
Computers and Mathematics with Applications 63 (2012) 458–468

Contents lists available at SciVerse ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

An efficient deadlock prevention approach for service oriented
transaction processing
Feilong Tang a,∗, Ilsun You b, Shui Yu c, Cho-Li Wang d, Minyi Guo a, Wenlong Liu e

a Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
b School of Information Science, Korean Bible University, Nowon-gu, Seoul, South Korea
c School of Information Technology, Deakin University, Burwood, VIC 3125, Australia
d Department of Computer Science, The University of Hong Kong, Hong Kong
e School of Information and Communication Engineering, Dalian University of Technology, Dalian, China

a r t i c l e i n f o

Keywords:
Distributed transaction processing
Deadlock prevention
Service oriented architecture (SOA)
Replication
Two-phase commit (2PC)

a b s t r a c t

Transaction processing can guarantee the reliability of business applications. Locking
resources is widely used in distributed transaction management (e.g., two phase commit,
2PC) to keep the system consistent. The lockingmechanism, however, potentially results in
various deadlocks. In service oriented architecture (SOA), the deadlock problem becomes
even worse because multiple (sub)transactions try to lock shared resources in the
unexpectable way due to the more randomicity of transaction requests, which has not
been solved by existing research results. In this paper, we investigate how to prevent
local deadlocks, caused by the resource competition among multiple sub-transactions of
a global transaction, and global deadlocks from the competition among different global
transactions. We propose a replication based approach to avoid the local deadlocks, and
a timestamp based approach to significantly mitigate the global deadlocks. A general
algorithm is designed for both local and global deadlock prevention. The experimental
results demonstrate the effectiveness and efficiency of our deadlock prevention approach.
Further, it is also proved that our approach provides higher system performance than
traditional resource allocation schemes.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Business applications have necessitated distributed transaction management technologies. Existing distributed
transaction models widely use the resource locking mechanism for keeping the consistency of transaction systems, among
which two-phase commit (2PC) [1] is the most representative coordination protocol through requiring sub-transactions to
lock resources before the transaction commit. Unfortunately, 2PC-like protocols potentially induce various deadlocks when
multiple (sub-)transactions try to lock the same resource at the same time.

Service oriented architecture (SOA) presents new requirements and challenges to the transaction management. With
the success of SOA, many large-scale information systems have been set up to provide business services simultaneously
[2,3]. In SOA environments, the deadlock problem due to the resource competition among multiple (sub)transactions gets
worse because of the randomicity of transaction requests and the uncontrollability of transaction execution order [4,5]. The
deadlock in SOA environments will occur more often than that in traditional distributed systems. As a result, new deadlock
prevention [6] approaches are needed for improving the performance of service-oriented systems.

∗ Corresponding author.
E-mail address: tang-fl@cs.sjtu.edu.cn (F. Tang).

0898-1221/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2011.07.063

http://dx.doi.org/10.1016/j.camwa.2011.07.063
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:tang-fl@cs.sjtu.edu.cn
http://dx.doi.org/10.1016/j.camwa.2011.07.063


F. Tang et al. / Computers and Mathematics with Applications 63 (2012) 458–468 459

Deadlock control technologies can be categorized as deadlock avoidance [7–9], deadlock detection [10,11] and deadlock
prevention [12–14]. The deadlock avoidance strategy only accepts the requests that will lead to safe states. Although it allows
more concurrency [15,16], it has to know the number and type of all resources before the actual resource allocation. For
many systems, however, it is impossible to know all resources and their states in advance. The deadlock detection [17]
tracks resource allocation and process states, and restarts one or more processes to remove deadlocks. To detect deadlocks
introduced by concurrent resource accesses, some researchers proposed wait-for-graph-based detection algorithm [10].
Timeout based probabilistic analysis [18] is also used to detect global deadlocks in distributed systems, however, the
timeout itself is different to be decided [19]. On the other hand, after a deadlock is detected, one of transactions in the wait
cycle must be aborted. Wang et al. [20] proposed guaranteed deadlock recovery based on run-time dependency graph and
incorporated it into distributed deadlock detection algorithm. Although the deadlock detection is effective, it costs more
time. Moreover, with regard to local deadlocks defined in this paper, nothing can be done even if a deadlock is detected.
Finally, the deadlock prevention mechanism often removes the ‘‘hold and wait’’ condition by requiring processes to request
all the needed resources before starting up. Ezpeleta. et al. [12] proposed a Petri net based deadlock prevention policy based
on the liveness or the reachability of Petri nets. An advantage of the deadlock prevention is that it does not need to know
details of all resources available and requested. So, the deadlock prevention approach is more suitable for dynamical and
open service-oriented environments.

