached */
next vc← {ovc | ld(ovc)t = ldmin(ovc)t};

else /* no need to remap */
next vc← prev vc;

end

else /* no need to remap */
next vc← prev vc;

end

end

if next vc != prev vc then
rebind irq to next vc; ; /* final operation */

end

4.1 Xen Hypervisor
The first modification is in shared_info data structure.

The shared_info page is accessed throughout the runtime
by both Xen and the guest OS. It is used to pass infor-
mation relating to the vCPUs and VM states between the
guest OS and the hypervisor, such as memory page tables,
event status, wallclock time, etc. So it is natural that we
put the vCPU scheduling status information in shared_info

data structure and pass it to the guest OS at runtime. The
sched_info simply includes an unsigned long integer type,
out of which each bit represents the scheduling status of one
vCPU (0 – offline, 1 – online).
scheduling status of smp vcpus

typedef struct {

unsigned long vcpu_mask;

} sched_info;

The value of sched_info will be updated when the func-
tion schedule() is called in the hypervisor scheduler. If the
vCPU does not belong to the idle domain, the corresponding
bit of vcpu_mask is updated before the context switch.
The second modification is to add fast path scheduling

support for SMP guest domains. This involves a small change
to Xen’s credit scheduler [4], by adding another wake up
branch for SMP vCPUs. We do not make any modification
to Xen’s split driver model and event channel mechanism.
Specifically, in evtchn_send function, when it finds that the

value of vcpu_mask is zero which means that there are no
online vCPUs, the targeted vCPU will enter fast path to
wake up. Eventually, it will be given a SMP_BOOST priority
with preemption, behaves as the following.
fast path for smp vcpus to wake up

static void csched_smp_vcpu_wake (struct vcpu *vc)

{

struct csched_vcpu * const svc = CSCHED_VCPU(vc);

const unsigned int cpu = vc->processor;

if (__vcpu_on_runq(svc)) {

__runq_remove(svc);

}

svc->pri = CSCHED_PRI_TS_SMP_BOOST;

__runq_insert(cpu, svc);

tickle the cpu to schedule svc using softirq

__runq_tickle(cpu, svc);

}

4.2 Guest Operating System
For the implementation in the guest OS, there are two

technical challenges: (1) should vBalance be implemented
as a user-level daemon or a part of kernel code? (2) how to
determine the interrupt load of each vCPU?

4.2.1 User-level or Kernel-level
One possible approach is to implement vBalance as a user-

level LSB (Linux Standard Base) daemon. The scheduling
status information of vCPUs vcpu_mask can be accessed by
a user-level program through a pseudo device residing in
/dev or /proc file system. In this way, the footprint at the
kernel-level is minimized. The most appealing benefit of this
approach is high flexibility. Programmers can easily change
the load balancing policy, function parameters, etc. The ef-
fort needed to develop and debug the program is also much
less than that of kernel programming. For example, pro-
grammers can read interrupt binding information directly
from /proc/interrupts and change them by simply writ-
ing to /proc/irq/irq#/smp_affinity.

A very important problem of this approach is how to de-
termine rebalance interval. Linux irqbalance [7] uses a 10
seconds rebalance interval, which may not be appropriate in
virtual machines, because the program needs to know which
vCPUs are online and which are not, in a real-time man-
ner. Of course the user-level program can periodically read
the pseudo device to get the scheduling status information
of each vCPU. However, since the hypervisor can update
vcpu_mask in the magnitude of milliseconds and it is totally
transparent to the user space, the program must poll the
pseudo device very frequently to sense the change, which
will consume a large amount of computing resources. Be-
sides, if the vCPU that the program is running on was just
preempted by the hypervisor, the rebalance function would
be stalled.

Therefore, we argue that the implementation should re-
side in the kernel space. For paravirtualized guest kernel,
once the vCPU is scheduled, an upcall will be executed to
check the pending events. In Linux guest for Xen, it is
xen_evtchn_do_upcall. Though the vCPU is not able to
know when it will be preempted, it exactly knows when it
is scheduled again, and thus gets the updated scheduling
status at the right time.

4.2.2 Determine the Interrupt Load of vCPUs
There are two types of interrupt load statistics for each

processor: (1) the number of interrupts received, (2) the
time spent on processing all received interrupts. In Linux,
the results can be obtained by reading /proc/interrupts

and /proc/stat directly. 1 In most cases, there are actu-
ally only two interrupt sources that need to be considered:
network interrupt and disk interrupt. For the other inter-
rupts like virtual timer, virtual console, etc., the CPU cycles
they consume can be nearly ignored. On the micro level,
the CPU time that two interrupts consume may be differ-
ent, even out of the same type. This is because the data
each interrupt carries can be of very different sizes. But
from a long-term view, if the two vCPUs have processed rel-
atively the same amount of interrupts, the CPU cycles they
consume should be approximately the same. So both types
of interrupt load statistics can be used as the measurement
method. For simplicity, we choose the second type which
counts the CPU cycles the processor has spent on handling
all interrupts received.

