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Abstract. In this paper, two distributed algorithms for the minimum
vertex cover problem are given. In the unweighted case, we propose a
2.5-approximation algorithm with round complexity O(∆), where ∆ is
the maximal degree of G, improving the previous 3-approximation result
with the same round complexity O(∆). For the weighted case, we give a
4-approximation algorithm with round complexity O(∆).

1 Introduction

Minimum vertex cover (MVC in short) is a fundamental and classical problem
in computer science. For a graph G = (V,E), we say a subset S ⊆ V is a vertex
cover if any edge e ∈ E is incident to at least one vertex in S. The problem
of MVC is to find a vertex cover S such that the number of vertices in S is
minimum. If each vertex u ∈ V has a weight w(u), this problem is turned to be
the weighted version of minimum vertex cover (WMVC in short). The objective
of the WMVC is to find a vertex cover S ⊆ V such that the total weight of
vertices in S is minimized, i.e., minw(S), where w(S) =

∑
u∈S w(u).

In this paper, we study the distributed algorithms for both the unweighted
and weighted versions of the minimum vertex cover problem. In the distributed
model, each vertex is a server and can do some computation on its local infor-
mation. Each vertex only knows its local information, i.e., the property of itself
(e.g., weight) and which vertices are its neighbors. Each vertex can exchange
information with its neighbors. We assume the exchange of information is done
synchronously. At each round, a vertex can send/receive messages to/from its
neighbors. In this model, each vertex does not know the topology of G and the
number of vertices in V . The complexity of distributed algorithm is measured
by the the number of rounds to achieve the expected result (e.g., a vertex cover).

Related Works:
Minimum vertex cover is a very well studied problem in theoretical computer
science. Both the unweighted and weighted versions are NP-hard [3]. There are
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no polynomial algorithm can achieve the minimum vertex cover unless P = NP ,
thus, most studies focus on the approximation algorithms for this problem. In
2005, Karakostas [6] gave a (2− Θ(1/

√
log n))-approximation algorithm, which

is the best known upper bound. The current lower bound of the approximation
ratio is 10

√
5− 21 > 1.36 [2].

Distributed computing for finding a vertex cover is also well studied during
these years. In the unweighted version, a 2-approximation algorithm is a straight-
forward extension of the algorithm in [5] for finding the maximal matching in
O(log4 n) rounds. Note that all vertices in the maximal matching 2-approximate
the minimum vertex cover. Recently, another 2-approximation algorithm was
proposed in [1] with round complexity O(∆2), where ∆ is the maximum de-
gree of the graph. With less number of rounds, a 3-approximation O(∆)-rounds
algorithm was given in [8]. For the weighted version, Khuller et al [7] gave a
(2 + ε)-approximation in O(logn log 1

ε ) rounds. A randomized 2-approximation
algorithm was given by Grandoni et al [4], the expected number of rounds is
O(logn+ log Ŵ ), where Ŵ is the average weight of all vertices.

Our Contributions:
In this paper, we study the distributed algorithms for both the unweighted and
weighted versions of the minimum vertex cover problem. In the unweighted case,
we improve the previous 3-approximation result and give a 2.5-approximation
algorithm with the complexity O(∆) (Section 2); in the weighted case, we give
a 4-approximation algorithm with O(∆) rounds (Section 3).

2 Algorithm for MVC

In this section, we give a distributed 2.5-approximation algorithm for finding the
minimum vertex cover in graph G = (V,E). The high level idea is described as
follows. Find a subgraph Ĝ = (V̂ , Ê) of G, such that (1) the degree of each vertex
in V̂ is at least one and at most two, thus, each connected component in Ĝ is
either a cycle or a path; and (2) each edge in G is incident to at least one vertex
in V̂ , thus, V̂ is a vertex cover of G. Let {P1, P2, ..., Pk} denote a partition of
the connected components in Ĝ, and any two connected components in different
partitions are disjoint. In each partition, define the local approximation ratio to
be the ratio between the number of vertices in the partition and the number of
vertices selected into the minimum vertex cover. In partition Pi, let pi and oi
be the number of vertices selected into the vertex cover by our algorithm (all
vertices in this partition) and by the optimum algorithm, respectively. Since the
partition of connected components are disjoint each other, the size of the min-
imum vertex cover for G is at least

∑k
i=1 oi. Thus, the approximation ratio of

our algorithm is at most
∑k

i=1 pi/
∑k

i=1 oi ≤ max pi/oi.