In this paper, we propose an algorithm to prevent local deadlocks, caused by the resource competition among multiple
sub-transactions of a transaction, and global deadlocks due to the resource competition among different global transactions.
In our scheme, we control concurrent resource accesses through the resource manager, which is particularly useful for
business transactions in service-oriented environments. We describe in brief our contributions in this paper as follows.

(1) We propose a replication based approach to avoid local deadlocks. In traditional deadlock prevention schemes, when
two or more sub-transactions of a global transaction compete for the same resource, the global transaction will have
to be aborted. On the other hand, whenever the global transaction restarts, it will inevitably fail again due to the same
resource competition.

(2) We propose a timestamp based approach to prevent global deadlocks. In our scheme, the conflicted transactions that
compete for the same resource are selectively aborted after a timeout, based on their transaction ID. Consequently, our
approach avoids the live-locks due to resource competition among global transactions.

(3) A general algorithm is designed for preventing both local and global deadlocks, based on the solutions proposed above.
(4) We design an intelligent resourcemanager bymerging the deadlock prevention functionwith the resourcemanagement

function. The resourcemanger candetect andprevent local and global deadlocks and allocate appropriate lock(s) for each
transaction.

The experimental results demonstrate that our replication based mechanism completely avoids the local deadlocks. On
the other hand, our timestamp based mechanism significantly reduces the global deadlocks and live-locks.

The remainder of this paper is organized as follows. In Section 2,we briefly introduce the related background and formally
define the local and global deadlocks. Section 3 presents our replication based approach for avoiding the local deadlocks,
the timestamp based mechanism to prevent global deadlocks, and the general algorithm for local and global deadlock
prevention. The implementation and performance evaluations are reported in Section 4. Finally, we conclude this paper
in Section 5.

2. Preliminaries

The deadlock in the transaction processing is highly relevant to transaction commit protocols. Our deadlock prevention
is designed for 2PC-like protocols. In this section, we briefly describe the 2PC protocol and its locking implementations, and
then formally define local and global deadlocks.

2.1. Background

2PCwas designed for coordinating distributed atomic transactions with the following properties: atomicity, consistency,
isolation and durability. Usually, a distributed atomic transaction is managed by a transaction manager (TM) together with
a set of resource managers (RM) responsible for allocating individual resources for corresponding sub-transactions. A TM
controls multiple RMs involved in a global transaction. On the other hand, an RM also can be shared by multiple TMs for
concurrent transactions.

A distributed transaction contains a set of sub-transactions executed in different networked nodes [21,22]. Each of them
works as a participant under the control of the TM. The 2PC protocol guarantees that a transaction is either successfully
committed or not performed at all. In 2PC-based transaction processing, the TM coordinates all the sub-transactions in the
following two phases.
Phase 1. All participants (sub-transactions) receive instructions from a transaction coordinator (i.e., TM) to prepare for
commit. In most cases, it is achieved through locking needed resources. If a resourcemanager can lock the needed resources
for a corresponding sub-transaction, it votes OK; that means it is ready to commit. Otherwise, it responds Failed to the TM.



460 F. Tang et al. / Computers and Mathematics with Applications 63 (2012) 458–468

Phase 2. The TM sends a commit instruction to all RMs if all the participants voted OK. Otherwise it requires the RMs, which
are ready to commit, to roll back. Then all the resource managers commit or roll back according to the instruction from
the TM.

The above 2PC protocol ensures that every participant takes the same action to achieve the ‘‘all or nothing’’ property.

2.2. Problem statement

2PC protocol potentially causes deadlockswhenmultiple transactions (sub-transactions) compete for the same resource.
In this section, we formally define local deadlock and global deadlock problems.

We assume that there are m global transactions T = {Ti|1 ≤ i ≤ m} and r resources R = {Rk|1 ≤ k ≤ r} in a system.
Each resource Rk is under the control of its own resource manager Mk. Further, let a distributed transaction Ti consist of n
sub-transactions such that Ti = {Ti,j|1 ≤ j ≤ n}. We use Ak

i,j to indicate the relationship between a sub-transaction Ti,j and
a resource Rk. Ak

i,j = 1 if Ti,j needs to access Rk during the transaction processing; otherwise, Ak
i,j = 0. Similarly, Ak

i indicates
the relationship between a global transaction Ti and a resource Rk. Ak

i = 1 if the global transaction Ti accesses Rk during
the execution of Ti, which means some sub-transactions of Ti will lock the resource Rk; otherwise, Ak

i = 0, which means no
sub-transaction of Ti needs to access Rk. Moreover, we use LRk = 1 to indicate that the resource Rk was locked; otherwise,
LRk = 0. In particular, LTiRk = 1 means that the Rk was locked by the global transaction Ti; otherwise, LTiRk = 0.