4.2.3 vBalance Components
vBalance contains several components in Linux guest ker-

nel, with highly modular implementation. We will introduce
them in detail one by one.
vBalance_init() is used to obtain the interrupt numbers

from specific interrupt handlers, as they are dynamically al-
located in guest kernel. For network interrupt, the IRQ han-
dler is xennet_interrupt; for disk interrupt, the IRQ han-
dler is blkif_interrupt. As a prototype implementation,
we do not consider the VM that is configured with multiple
virtual NICs or multiple virtual disks, which is likely to be
our future research direction.
vBalance_monitor() reads sched_info from the shared

memory page, and collects interrupt statistics of each vCPU
from time to time. In Linux kernel 3.2.2, ten types of statis-
tics are supported for each processor, including the time of
normal processes executing in user mode (user), the time of
processes executing in kernel mode (system), etc. We only
use two types of them that are directly related to interrupt
processing: the time of servicing hardware interrupts (irq)
and the time of servicing softirqs (softirq).
vBalance_analyze() determines whether there is a need

to remap the interrupts to another vCPU, based on the in-
formation from vBalance_monitor(). There are two con-
ditions: (1) if the interrupt-bind vCPU is already offline,
there must be a remap operation, and we simply select the
vCPU that currently has the lowest interrupt load; (2) if
the interrupt-bind vCPU is still online, the remap operation
is done only when a severe imbalance among vCPUs is de-
tected, as stated in Section 3.2.2. The imbalance ratio Rt is
compared with a predefined threshold value. Currently we
define thredhold to be 1.5, which means that the maximum
interrupt load of one vCPU will not exceed 1.5 times of the
minimum interrupt load.
vBalance_remap() is responsible to carry out the final

interrupt remap operation. There are two existing func-

1To enable interrupt time accounting, the option CON-
FIG_IRQ_TIME_ACCOUNTING must be opened when compiling
Linux 3.2.2 kernel source code. Other Unix-like operating
systems also have similar IRQ statistics functionalities.

tions irq_set_affinity() and rebind_irq_to_cpu() that
can be used directly. The first one is quite high-level for
general-purpose use, while the second one is relatively low-
level and designed particularly for paravirtualized guest. For
efficiency, we use rebind_irq_to_cpu to inform the hypervi-
sor the change of event-notified vCPU. There is a corner case
that must be handled: since vBalance is executed with the
interrupts disabled, if an external event arrives before the
interrupts are enabled again, the corresponding interrupt
handler will not be invoked. So after the function finishes,
we need to check the event status again and see whether it
is needed to explicitly call the handler.

5. EVALUATION
In this section, we present the evaluation of our Xen-based

vBalance prototype in detail. Both micro-benchmarks and
application-level benchmarks are used to evaluate the effec-
tiveness of vBalance.

5.1 System Configuration
Our experiments are performed on several Dell PowerEdge

M1000e blade servers, connected with a Gigabit Ethernet
switch. Each server is equipped with two quad-core 2.53GHz
Intel Xeon 5540 CPUs, 16GB physical memory, two GbE
network cards and two 250GB SATA hard disks (RAID-1
configured). We use a 64-bit Xen hypervisor (version 4.1.2)
and a 64-bit Linux kernel (version 3.2.2) as the guest OS.

We run a set of experiments on the following three systems
for the purpose of comparison:

• Xen-native: unmodified Xen 4.1.2 hypervisor with
vanilla Linux 3.2.2 guest OS, as the baseline.

• Irqbalance: unmodified Xen 4.1.2 hypervisor with
vanilla Linux 3.2.2 guest OS, running a traditional
irqbalance [7] daemon inside.

• vBalance: with vBalance deployed in both Xen 4.1.2
hypervisor and Linux 3.2.2 guest OS.

5.2 Micro-level Benchmarks
This section presents the evaluation results of network

performance experiments using micro-level benchmarks. The
goal of the tests is to answer one question: even if the SMP-
VM gets CPU resource, can CPU cycles be properly used to
serve I/O requests? The SMP-VM under test was config-
ured with 4 vCPUs and 2GB physical memory. We created
an extreme case for stress tests by pining all four vCPUs to
one physical core, to see how serious the problem is and how
much improvement vBalance can achieve. The setup guar-
antees that: (1) the SMP-VM can always get CPU cycles by
owning a dedicated core; (2) the vCPUs are stacked in one
runqueue so that every vCPU will suffer the queueing de-
lays. To trigger the vCPU scheduling in the hypervisor, we
ran a four-threaded CPU burn script in the guest to make
all vCPUs runnable. The driver domain ran on separated
cores so that it will not affect the guest domains.

5.2.1 Network Latency
To gain a micro-scope view of network latency behavior,

we used ping with 0.1 second interval (10 ping operations
per second) to measure the round trip time from one physi-
cal server to the SMP-VM. Each test lasted for 60 seconds.

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60

P
in

g
 R

T
T

 (
m

s
)

Time (s)

(a) Xen native

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60

P
in

g
 R

T
T

 (
m

s
)

Time (s)

(b) with irqbalance

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60

P
in

g
 R

T
T

 (
m

s
)

Time (s)

(c) with vBalance

Figure 5: Ping RTT evaluation results

 0

 200

 400

 600

 800

 1000

0.5 1 2 4 8 16 32 64 128 256 512

A
v
e

ra
g

e
 T

h
ro

u
p

h
p

u
t

(M
b

p
s
)

Message Size (KB)

xen-native
with-irqbalance
with-vBalance

(a) TCP Bandwidth (TCP_STREAM test)

 0

 200

 400

 600

 800

 1000

0.5 1 2 4 8 16 32

A
v
e

ra
g

e
 T

h
ro

u
p

h
p

u
t

(M
b

p
s
)

Message Size (KB)

xen-native
with-irqbalance
with-vBalance

(b) UDP Bandwidth (UDP_STREAM test)