Our algorithm has two phases: the partition phase and themodification phase.
In the partition phase, similar to the above description, we find a subgraph
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G′ = (V ′, E′) of G such that each connected component in G′ contains only one
path or cycle. Consider a connected component Pi with pi vertices,

– if Pi is a cycle
Pi contains pi edges, to cover these edges, any vertex cover, including the
minimum vertex cover, must select at least ⌈pi/2⌉ vertices from Pi. Since V

′

contains all vertices in Pi, the local approximation ratio for Pi w.r.t. V
′ is

pi/⌈pi/2⌉, which is at most 2.
– If Pi is a path

Pi contains pi − 1 edges, to cover these edges, any vertex cover must select
at least ⌈(pi − 1)/2⌉ vertices. Since V ′ contains all vertices in Pi, the local
approximation ratio for Pi w.r.t. V

′ is pi/⌈(pi − 1)/2⌉.

Combine the above two cases, the approximation ratio of such algorithm is
at most maxi pi/⌈(pi − 1)/2⌉. In the worst case, consider a path with two edges
(3 vertices), the minimum vertex cover may contain only one vertex, but the
algorithm may select all these three vertices, the local approximation ratio is
3. Intuitively, the longer the path, the lower the ratio. Therefore, we have a
modification phase for handling the length-2 paths in G′.

2.1 the partition phase

This part is similar to the algorithm in [8], and is the background of the modi-
fication phase, we describe this phase briefly.

– Each vertex sends requests to its neighbors one by one, until it receives an
accept message, or all neighbors reject its requests.

– Each vertex must accept one incoming request if it has not received any
requests before. After that, this vertex will reject all the other incoming
requests.

From the above request-accept algorithm, each vertex accepts at most one
neighbor’s request, and receives at most one neighbor’s accept message. We can
construct the graph G′ = (V ′, E′) as follows: V ′ contains such vertices that either
accepts the request from one of its neighbors, or receives an accept message from
one of its neighbors. An edge (u, v) is in E′ if u accepts an request from v, or
vise versa. From the definition of G′, we can see that G′ is a subgraph of G.
Polishchuk and Suomela proved the following theorem in [8].

Theorem 1 V ′ is a vertex cover of G and the size of V ′ is at most 3 times to the
size of the minimum vertex cover. The round complexity of the above algorithm
is O(∆).

Now we give a tight example for the partition phase. Consider the graph
G is a combination of some length-2 paths, as shown in Figure 1. According
to the above algorithm, the middle vertex of each length-2 path may accept
the request from upper vertex, and the lower vertex may accept the request
from middle vertex. Thus, all vertices are selected into the vertex cover, but the
minimum vertex cover only contains the middle vertex of each path.
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vertex cover from above strategy minimum vertex cover

Fig. 1. Tight example of the partition phase (dark vertices are selected into the vertex
cover).

2.2 the modification phase

From last subsection, if all vertices in V ′ are selected into the vertex cover, the
approximation ratio is 3.

In G′ = (V ′, E′), each vertex receives at most one accept message and accepts
at most one of its neighbors’ requests, the degree of each vertex in G′ is at most
2. Thus, each connected component in G′ is either a path or a cycle. Note that
V ′ is a vertex cover of G, any edge in E contains at least one vertex in V ′.

From the previous analysis, the approximation ratio after the partition phase
is at most pi/⌈(pi−1)/2⌉, which is at most 2.5 if pi ̸= 3. This gives us an heuris-
tic to improve the approximation ratio by modifying the length-2 paths in G′.

In the modification phase, the components with lengths not equal to 2 remain
(Step 1 of the modification phase); some length-2 paths are extended to length-3
paths (Step 2 of the modification phase); some terminals of some length-2 paths
are removed from G′ (Step 3 of the modification phase). After the modification
phase, the selected vertices is still a vertex cover.

