
Decentralized Proactive Resource Allocation for
Maximizing Throughput of P2P Grid

Sheng Di1,∗, Cho-Li Wang1,∗∗,

∗sdi@cs.hku.hk; tel: (852) 62340776; fax: (852) 25598447
∗∗clwang@cs.hku.hk; tel: (852) 28578458; fax: (852) 25598447

Email addresses: sdi@cs.hku.hk (Sheng Di), clwang@cs.hku.hk (Cho-Li Wang)
URL: http://www.cs.hku.hk/˜sdi (Sheng Di),

http://www.cs.hku.hk/˜clwang (Cho-Li Wang)
1Department of Computer Science, The University of Hong Kong, Hong Kong

Preprint submitted to Journal of Parallel and Distributed Computing(JPDC) September 20, 2011

Abstract

Peer-to-peer Desktop Grids provide integrated computational resources by

leveraging autonomous desktop computers located at the edge of the Internet to

offer high computing power. The arbitrary arrival and serving rates of tasks on

peers impedes the high throughput in large-scale P2P Grids. We propose a novel

autonomous resource allocation scheme, which can maximize the throughput of

self-organizing P2P Grid systems. Our design possesses three key features: (1)

high adaptability to dynamic environment by proactive and convex-optimal es-

timation of nodes’ volatile states; (2) minimized task migration conflict prob-

ability (upper bound can be limited to 2%) of over-utilized nodes individually

shifting surplus loads; (3) a load-status conscious gossip protocol for optimiz-

ing distributed resource discovery effect. Based on a real-life user’s workload

and capacity distribution (conforming to Pareto distribution), the simulation re-

sults show that our approach could get significantly improved throughput with

23.6%∼47.1% reduction on unprocessed workload compared to other methods.

We also observe high scalability of our solution under dynamic peer-churning sit-

uations.

Keywords: System Throughput, Fully-decentralized Resource Allocation,

Autonomous Decision Conflict, P2P desktop Grid system

2

1. Introduction

Peer-to-peer Desktop Grids, evolving from two pertinent solutions, i.e., Grids

and Peer-to-Peer (P2P) systems, provide a new form of wide-area resource sharing

by leveraging autonomous desktop computers located at the edge of the Internet.

Such systems are well suited for those willing to quickly deploy a computing grid

without requiring any centralized administration. In the past decade, we have wit-

nessed Peer-to-peer Desktop Grids have evolved from the emergence to the stable

and production status. Examples include BonjourGrid [1], Condor-Flock P2P [2],

P2PGrid [3], Alchemi [4], PastryGrid [5], Self-Gridron [6], Harmony [7], etc. The

inherent wide distribution, heterogeneity, and dynamism of Desktop Grids make

them well suited to the execution of loosely-coupled parallel applications, such as

the Bag-of-Tasks (BoT) applications whose tasks are completely independent on

each other. Trends also show that the future P2P Grids will instead be composed

of extremely large number of individual machines [8].

In a P2P Grid, each user offers his/her computer to execute the tasks submit-

ted by local users with arbitrary arrival rates or tasks migrated from other peers.

Since centralized algorithms may be unrealistic on such large-scale platform, a

local scheduler at each peer node is activated periodically to determine if the tasks

should be executed locally or at a remote host for dynamic load balancing and

better resource utilization.

To achieve high throughput for the execution of applications in a large-scale

P2P Grid system is a challenging work because machine’s computing power is

heterogeneous in nature, the workload injected to the system may vary from time

to time, and the resource availability is usually subject to the users’ own free will

which is uncontrollable. The autonomy in performing task scheduling also makes

3

it difficult to precisely predict the runtime load status and resource availability at

each peer node due to the mutual impact of their on-line scheduling decisions. So-

lutions that can adapt to the heterogeneity and dynamism through dynamic load

balancing in a decentralized and scalable manner is a step toward realizing the

ideal computing ability. To maximize the use of available resources, we need to

solve the imbalanced load distribution problem dynamically and variance of pro-

cessing capacity among heterogeneous peers, as well as the resource contention

problem of their on-line scheduling decisions.

Recently, more and more heuristic strategies have been proposed to maxi-

mize the system throughput by making use of load balancing in existing P2P Grid

systems [2, 4, 7, 9, 10]. Traditional task scheduling strategies mainly focus on

minimizing the system’s makespan (i.e. the time required to complete all tasks)

for achieving high system throughput [11, 12]. However, makespan minimization

is not suitable for large-scale distributed platforms as acquiring all various param-

eters (e.g., workload of individual tasks and the resource availability of all nodes)

might take long time, which is also error-prone. Considering the heterogeneity of

computing nodes, many other task scheduling solutions [13, 14, 15, 16, 17] are

designed based on a fairness index criterion of nodes’ workload levels. Unlike

the traditional concept of fairness on user tasks’ service level (e.g. the fairness of

task’s response), the fairness of nodes’ workload levels is usually used to evaluate

the system’s load balancing level and guide schedulers to (re)distribute workload

among nodes proportional to their computing capacities, achieving more balanced

resource utilization. Specifically, Jain’s fairness index [18] has been commonly

4

adopted to identify underutilized resources and higher fairness value 1 is usually

leveraged to denote more balanced load distribution, which may imply higher

system throughput to certain extent [19] as well. For example, T. Repantis et al.

[16] try to improve the system performance by maximizing the fairness index of

load distribution. Y. Drougas et al. [14] also devised an autonomous algorithm

by means of the load distribution fairness, aiming to improve the P2P system’s

performance. However, there are no theoretical propositions to confirm the rela-

tion of system throughput and fairness index of workload level, thus most existing

solutions that alleviate unfairness of resource utilization can only be based on

experiences and may actually not necessarily achieve high throughput.

In this research, we studied the autonomous resource allocation problem in

P2P desktop Grid system with large number of nodes and user tasks. We focus

on batch mode scheduling for applications: the jobs arriving at the same period at

each peer node are grouped into one batch and are scheduled unilaterally by the

local scheduler without coordination. All further arriving jobs after the scheduler

is activated are delayed to be scheduled in the next period. Via dynamically de-

termining the location for executing the submitted tasks, our goal is to maximize

system-wide throughput.

This work possesses three contributions:

• We formally prove that maximizing Jain’s fairness index of node’s workload

level is not a sufficient condition for achieving high system throughput. We

derive a new metric, called average load level (ALL) (i.e., the mean value of

nodes’ load levels) 2, which could accurately reflect the system throughput

1usually at the range of [0,1]. The fairness index is 1 when all peers are equally loaded.
2a node’s load level is defined as its total workload of all tasks assigned to it divided by its

5

from the statistical view. We prove that the accuracy of average load level

will not be impacted by the distribution of node capacities in a large-scale

heterogeneous system with vast nodes and tasks.

• We propose a convex-optimization analysis based on a proactive load pre-

diction model to determine the optimal load amount for migration. The

method overcomes the slow resource state propagation problem generally

encountered in a large-scale P2P network [14, 11, 20], which tried to aggre-

gate global or partial resource states via various gossip protocols [21, 22]

and adapt to fast changing task arrival rates that may cause delayed or inac-

curate load migration decisions.

• We propose a fully-decentralized task scheduling algorithm that can mit-

igate decision-conflict among autonomous schedulers. Our solution can

avoid the undesired situation where some under-loaded peers suddenly be-

come heavily loaded due to too many tasks migrated from outside. We

theoretically derive an upper bound for the decision-conflict probability

by leveraging a stochastic theory - Bernoulli trial model, where the selec-

tion probability of target nodes is proportional to their relative load status

with respect to the average load level. Although the stochastic theory has

been widely used in other P2P systems like chunk scheduling of P2P video

streaming [23, 24], it is rarely used in the P2P Grid model because the tasks

in Grid environment are heterogeneous with different workloads and cannot

be split or replicated as flexibly as video chunks.

computing capacity, or intuitively explained as the expected running time to complete all the tasks

in its task queue

6

We build an emulated WAN testbed using Brite tool [25] and perform our sim-

ulation, with load/capacity distribution in accordance with real-life user’s supply

and demand relations. The simulation results confirm that our proposed solu-

tion, called Decentralized Proactive Resource Allocation (DPRA) method, can

significantly improve the system throughput under the traditional gossip proto-

col [21, 22] with significantly reduced resource contention. The decision-conflict

probability could be limited below 2%, while the system throughput could be im-

proved about 23.6%∼47.1%. Our solution can also keep the system-wide fairness

of load distribution up to 97%.

The remainder of this paper is organized as follows. In Section 2, we compare

our contribution to related works. We then present our system overview of P2P

Grid system and some notations used in our model in Section 3. In Section 4,

we analyze the close relationship between system throughput and the new perfor-

mance metric average load level. In Section 5, we propose our resource allocation

scheme, including the algorithm skeleton, the customized gossip protocol, the op-

timal dynamic estimation for the amount of migrated load, and the methodology

of avoiding migration conflicts. We report some simulation results in Section 6.

We draw conclusion and present future work in Section 7.

2. Related Work

In this section, we discuss related work with respect to three categories: (1)

dynamic load balancing algorithms targeting high throughput, (2) gossip protocols

adopted in P2P system for dynamic load balancing, (3) node-selection policy that

avoids resource contention.

(1) Dynamic load balancing algorithms targeting high throughput

7

In past decades, throughput usually serves as the major objective when eval-

uating the Gird’s system performance, and load balancing is considered the most

important strategy to improve the throughput. For instance, G. Aggarwal, et al.

proposed load rebalancing problem [11] and a few approximation algorithms.