Accordingly, we design two matrices: local access matrix AL = (Ak
i,j)n×r (1 ≤ j ≤ n, 1 ≤ k ≤ r) and global access matrix

AG = (Ak
i )m×r (1 ≤ i ≤ m, 1 ≤ k ≤ r). As a result,

∑n
j=1 A

k
i,j represents howmany sub-transactions Ti,j of a global transaction

Ti will simultaneously access the same resource Rk while
∑n

j=1 A
k
i indicates how many global transactions simultaneously

requests the Rk.

Definition 1. A local deadlock occurs if at least a resource Rk is requested by two or more sub-transactions Ti,j of a global
transaction Ti, i.e., ∃ k,

∑n
j=1 A

k
i,j > 1, before Ti commits.

When multiple sub-transactions of a global transaction Ti try to lock the same resource Rk, only the first requestor can
lock the Rk while others will be blocked in traditional 2PC-based transaction processing schemes. Consequently, Ti enters
the deadlock status because 2PC protocol waits for votes from all sub-transactions before the commit. On the other hand, if
Ti is aborted through a timeout mechanism and is restarted again, it will still fail to commit due to the same competition on
the resource Rk.

When a global deadlock occurs, there is a wait loop among the conflicted global transactions. By the wait loop, we mean
each conflicted global transaction Ti occupies some resources but still needs other resource(s), which have (has) been locked
by other transaction(s) Tj (1 ≤ i, j ≤ m; i ≠ j). As a result, these transactions in thewait loopmutuallywait resources locked
by others. We use di,j to represent the resource demand of a sub-transaction Ti,j. A global deadlock can be defined as follows.

Definition 2. A global deadlock occurs if (1) for any global transaction Ti in the wait loop, ∃j,
∑r

k=1 A
k
i,j < di,j, which means

at least one of sub-transactions of Ti needs to lock other locked resource(s) and (2)
∑r

k=1 A
k
i ≥ 1, which means any global

transaction in the wait loop has locked at least one resource.

2.3. Deadlock scenarios

In this section, we exemplify a local deadlock and a global deadlock.
(1) Local deadlock scenario (scenario 1)

During the 2PC-based transaction coordination, resource managers must hold the requested resources in the first phase
of 2PC. Otherwise, other concurrent transactions may access intermediate results and lead to system inconsistency. For this
purpose, resource managers often lock the resources and do not release their locks until the transaction commit. On the
other hand, during the first stage, the transaction coordinator waits for all the sub-transactions (participants) to vote for
their states. As a result, if two or more sub-transactions request the same resource(s), a local deadlock is inevitable.

For example, T1,1 and T1,2 are sub-transactions of a transaction T1, and they both need to access the same resource R, as
shown in Fig. 1. Due to 2PC protocol, R will be held by one of the two sub-transactions according to the scheduling rule (e.g.,
first come first serve). We assume that T1,1 gets the lock on R, and then it votes OK to the coordinator. The coordinator has to
wait for T1,2’s response. However, T1,2′ request to the same resource R will be blocked until T1,1 release the lock on R. If the
timeout mechanism is not considered in the first phase, T1,1 will not release its lock because the coordinator cannot make
a final conclusion. In this case, a wait-for cycle is formed and the local deadlock happens. On the other hand, if a timeout is
merged in the 2PC protocol, T1 can be aborted after the timeout. Unfortunately, T1 will still fail to commit after it restarts
again due to the same competition on R.

In the above example, each sub-transaction requests only one resource and further all the sub-transactions need to access
the same resource.We can easily extend it to the scenario where some sub-transaction(s) need to accessmultiple resources.
Fig. 2 illustrates such an extended local deadlock, where T1,3 has locked R2 but it has to wait for R1 locked by T1,1. Further,
T1,2 is blocked because R2 has been locked by T1,3.



F. Tang et al. / Computers and Mathematics with Applications 63 (2012) 458–468 461

Fig. 1. Local deadlock.

Fig. 2. Extended local deadlock.

Fig. 3. Global deadlock.

(2) Global deadlock scenario (scenario 2)
A global deadlock will occur when multiple concurrent global transactions compete for the same resource(s). Assume

that there are two global transactions T1 and T2 in a system. Each transaction consists of two sub-transactions such that
T1 = {T1,1, T1,2} and T2 = {T2,1, T2,2}. T1,1 and T2,1 need to access R1 and T1,2 and T2,2 have to access R2, respectively. As a
result, a global deadlock is caused when concurrent T1 and T2 request the two resources R1 and R2 in the following order.