Now we describe the modification phase step by step.

Step 1: Select all vertices in some connected component with length 1, or more than
2 into V ′′, then remove all these vertices and edges incident to them from
G.

Fact 1 For any vertex in graph G′, checking whether it is in a connected com-
ponent of length not equal to 2 can be done in constant rounds.

Proof. In G′, each vertex knows its degree. The checking procedure starts from
each vertex with degree one. For example, the degree of u is one, u sends a
message (u, 0) to its neighbor. When vertex v receives a message (u, i) from one
of its neighbors, if v’s degree is 2, v sends the message (u, i + 1) to its another
neighbor; otherwise, v’s degree is one, it sends the message (u, i+ 1) back to its
only neighbor.

For vertex u with degree one, if it receives a message (u, 1), or it does not
receive any feedback message after 4 rounds, u can confirm that it is not in a
length-2 path. For any vertex with degree 2, if it receives messages (u, 0) and
(u, 2), this vertex must be in a length-2 path; and must not otherwise. ⊓⊔
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After Step 1, all the remaining components in G′ are length-2 paths.

Step 2: Each terminal of the remaining (length-2) paths sends requests to its neigh-
bors in G one by one.
• Vertex in V ′ rejects all requests.
• Vertex in V −V ′ must accept one incoming request if it has not received

any requests before. After that, this vertex will reject all other requests.
• Each terminal will not sends requests if it gets an accept message, i.e.,

each terminal can be accepted at most once.
If terminal u is accepted by vertex v, add (u, v) to this connected component,
the length of this path is increased to be 3. Such component must be disjoint
with other components because each vertex in V − V ′ can accept at most
one request. After such request-accept strategy,
• select all vertices in such components with extended length into V ′′.
• remove all these vertices and edges incident to them from G.

u

v

u

v

Fig. 2. example of step 2.

For example, consider the graphs as shown in Figure 2. The left part shows
the structure before Step 2. In G, there are several edges connecting a vertex v
and some terminals of length-2 paths in G′, such that v does not belong to any
component in G′. According to step 2 of this strategy, these terminals may send
requests to v, and v must accept one of them. W.l.o.g., v accepts the request from
u and rejects all the other requests. Thus, the length-2 path including vertex u
can be extended to v. By such modification, the extended path is still disjoint
with other components in G′, and the length of this path is increased to be 3.

Since each terminal sends at most ∆ requests, the total number of rounds in
this step is at most O(∆).

Step 3: Each terminal of the remaining (length-2) paths sends requests to its neigh-
bors in G one by one.
• Each vertex in V ′′ and each non-terminal in the remaining length-2 paths

must reject all requests.
• Each terminal in the remaining length-2 paths must accept one incoming

request if it does not receive any requests before. After that, this vertex
will reject all the other requests.
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• Each terminal will not send any request if it gets an accept message, i.e.,
each terminal can be accepted at most once.

Select all vertices, except those terminals rejected by all its neighbors, into
V ′′.

u u

before step 3
after step 3

Fig. 3. example of step 3.

For example, consider the graphs as shown in Figure 3. The left part shows
the structure before Step 3, there are several length-2 paths remained after step
2. After processing step 3, some terminals accept a request from one of its neigh-
bors, or receive an accept message from one of its neighbor. Some terminals are
rejected by all its neighbors, e.g., vertex u. In this example, we select all vertices
except u since any edge adjacent to u must be adjacent to some selected vertex.

For each vertex pair (u, v), there exists an edge in G connecting them after
step 3 if either u accepts a request from v or vise versa, as shown in Figure 3.
Similar to the above analysis, the total number of rounds in this step is at most
O(∆).

Theorem 2 The selected vertex set V ′′ is a vertex cover of G, the size of V ′′ is
at most 2.5 times to the size of the minimum vertex cover. The round complexity
of this algorithm is O(∆).