However, they require central-controlled global task/resource states to make schedul-

ing decisions, which cannot adapt well to dynamic situation, such as the arbi-

trary node join/departure and various task arrival rates. As such, many fully-

decentralized structure based load balancing strategies are also proposed for im-

proving Grid’s throughput. Condor-Flock P2P [2] leverages locality-aware heuris-

tics to get short average turnaround time and high system throughput. Another

P2P Grid load balancing solution, Rank-based Autonomous Scheduler (RAS) [9],

tries to filter the target nodes and tasks with low overhead using a set of rank func-

tions on each node, also aiming to improve system-wide throughput, which was

proven to be superior than other meta-heuristics, such as Markov Chain. J. Son-

nek et al. [26] propose a reputation-based scheduling approach to improve P2P

desktop Grid’s system throughput, while maintaining a satisfied success rate of

task completion. In [7] and [10], the task scheduling methods also aim at enhanc-

ing the system throughput by predicting task arrival rate and node’s availability

based on history. However, unlike our solution, all of these works are designed

completely based on heuristics, which lack accurate asymptotic analyses about the

impact of their concentrated performance metrics to the overall throughput, caus-

ing the effectiveness of their solutions not easily understood or widely accepted.

(2) Gossip protocols adopted in P2P system for dynamic load balancing

S.K. Kwan, et al. [27] and GDLB [9] both adopt the traditional gossip protocol

and also leverage a probabilistic approach for load balancing, which is similar

8

to our work. Our DPRA method adopts a load-status conscious gossip protocol

that could more effectively aggregate load states for succeeding load balancing

process, significantly outperforming the traditional ones on the improvement of

system-wide throughput.

(3) Node-selection policy that avoids resource contention.

Node-selection conflict among the individual schedulers may degrade the load

balancing effect severely. O. Sinnen et al. [28] confirmed such a severe resource-

contention impact to the task scheduling under their distributed model. The study

undertaken in [29] also shows that PlanetLab environment usually experiences

the similar problem of “flash crowd” as a growing number of users simultane-

ously request “slices” on arbitrarily selected nodes and the bursty behavior of

users inevitably leads to poor system performance.

Existing load balancing approaches cannot be used in our P2P desktop Grid.

A. Bernoit et al. [30] proposed a contention-aware solution with fault-tolerance

support, but restricted to a fully-connected network model (such as in in intra-

cluster). Such a method is not suitable for large-scale system, in that each peer

is not affordable to maintain the global resource states. P. Berenbrink et al. [31]

proposed a fully distributed load balancing algorithm, namely Selfish Load Bal-

ancing based on Game theory. At each scheduling round on each node, every task

picks a neighboring host randomly and decides probabilistically whether or not

to be migrated towards it. The proposed algorithm can achieve Nash equilibrium

with rapid convergence speed without global coordination or cooperation of local

schedulers, but it assumes that all hosts are homogeneous. Other negotiation-

based method [32] and cooperation-based method [33] can also converge to Nash

Equilibrium [34], yet it is subject to the static assumptions which are not real-

9

istic in dynamic situations, and cannot guarantee a high-quality system perfor-

mance. Note that Nash equilibrium does not imply a high system throughput, but

only means a stably converged load balancing status. In order to explicitly avoid

the resource-contention impact, some solutions [14] resort to remotely checking

whether their local task migration decisions would be acceptable by the remote

peers. However, such a strategy is undesired since numerous failed confirmations

with rejected answers will definitely introduce undesired overhead.

Unlike the existing works, we devise a novel node-selection policy (a.k.a.

stochastic proportional idle resource allocation (SPIRA)) based on Beroulli trial

model, such that the nodes could make their task migration decisions with mini-

mized decision-conflict probability, and this probability can also be derived in the-

ory. Some existing proportional-share scheduling algorithms look similar to our

node-selection policy, but they are different in nature. For example, proportional-

share policy [35] assumes resources are dividable and users get their shares pro-

portional to their bids, but does not discuss how to minimize the mutual task mi-

gration conflict at the task scheduling phase. In contrast, our solution focuses on

the problem in the task scheduling phase, such as decision conflict and scheduling

delay issue, finally effectively improving the system-wide throughput.

3. Preliminaries

P2P networks can generally be classified into two main categories, unstruc-

tured P2P networks and structured P2P networks. Structured P2P networks, such

as CAN [36] and Chord [37], are based on Distributed Hash Tables (DHTs). These

systems emphasize on a highly structured overlay organization to improve search-

ing performance with low diameter. However, their maintenance overhead is gen-

10

erally too large and the performance would be degraded when peers frequently

join/leave the network.

In this paper, we assume all the nodes are organized in an unstructured P2P

overlay. A low-cost gossip protocol is adopted for periodically spreading/aggregating

resource usage or load status. On each node, the submitted tasks will be placed in

a local task queue. We assume that the task scheduling is activated periodically.

The local scheduler removes jobs from the local task queue and executes them on

the local compute server. The local scheduler also gathers resource state informa-

tion from its neighbor nodes and decides whether to send tasks to other grid nodes

if it is considered overloaded. We assume task arrival rates on nodes are arbitrary,

i.e. each node asynchronously receives various number of submitted tasks over

time. Thereby, once the scheduler starts, all further arriving jobs are delayed to be

scheduled in the next batch.

For simplicity of analysis, we assume there are n heterogeneous nodes in the

P2P grid system. Each is denoted as pi and has a different computing power (or

capacity) denoted as ci, where 1≤i≤n. We assume the number of tasks received

by pi at the end-time point of each periodic scheduling round is mi and each task’s

workload is lik (1≤k≤mi). Thus node pi’s total workload li is equal to
∑mi

k=1 lik.

Let l[t] refer to the system’s average workload at the time point t. The amount of

workload li will be processed by node pi at the speed proportional to ci.

We define φi= li
ci

as node pi’s load level. φi could also refer to the estimated

time cost in processing the remaining workload li on pi. Figure 1 shows how

to calculate the load level (φi) at each node. At certain time point, the system’s

average load level φ can be calculated as 1
n

∑n
i=1

li
ci

.

We define the system throughput as the total workload of completed tasks per

11

t21t22t23

t11

tn1tn2tn3

Time

P1

P2

Pn

snapshot t1 snapshot t2

t21t22t23

t11t12t13

tn1tn2tn3

P1

P2

Pn

l1[t1]=2+8+5=15

φ1[t1]=15/2

Workload

Load Level

l2[t1]=3+7+9=19

φ2[t1]=19/3Load Level

ln[t1]=1+2+3=6

φn[t1]=6/4Load Level

Workload

Workload

l1[t2]=4+6+7=17

φ1[t2]=17/2

l2[t2]=1+2+9=12

φ2[t2]=12/3

ln[t2]=4+5+3=12

φn[t2]=12/4

Workload

Load Level

Load Level

Load Level

Workload

Workload

Capacity

c1=2

Capacity

c2=3

Capacity

cn=4

l21=3 l22=7 l23=9

t13 t12

ln1=1 ln2=2 ln3=3

l11=2 l12=8 l13=5

l21=1 l22=2 l23=9

ln1=4 ln2=5 ln3=3

l11=4 l12=6 l13=7

0

System

initialization

Pi node

tij task added at t1

Legend

' ' '

' '

''

tij' task added at t2

[1] [1]1

1 n

t i tin
ϕ ϕ

=
= ∑ [2] [2]1

1 n

t i tin
ϕ ϕ

=
= ∑

Figure 1: Overview/Snapshots of System Workload and Load Level

time unit, i.e. THRP(∆t)=
∑n

i=1 l
(pr)
i∆t

∆t
, where l

(pr)
i∆t refers to the processed workload

on pi in the duration of ∆t. In addition, as discussed previously, fairness index

of nodes’ load levels are commonly considered the key criterion to evaluate the

system’s load balancing level, and leveraged to design the load balancing algo-

rithms by many other existing researches, but we will theoretically prove that it

is insufficient to reflect the system throughput. A good scheduler should not only

guarantee all computing resources are used in a balanced and fair manner, i.e., the

amount of workload queued on nodes should be proportional to their computing

capacities, but also lead to high system throughput eventually.

4. Correlation between System Throughput and Average Load Level

For dynamic P2P Grid systems with pertinent submitted tasks, it is obvious

that neither minimum nor maximum load level can reflect the overall throughput

in that they only concern about either the lightest or heaviest loaded peer. In

12

this section, we will further prove that the overall system throughput cannot be

reflected by Jain’s fairness index (Equation (1)) of load distribution either, but

fully determined by our proposed average load level.

F (φ) =
(
∑n

i=1 φi)
2

n·
∑n

i=1 φ
2
i

(1)

Intuitively, the system throughput is closely related to the average remaining

workload (l) at any time point: smaller remaining workload means more work-

loads were completed in the past. Yet, it is not trivial to mathematically determine

the relationship between average load level φ and system throughput. As follows,

we will prove that φ is always proportional to system’s average workload l at any

time point via the law of large numbers.

Theorem 1. For various arbitrary scheduling algorithms in a large scale P2P

grid system (on which each node owns O(log(n)) neighbors without loss of gen-

erality1), given the same initial workload distribution l1, l2, · · ·, ln at a specific

time point t1, the algorithm that can achieve smaller average load level φ, where

φ =
∑n

i=1 φi

n
, at a later time point t2 ⇔ a higher throughput is achieved.

PROOF. For a single node pi, let Li (1≤i≤n) denote the random variable of its

workload li, and Φi denote the random variable of its load level φi. Then, our

proof could be split to three steps: (1) to prove 1
n

∑n
i=1 Li → 1

n

∑n
i=1 E(Li) and

1
n

∑n
i=1Φi → 1

n

∑n
i=1E(Φi) for the large scale P2P Grid system. (2) to prove

1
n

∑n
i=1E(Φi) is always proportional to 1

n

∑n
i=1E(Li). (3) to prove Theorem 1:

smaller φ at time point t2 ⇔ the algorithm delivers higher throughput.