 0

 800

 1600

 2400

 3200

 4000

64
/1

K

64
/2

K

64
/4

K

64
/8

K

25
6/

1K

25
6/

2K

25
6/

4K

25
6/

8K

51
2/

1K

51
2/

2K

51
2/

4K

51
2/

8K

A
v
e

ra
g

e
 T

h
ro

u
p

h
p

u
t

(t
ra

n
s
./

s
)

Request Size / Response Size (bytes)

xen-native
with-irqbalance
with-vBalance

(c) TCP Transactions (TCP_RR test)

 0

 800

 1600

 2400

 3200

 4000

64
/1

K

64
/2

K

64
/4

K

64
/8

K

25
6/

1K

25
6/

2K

25
6/

4K

25
6/

8K

51
2/

1K

51
2/

2K

51
2/

4K

51
2/

8K

A
v
e

ra
g

e
 T

h
ro

u
p

h
p

u
t

(t
ra

n
s
./

s
)

Request Size / Response Size (bytes)

xen-native
with-irqbalance
with-vBalance

(d) UDP Transactions (UDP_RR test)

Figure 6: Netperf throughput evaluation results

Figure 5 shows the testing results of RTTs. It can be seen
that with default Xen and Linux irqbalance, the RTT largely
varies, with 90ms peak reached. This can be explained that
Xen’s credit scheduler use a 30ms time slice, so the maxi-
mum scheduling latency of each vCPU of a 4vCPU-VM is
3×30 ms. vBalance can effectively reduce the network RTTs
to less than 0.5ms, with no spikes observed. We can draw
the conclusion that with Xen’s credit scheduler: (1) even
the whole SMP-VM always gets CPU resource, the large
network latencies can still happen if the vCPU responsi-
ble for network interrupt can not get CPU cycles when I/O
events arrive; (2) Linux irqbalance running in the VM does
not show any benefit in reducing network latency.

5.2.2 Network Throughput
We used netperf [10] to evaluate both TCP and UDP net-

work throughput. The SMP-VM hosted a netserver process
and we ran a netperf process as the client on another phys-
ical machine. We wrote a script to automate the testing
process. Each test lasted for 60 seconds and was repeated
for three times to calculate the average value.
Figure 6 (a) and (b) presents bandwidth testing results,

using varied message sizes. The TCP_STREAM evaluation re-
sults show that vBalance achieves more than twice through-
put compared with default Xen, while irqbalance shows no
apparent performance improvement. The results of UDP_STR-
EAM is even better than that of TCP_STREAM, with maximum
performance reaching 2.8 times of default Xen. This is be-
cause TCP has to generate bidirectional traffic (SYN and
ACK packets) to maintain reliable communication, whereas
UDP traffic is unidirectional, therefore it can transmit more
data. Figure 6 (c) and (d) show the transaction results for
varied sizes of request/response combinations. The combi-
nations are designed to reflect the fact that the sizes of net-
work request packets are usually small whereas the replied
data from the servers can be quite big. The transaction rate
decreases along with the increase of request packet size and
response packet size. Our solution significantly outperforms
both default Xen and irqbalance in all test cases. Compared
with default Xen, in TCP_RR tests, the maximum improve-
ment of vBalance is 86%, reached at “512/2K” test case; in
UDP_RR tests, vBalance maximally achieves 102% improve-
ment, also reached at “512/2K” test case.

5.3 Application-level Benchmarks
In this section, we use two application-level benchmarks

to measure the performance improvement of vBalance. The
SMP-VM under test was configured with 4 vCPUs. This
time, we allocated four physical cores to host the SMP-
VM. To create the consolidate scenario, we ran eight CPU-
intensive UP-VMs on the same four physical cores as the
background. So on average, there were two co-located vC-
PUs per physical core to compete CPU cycles with the SMP-
VM’s vCPUs. All vCPUs were subjected to the load bal-
ancing activity of Xen’s credit scheduler. As a routine, the
driver domain ran on separate cores so that they would not
affect the guest domains.

5.3.1 Apache Olio

Xen hypervisor

Apache Olio
+

Memcached

VM…

… VM

VM

VM

Faban (Driver)
+

Tomcat (Geocoder)

MySQL
Server

SMP-VM

under test

NFS

Server

Background

VMs

Figure 7: The experimental setup of Apache Olio
benchmark

Apache Olio [2, 37] is a Web 2.0 toolkit to help evalu-
ate the suitability and performance of web technologies. It
features a social-event calendar, where users can create and
tag events, search, send comments, etc. Apache Olio in-
cludes a Markov-based distributed workload generator and
data collection tools. We use Apache Olio (version 2.0)
PHP5 implementation for our experiments which contains
four components: (1) an Apache web server acting as the
web front-end to process requests, (2) a MySQL server that
stores user profiles and event details, (3) an NFS server that
stores user files and event specific data, and (4) a Faban [6]
driver that generates the workload to simulate the external
users’ requests.
Figure 7 shows our testbed configuration. Except from

Olio application and Memcached server, the other compo-
nents were deployed on physical machines. The SMP-VM
was configured with 4GB physical memory, with 1GB used
for Memcached service. We configured Faban driver to run
for 11 minutes, including 30-second ramp up, 600-second
steady state and 30-second ramp down. Two agents were
used to control 400 concurrent users to generate different
types of requests, with each agent taking care of 200 users.
For fairness, MySQL server was configured to reload database
tables in every test. We evaluated the number of operations
and average response times performed by Apache Olio.
Table 1 shows the total count of different operations per-

formed by Apache Olio. Regarding the overall rate (ops/sec),
vBalance achieves 13.0% and 13.2% performance improve-
ment respectively, compared with default Xen and irqbal-
ance. Regarding each single operation, the maximum im-

provement is 20.6% compared with default Xen (reached
at Login operation), and 16.9% compared with irqbalance
(reached at AddPerson operation). One important observa-
tion is that without vBalance, many operations are reported
to be failure. For example, Login operation with default Xen
reported connection timeout error for 565 times, taking up
13.9% out of all login trials. This should be caused by too
long scheduling delays of the corresponding vCPU. With our
vBalance, we saw no failure case.