Proof. Consider an edge (u, v), from the partition phase, at least one vertex is
selected into V ′, w.l.o.g., u ∈ V ′. In the modification phase, if u is selected in
step 1, 2, or 3, the edge (u, v) is covered. Otherwise, suppose u is not selected
in any step. From the description of modification phase, u must be a terminal
of a length-2 path. We claim that any vertex in V − V ′ connected to u must
be selected in step 2. Note that the vertices in V − V ′ will not belong to any
connected component after the partition phase. If there exists a vertex v ∈ V −V ′

and (u, v) is an edge in G, u must have sent a request to v and v should have
accepted this request if it does not receive any other requests. Since u is not
selected, v must have rejected the request from u and thus v has been selected
in step 2. In step 3, since u is not selected, all its requests must have been
rejected. That means all its neighbors must have been selected in some step. By
considering all cases, for any edge (u, v), either u or v must be contained in the
vertex cover. Thus, V ′′ is a vertex cover.
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Now let us consider the local approximation ratio for the partitions of the
connected components step by step. In step 1, the first partition contains all
components whose sizes are either 1 or strictly larger than 2. Thus, the local
approximation ratio of each component in this partition is at most 2.5. In step
2, the length of each connected component with extended length is 3, thus, the
local approximation ratios for these components are at most 2. Note that in step
3, some terminals of some length-2 paths are not selected, i.e., the lengths of these
paths are reduced to be 1. For these paths with reduced length, the optimum
algorithm must select at least one vertex, thus, the local approximation ratio for
them are at most 2.

In step 3, consider the last partition includes all remaining length-2 paths.
We select all vertices in these paths into the vertex cover. Since each terminal of
such paths must either accept one request, or receive one accept message. There
exist edges in G corresponding to every pair of request-accept, and such request-
accept pair must be between some terminals of some length-2 paths. Therefore,
only selecting the middle vertex of each path cannot cover all edges. Suppose
there are k length-2 paths in the remaining length-2 paths. The minimum vertex
cover contains one vertex in x paths, and contains at least two vertices in k− x
paths. Thus, the minimum vertex cover selects at least x + 2(k − x) = 2k − x
vertices, while our algorithm selects 3k vertices. We say two length-2 paths in
this partition are adjacent if some terminals in these two paths form a request-
accept pair, i.e., there exists an edge between the terminals of these two paths.
For each path with 1 selected vertex in the minimum cover, each of the two
terminals must connect to some terminal of its adjacent length-2 path, which
must contain at least 2 selected vertices. For each path with at least 2 selected
vertices in the minimum vertex cover, since these two selected vertices may be
terminals and each terminal may be contained in two request-accept pairs, the
number of adjacent length-2 paths is at most 4, which may contain one selected
vertex in the minimum vertex cover. Thus, we have x ≤ 4(k − x), and in this
partition, the local approximation ratio is at most 3k/(2k − x) ≤ 2.5.

By considering all these cases, the local approximation ratio for each com-
ponent in the partition in each step is at most 2.5. Thus, the size of the selected
vertex cover is at most 2.5 times to the size of the minimum vertex cover.

Now we analyze the complexity of the strategy. In the partition phase, the
round complexity is O(∆). Checking the length of a connected component is not
2 can be done in constant time. Since the degree of each vertex is at most ∆, step
1 can be done in O(∆) rounds. From the description of step 2 and 3, the round
complexity of these two steps is O(∆) too. Therefore, the round complexity of
our 2.5-approximation algorithm is O(∆). ⊓⊔

3 Algorithm for WMVC

In this section, we propose a distributed algorithm to approximate the weighted
vertex cover. The intuition idea can be regarded as a generalization of the dis-
tributed 3-approximation algorithm in [8], where each vertex may accept one
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request or receive one accept message from one of its neighbors. In the weighted
case, we still implement the request-accept strategy. For each vertex u, if it ac-
cepts the request from vertex v, the weight of u will be decreased. On the other
hand, if vertex u receives an accept message, the weight will be decreased too.
During the processing of the algorithm, the weights of vertices are decreased
step by step. After the termination of the algorithm, we select vertex u into
the vertex cover if w(u) ≤ 0. At each step, each vertex may send requests or
accept/reject messages to its neighbors. To specify the messages, each request
from u is (req, w(u)); if u rejects the request from v, u will send (rej,−1) to
v; otherwise, each accept message is associated with a positive number, e.g.,
(acc, x > 0). Let wo(u) be the original weight of vertex u, i.e., in the initial
state, wo(u) = w(u).