• Transaction managers of T1 and T2 require sub-transactions to prepare corresponding resources, respectively.
• T1,1 requests the R1 and successfully sets a lock on the R1.
• T2,2 requests the R2 and successfully sets a lock on the R2.
• T1,2 begins to request R2, but it has to wait for the lock on R2.
• T2,1 begins to request R1, but it has to wait for the lock on R1.

This resource request flow can be shown in Fig. 3. In this scenario, T1,1 waits for T1’s final decision, T1 waits for T1,2’s vote,
and T1,2 waits for T2,2 to release the R2. Unfortunately, it is true of T2 and its sub-transactions T2,1 and T2,2. So, T1 and T2 will
mutually wait for the resource occupied by the other side.

3. Deadlock prevention approach

In this section, we present two prevention mechanisms for local deadlocks and global deadlocks in service-oriented
environments, respectively, and then propose an algorithm to implement the two mechanisms.



462 F. Tang et al. / Computers and Mathematics with Applications 63 (2012) 458–468

Fig. 4. Replication based mechanism for local deadlock.

3.1. Replication-based local deadlock prevention

As described above, a local deadlock occurs when some sub-transactions (called conflicted sub-transactions) of a global
transaction try to lock the same resource, which can be locked by only one of the conflicted sub-transactions in existing
2PC-based transaction models. Consequently, others of the conflicted sub-transactions are blocked unless the global
transaction is aborted. On the other hand, once the global transaction restarts, it will enter the deadlock state again due
to the same resource competition. As a result, the local deadlock cannot be simply prevented by using traditional resource
allocation schemes [23,24], in which a resource is locked by only one sub-transaction.

Based on the above observation and analysis, we propose a new replication-basedmechanism to prevent local deadlocks,
which works based on the following ideas.
(1) A resourcemanager replicates a copy of the competed resourcewhenmore than one sub-transactions request it through

the resource manger.
(2) The replicated resource copy is shared (i.e., read and write) by all the conflicted sub-transactions.
(3) The resource copy will be updated to its original resource once the global transaction commits.

Distinguishing from traditional transaction models where each sub-transaction locks a resource separately, these
conflicted sub-transactions in our scheme share a lock on the replicated resource before the global commits.

Every global transaction has a unique root ID. When a sub-transaction is distributed to a node, its manager keeps the
root ID of its parent and generates its own sub-ID. We use ID(Ti) and ID(Ti,j) to denote the IDs of a global transaction
Ti and its sub-transaction Ti,j, respectively. In our scheme, the ID(Ti,j) consists of two parts: the ID ID

Ti,j
parent of its parent

transaction generated by the Coordinator and the sub-ID ID
Ti,j
sub generated by the corresponding Participant (see Fig. 4), such

that ID(Ti,j) = ID
Ti,j
parent + ID

Ti,j
sub = ID(Ti) + ID

Ti,j
sub. So, every resource manager knows the root ID of any sub-transaction, and

can distinguish whether any two sub-transactions belong to the same global transaction or not, based on their root IDs (i.e.,
ID(Ti)).

Fig. 4 illustrates how our scheme prevents local deadlocks, where a global transaction T1 includes two sub-transactions
such that T1 = {T1,1, T1,2}. Both T1,1 and T1,2 access the same resource R. Without losing generality, we assume that resource
manager RM first receives T1,1 request to the R and then T1,2 request to the R. When RM receives the request from T1,1, it
locks the R for T1,1 immediately. However, RM does not reject the request from T1,2 although the R has been locked by T1,1.
Instead, it replicates a copy of the R (marked as R′) and from then on, all requests from sub-transactions with the same root
ID are shifted to the replicated resource R′. Note that RM immediately releases the lock on the original resource R after the
replication. The general approach for preventing local deadlocks is described in Fig. 5, where we assume that the resource
Rk is locked by the transaction Tl when LRk = 1. So, Ti,j is one sub-transaction of Tl when ID

Ti,j
parent = ID(Tl). Our approach

not only prevents local deadlocks but also improves the system concurrency through allowing other global transactions to
operate on the original resource R concurrently.

3.2. Timestamp-based global deadlock prevention

In this section, we investigate how to prevent global deadlocks, which happensmore often than local deadlocks. Existing
technologies for global deadlock prevention are generally based on sequential resource access. It is a pessimistic static
resource allocation scheme that needs to exploit prior knowledge of transaction access patterns [25].