The results of average response times of each operation are
presented in Table 2. The significant improvements are not
surprising in that the scheduling latencies of vCPUs from
hypervisor will eventually translate into response delays to
user requests. With vBalance, the response times were sig-
nificantly reduced. The maximum improvements are ob-
served at Login operation for both default Xen and irqbal-
ance, 90.6% and 91.0% respectively. The results respond
to the large number of connection timeout error of Login
operation in Table 1.

Figure 8 (a) shows the CPU cycles each vCPU consumed
during Apache Olio tests. It is foreseeable that default Xen
utilizes vCPU0 much more than the other vCPUs, as all
interrupts are delivered to vCPU0 by default. However,
irqbalance also cannot achieved balanced load among vC-
PUs. This may be explained that irqbalance makes rebal-
ance decision not only based on vCPU load statistics, but
also on cache affinity, power consumption, etc. As the guest
OS is not able to obtain these hardware-related informa-
tion, the decisions that irqbalance makes are mostly inap-
propriate. Figure 8 (b) shows the context switch times hap-
pened on the four physical cores. The results of default Xen
and irqbalance are very close. This makes sense as irqbal-
ance wakes up every ten seconds, so its effect on context
switch times can be nearly ignored. Since vBalance intro-
duces a fast path mode for SMP-VM’s vCPUs in hypervisor
scheduler, it causes more context switches. Compared with
default Xen, vBalance only introduced 69% more context
switches, keeping 30ms time slice unchanged. This proves
that the design of vBalance in the hypervisor level is really
light-weight.

5.3.2 Dell DVDStore

Dell
DVDStore

VM…

… VM

VM

VM

Background
VMs SMP-VM

under test

Driver
Machine

MySQL
Server

Xen hypervisor

Figure 9: The experimental setup of Dell DVDStore
benchmark

Dell DVDStore [5] is an OLTP-style e-commerce appli-
cation that simulates users browsing an online DVD store
and purchasing DVDs. This application includes a back-end
database component, a web application layer and a driver
program. The driver program simulates users logging in,

Table 1: Apache Olio benchmark results – throughput (count: success/failure)
Operation 1. Xen native 2. with irqbalance with vBalance Improv–1 Improv–2
HomePage 11177/12 11043/12 12493/0 + 11.8% + 13.1%

Login 4076/565 4227/382 4917/0 + 20.6% + 16.3%
TagSearch 14271/8 14297/16 16142/0 + 13.1% + 12.9%
EventDetail 10580/6 10424/9 11791/0 + 11.4% + 13.1%
PersonDetail 1091/1 1110/3 1241/0 + 13.7% + 11.8%
AddPersion 358/0 349/0 408/0 + 14.0% + 16.9%
AddEvent 841/1 865/3 903/0 + 7.4% + 4.4%

Rate(ops/sec) 70.657 70.525 79.825 + 13.0% + 13.2%

Table 2: Apache Olio benchmark results – average response times (seconds)
Operation 1. Xen native 2. with irqbalance with vBalance Reduct–1 Reduct–2
HomePage 1.387 1.346 0.212 – 84.7% – 84.2%

Login 0.958 1.002 0.090 – 90.6% – 91.0%
TagSearch 1.657 1.736 0.306 – 81.5% – 82.4%
EventDetail 1.438 1.462 0.244 – 83.0% – 83.3%
PersonDetail 1.825 1.785 0.339 – 81.4% – 81.0%
AddPersion 2.852 3.012 0.800 – 71.9% – 73.4%
AddEvent 3.341 3.722 0.972 – 70.9% – 73.9%

 0

 100

 200

 300

 400

 500

 600

xen-native with-irqbalance with-vBalance

R
u
n
 T

im
e
 (

s
e
c
o
n
d
s
)

vCPU0
vCPU1
vCPU2
vCPU3

(a) The runtime of each vCPU

0.0x10
0

2.0x10
6

4.0x10
6

6.0x10
6

8.0x10
6

1.0x10
7

1.2x10
7

 0 100 200 300 400 500 600

C
o
n
te

x
t
S

w
it
c
h
 T

im
e
s

Time (s)

xen-native
with-irqbalance
with-vBalance

(b) Context switch overhead

Figure 8: The hypervisor statistics of Apache Olio benchmark

browsing for DVDs by title, actor or category, adding se-
lected DVDs to their shopping cart, and then purchasing
those DVDs. We chose DVDStore (version 2.1) PHP5 im-
plementation to evaluate the effectiveness of vBalance. The
setup is shown in Figure 9. We set MySQL database size to
be 4GB. We started 16 threads simultaneously to saturate
the application server’s capability. Each test lasted for 11
minutes, including 1-minute warm up and 10-minute stable
running. The driver reports testing results every 10 seconds.
Figure 10 (a) shows the results of average throughput.