1In general, the number of each node’s neighbors (i.e. cache size) cannot increase linearly

but with logarithmical scale (i.e. O(log(n))) at most compared to the global system scale (n),

otherwise the network traffic maintaining the topology will be intolerable.

13

Step (1) We will leverage Markov’s law of large numbers (LLN) 1 to prove

this step. Markov’s LLN can be formally described as follows:

If random variables X1,· · ·,Xn satisfy Condition (2), Equation (3) must hold.

1
n2D(

n∑
i=1

Xi) → 0, (n → ∞) (2)

lim
n→∞

P (

∣∣∣∣ 1n n∑
k=1

Xk − 1
n

n∑
k=1

E(Xk)

∣∣∣∣ < ε) = 1 (3)

We will mathematically prove that our large-scale P2P Grid model must satisfy

the condition (2), when Xi=Li or Xi=Φi. The means of the proof is based on the

fact that any two workloads Li and Lj (i ̸=j) are pairwise independent with high

probability because the size of each node’s local partial-view cache (log2(n)) is

quite tiny compared to the whole system scale (n). We give the formal proof as

follows. First of all, we could derive the following equation.

1
n2D(

n∑
i=1

Li) =
1
n2

n∑
i=1

n∑
j=1

Cov(Li, Lj) =
1
n2

n∑
i=1

n∑
j=1

ρij
√
D(Li)D(Lj)

where Cov(Li, Lj)means the covariance of Li and Lj

(4)

Note that we aim to compare different algorithms over a specific time period

[t1, t2], thus there must be an upper bound for Li and D(Li), ∀ pi. In other words,

there must exist a constant d such that
√

D(Li)D(Lj) ≤ d for any pair of nodes

pi and pj . Hence, we could get following inequality.

1
n2

n∑
i=1

n∑
j=1

ρij
√

D(Li)D(Lj) ≤ d
n2

n∑
i=1

n∑
j=1

|ρij| (5)

As for any two single nodes pi and pj selected from among all nodes each con-

nected to O(log(n)) neighbors that are organized through unstructured overlay, we

assume that each of their neighbors would receive a relatively stable number of

1LLN implies that the average of random variables approaches the mean of their mathematical

expectations with extremely high probability, if the number of variables is extremely large.

14

tasks in specific duration (e.g. [t1, t2]) without loss of generality. Then, the num-

ber of tasks migrated from pi and pj to outside can be denoted as Ni=λi·log(n) and

Nj=λj · log(n) respectively, where λi and λj are two constants. Then, (1− 1
n
)Ni is

the probability that pi does not migrate any task to pj , and (1− 1
n
)Nj is the prob-

ability that pj migrates no tasks to pi. Hence, the probability that Li and Lj are

mutually non-correlated could be calculated as (1− 1
n
)Ni · (1− 1

n
)Nj=(1− 1

n
)Ni+Nj .

Thereby, we could get Inequality (6).

E(ρij)≤ (1− 1

n
)(Ni+Nj) ·0 + (1− (1− 1

n
)(Ni+Nj)) ·1 = 1− (1− 1

n
)(Ni+Nj) (6)

If we think of ρij as random variable, it is obvious that all the n2 random

variables are mutually independent with extremely high probability, thus we could

get the following derivation (7) based on Chebyshev’s law of large numbers, and

get Equation (8) based on Inequality (6).

lim
n→∞

P (

∣∣∣∣∣ 1
n2

n∑
i=1

n∑
j=1

|ρij| − 1
n2

n∑
i=1

n∑
j=1

E |ρij|

∣∣∣∣∣ < ε) = 1, ∀ε (7)

lim
n→∞

d
n2

n∑
i=1

n∑
j=1

|ρij| = lim
n→∞

d
n2

n∑
i=1

n∑
j=1

E |ρij|

≤ lim
n→∞

d
n2 · n2(1− (1− 1

n
)(Ni+Nj)) = lim

n→∞
d · (1− (1− 1

n
)Ni+Nj)

= lim
n→∞

d · (1− (1− 1
n
)λi log(n)+λj log(n))= lim

n→∞
d·(1− (1− 1

n
)(λi+λj) log(n))

(8)

We will prove lim
n→∞

d · (1 − (1 − 1
n
)(λi+λj) log(n)) = 0: In fact, as long as we

could prove Equation (9), the above proposition will hold obviously.

lim
n→∞

(1− 1
n
)logn = 1 (9)

Let x = (1− 1
n
)logn, then log x = log n log(1− 1

n
). In following text, we could

prove lim
n→∞

log x = 0 via L’Hôpital’s rule in Equation (10), thus x → 1 as n → ∞,

which implies that Equation (9) holds.

lim
n→∞

log n log(1− 1
n
) = lim

n→∞

log(1− 1
n
)

1
logn

= lim
n→∞

1
n2 ·

1
1−1/n

−1
log2 n

· 1
n

= lim
n→∞

− log2 n
n−1

= lim
n→∞

− 2
n
logn

1
= −2 lim

n→∞
1
n
= 0

(10)

15

Based on the Formula (4) ∼ (10), 1
n2D(

n∑
i=1

Li) → 0 as n → ∞, which means

our P2P Grid model satisfies the law of large numbers (i.e. Equation (3)). That

is,
∑n

i=1 Li

n
→

∑n
i=1 E(Li)

n
, as n→∞. With exactly similar deduction, we could also

derive that 1
n

∑n
i=1Φi → 1

n

∑n
i=1E(Φi) as n→∞.

Step (2) At any time point, ∀ i, we could consider E(Li) a particular sample,

then there will be n sample points (i.e. E(L1),E(L2),· · ·,E(Ln)) in the whole

system. We denote the corresponding random variable as L for the n sample

points. Similarly, we could also regard Φ as the random variable of n sample

points E(Φ1), E(Φ2), · · ·, E(Φn) and think of node capacities c1, c2, · · ·, cn as

the samples of the random variable C. Note that pi’s capacity may be different

from pj’s, yet any particular node’s capacity is always fixed (i.e. ci will not be

changed over time). Thus, we could get Equation (11), according to the numerical

characteristics of random variables, which implies E(Φ)∝E(L) at any time point.

E(Φ) = E(L · 1
C
) = E(L) · E(1

C
) (11)

In addition, obviously, E(L) → 1
n

∑n
i=1E(Li) and E(Φ) → 1

n

∑n
i=1E(Φi),

as n is extremely large (e.g. n → ∞). Hence, 1
n

∑n
i=1 E(Φi) is proportional to

1
n

∑n
i=1E(Li) based on Equation (11), when n is large.

Step (3) With the results of Step (1) and Step (2), we could easily get φ ∝ l

at any time point (such as t2). Since fewer remaining total amount of workload

(i.e. smaller l) implies that more workloads are already processed, smaller φ ⇒

higher system throughput. The above deduction’s direction can also be inverse,

thus smaller φ ⇔ higher throughput, i.e., smaller φ is a necessary and sufficient

condition for achieving higher system-wide throughput. �

Note that the Markov’s LLN does not require the random variables (either Li

or Φi for any i) are independent or conform to some identical stochastic process

16

or distribution, thus the above proposition is of high practicability. According

to the Formula (1), the fairness index F (φ) can be rewritten as nφ2∑n
i=1 φ

2
i
, that is,

φ=
√
F (φ) ·

∑n
i=1 φ

2
i

n
. Obviously, the fairness index F (φ) cannot fully determine

φ because φ is also related to
∑n

i=1 φ
2
i

n
, though it could be used to evaluate the load

balancing level [14, 18, 20]. Thus, the system throughput cannot be sufficiently

determined by the fairness index of load level, but the average load level.

In order to simplify our design, we convert such an average load level criterion

to a more tractable criterion σΦ (=
√

1
n

∑n
i=1 (φi − φ)2), i.e. standard deviation of

load level, whose variance can be proved closely related to the average load level

(also to system throughput), as follows.

Corollary 1. For different arbitrary load balancing algorithms leading to the

same average load level when running them on the uniform P2P Grid system1

in turn, Jain’s fairness index of load level increases iff σΦ decreases.

PROOF. Fairness index was derived from the overall standard deviation (i.e. σ

=
√

1
n

∑n
i=1 (φi − E(Φ))2) as proposed in [18]. According to the proof in Step

(2) of Theorem 1, E(Φ) in a large scale P2P Grid is close to φ. As such, σΦ =√
1
n

∑n
i=1 (φi − φ)2 =

√
1
n
(
∑n

i=1 φ
2
i − nφ2), when n is large. Let A=nφ2 and

B=
∑n

i=1 φ
2
i , then σΦ=

√
1
n
(B − A). On the other hand, F (φ)= nφ2∑n

i=1 φ
2
i
=A
B

. Since

different algorithms here are assumed to achieve the same average load level (i.e.

A is fixed), it is obvious that smaller σΦ will lead to smaller B, thus getting higher

fairness index F (φ), and vice versa. �

Corollary 2. For different arbitrary algorithms leading to the same fairness index

of load level when running them on the same P2P Grid system in turn, the average

1the “uniform” system indicates that each nodes’ initial remaining workloads and its following

task submission events are exactly the same in different experiments with various algorithms.

17

load level decreases iff σΦ decreases.