3.2.1. Pre-check based approach for preventing global deadlocks
In service-oriented environments, each business transaction knows what resources it will request. So, it is appropriate

to make sure whether resources needed by a transaction are available or not before starting the transaction. We propose a



F. Tang et al. / Computers and Mathematics with Applications 63 (2012) 458–468 463

Fig. 5. Resource allocation and local deadlock prevention.

Fig. 6. Global deadlock resolution.

pre-check based approach to prevent potential global deadlocks. The basic idea is that each global transaction has to check
and then hold all the necessary resources if they are available at the beginning of the transaction execution.

We extend the 2PC protocol through adding a new phase called Pre-Check phase. In the Pre-Check stage, the coordinator
delivers all the sub-transactions to participants, and then these participants communicate with resource managers to check
the state of resources. If these resources are available, the participant will hold them and at the same time return OK to the
coordinator. Otherwise, it will return a failed message. After receiving OK messages from all participants, the coordinator
will start the standard two-phase commit.

Our pre-check phase includes the following three steps (see Fig. 6).

Step 1. Transaction delivery. After receiving a transaction request, transaction manager (TM) produces a unique root
transaction ID, which can be a function of current time to distinguish starting time of transactions. Next, TM divides the
task into sub-transactions and distributes them to different sites which host specified services.

Step 2. Resource pre-check. On receiving the pre-check instruction, each participant begins to check all the needed resources
through their resource managers. We still exemplify the scenario 2 in Section 2.3. Assume that T1,1 successfully holds R1
throughM1 and T2,2 locks R2 throughM2.M1 andM2 cache root transaction IDs ID(T1) and ID(T2), separately. Then, T1,2 tries
to lock R2 throughM2.M2 checks its cache and finds that R2 has been locked by T2,2 with the root ID ID(T2) (ID(T1) ≠ ID(T2)).
As a result,M2 notifies T1,2 that it cannot lock the R2. However, T1,2 will not be blocked. Instead, it immediately returns pre-
check failed message to the TM of T1.

Step 3. Pre-check decision. If the coordinator receives OKmessages from all participants, it decides to send a ready-for-prepare
message to them, and the two-phase commit begins. Otherwise, the coordinator decides to abort the transaction. In our
example, T1 gives up and releases its lock on R1. On the other hand, if T2,1 requests the resource R1 after T1 releases R1, it can
acquire the lock successfully and finally commit.



464 F. Tang et al. / Computers and Mathematics with Applications 63 (2012) 458–468

Fig. 7. A live-lock.

Fig. 8. A deadlock-free resource allocation algorithm.

3.2.2. Timestamp-based restart policy for global live-lock prevention
Our pre-check mechanism is able to prevent potential global deadlocks by releasing all competed resources when a

resource conflict among multiple global transactions is detected; however, a live-lock may happen if these transactions
restart and compete for resources simultaneously again. We exemplify a live-lock still using the scenario 2. As shown in
Fig. 7, both T1,2 and T2,1 abort to request the resources R2 and R1, respectively, in terms of our pre-check policy, which in
turn results in T1,1 and T2,2 also release the held resources R1 and R2, respectively. Finally, T1 and T2 fail to commit. After a
little while, if T1 and T2 restart simultaneously, they potentially fail again due to the same resource competition. As a result,
a live-lock occurs even though the resources R1 and R2 are free.

To avoid such live-locks, we selectively abort parts of conflicted transactions instead of rejecting all of them. For the
fairness, the transactions with earlier starting time are paid higher execution priorities. So, we develop a timestamp based
restart mechanism to choose which transaction should be aborted when a resource competition occurs. As we mentioned
above, each transaction has a unique ID. The system can distinguish which transaction starts earlier in terms of their IDs.

We improve the Step 2 (i.e., resource pre-check) in our pre-check based deadlock prevention algorithm through
introducing a timestamp-based restart policy. The basic idea behind this approach is the first input first lock (FIFL) in which
the more early a transaction requests a resource, the more preferentially the transaction can lock the resource. Note that
a transaction with an earlier starting time has a bigger transaction ID. For example, T1 has a bigger transaction ID than T2
because it starts earlier in the scenario 2. When a resourcemanagerMk receives a request to Rk locked by Tj previously, from
a transaction, T1,Mk does not reject the T ′

i request if and only if Ti has a bigger transaction ID than Tj. Instead, it keeps the
request for a timeout. If the locked Rk is released within the timeout, Ti will be able to lock the Rk. In this way, a transaction
with an earlier starting time can have more priority to locking a resource. In our scenario 2, M2 receives request to R2 from
T1,2 and knows that it owns a bigger transaction ID than T2,2. If T2 is just at the pre-check phase, M2 will wait for a timeout
for T1,2. On the other hand,M1 finds that T2,1 has a smaller transaction ID than T1 so that it directly rejects T2,1. Therefore, T2
is aborted and T1,2 can hold the resource R2 if T2,2 release its lock on R2 in time. In this way, T1 can lock both R1 and R2 and
finally commit.