Figure 10 (b) presents average request latency. vBalance
improves the average throughput from ∼210 orders/sec to
∼260 orders/sec (about 24% improvement), and reduces the
average request latencies from ∼60ms to ∼46ms (about 30%
improvement). Figure 11 (a) shows the CPU cycles each
vCPU consumed during the three tests. Compared with
Apache Olio results in Figure 8 (a), the SMP-VM’s un-
balanced vCPU load is more serious. This is because: 1)
Apache Olio tests can be configured to use a Memcached
server to store recently used data, so the application does
not need to read from NFS server and thus reduces network
traffic; 2) Apache Olio can preload database tables (user
profiles, events information, etc.) into memory before the
Faban driver sends user requests; during the website oper-

ations, application server almost does not need to bother
MySQL server and therefore also saves lots of network traf-
fic. The situation of Dell DVDStore is quite different: every
user request will trigger the database operations to MySQL
server, and eventually translates into network traffic. The
vCPU0 was bothered much more frequently by interrupts
than that in Apache Olio tests. Figure 11 (b) shows the
results of context switch times on the four physical cores
hosting the experiments. The default Xen performed very
similar to irqbalance. vBalance only introduced 35% more
context switch overhead than default Xen.

6. RELATED WORK

6.1 Hypervisor Scheduling

6.1.1 Scheduling for I/O
Significant effort has been paid to address the VM’s I/O

performance problem in recent years. Task-level solutions
[25, 34] map I/O bound tasks from the guest OS directly
to physical CPUs. Since the characteristics of tasks may
vary from time to time, the solution often needs additional
efforts to predict the changes. Besides, the implementation
involves heavy modifications from the guest OS scheduler to

 0

 50

 100

 150

 200

 250

 300

 350

 400

 100 200 300 400 500 600

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t
(o

rd
e
rs

/s
)

Time (s)

xen-native
with-irqbalance
with-vBalance

(a) Average throughput

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

m
s
)

Time (s)

xen-native
with-irqbalance
with-vBalance

(b) Average request latency

Figure 10: The evaluation results of Dell DVDStore benchmark

 0

 100

 200

 300

 400

 500

 600

xen-native with-irqbalance with-vBalance

R
u
n
 T

im
e
 (

s
e
c
o
n
d
s
)

vCPU0
vCPU1
vCPU2
vCPU3

(a) The runtime of each vCPU

0.0x10
0

5.0x10
6

1.0x10
7

1.5x10
7

2.0x10
7

2.5x10
7

 0 100 200 300 400 500 600

C
o
n
te

x
t
S

w
it
c
h
 T

im
e
s

Time (s)

xen-native
with-irqbalance
with-vBalance

(b) Context switch overhead

Figure 11: The hypervisor statistics of Dell DVDStore benchmark

the hypervisor scheduler. Several non-intrusive approaches
[22, 27, 32, 45] use real-time schedulers to shorten the vCPU
scheduling latencies for event processing. First, they require
complex configurations and careful parameter tuning and
selection, which may not be feasible in a cloud environment
with dynamic placement and migration of VMs. Our solu-
tion does not introduce any extra parameter or special con-
figurations, thus does not bring additional management bur-
den. Second, to meet the deadlines of some VMs, the time
slice they use is very small (less than 1ms in most cases),
which will excessively increase the context switch overhead.
Our solution does not change the time slice (30ms) used
in Xen’s credit scheduler. Research [30] proposes to run a
polling thread to monitor the event status, and schedules
the vCPU as soon as possible once the events arrive. The
drawback is that an additional physical core is needed to
run the polling thread, resulting in low resource utilization.
Research [23, 46] propose to dynamically reduce the time
slice length used in the hypervisor scheduler, so as to de-
crease the waiting time of each vCPU in the runqueue. Ap-
parently, these approaches will exponentially increases the
context switch times among VMs. For instance, when using
a time slice of 0.1ms as suggested in research [23], theoreti-
cally the context switch overhead becomes 300 times bigger
than that of xen’s credit scheduler (30ms)!
Another common problem of the above solutions is that

none of them is designed for SMP-VMs. Without the co-
operation from the guest OS to balance the interrupts load
among multiple vCPUs, the potential to improve I/O per-
formance at the hypervisor layer is quite limited.

6.1.2 Co-scheduling for SMP Virtual Machines
Most research papers with SMP-VMs focus on “synchro-

nization” problem inside the guest OS. The lock contention
problem among multiple processors is already a well-known
problem, which will degrade the parallel application’s per-
formance by serializing its execution. However, with the OS
running in a VM, the synchronization latency of spinlocks
becomes more serious, as the vCPU holding the lock may
be preempted by the hypervisor at any time. Research [40]
identifies this problem as LHP (Lock-Holder Preemption):
the vCPU holding a lock is preempted by the hypervisor,
resulting in much longer waiting time for the other vCPUs
to get the lock. They propose several techniques to address
LHP problem, including intrusively augmenting the guest
OS with a delayed preemption mechanism, non-intrusively
monitoring all switches between user-level and kernel-level
to determine the safe preemption, and making the hyper-
visor scheduler locking-aware by introducing a preemption
window. Research [38] proposes “balance scheduling” by dy-
namically setting CPU affinity to guarantee that no vCPU
siblings are in the same CPU’s runqueue. Research [43] ad-
dresses this problem by detecting the occurrence of spinlocks
with long waiting times and then determine co-scheduling of
vCPUs. Research [14] uses gray-box knowledge to infer the
concurrency and synchronization of guest tasks. VMware
proposes the concept of “skew” to guarantee the synchro-
nized execution rates between vCPUs [3].