PROOF. Here, we omit the proof because it is similar to that of Corollary 1. �

According to the above theorems and corollaries, the smaller standard devia-

tion of load level (σΦ) is, the higher fairness index or system throughput we can

get. Hence, we design our scheduling algorithm by focusing on σΦ for simplicity.

The details will be described later.

5. Decentralized Task Scheduling in P2P Grid

This section presents the framework of our decentralized task scheduling scheme,

including a load-status conscious gossip protocol and the basic design of our de-

centralized task scheduling algorithm for large-scale P2P Grid systems.

5.1. Newscast-based Gossip Protocol

Rather than flooding protocols, we adopt a low-cost gossip protocol [21] to

periodically disseminate nodes’ states for fast resource discovery. To minimize

the transmission overhead, each peer node will disseminate a message containing

its expected amount of workload to be shifted onto this node (i.e. M (pi) to be

introduced later) and its IP address. Each node will also forward the gossip mes-

sages received from other nodes to a few randomly selected neighbors per gossip

cycle. In our design, we limit the number of neighbors (denoted as δ) to be log(n)

and select the neighbors according to the Newscast peer sampling model [38] (to

be described later). By continuously exchanging messages, each node will ac-

cumulate a set of resource messages (i.e. a set of nodes’ state records) whose

availabilities are determined by a Time-To-Live (TTL) value. All the state records

stored by one node form this node’s acquaintance node set, which varies over

18

time. Note that a node’s acquaintance nodes may not be its neighbor, but can still

be connected through network. The number of acquaintance nodes on average at

each node could be controlled by the TTL of the state messages.

Newscast-based gossip protocol [38] has been widely used because of its ex-

ponential convenience speed on information aggregation. Newscast [38] is a kind

of neighbor-updating policy, under which the new neighbors of each node will be

randomly selected from the merging set composed of the current neighbors and

the neighbors of one of its neighbors. M. Jelasity et al. [38, 39] proved that period-

ically performing a few computations (such as calculating mean value, max/min,

top-K filtering, standard deviation, etc.) at each node on the computational re-

sults calculated by the Newscast-based neighbors could exponentially aggregate

the global-area statistical results with little error.

Unlike such a Newscast-based gossip protocol [38], we designed a load-status

conscious gossip protocol which could deliver even more effective message prop-

agation efficiency in P2P desktop Grid. To ensure fast delivery of the state mes-

sages to the right target nodes and wide spreading of the information, the message

whose source node is heavily loaded will be forwarded to δ/2 most lightly loaded

neighbors selected from the acquaintance node set and the other δ/2 randomly se-

lected acquaintance nodes based on Newscast policy. Similarly, if the message’s

source node is marked as lightly loaded, the message will be delivered to δ/2 heav-

ily loaded acquaintance nodes and δ/2 random acquaintance nodes at each gossip

cycle. Hence, each node pi should periodically classify its acquaintance node

set into lightly loaded node set (UL(pi)) and heavily loaded node set (OL(pi)),

by calculating their average workload level. TTL is set by the source node to in-

dicate the duration of validity of node state recorded in the message. It will be

19

dropped immediately upon the expiration of specified TTL, or when a more up-

dated message from the same source node is received. With the state information

accumulated through the changing neighbor nodes, each heavily loaded node will

periodically relocate its unaccomplished tasks to other nodes with less workload

to mitigate its over-utilized status. In the following text, the interval between two

such consecutive load rebalancing steps is called epoch (i.e. the time-slot between

two successive scheduling rounds), which is much longer than a gossip cycle.

5.2. Decentralized Proactive Resource Allocation

Based on the proposed gossip framework, our decentralized task scheduling

algorithm performs as follows. Algorithm 1 below shows the key steps performed

on each node pi at the end of each epoch: (1) Every node pi computes an appro-

priate load amount M(pi) to be relocated (Line 2) according to pi’s task arrival

rate (Details are discussed in Section 5.3). (2) Once the current peer pi is detected

heavily loaded (Line 3), i.e. M(pi) is greater than a threshold ε, the algorithm

will selectively migrate outward a set of surplus tasks, denoted as T Set (Line

5). The node selection policy determines the location of the migrated tasks and

the selection probability is computed based on a conflict-minimizing strategy, i.e.,

stochastic proportional idle resource allocation (SPIRA) algorithm to be described

in Section 5.4. The main objective of the SPIRA algorithm is to avoid the deci-

sion conflict among the autonomic load migrations initiated independently by peer

nodes. Note that in our design, task migrations are only initiated by the heavily

loaded nodes, in that push-based mechanism is easy to conduct and can quickly

adjust to the state changes of hot spots [40].

The UL(pi) at Line 4 refers to a set of underloaded nodes known to node pi.

Likewise, OL(pi) stands for the set of overloaded nodes known to pi. The members

20

of the two sets could be changed at the end of each epoch after gathering more

information from its neighboring nodes. Via conflict-minimizing method (Line

7∼8), the algorithm will migrate a number of tasks with an approximate amount

of M(pi) total load to other nodes. A utility function Pol(Sf , R) is used for the

task selection, where Sf refers to the utility function set and R is the corresponding

rule that sets the constraints. Both Sf and R can be customized by users/designers

based on their application demands. A typical example is designing a threshold to

filter the tasks with high migration cost.

Algorithm 1 SKELETON OF DPRA ALGORITHM
Notice: This algorithm is executed on each peer pi (0≤i≤n).

Input: lightly loaded node set (UL(pi)) and heavily loaded node set (OL(pi))

Output: migration decisions

1: while (TRUE) do

2: Calculate the load amount M(pi) to be moved based on pi’s task arrival rate.

3: if (M(pi)>ε) then

4: Compute selection probability distribution δ for every peer in UL(pi) based on conflict-

minimizing strategy (SPIRA algorithm described in Section 5.4).

5: Compose task set (T Set) filtered by Pol(Sf , R), subject to
∑

lik∈T Set

lik ≈ M(pi).

6: for (each task ∈T Set) do

7: Select one target lightly loaded node pj ∈UL(pi) according to its selection probabil-

ity P (pj) calculated at Line 4.

8: Migrate the task to pj .

9: end for

10: end if

11: Wait until next round (i.e. epoch).

12: end while

21

5.3. Estimation of M(pi)

Let Ar(pi) denote the arrival rate of workload, i.e. the amount of load to be

submitted/generated onto the node pi by its user. Pr(pi) refers to the processing

rate (flops/s), i.e. the amount of load processed by pi in each epoch. To avoid

overloading and keep the system stable, the amount of load beyond its processing

capability Pr(pi), i.e., Mr(pi)=Ar(pi)−Pr(pi), should be shifted duly from node

pi to other nodes [41]. Therefore, the expected load status of pi at the jth epoch

could be formulated as Equation (12), where A(j)
r (pi) and P

(j)
r (pi) are the amounts

of workload submitted and processed on the node in the jth epoch, respectively.

M
(j)
r (pi) = A

(j)
r (pi)− P

(j)
r (pi) (12)

If the above equation could always be maintained on each node, the global

system will be always kept in a load balancing status stably. However, M (j)
r (pi) is

likely not obtainable, due to many unpredictable factors, such as the inevitably un-

stable network status, abruptly disconnected remote nodes, or their access control

restrictions. Hence, we also leverage the snapshot based load rebalancing strategy

to further tune the migration errors. In general, nodes’ states are fuzzily classified

to two levels: overloaded and underloaded, which could be varied over time. They

are defined in Formula (13), where φ is approximated as (
∑

pj∈as(pi)
lj)/(

∑
pj∈as(pi)

cj)

and as(pi) means pi’s acquaintance node set. As φ is computed based on the load

information gathered from the acquaintance node set, it only reflects a local view

on the global load balancing status. pi is underloaded · · · · · ·φi < φ

pi is overloaded · · · · · · · φi > φ
(13)

The basic idea of our dynamic load rebalancing scheme is that, once a peer

pi is detected overloaded, it should shift an amount of surplus workload by con-

sidering the workload amount to be generated locally in a short term. Figure 2

22

shows the workload on node pi (including the accumulated non-scheduled tasks

and newly generated workload) at jth scheduling round.

Ar(Pi)

Workload to be processed

M(Pi)=?

Node Pi

E()

Total accumulated

workload on Pi

Node

Node

Node

Dynamic Load Rebalance

1

i
m

i ikk
l l

=
=∑

Previously Non-processed

workload amount

workload

Newly locally generated

Figure 2: Load Migration on a Peer Node

We let P (j)
rr (pi) denote the real load amount processed by pi at jth epoch and

M
(j)
rr (pi) denote the real load amount moved out from pi at jth epoch. Equa-

tion (14) and (15) present the load amount (denoted by M
(j)
s (pi)) to be migrated

from pi at jth epoch with respect to the load rebalancing policy, where A
(j)
r (pi) −

P
(j)
rr (pi) − M

(j)
rr (pi) refers to the remaining load amount at the end of jth epoch

and θ·c2i is an extra part aiming to reach the minimal deviation of load level and

θ = (
∑

pj∈as(pi) lj − E(Φ)·
∑

pj∈as(pi) cj) /
∑

pj∈as(pi) c
2
j , which will be proved in

Appendix via convex optimization.

φ
(j)
i =

 γ γ > 0

0 γ ≤ 0
, where γ = A

(j)
r (pi)−P

(j)
rr (pi)−M

(j)
rr (pi)

ci
+ φ

(j−1)
i (14)

M
(j)
s (pi) = (φ

(j)
i − E(j)(Φ)) · ci − θ · c2i (15)

By taking into account the estimated task arrival rate and processing rate of

next epoch (i.e. Equation (12) at (j+1)th epoch), the final amount of load that

needs to be shifted from node pi at jth epoch is given in Formula (16).