Combining the above two approaches for preventing both local deadlocks and global deadlocks, we propose a deadlock-
free allocation algorithm, as shown in Fig. 8. The algorithm is executed on a resource mangerMk. In Step 4 of the algorithm,
ID

Ti,j
parent = ID(Ti) means that the resource Rk has been locked by other sub-transaction(s) of Ti. On the contrary, Rk has been

locked by another global transaction Tl in Step 8. In that case, Ti,j waits for Tl to release Rk within the timeout ttimeout . More
specifically, if Tl cannot release Rk within ttimeout , Ti,j will be rejected to access Rk.



F. Tang et al. / Computers and Mathematics with Applications 63 (2012) 458–468 465

80

70

60

50

40

30

20

10

90

0

Lo
ca

l D
ea

dl
oc

k 
In

ci
de

nc
e 

(%
)

10 15 20 25 30 35 40 455 50

Number of Resources

Replica Used
2 Participants
3 Participants
4 Participants

Fig. 9. Local deadlock incidence.

4. Experiments and performance evaluations

We have developed a system based on Globus Toolkit 4, in which deployed a few of business services. In our system,
a coordinator (for a global transaction) communicates with a set of participants (each for a sub-transaction of the global
transaction) based on remote procedure call, which guarantees that every node will not be blocked after remote calls. Once
a node finishes transaction preparation or transaction commit, it sends a corresponding message to the caller. So we can
use timeout mechanism to check if a deadlock occurs. Through this system, we comprehensively evaluated our resource
allocation approaches for preventing both local deadlocks and global deadlocks.

4.1. Performance evaluation on the replication-based local deadlock prevention mechanism

In this experiment, we measure system performance using a deadlock incidence, which is a ratio of the number of
deadlocked transactions to the number of all transactions in the system.We compared our replication-based local deadlock
prevention mechanism (called Replica Used) with the traditional local resource allocation algorithm, in which a sub-
transaction Ti,j of Ti will be blocked if its resource request has been locked by another sub-transaction Ti,k (Ti,j, Ti,k ∈ Ti; i ≠

j). We tested how the deadlock incidence of two approaches changes with the number of resources as well as with the
number of sub-transaction (i.e., participants in Fig. 9). In the current experiment, we varied the number of sub-transactions
in a distributed transaction as 2, 3, and 4.

Fig. 9 indicates that the deadlock incidence in the traditional resource allocation scheme rapidly increases as the number
of resources decreases. The result shows that if the number of resources is fewer than the number of participants (i.e., sub-
transactions), the transaction is inevitably deadlocked in the traditional resource allocation scheme. Particularly, such
transactions will become deadlocked again even though it restarts again. From Fig. 9, we also find that no deadlock happens
in our replication-based local deadlock prevention approach. The reason is that if a resource is requestedmore than once by
different sub-transactions of a global transaction, our scheme will duplicate the resource and all the sub-transactions share
the replicated resource. As a result, the local deadlock is avoided no matter how many resources can be used.

4.2. Performance evaluation on the timestamp-based global deadlock prevention mechanism

In this part, we analyzed and compared the deadlock incidence and average transaction processing time in our timestamp
based deadlock prevention mechanism and the traditional global resource allocation scheme in which a global transaction
Ti will be aborted if its resource request has been locked by another global transaction Tj. For removing the affect of local
deadlocks, we replicate a resource copy when multiple sub-transactions in a global transaction compete for a resource, as
mentioned in Section 3.1.
(1) Global deadlock incidence

In this experiment, each global transaction includes 5 sub-transactions. We tested how the global deadlock incidence
varies with the number of available resources as well as with the number of global transactions. According to Fig. 10, we
can find that there are less conflicts among global transactions as the number of available resources increases. Also, the
global deadlock incidence grows up as the number of global transactions increases. In the worst case, when 4 transactions,
each with 5 sub-transactions, compete with each other for only 5 resources, the deadlock incidence goes up to 98%. On the
contrary, in the best case, there is only 1 global transaction and no deadlock occurs because replication-based local deadlock
prevention mechanism is also used.



466 F. Tang et al. / Computers and Mathematics with Applications 63 (2012) 458–468

10 15 20 25 30 35 40 455 50

Number of Resources

1 Transaction
2 Transactions
3 Transactions
4 Transactions80

70

60

50

40

30

20

10

90

G
lo

ba
l D

ea
dl

oc
k 

In
ci

de
nc

e 
(%

)

100

0

Fig. 10. Global deadlock incidence.