All the above approaches are actually the variants of co-
scheduling algorithm proposed in [33], which schedules con-
current threads simultaneously to reduce the synchroniza-

tion latency. For SMP-VMs, the vCPUs from the same VM
are co-scheduled. That is, if physical cores are available, the
vCPUs are mapped one-to-one onto physical cores to run
simultaneously. In other words, if one vCPU in the VM is
running, a second vCPU is co-scheduled so that they execute
nearly synchronously. Though it may mitigate the negative
effect of spinlocks inside guest OS to some extent, it helps lit-
tle to reduce interrupt processing delays, as vCPU schedul-
ing latencies from the hypervisor are inherently unavoidable.
Besides, the CPU fragmentation problem introduced can re-
duce CPU utilization [28]. To our best knowledge, we are the
first one to use interrupt load balance technique to improve
I/O performance for SMP-VMs.

6.2 Linux Irqbalnace
Irqbalance [7] is a Linux daemon that distributes inter-

rupts over the processors and cores in SMP physical ma-
chines. The design goal is to find a balance between power
savings and optimal performance. By periodically analyz-
ing the interrupt load on each CPU (every 10 seconds by
default), interrupts are reassigned among the eligible CPUs.
Irqbalance also considers cache-domain affinity, and tries
to make each interrupt stand a greater chance of having
its interrupt handler be in cache. It automatically deter-
mines whether the system should work in power-mode or
performance-mode, according to the system’s workload.
As the underlying execution environment for OS signifi-

cantly differs in virtualization world, the solution designed
based on physical assumptions are not effective at all. First,
irqbalance has no knowledge of the scheduling status of each
vCPU, so it has no way to correctly determine which vC-
PUs are eligible ones; a rebalance interval of 10 seconds is
too long, as the hypervisor schedules the vCPUs in the mag-
nitude of milliseconds. Second, it is quite difficult to predict
the cache behaviors even for the hypervisor, so it is infeasi-
ble for the guest OS to manage cache directly. Third, power
saving will be much more powerful to work in the hypervisor,
which accesses the hardware directly.

6.3 Hardware-based Solutions for Directed I/O
Hardware-based approaches assign dedicated devices to

VMs and allow direct hardware access from within the guest
OS. In this approaches, performance critical I/O operations
can be carried out by interacting with the hardware directly
from a guest VM. For example, Intel VT [39] (including
VT-x, VT-d, VT-c, etc.) provides the platform hardware
support for DMA and interrupt virtualization [13]. DMA
remapping transforms the address in a DMA request issued
by an I/O device, which uses Machine Physical Address
(MPA) to the VM’s corresponding Guest Physical Address
(GPA). Interrupt remapping hardware distinguishes inter-
rupt requests from specific devices and routes them to the
appropriate VMs to which the respective devices are as-
signed. By offloading many capabilities into hardware and
simplifying the execution, it can greatly improve the I/O
performance of VMs.
However, these approaches have several limitations. First,

it sacrifices key advantages of a dedicated driver domain
model: device driver isolation in a safe execution environ-
ment avoiding guest domain corruption by buggy drivers.
Instead, a virtual machine would have to include device
drivers for a large variety of devices, increasing their size,

complexity, and maintainability. Second, it requires special
support in both processors and I/O devices, such as self-
virtualized PCI devices [11] which present multiple logical
interfaces, thereby increases hardware cost. Third, using the
intelligent hardware for VMs is already a very complicated
task [19, 35], it also complicates many other functionali-
ties such as safety protection [44], transparent live migration
[24], checkpointing/restore, etc. Last but most importantly,
even with hardware support like DMA-remapping and inter-
rupt migration, the processing of a interrupt still relies on
whether the targeted vCPU can be scheduled timely by the
hypervisor.

7. DISCUSSIONS AND FUTURE WORK
Time Slice of the Hypervisor Scheduler. Since our

solution mainly relies on the guest-level strategies to mi-
grate interrupts among vCPUs, it is independent from the
time slice used in the hypervisor scheduler. Therefore, using
a longer time slice for SMP-VMs should cause less context
switches. For the guest OS, since each vCPU can run longer
at a time, the frequency of interrupt migration can be re-
duced. Research [23] divides the physical cores into several
groups (e.g. normal cores, fast-tick cores), and uses ded-
icated fast-tick cores to schedule I/O bound vCPUs. We
are inspired to use “slow-tick” cores to host SMP-VMs, with
vBalance running in the guest OS. Considering the “syn-
chronization” problem mentioned in the related work [14,
38, 40, 43], how this approach can effectively work with co-
scheduling is worth investigating.

Extension of the Algorithm. The current load bal-
ance strategy migrates interrupts to only one vCPU (many-
to-one). This simplifies the design and implementation, and
works well when the number of interrupt sources is small
(e.g. one NIC plus one disk). However, if the SMP-VM is
configured with multiple NICs or disks, when applications
simultaneously access them, the current solution may not
optimally balance the workload. Therefore, a many-to-many
interrupt mapping algorithm is desirable in the future. As
such, the historical workload of each interrupt source may
be used to predict its future pattern, and based on these
heuristics the interrupts are distributed to multiple online
vCPUs. The problem is complicated in that a tradeoff be-
tween fairness and efficiency needs to be achieved.