M (j)(pi) = M
(j+1)
r (pi) +M

(j)
s (pi) (16)

When M (j)(pi)>ε, node pi needs to move relatively surplus loads outward,

a.k.a. proactive overloaded status. On the contrary, when M (j)(pi)<−ε, it is

23

atproactive underloaded status, thus pi is expected to receive more loads from

outside. Moreover, if |M (j)(pi)|≤ε, this indicates that pi’s state is proactive bal-

anced. ε set by node pi is equal to the smallest task load on pi. In the following

text, node’s status (overloaded, underloaded, or balanced) always means under the

proactive manner, thus we will omit the term “proactive” for short. Compared to

the traditional load rebalancing strategy [11] that only reschedules the load based

on M
(j)
s (pi) on node pi, our decentralized proactive allocation scheme also con-

siders M (j+1)
r (pi) at the jth epoch, which can achieve better adaptability.

An additional question is how to determine Ar(pi) for the next epoch. In

reality, its value could be predicted based on the historical records about users’

task submission rates within specific periods [42, 43, 44] or tasks’ execution pat-

terns [45, 46, 47], and the prediction errors could already be limited down to 10%

against the real workloads [47]. Note that the prediction methods are beyond the

scope of this paper, and our main effort is combining the above proactive design

with our conflict-minimizing strategy (to be discussed in Section 5.4), such that

the system throughput will not be degraded notably even with 50% margin of error

on estimating Ar(pi), as validated by our simulation.

5.4. Conflict Minimization Method

One challenge in the decentralized resource allocation is the decision conflict

problem: the unilateral task migration decisions may result in a lightly loaded

node suddenly becomes heavily loaded (a.k.a. conflict decision event) because

multiple overloaded nodes prone to select the same underloaded peer to process

their surplus loads due to the lack of coordination.

To minimize the impact on conflict decision, each heavily loaded peer assumes

its underloaded peers (i.e. UL(pi)) and overloaded peers (i.e. OL(pi)) are also

24

known by other heavily loaded peers. Every peer will estimate the probability of

migration conflict based on its local view and make the best-response decisions to

avoid conflicts.

The proposed conflict-minimizing method, namely Stochastic Proportional

Idle Resource Allocation (SPIRA), consists of three key steps:

On every overloaded peer pi:

1) Compute SUL(pi)=
∑

pk∈UL(pi)
|M(pk)|

2) For each node pk in UL(pi), compute its selection probability P (pk) =
|M(pk)|
SUL(pi)

.

3) Move selective surplus tasks to node pk stochastically according to P (pk).

Without loss of generality, we could view the process of selecting target un-

derloaded nodes by overloaded nodes in a fully-distributed competitive P2P Grid

environment as a number of independent Bernoulli trials1. That is, the distributed

node selection process for load balancing can be analyzed equally as follows:

(1) Divide all peers with un-balanced load into overloaded nodes and underloaded

nodes, constructing a bipartite graph.

(2) Each overloaded peer identifies its surplus tasks and reassign them to the un-

derloaded peers based on a uniform selection probability (by SPIRA method).

(3) Evaluate if each assignment is a viable task migration event (i.e, a success in

Bernoulli trial) or conflict decision event (i.e., a failure).

Figure 3 illustrates the idea in a simplified scenario. All the surplus tasks

will be migrated to lightly loaded nodes stochastically according to a uniform

probability distribution, { 30
100

, 20
100

, 30
100

, 20
100

}.

To reduce the communication cost, each gossip message just contains the value

1In the probability theory, Bernoulli trial is defined as an experiment whose random outcome

is alternative, either “success” or “failure”.

25

1

2

3

4

5

6

7

3j

1j

2j

4

5

6

7

1

2

3

Figure 3: Decentralized load balancing can be viewed as a set of Bernoulli trials

of M(pi) and the source node’s identifier/IP. Note that, if each message’s TTL (i.e.

the number of gossip cycles it lasts) is equivalent to the duration of one epoch,

the load state cached on other nodes in the jth epoch should always be equal to

M (j)(pi), rather than M (j−1)(pi) or M (j+1)(pi). This guarantees that the state

information for task (re)scheduling is always up-to-date.

The time complexity of SPIRA method is O(|UL(pi)| + mi) compared to

O(|UL(pi)|·log(|UL(pi)|)+mi·log(mi)) of other sorting based solutions [14, 11],

because the overall scheduling effect has nothing to do with the sorting order of

tasks to be assigned on each node. As follows, we carefully analyze the decision-

conflict probability delivered by the SPIRA strategy.

Theorem 2. Given that every heavily loaded node moves its surplus load to un-

derloaded nodes selected by the SPIRA method from its acquainted nodes, the

probability of the decision conflict event on lightly loaded node pk, denoted as

PDC(pk), should be no greater than (xP (pk))
Lk+1

(Lk+1)!
(Formula (17)).

PDC(pk) ≈ 1− e−xP (pk)

Lk∑
i=0

1

i!
(xP (pk))

i ≺ (x · P (pk))
Lk+1

(Lk + 1)!
(17)

26

where Lk=s · P (pk), x is the total number of tasks to be shifted from all heavily

loaded nodes and ≺ stands for “approaches or smaller than”.

PROOF. The proof is omitted here and please reference our previous publication

[48] for the details. Since our model in this paper adopts the proactive idea on

load migration (i.e. M(pk) to be migrated from pk) rather than the static surplus

load amount (ilf(pk) · ck) used by [48] without proactive support, the proof will

also be revised a little bit, but the conclusion will not be changed at all.

Based on the Formula (17), different x will get different probability on de-

cision conflict event, while the value of x is dependent upon the amount of load

every heavily loaded node dispels. If each heavily loaded node ph dispels θ·M(ph)

(where 0<θ≤1), then x = θ·s. As an example, when every heavily loaded node mi-

grates only 1
3

of surplus load (i.e., θ=1
3
) and node pk’s Lk=10, PDC(pk) ≺ (10/3)11

11!

≈ 1.41%.

We also estimate the overall conflict probability by calculating the system-

wide conflict events (denoted by EDC(x)) over the total number of tasks to be

migrated from all heavily loaded nodes (i.e., x(=θs)), as shown in Formula (18).

EDC(x) = x
∑

pk∈UL

P (pk) · PDC(pk) (18)

The overall conflict probability is very small according to Equation (18). Sup-

pose there are 140 heterogeneous lightly loaded nodes (p1,p2,· · ·,p140) whose rela-

tively idle resource amounts M(pi) (calculated compared to E(Φ)) are -1, -2, · · ·,

-140, where the total number of tasks to be migrated from heavily loaded nodes

is θ · s=θ ·
∑140

i=1 i=θ·9870. Then, Table 1 presents the estimated probability of

conflict events based on Equation (18), and the conflict probability could be down

to 0.025 if each heavily loaded node migrates 80% surplus load outward. We will

also evaluate the performance via simulation in Section 6.

27

Table 1: Conflict event Probability when migrating 9870 tasks to 140 nodes

θ probability θ probability θ probability

1 0.470 0.95 0.288 0.9 0.148

0.85 0.064 0.8 0.025 0.75 0.010

0.7 0.004 0.65 0.001 0.6 9.545×10−4

0.55 4.918×10−4 0.5 2.617×10−4 0.45 1.419×10−4

0.4 7.755×10−5 0.35 4.216×10−5 0.3 2.250×10−5

0.25 1.157×10−5 0.2 5.573×10−6 0.15 2.393×10−6

6. Performance Evaluation

6.1. Experimental Setting

For each experiment, we first construct an emulated physical network with n

(1000 ∼ 8000) computers randomly connected with various bandwidths by Wax-

man model through Brite topology generator [25]. Over this construction, we

then use PeerSim [49] to simulate the asynchronous events based on the work-

load/capacity distribution reported by PPlive system [50]. The reason we choose

PPlive’s statistics is that they truthfully represent the heterogeneous supply and

demand relationship among daily-life P2P users, which we deem is important to

our experiment. Note that one node’s capacity here is referred to as its buffering

capability, which is set proportional to its processing ability. Through the 25-

degree polynomial fitting function, we compute the de facto distribution in Figure

4.

According to M/M/1 model, the rate of loads added to every peer is various

in terms of Poisson process with a varied λ determined by workload distribution.

We make the load of each task equal to 2,4,8,16 or 32 million instructions (MI).

For clear observation,
∑n

i=1 Ar(Pi) is kept equal to
∑n

i=1 Pr(Pi) in each snapshot

and ci is set equal to processing rate (Pr(Pi)), whose mathematical expectation is

28

 0
 0.0002
 0.0004
 0.0006
 0.0008

 0.001
 0.0012
 0.0014
 0.0016
 0.0018

 0.002

 0 200
 400

 600
 800

 1000

 1200

 1400

 1600

 1800

 2000

 P
ro

b
a

b
ili

ty
 D

is
tr

ib
u
ti
o

n
 F

u
n
c
ti
o
n

Node Capacity

Avg. # of Peers
Fitting Curve

(a) Capacity Distribution

-0.0005

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0 200
 400

 600
 800

 1000
 1200

 1400
 1600

 1800
 2000

 P
ro

ba
bi

lit
y

D
is

tr
ib

ut
io

n
F

un
ct

io
n

Node’s Received Load

Avg. # of Peers
Fitting Curve

(b) Workload Distribution

Figure 4: Capacity and Workload Distribution

10 MIPS. Each peer’s neighbor degree is log(n).

During every rescheduling interval (i.e. epoch), each peer will be injected by

new tasks whose total amount is equal to Ar(pi) and some workloads on it will

also be processed (i.e. Prr(pi)). The value of the real processed portion Prr(pi)

is set based on Poisson distribution whose λ=Pr(pi). Each peer node performs

either DPRA scheme or other comparative algorithms periodically in every epoch

and each epoch contains 6 gossip cycles. Each gossip cycle is set to 20 seconds.