G
lo

ba
l L

iv
el

oc
k 

In
ci

de
nc

e 
(%

)

16

14

12

10

8

6

4

2

0
10864

Number of Transactions

122

pure restart (4 participants)
timestamps based (4 participants)
timestamps based (5 participants)
timestamps based (6 participants)

Fig. 11. Global live-lock incidence.

(2) Global live-lock incidence
We tested how many live-locks will occur if resource managers use the pure restart policy,in which conflicted global

transactions that compete for the same resources are aborted immediately. With this policy, these conflicted global
transactions potentially form a live-lock even though they restart again. So, we evaluate how much our timestamp-based
mechanism can improve the live-lock incidence. In the pure restart policy, we set the restart times as 5, which means each
global transaction may restart at most 5 times if it is not able to be ready for a transaction commit.

Fig. 11 shows the live-lock percentage of the pure restart policy and our timestamp-based scheme. The global live-lock
incidence in both schemes grows up as the number of concurrent transactions increases. However, our timestamp-based
scheme always outperforms over the pure restart policy, and the more a global transaction has sub-transactions, the higher
the global live-lock incidence becomes. In particular, when there are only 4 sub-transactions in each global transaction,
almost no live-lock occurs in our timestamp-based scheme. On the other hand, our timestamp-based scheme cannot
completely avoid live-locks. The reason is that our timestamp-based scheme cannot always guarantee that each transaction
gets all the needed resources.

In a word, the experiments demonstrate that our timestamp-based restart policy significantly reduces global deadlocks
and global live-lock percentage, in spite that it cannot avoid live-lock completely.
(3) Average processing time

To evaluate how much our solution improves the system performance, we tested average processing time in the two
solutions. Fig. 12 illustrates that the average processing time in our timestamp-based scheme is always lower than that
in pure restart policy. It means that our scheme can achieve a better system throughput because the lower the average
processing time is in a transaction system, the higher throughput the system will achieve.

5. Conclusions

We have presented a replication based approach to avoid local deadlocks, and a timestamp based approach to greatly
mitigate global deadlocks for SOA environments. We, then, designed a general algorithm for both local and global deadlock
prevention.



F. Tang et al. / Computers and Mathematics with Applications 63 (2012) 458–468 467

1300

1200

1100

1000

900

800

700

600

500

A
ve

ra
ge

 P
ro

ce
ss

in
g 

T
im

e 
(n

s)

60504030 7020

Number of Transactions

802

pure restart policy
timestamps based policy

Fig. 12. Average processing time.

The experiment results demonstrate the effectiveness and efficiency of our solutions. First, our replication based
approach completely eliminates local deadlocks. Next, our timestamp based scheme approach can significantly reduce
the incidence of global deadlocks and corresponding global live-locks. And at the same time, it also improves the system
performance.

Acknowledgments

Feilong Tang thanks The Japan Society for the Promotion of Science (JSPS) for providing excellent research environment
for his JSPS Postdoctoral Fellow (ID No. P 09059) Program in The University of Aizu, Japan.

This work was supported by the National Natural Science Foundation of China (NSFC, No. 61073148), and Hong Kong
RGC (No. HKU 717909E).

References

[1] G.K. Attaluri, K. Salem, The presumed-either two-phase commit protocol, IEEE Transactions on Knowledge and Data Engineering 14 (5) (2002)
1190–1196.

[2] F.L. Tang, M.L. Li, J. Huang, Real-time transaction processing for autonomic Grid applications, Engineering Applications of Artificial Intelligence 17 (7)
(2004) 799–807.

[3] Ved P. Kafle, Masugi Inoue, Locator ID separation for mobility management in the new generation network, Journal of Wireless Mobile Networks,
Ubiquitous Computing and Dependable Applications 1 (3) (2010) 3–15.

[4] L. Bai, M. Liu, Fuzzy sets and similarity relations for semantic web service matching, Computers & Mathematics with Applications 61 (8) (2011)
2281–2286.

[5] X.F. Di, Y.S. Fan, Y.M. Shen, Local martingale difference approach for service selection with dynamic QoS, Computers &Mathematics with Applications
61 (9) (2011) 2638–2646.

[6] Z.W. Li, M.C. Zhou, M.D. Jeng, A maximally permissive deadlock prevention policy for fms based on petri net siphon control and the theory of regions,
IEEE Transactions on Automation Science and Engineering 5 (1) (2008) 182–188.