Cache-Awareness. Cache management is known to be
a quite complicated problem for VMs, subject to vCPU mi-
grations among physical cores and VM migrations among
physical hosts. Modern CPU hardware is increasingly to
be NUMA style, with each node owning a shared LLC (Last
Level Cache) of very big size (e.g., Intel’s Nehalem [36]). The
future hypervisor scheduler should be cache-aware, making
vCPUs fairly benefit the hardware cache. Cache partitioning
[29] has been proposed to address the conflicting accesses in
shared caches. Virtual Private Caches (VPCs) [31] provide
hardware support for the Quality of Service (QoS) of Vir-
tual Private Machines (VPM). For guest OS, it is expected
to always migrate the interrupts to cache-hot vCPUs, in-
stead of cache-hold ones. In order to make the guest OS
aware of whether the vCPU is cache-hot or cache-cold, the
CPU-tree information needs to be passed to the guest level.
How interrupt load balancing inside guest OS can benefit
from cache-awareness is a research problem.

8. CONCLUSION
High performance I/O virtualization is endlessly desirable

in data-intensive cloud computing era. In this paper, we pro-
pose a new I/O virtualization approach called vBalance for
SMP virtual machines. vBalance is a cross-layer solution,
which takes advantage of the guest-level help to accelerate
I/O speed by adaptively and dynamically migrating inter-
rupts from a preempted vCPU to a running one. Unlike
traditional approaches which impose all pressure on the hy-
pervisor scheduler, vBalance exploits the potential of guest
operating system and is quite light-weight in the hypervisor.
vBalance is based on software and does not require special
hardware support. To demonstrate the idea of vBalance, we
developed a prototype using Xen 4.1.2 and Linux 3.2.2. Our
stress tests with micro-level benchmarks show that vBal-
ance significantly reduces network latency and greatly im-
proves network throughput. The experimental results with
representative cloud-style applications show that vBalance
easily outperforms the original Xen, achieving much lower
response time and higher throughput. Overall, leveraging
vBalance makes SMP virtual machines more appealing for
applications to deploy.

9. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful

comments. This research is supported by a Hong Kong RGC
grant HKU 7167/12E and in part by a Hong Kong UGC
Special Equipment Grant (SEG HKU09).

10. REFERENCES
[1] Amazon EC2: http://aws.amazon.com/ec2/.

[2] Apache Olio: http://incubator.apache.org/olio/.

[3] Co-scheduling SMP VMs in VMware ESX Server:
http://communities.vmware.com/docs/doc-4960.

[4] Credit Scheduler:
http://wiki.xensource.com/xenwiki/creditscheduler.

[5] Dell DVD Store: http://linux.dell.com/dvdstore/.

[6] Faban: http://java.net/projects/faban/.

[7] Irqbalance: http://www.irqbalance.org/.

[8] Linux bridge:
http://www.losurs.org/docs/ldp/howto/pdf/bridge-
stp-howto.pdf.

[9] Microsoft Hyper-V Server:
http://www.microsoft.com/hyper-v-server/.

[10] Netperf: http://www.netperf.org/.

[11] PCI-SIG I/O virtualization specifications:
http://www.pcisig.com/specifications/iov/.

[12] VMware Virtual Networking Concepts:
http://www.vmware.com/files/pdf/virtual network-
ing concepts.pdf.

[13] Intel virtualization technology for directed i/o.
Architecture Specification - Revision 1.3, Intel
Corporation, February 2011.

[14] Y. Bai, C. Xu, and Z. Li. Task-aware based
co-scheduling for virtual machine system. In
Proceedings of the 2010 ACM Symposium on Applied
Computing (SAC), pages 181–188.

[15] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and

A. Warfield. Xen and the art of virtualization. In
Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP), volume 37, pages
164–177, 2003.

[16] S. K. Barker and P. Shenoy. Empirical evaluation of
latency-sensitive application performance in the cloud.
In Proceedings of the first annual ACM SIGMM
conference on Multimedia systems (MMSys), pages
35–46, 2010.

[17] F. Bellard. QEMU, a fast and portable dynamic
translator. In USENIX 2005 Annual Technical
Conference, pages 41–41.

[18] P. Ben, P. Justin, K. Teemu, A. Keith, C. Martin, and
S. Scott. Extending networking into the virtualization
layer. In HotNets-VIII, 2009.

[19] M. Ben-Yehuda, J. Xenidis, M. Ostrowski, K. Rister,
A. Bruemmer, and L. V. Doorn. The price of safety:
Evaluating iommu performance. In The 2007 Ottawa
Linux Symposium (OLS), pages 9–19.

[20] L. Cheng and C.-L. Wang. Network performance
isolation for latency-sensitive cloud applications.
Future Generation Computer Systems, 2012.

[21] L. Cheng, C.-L. Wang, and S. Di. Defeating network
jitter for virtual machines. In The 4th IEEE
International Conference on Utility and Cloud
Computing (UCC), pages 65–72, 2011.

[22] S. Govindan, A. R. Nath, A. Das, B. Urgaonkar, and
A. Sivasubramaniam. Xen and co.:
communication-aware cpu scheduling for consolidated
xen-based hosting platforms. In Proceedings of the 3rd
International Conference on Virtual Execution
Environments (VEE), pages 126–136, 2007.