6.2. Experimental Result

Figure 5 shows the makespan, standard deviation, fairness index of load level

and average residual workload (i.e. l) in the duration of 4 days, where the sys-

tem scale is 1000 peers and the resource discovery method uses traditional gossip

protocol (the following experiments will use the same setting unless special state-

ment). The idlest resource first (IRF) policy (e.g. min-min and max-min [51, 52])

with complete global information have been widely adopted by many distributed

resource allocations [51]. Specifically, the decentralized min-min (max-min) al-

gorithm makes every node independently search its surrounding lightest loaded

peer and move the minimum (maximum) task to it. PS-AvailCap [27] is similar

29

to our approach, but its node selection probability is simply set proportional to

the idle host pk’s availability (i.e. ck − lk) instead of the relative idle level (i.e.

ck · φk − lk) adopted by our load rebalancing approach (i.e. Ms(pk)) (referred to

as SPIRA in the Figure 5).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

M
a

k
e

s
p

a
n

 o
f
L

o
a

d
 L

e
v
e

l

Time (Hour)

Acq.Hood+PS-AvailCap
NeighborHood+IRF
Acq.Hood+IRF
Acq.Hood+SPIRA

(a) Makespan

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
S

ta
n
d

a
rd

 D
e

v
ia

ti
o

n
 o

f
L

o
a

d
 L

e
v
e

l
Time (Hour)

Acq.Hood+PS-AvailCap
NeighborHood+IRF
Acq.Hood+IRF
Acq.Hood+SPIRA

(b) Standard Deviation

 0

 200

 400

 600

 800

 1000

 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

A
v
e

ra
g

e
 R

e
s
id

u
a
l
W

o
rk

lo
a

d

Time (Hour)

Acq.Hood+PS-AvailCap
NeighborHood+IRF
Acq.Hood+IRF
Acq.Hood+SPIRA

(c) Average Residual Workload

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

F
a
ir
n
e
s
s
 I
n
d
e
x
 o

f
L
o
a
d
 L

e
v
e
l

Time (Hour)

Acq.Hood+PS-AvailCap
NeighborHood+IRF

Acq.Hood+IRF
Acq.Hood+SPIRA

 0.8
 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 72 78 84 90 96
Time (Hour)

(d) Fairness Index

Figure 5: Allocation of Different Algorithms

In Figure 5, NeighborHood curve indicates that each heavily loaded node just

selects the candidate lightly loaded peers from its direct neighbor-peer set, while

Acq.Hood means that each heavily loaded node’s selection range is the larger set

with multi-hop based lightly loaded acquaintance peers. According to the anal-

ysis in Section 4, higher fairness index of load level or lower standard deviation

implies higher balanced degree of workload status; lower makespan of load level

means higher stability; lower overall average residual workload (i.e. l) explicitly

30

indicates the higher throughput. In our simulation, we observe that the fairness

index without any load balancing strategy will be kept only about 0.2, thus all the

four solutions deliver acceptable fairness index based on Figure 5 (d). Neverthe-

less, both idlest resource first (IRF) policy and PS-Availability policy present poor

allocation results, e.g. relatively high makespan, standard deviation, and average

residual workload. This is mainly due to the decision conflict problem amongst

the competing peers. In contrast, our conflict-minimizing strategy shows much

better result due to its mitigated decision conflicts (about 23.6%∼47.1% reduc-

tion on residual workload in terms of Figure 5 (c)).

As proved in Theorem 2, the lower migration ratio is, the lower decision con-

flict probability is. However, lower migration ratio may not lead to higher system

throughput or load balancing level, because the lower migration ratio will defi-

nitely make the heavily loaded nodes not reach the expected average load level

(φ), either do the lightly loaded nodes. As a result, there must be a tradeoff be-

tween the migrated load amount and the decision conflict. Figure 6 shows the

load balancing result under different load migration ratios (i.e. θ). Figure 6 (a)

shows that the decision conflicts are mitigated with decreasing value of θ. The

system throughput (i.e. average residual workload) gets the optimal result when θ

approaches 0.9.

Figure 7 presents the resource allocation result under different resource dis-

covery protocols during 4-days simulation (also based on optimized migration

load amount calculated by Equation (16)). Figure 7 (a) shows that our load-status

conscious gossip protocol can significantly improve the system throughput, while

the fairness index will not change notably, as shown in Figure 7 (b). This also

confirms our conclusion that fairness index cannot determine system throughput.

31

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

C
o

n
fl
ic

t
E

v
e

n
t

R
a

ti
o

Time (Hour)

migration ratio = 1
migration ratio = 0.9
migration ratio = 0.8
migration ratio = 0.7
migration ratio = 0.6

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 72 78 84 90 96
Time (Hour)

(a) Conflict Event Ratio

 0

 100

 200

 300

 400

 500

 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

A
ve

ra
ge

 R
es

id
ua

l W
or

kl
oa

d

Time (Hour)

migration ratio = 1
migration ratio = 0.9
migration ratio = 0.8
migration ratio = 0.7
migration ratio = 0.6

(b) Average Residual Workload

Figure 6: Allocation under Different Load Migration Ratios

 0

 50

 100

 150

 200

 250

 300

 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

A
v
e

ra
g

e
 R

e
s
id

u
a
l
W

o
rk

lo
a

d

Time (Hour)

Gossip Protocol+DPRA
Load-status Conscious Protocol+DPRA

(a) Average Residual Workload

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

F
a
ir
n
e
s
s
 I
n
d
e
x
 o

f
L
o
a

d
 L

e
v
e
l

Time (Hour)

Gossip Protocol+CPRA
Load Guided Protocol+CPRA

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

 72 78 84 90 96
Time (Hour)

(b) Fairness Index

Figure 7: Allocation with Different Message Propagation Protocols

All the rest tests are carried out via the load-status conscious gossip protocol.

Figure 8 shows the results with different errors on the proactive estimate of

Ar(pi), and this error is defined as (1 − estimated task arrival rate
the exact task arrival rate

). Compared to

the traditional load rebalancing framework, DPRA shows significantly improved

performance by considering newly arriving tasks. Moreover, the under-estimation

with 25%∼50% ratio shows no performance degradation than with exact task ar-

rival rate estimation. This is because every peer adopts the Bernoulli trials with

the selection-probability proportional to its viewed idle resource amounts based

on our conflict-minimizing strategy. That is, in accordance with the Theorem 3,

the less surplus load amount migrated, the less conflict probability is. This could

32

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

M
a
k
e
s
p
a

n
 o

f
L
o
a

d
 L

e
v
e
l

Time (Hour)

Static Load Rebalancing
DPRA(Ar’s estimation error=1)
DPRA(Ar’s estimation error=0.75)
DPRA(Ar’s estimation error=0.5)
DPRA(Ar’s estimation error=0.25

(a) Makespan

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
L
o

a
d
 L

e
v
e
l

Time (Hour)

Static Load Rebalancing
DPRA(Ar’s estimation error=1)
DPRA(Ar’s estimation error=0.75)
DPRA(Ar’s estimation error=0.5)
DPRA(Ar’s estimation error=0.25)

(b) Standard Deviation

 0

 50

 100

 150

 200

 250

 300

 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

A
v
e

ra
g

e
 R

e
s
id

u
a
l
W

o
rk

lo
a

d

Time (Hour)

Static Load Rebalancing
DPRA(Ar’s estimation error=1)

DPRA(Ar’s estimation error=0.75)
DPRA(Ar’s estimation error=0.5)

DPRA(Ar’s estimation error=0.25)

(c) Average Residual Workload

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

F
a
ir
n
e
s
s
 I
n
d
e
x
 o

f
L
o
a

d
 L

e
v
e
l

Time (Hour)

Static Load Rebalancing
CPRA(Ar’s estimation error=1)

CPRA(Ar’s estimation error=0.75)
CPRA(Ar’s estimation error=0.5)

CPRA(Ar’s estimation error=0.25)

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

 72 78 84 90 96
Time (Hour)

(d) Fairness Index

Figure 8: Allocation with Different Proactive Levels

make up the negative effect of the estimation error in return to a certain extent.

Henceforth, Ar(pi) would better be based on conservative estimate of arrival rates

in various time periods.

Figure 9 presents the DPRA’s result with different scales. With increasing

number of peers, it will still converge exponentially with slight errors. This is

because that our conflict-minimizing method adopts a probabilistic sharing mech-

anism (i.e. Theorem 2) under which every node just needs to cache a few amount

of information.

We also evaluate our DPRA algorithm in unstable (i.e. peer-churning) en-

vironment with a percentile of joining/leaving nodes. 0.X dynamicity means X

percent of peers are replaced by new ones every gossip cycle, i.e. 1−(1−0.X)3

nodes will be changed in every allocation interval. For instance, “0.2 dynamicity”

33

 0

 50

 100

 150

 200

 250

 300

 350

 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

A
v
e

ra
g

e
 R

e
s
id

u
a

l
W

o
rk

lo
a
d

Time (Hour)

1000 nodes
2000 nodes
4000 nodes
8000 nodes

(a) Average Residual Workload

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

S
ta

n
d
a

rd
 D

e
v
ia

ti
o

n
 o

f
L
o
a
d

 L
e
v
e
l

Time (Hour)

1000 nodes
2000 nodes
4000 nodes
8000 nodes

(b) Standard Deviation

Figure 9: Scalability of DPRA

means about half of nodes have to be replaced between two reallocations. From

the results in Figure 10, we can see that DPRA can adapt to node-churning well.