[7] S. Reveliotis, E. Roszkowska, J.Y. Choi, Correctness verification of generalized algebraic deadlock avoidance policies through mathematical
programming, IEEE Transactions on Automation Science and Engineering 7 (2) (2010) 240–248.

[8] S.A. Reveliotis, E. Roszkowska, J.Y. Choi, Generalized algebraic deadlock avoidance policies for sequential resource allocation systems, IEEE
Transactions on Automatic Control 52 (12) (2007) 2345–2350.

[9] S.A. Reveliotis, E. Roszkowska, On the complexity of maximally permissive deadlock avoidance in multi-vehicle traffic systems, IEEE Transactions on
Automatic Control 55 (7) (2010) 1646–1651.

[10] A.K. Elmagarmid, A survey of distributed deadlock detection algorithms, ACM SIGMOD Record 15 (3) (1986) 37–45.
[11] J.R.G.Mendívil, J.R. Garitagoitia, Amodel for deadlock detection based on automata and languages theory, Computers &Mathematicswith Applications

25 (6) (1993) 47–55.
[12] J. Ezpeleta, J.M. Colom, J. Martinez, A Petri net based deadlock prevention policy for flexible manufacturing systems, IEEE Transactions on Robotics

and Automation 11 (2) (1995) 173–184.
[13] D. Taniar, S. Goel, Concurrency control issues in Grid databases, Future Generation Computer Systems 23 (2007) 154–162.
[14] S.G. Wang, C.Y. Wang, Y.P. Yu, Comments on siphon-based deadlock prevention policy for flexible manufacturing systems, IEEE Transactions on

Systems, Man and Cybernetics, Part A: Systems and Humans 41 (2) (2011) 338–340.
[15] J.M. Martinez-Rubio, P. Lopez, J. Duato, A cost-effective approach to deadlock handling in wormhole networks, IEEE Transactions on Parallel and

Distributed Systems 12 (7) (2001) 716–729.
[16] T.W. Kuo, Y.T. Kao, C.F. Kuo, Two-version based concurrency control and recovery in real-time client/server databases, IEEE Transactions on Computers

52 (4) (2003) 506–524.
[17] C.T. Lu, J. Dai, Y. Jin, J. Mathuria, GLIP: a concurrency control protocol for clipping indexing, IEEE Transactions on Knowledge and Data Engineering 21

(5) (2009) 714–728.
[18] M. Hofri, On timeout for global deadlock detection in decentralized database systems, Information Processing Letters 51 (6) (1994) 295–302.
[19] M. Dotoli, M.P. Fanti, G. Iacobellis, Comparing deadlock detection and avoidance policies in automated storage and retrieval systems, in: Proceedings

of IEEE International Conference on Systems, Man and Cybernetics, 2004 pp. 1607–1612.
[20] Y. Wang, M. Marritt, A. Romanovsky, Guaranteed deadlock recovery: deadlock resolution with rollback propagation, in: Proceedings of Pacific Rim

Int’l Symp. Fault-Tolerant Systems, 1995, pp. 92–97.



468 F. Tang et al. / Computers and Mathematics with Applications 63 (2012) 458–468

[21] G.K. Attaluri, K. Salem, The presumed-either two-phase commit protocol, IEEE Transactions on Knowledge and Data Engineering 14 (5) (2002)
1190–1196.

[22] I. Foster, K. Czajkowski, D.E. Ferguson, et al., Modeling and managing state in distributed systems: the role of OGSI andWSRF, Proceedings of the IEEE
93 (3) (2005) 604–612.

[23] H. Wu, WN. Chin, J. Jaffar, An effcient distributed deadlock avoidance algorithm for the AND model, IEEE Transactions on Software Engineering 28
(2002) 18–29.

[24] Y.B. Ling, S.G. Chen, C.Y. Chiang, On optimal deadlock detection scheduling, IEEE Transactions on Computers 55 (9) (2006) 1178–1187.
[25] S. Lee, J.L. Kim, Performance analysis of distributed deadlock detection algorithms, IEEE Transactions onKnowledge andData Engineering 13 (4) (2001)

623–636.


	An efficient deadlock prevention approach for service oriented transaction processing
	Introduction
	Preliminaries
	Background
	Problem statement
	Deadlock scenarios

	Deadlock prevention approach
	Replication-based local deadlock prevention
	Timestamp-based global deadlock prevention
	Pre-check based approach for preventing global deadlocks
	Timestamp-based restart policy for global live-lock prevention


	Experiments and performance evaluations
	Performance evaluation on the replication-based local deadlock prevention mechanism
	Performance evaluation on the timestamp-based global deadlock prevention mechanism

	Conclusions
	Acknowledgments
	References