[23] Y. Hu, X. Long, J. Zhang, J. He, and L. Xia. I/o
scheduling model of virtual machine based on
multi-core dynamic partitioning. In Proceedings of the
19th ACM International Symposium on High
Performance Distributed Computing (HPDC), pages
142–154, 2010.

[24] A. Kadav and M. M. Swift. Live migration of
direct-access devices. ACM SIGOPS Operating
Systems Review, 43:95–104, July 2009.

[25] H. Kim, H. Lim, J. Jeong, H. Jo, and J. Lee.
Task-aware virtual machine scheduling for i/o
performance. In Proceedings of the 5th ACM
SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE), pages
101–110, 2009.

[26] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori. kvm: the linux virtual machine monitor. In
The 2007 Ottawa Linux Symposium (OLS), pages
225–230.

[27] M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh,
and S. Yajnik. Supporting soft real-time tasks in the
xen hypervisor. In Proceedings of the 6th ACM
SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE), volume 45,
pages 97–108, 2010.

[28] W. Lee, M. Frank, V. Lee, K. Mackenzie, and
L. Rudolph. Implications of i/o for gang scheduled

workloads. In Job Scheduling Strategies for Parallel
Processing, volume 1291, pages 215–237, 1997.

[29] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and
P. Sadayappan. Gaining insights into multicore cache
partitioning: Bridging the gap between simulation and
real systems. In IEEE 14th International symposium
on High Performance Computer Architecture (HPCA),
pages 367–378, 2008.

[30] J. Liu and B. Abali. Virtualization polling engine
(vpe): using dedicated cpu cores to accelerate i/o
virtualization. In Proceedings of the 23rd International
Conference on Supercomputing (ICS), pages 225–234,
2009.

[31] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual
private caches. In Proceedings of the 34th annual
international symposium on Computer architecture
(ISCA), pages 57–68, 2007.

[32] D. Ongaro, A. L. Cox, and S. Rixner. Scheduling i/o
in virtual machine monitors. In Proceedings of the 4th
ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (VEE), pages
1–10, 2008.

[33] J. K. Ousterhout. Scheduling techniques for
concurrebt systems. In International Conference on
Distributed Computing Systems (ICDCS), pages
22–30, 1982.

[34] R. Rivas, A. Arefin, and K. Nahrstedt. Janus: a
cross-layer soft real-time architecture for
virtualization. In Proceedings of the 19th ACM
International Symposium on High Performance
Distributed Computing (HPDC), pages 676–683, 2010.

[35] J. Shafer, D. Carr, A. Menon, S. Rixner, A. L. Cox,
W. Zwaenepoel, and P. Willmann. Concurrent direct
network access for virtual machine monitors. In
International Symposium on High Performance
Computer Architecture (HPCA), pages 306–317, 2007.

[36] R. Singhal. Inside intel next generation nehalem
microarchitecture. In Intel Developer Forum (IDF)
presentation, August 2008.

[37] W. Sobel, S. Subramanyam, A. Sucharitakul,
J. Nguyen, H. Wong, A. Klepchukov, S. Patil, O. Fox,
and D. Patterson. Cloudstone: Multi-platform,
multi-language benchmark and measurement tools for
web 2.0. In The First Workshop Cloud Computing and
Its Applications (CCA), 2008.

[38] O. Sukwong and H. S. Kim. Is co-scheduling too
expensive for smp vms? In Proceedings of the sixth
conference on Computer systems (EuroSys), pages
257–272, 2011.

[39] R. Uhlig, G. Neiger, D. Rodgers, A. Santoni,
F. Martins, A. Anderson, S. Bennett, A. Kagi,
F. Leung, and L. Smith. Intel virtualization
technology. Computer, 38:48–56, 2005.

[40] V. Uhlig, J. LeVasseur, E. Skoglund, and
U. Dannowski. Towards scalable multiprocessor
virtual machines. In Proceedings of the 3rd conference
on Virtual Machine Research And Technology
Symposium (VM)- Volume 3, pages 4–4, 2004.

[41] C. A. Waldspurger. Memory resource management in
vmware esx server. In Proceedings of the 5th

symposium on Operating Systems Design and
Implementation (OSDI), volume 36, pages 181–194,
2002.

[42] G. Wang and T. Ng. The impact of virtualization on
network performance of amazon ec2 data center. In
The 29th Annual IEEE International Conference on
Computer Communications (INFOCOM), pages 1–9,
2010.

[43] C. Weng, Q. Liu, L. Yu, and M. Li. Dynamic adaptive
scheduling for virtual machines. In Proceedings of the
20th international symposium on High Performance
Distributed Computing (HPDC), pages 239–250, 2011.

[44] P. Willmann, S. Rixner, and A. L. Cox. Protection
strategies for direct access to virtualized i/o devices.
In USENIX 2008 Annual Technical Conference, pages
15–28.

[45] S. Xi, J. Wilson, C. Lu, and C. Gill. Rt-xen: towards
real-time hypervisor scheduling in xen. In Proceedings
of the 9th ACM international conference on Embedded
software, pages 39–48, 2011.

[46] C. Xu, S. Gamage, P. N. Rao, A. Kangarlou,
R. Kompella, and D. Xu. vslicer: Latency-aware
virtual machine scheduling via differentiated frequency
cpu slicing. In Proceedings of the 21st international
symposium on High-Performance Parallel and
Distributed Computing (HPDC), pages 3–14, 2012.