Most importantly, from Figure 10 (a) & (c), we observe that the average load level

is indeed consistent with average residual workload, which confirms our Theorem

1 proved in Section 4.

Finally, we compare the performance of the DPRA algorithm with and without

migration overhead. Just as shown in Algorithm 1, we adopt the filtering policy to

filter out tasks with too heavy migration overhead. The task sizes are 2,4,8,16,32

or 64 MI, and the task migration overheads are set to two minutes on average, thus

the communication to computation ratio can be calculated as about 2: 126
6×10

≈1
1
.

In our simulation, when any node makes any task migration decisions, it will

also notify the corresponding destination node to change its workload, so that it

could notify its neighbors about its updated state as soon as possible in a proactive

manner. From the Figure 11, we can clearly observe that neither the average

remaining workload nor fairness index of the load level will be changed notably.

34

 0

 1

 2

 3

 4

 5

 6

 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

A
v
e

ra
g

e
 L

o
a

d
 L

e
v
e
l

Time (Hour)

0.2 dynamicity
0.1 dynamicity
0.05 dynamicity
0.025 dynamicity
0.0 dynamicity

(a) Average Load Level

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

S
ta

n
d
a

rd
 D

e
v
ia

ti
o

n
 o

f
L
o
a
d

 L
e
v
e
l

Time (Hour)

0.2 dynamicity
0.1 dynamicity
0.05 dynamicity
0.025 dynamicity
0.0 dynamicity

(b) Standard Deviation

 0

 100

 200

 300

 400

 500

 600

 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

A
v
e

ra
g

e
 R

e
s
id

u
a

l
W

o
rk

lo
a
d

Time (Hour)

0.2 dynamicity
0.1 dynamicity
0.05 dynamicity
0.025 dynamicity
0.0 dynamicity

(c) Average Residual Workload

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

F
a
ir
n
e
s
s
 I
n
d
e
x
 o

f
L
o
a

d
 L

e
v
e
l

Time (Hour)

0.2 dynamicity
0.1 dynamicity

0.05 dynamicity
0.025 dynamicity

0.0 dynamicity

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

 72 78 84 90 96
Time (Hour)

(d) Fairness Index

Figure 10: DPRA in Unstable Environment

7. Conclusion and Future Work

To our knowledge, this is the first attempt to prove that fairness index of load

level is insufficient to determine the system throughput of large-scale P2P Grid.

Based on this theory, we design a novel resource allocation scheme (DPRA) by

combining the dynamic estimation of arrival tasks and the load rebalancing pol-

icy, in order to maximize the system throughput of P2P Grid. We also prove

that the ratio of migration load amount from every heavily loaded node may sig-

nificantly impact the mutual decision conflict. Via simulation, we confirm that

our method with conflict-minimizing strategy and the load-status conscious gos-

sip protocol can not only effectively balance the system-wide workload among

heterogeneous peers with satisfactory converged fairness index (up to 97%), but

35

 0

 50

 100

 150

 200

 250

 300

 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

A
v
e

ra
g

e
 R

e
s
id

u
a
l
W

o
rk

lo
a

d

Time (Hour)

without migration overhead
with migratio overhead

(a) Average Residual Workload

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

F
a
ir
n
e
s
s
 I
n
d
e
x
 o

f
L
o
a
d
 l
e
v
e
l

Time (Hour)

without migration overhead
with migratio overhead

(b) Fairness Index

Figure 11: DPRA With and Without Migration Overhead

get significantly improved throughput with 23.6%∼47.1% reduction on the total

unprocessed workload than other distributed solutions. For the future work, we

plan to make use of various task-filtering policies on the basis of our theory to

solve more practical issues in load migration, e.g. by considering the situation

that nodes may leave when receiving a migrated task. In addition, the flash crowd

problem may happen to the system or some nodes as system scale is not that large,

which will also be studied in the future.

Acknowledgments

This research is supported by a Hong Kong RGC grant HKU 7179/09E and

a HKU Basic Research grant (Grant No. 10401460), and also in part by a Hong

Kong UGC Special Equipment Grant (SEG HKU09).

Appendix

To get the expected overall balanced load level distribution in P2P Grid sys-

tems, the load amount to be shifted from every heavily loaded node pi should

36

be equal to (φ
(j)
i −E(j)(Φ))·ci−θ·c2i , where θ=

∑
pk∈as(pi)

lk−E(j)(Φ)·
∑

pk∈as(pi)
ck∑

pk∈as(pi)
c2k

and

as(pi) refers to the acquaintance set of pi.

PROOF. According to Theorem 1, Corollary 1 and Corollary 2 in Section 4, our

objective is to make the standard deviation of load level as small as possible.

That is, the objective is to get the minimum σ=
√

1
n

∑n
i=1 (φ

(j)
i − E(j)(Φ))2, where

E(j)(Φ) is the mathematical expectation at jth epoch. Based on the low-cost gos-

sip protocol and locality property of network, the goal of each peer should switch

to minimizing ∆ (or ∆2) subject to the constraint (20), where L′ is a constant rel-

ative to the current epoch and as(pi) is the set of pi’s stored multi-hop gossiped

acquaintance peers.

∆ =

√ ∑
pk∈ns(pi)

(φ
(j)
k −E(j)(Φ))2

|as(pi)|
(19)∑

pk∈as(pi)
lk = L′ (20)

Since ∂2(∆2)

∂l2k
>0, ∆2 is convex with a minimum extreme point. Without loss

of generality, for any node pi, |as(pi)| is fixed within one epoch, then the target

Lagrange function can be defined as Equation (21) and λ is the corresponding

Lagrange multiplier.

F (as(pi), λ) =
∑

pk∈ns(pi)
(lk
ck

− E(j)(Φ))2 − λ(
∑

pk∈ns(pi)
lk − L′) (21)

Hence, ∆ would get the minimum point iff Formula (22) can be met.

∂F
∂lk

= 0, where lk is the load of pk ∈ as(pi) (22)

Therefore, we can get the sufficient and necessary condition as follows, where

k is the index of pk ∈ as(pi)

2(lk
ck

− E(j)(Φ)) · 1
ck

= λ (23)

Then, lk is expected to be ck · E(j)(Φ) + c2k · λ
2
. On the other hand, we de-

note θ=λ
2
, then θ can be calculated as: θ = lk−ck·E(j)(Φ)

c2k
, where k is the index of

37

pk ∈ as(pi). Hence, θ =
∑

pk∈as(pi)
lk−E(j)(Φ)·

∑
pk∈as(pi)

ck∑
pk∈as(pi)

c2k
and the expected amount

of load to be removed from each heavily loaded peer pi is φ(original)
i ·ci−l

(expected)
i

= φ
(j)
i ·ci−(ci·E(j)(Φ)+c2i ·θ) = (φ

(j)
k −E(j)(Φ))·ci−θ·c2i

where φ
(original)
i and l

(expected)
i are referred to as the original load level on node pi

and its expected workload after the load migration, respectively. �

Remark: If pi’s acquaintance set contains all the participating peers or

(
∑

pk∈as(pi) lk) / (
∑

pk∈as(pi) ck) = E(j)(Φ), then, θ=0, which means the expected

target load level is right E(j)(Φ) and this is an ideal case. If (
∑

pk∈as(pi) lk) /

(
∑

pk∈as(pi) ck) > E(j)(Φ), this indicates that pi is located in a hotspot network

area, in which most of the adjacent peers are heavily loaded, and vice versa.

38

References

[1] H. Abbes, C. Cerin, M. Jemni, Bonjourgrid: Orchestration of multi-instances

of grid middlewares on institutional desktop grids, in: IEEE International

Symposium on Parallel & Distributed Processing, IEEE, 2009, pp. 1–8.

[2] A. R. Butt, R. Zhang, C. Y. Hu, A self-organizing flock of condors, Journal

of Parallel and Distributed Computing 66 (1) (2006) 145–161.

[3] J. Cao, F. B. Liu, C. Z. Xu, P2pgrid: integrating p2p networks into the grid

environment: Research articles, Vol. 19, John Wiley and Sons Ltd., Chich-

ester, UK, 2007, pp. 1023–1046.

[4] A. Luther, R. Buyya, R. Ranjan, S. Venugopal, Alchemi: A .net-based grid

computing framework and its integration into global grids, Tech. rep., Grid

Computing and Distributed Systems Laboratory, Univ. of Melbourne (Dec.

2003).

[5] H. Abbes, C. Cérin, M. Jemni, Pastrygrid: decentralisation of the execution

of distributed applications in desktop grid, in: MGC ’08: Proceedings of the

6th international workshop on Middleware for grid computing, ACM, New

York, NY, USA, 2008, pp. 1–6.

[6] E. Byun, et al., Self-gridron: Reliable, autonomous, and fully decentral-

ized desktop grid computing system based on neural overlay network, in:

PDPTA’08: The International Conference on Parallel and Distributed Pro-

cessing Techniques and Applications, 2008, pp. 569–575.

[7] V. K. Naik, S. Sivasubramanian, D. Bantz, S. Krishnan, Harmony: a desktop

39

grid for delivering enterprise computations, in: 4th International Workshop

on Grid Computing, 2003.

[8] H. Zhao, X. Liu, X. Li, A taxonomy of peer-to-peer desktop grid paradigms,

Cluster Computing (2010) 1–16.

[9] S. Di, C.-L. Wang, D. H. Hu, Gossip-based dynamic load balancing in a

self-organized desktop grid, in: HPCAsia ’09: Proceedings of the 10th High-

Performance Computing Asia, 2009, pp. 85–92.

[10] J.-H. Hyun, An effective scheduling method for more reliable execution on

desktop grids (2010) 172–179.

[11] G. Aggarwal, R. Motwani, A. Zhu, The load rebalancing problem, in: SPAA

’03: Proceedings of the fifteenth annual ACM symposium on Parallel algo-

rithms and architectures, New York, NY, USA, 2003, pp. 258–265.

[12] C.-H. Hsu, T.-L. Chen, J.-H. Park, On improving resource utilization and

system throughput of master slave job scheduling in heterogeneous systems,

Journal of Supercomputing 45 (2008) 129–150.

[13] T. Repantis, Y. Drougas, V. Kalogeraki, Adaptive component composition

and load balancing for distributed stream processing applications, Peer-to-

Peer Networking and Applications 2 (1) (2009) 60–74.

[14] Y. Drougas, V. Kalogeraki, A fair resource allocation algorithm for peer-to-

peer overlays, INFOCOM’05: 24th Annual Joint Conference of the IEEE

Computer and Communications Societies 4 (2005) 2853–2858 vol. 4.

40

[15] G. Di Fatta, M. R. Berthold, Decentralized load balancing for highly irregu-

lar search problems, Microprocess. Microsyst. 31 (2007) 273–281.

[16] T. Repantis, Y. Drougas, V. Kalogeraki, Adaptive resource management in

peer-to-peer middleware, in: Workshop on Parallel and Distributed Real-

Time Systems (WPDRTS), in conjunction with 19th IPDPS, 2005, pp. 132–

140.

[17] G. Huang, G. Wu, Z. Chen, A fair load balancing algorithm for hypercube-

based dht networks, in: G. Dong, X. Lin, W. Wang, Y. Yang, J. Yu (Eds.),

Advances in Data and Web Management, Vol. 4505 of Lecture Notes in

Computer Science, Springer Berlin / Heidelberg, Berlin, Heidelberg, 2007,

Ch. 15, pp. 116–126.

[18] R. K. Jain, The Art of Computer Systems Performance Analysis: Techniques

for Experimental Design, Measurement, Simulation and Modelling, John

Wiley & Sons, 1991.

[19] T. Pitoura, P. Triantafillou, Load distribution fairness in p2p data manage-

ment systems, in: 23th ICDE07: International Conference on Data Engi-

neering, 2007, pp. 396–405.

[20] K. Eger, U. Killat, Fair resource allocation in peer-to-peer networks (ex-

tended version), Computer Communications 30 (16) (2007) 3046–3054.

[21] A. Allavena, A. Demers, J. E. Hopcroft, Correctness of a gossip based mem-

bership protocol, in: PODC ’05: Proceedings of the twenty-fourth annual

ACM SIGACT-SIGOPS symposium on Principles of distributed computing,

New York, NY, USA, 2005, pp. 292–301.

41

[22] S. Boyd, A. Ghosh, B. Prabhakar, D. Shah, Gossip algorithms: design, anal-

ysis and applications, in: INFOCOM’05: 24th Annual Joint Conference of

the IEEE Computer and Communications Societies, Vol. 3, 2005, pp. 1653–

1664.

[23] Y. Zhou, D.-M. Chiu, J. C. S. Lui, A simple model for chunk-scheduling

strategies in p2p streaming, IEEE/ACM Transactions on Networking 19 (1)

(2011) 42–54.

[24] Y. Wang, T. Fu, D. M. Chiu, Analysis of load balancing algorithms in p2p

streaming, in: 46th Annual Allerton Conference on Communication, Con-

trol, and Computing, 2008, pp. 960–967.

[25] Brite topology generator: http://cs-pub.bu.edu/brite/.

[26] J. D. Sonnek, A. Chandra, J. B. Weissman, Adaptive reputation-based

scheduling on unreliable distributed infrastructures, IEEE Trans. Parallel

Distrib. Syst.(TPDS) 18 (11) (2007) 1551–1564.

[27] S. K. Kwan, J. K. Muppala, Resource discovery and scheduling in unstruc-

tured peer-to-peer desktop grids, International Conference on Parallel Pro-

cessing Workshops (2010) 303–312.

[28] O. Sinnen, L. A. Sousa, Communication contention in task scheduling, IEEE

Transactions on Parallel and Distributed Systems(TPDS) 16 (2005) 503–

515.

[29] Y. F. Jeffrey, J. Chase, B. Chun, S. Schwab, A. Vahdat, Sharp: An archi-

tecture for secure resource peering, in: SOSP’03: Proceeding of 19th ACM

Symposium on Operating System Principles, 2003, pp. 133–148.

42

[30] A. Benoit, M. Hakem, Y. Robert, Contention awareness and fault-tolerant

scheduling for precedence constrained tasks in heterogeneous systems, Par-

allel Computing 35 (2) (2009) 83–108.

[31] P. Berenbrink, T. Friedetzky, L. A. Goldberg, P. Goldberg, Z. Hu, R. Mar-

tin, Distributed selfish load balancing, in: Proceedings of the seventeenth

annual ACM-SIAM symposium on Discrete algorithm, SODA ’06, ACM,

New York, NY, USA, 2006, pp. 354–363.

[32] U. Endriss, N. Maudet, F. Sadri, F. Toni, Negotiating socially optimal allo-

cations of resources, Journal of Artificial Intelligence Research 25 (2006)

315–348.

[33] D. Grosu, A. T. Chronopoulos, M. Y. Leung, Cooperative load balancing in

distributed systems, Concurr. Comput. : Pract. Exper. 20 (16) (2008) 1953–

1976.

[34] J. F. Nash, Equilibrium points in n-person games, Proceedings of the Na-

tional Academy of Sciences of the United States of America 36 (1) 48–49.

[35] M. Feldman, K. Lai, L. Zhang, The proportional-share allocation market

for computational resources, IEEE Transactions on Parallel and Distributed

Systems 20 (8) (2009) 1075–1088.

[36] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A scalable

content-addressable network, in: SIGCOMM ’01: Proceedings of the 2001

conference on App., tech., arch., and prot. for comp. comm., ACM, New

York, NY, USA, 2001, pp. 161–172.

43

[37] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan, Chord:

A scalable peer-to-peer lookup service for internet applications, in: SIG-

COMM ’01: Proceedings of the 2001 conference on App., tech., arch., and

prot. for comp. comm., Vol. 31, ACM, New York, NY, USA, 2001, pp. 149–

160.

[38] M. Jelasity, W. Kowalczyk, V. M. Steen, Newscast computing, Tech. rep.,

Vrije Universiteit Amsterdam (2006).

[39] M. Jelasity, A. Montresor, O. Babaoglu, T-man: Gossip-based fast overlay

topology construction, Computer Networks 53 (13) (2009) 2321–2339.

[40] J. B. Jimenez, D. Caromel, M. Leyton, J. M. Piquer, Load information shar-

ing policies in communication-intensive parallel applications, in: 6th IEEE

International Symposium and School on Advance Distributed Systems (IS-

SADS), 2006.

[41] H. Kameda, J. Li, C. Kim, Y. Zhang, Optimal Load Balancing in Distributed

Computer Systems (Telecomm. Networks and Comp. Systems), Springer-

Verlag Telos.

[42] R. Wolski, N. Spring, J. Hayes, Predicting the cpu availability of time-

shared unix systems on the computational grid, in: Proceedings of the 8th

IEEE International Symposium on High Performance Distributed Comput-

ing, HPDC ’99, IEEE Computer Society, Washington, DC, USA, 1999, pp.

105–112.

[43] P. A. Dinda, D. R. O’Hallaron, Host load prediction using linear models,

Cluster Computing 3 (2000) 265–280.

44

[44] L. Carrington, A. Snavely, N. Wolter, A performance prediction framework

for scientific applications, Future Gener. Comput. Syst. 22 (2006) 336–346.

[45] Y. Zhang, W. Sun, Y. Inoguchi, Predicting running time of grid tasks based

on cpu load predictions, in: 7th International Conference on Grid Comput-

ing, 2006, pp. 286–292.

[46] J. Zhang, R. J. Figueiredo, Adaptive predictor integration for system perfor-

mance prediction, IPDPS07: International Parallel and Distributed Process-

ing Symposium 0 (2007) 87–96.

[47] L. Huang, J. Jia, B. Yu, B.-G. Chun, P. Maniatis, M. Naik, Predicting execu-

tion time of computer programs using sparse polynomial regression, in: In

NIPS’10: 24th Annual Conference on Neural Information Processing Sys-

tems, 2010, pp. 1–9.

[48] S. Di, C.-L. Wang, Conflict-minimizing dynamic load balancing for p2p

desktop grid, in: Grid’10: The 11th IEEE/ACM International Conference

on Grid Computing, 2010, pp. 137–144.

[49] Peersim simulator: http://peersim.sourceforge.net.

[50] Y. Huang, T. Z. J. Fu, D. M. Chiu, J. C. S. Lui, C. Huang, Challenges,

design and analysis of a large-scale p2p-vod system, in: Proceedings of

the ACM SIGCOMM conference on Data communication, New York, NY,

USA, 2008, pp. 375–388.

[51] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, et al., A comparison of

eleven static heuristics for mapping a class of independent tasks onto hetero-

45

geneous distributed computing systems, J. Parallel Distrib. Comput. 61 (6)

(2001) 810–837.

[52] B. Radunovic, J. Y. Le Boudec, A unified framework for max-min and min-

max fairness with applications, IEEE Transactions on Networking 15 (5)

(2007) 1073–1083.

46