Before describing the algorithm, we give a simple example to illustrate the
decreasing of weights. Consider the graphs as shown in Figure 4, the left graph
contains four vertices with weights 5, 1, 1, and 0.5 respectively. According to the
request-accept strategy, the upper vertex sends request to the first lower vertex,
and each lower vertex sends request to the upper vertex. All these four requests
will be accepted and the weights of vertices will be decreased accordingly. The
upper vertex accepts three requests and receives one accept message from vertices
with weights 1 and 0.5, the weight of this vertex is decreased by 3.5. Similarly,
the final weights of the lower vertices are -1, 0, and 0 respectively.

starting weights final weights

5

1 1 0.5

1.5

-1 0 0

Fig. 4. Weights of vertices are decreased according to the algorithm.

Suppose step 1 is the first step and each round contains two continuous steps.
Now we describe the algorithm on the i-th round for each vertex u ∈ V .

At step 2i− 1:
u receives message x from its (i− 1)-th neighbor v.

– if x = (rej,−1), u is rejected by v;
– if x = (acc, y > 0), u is accepted by v, then set w(u) = w(u)− y;

If w(u) > 0, u sends request message (req, w(u)) to its i-th neighbor.
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At step 2i:
u receives requests from v1, v2, ..., vk,

– if w(u) ≥
∑k

i=1 w(vi), u sends accept message (acc, w(vi)) to each vi and set

w(u) = w(u)−
∑k

i=1 w(vi);

– otherwise, assume
∑ℓ

i=1 w(vi) ≤ w(u) and
∑ℓ+1

i=1 w(vi) > w(u), u sends
accept message (acc, w(vi)) to each vi (1 ≤ i ≤ ℓ); sends accept message

(acc, x) to vℓ+1, where x = w(u)−
∑ℓ

i=1 w(vi); sends reject message (rej,−1)
to vℓ+2, ..., vk; then set w(u) = 0.

Theorem 3 After the termination of the algorithm, the vertex set S = {u ∈
V |w(u) ≤ 0} is a vertex cover.

Proof. This is proved by contradiction. Assume that after the termination of
the algorithm, there exists an edge (u, v) such that w(u) > 0 and w(v) > 0.
From the above algorithm, since w(u) > 0, u must send a request to v at some
time. If v accepts u’s request, either u’s or v’s weight will be decreased to 0.
Otherwise, v rejects u’s request, that means v’s weight is already decreased to
be 0. Contradiction! ⊓⊔

To upper bound the total weights of selected vertices, we can assign weights
to edges according to the above algorithm. Firstly, set the initial weights of all
edges to be 0. If an accept message (acc, x) is sent through (u, v), set the edge
weight p(u,v) = x, where x is a positive value contained in the accept message.
Note that in each round, there may be two accept messages sent through an edge
(see the example in Figure 4), in this case, two positive values are associated with
these two messages, set the edge weight to be the higher one. After processing
the algorithm, each edge is assigned a non-negative weight. Now we analyze the
total weight of edges incident to the vertex in S.

Consider vertex u ∈ S, suppose w(u) is decreased to non-positive in the i-th
round. From round 1 to round i−1, u may send accept messages to some neigh-
bors, and receive some accept messages from some neighbors. At each round,
u may send more than one accept messages but receives at most one accept
message. All these accept messages may assign weights to the edges incident to
u, and the total assigned weights is no more than the original weight wo(u).
Let w′(u) denote the decreased weight of vertex u in the first i− 1 rounds, i.e.,
w(u) = wo(u)−w′(u) before the i-th round. Then in the i-th round, u may send
some accept messages to some of its neighbors, or receives an accept message
from one of its neighbors. From the rules of assigning weights on edges, the to-
tal assigned weights of those edges through which u sends accept message is at
most wo(u)− w′(u); the weight of the edge through which u receives an accept
message is at most wo(u)− w′(u) too. Note that at most two messages may be
sent through an edge incident to u, we have the following lemma:

Lemma 2 For each vertex u ∈ S, the total assigned weights on edges incident
to u is at least wo(u) and at most 2 · wo(u).
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If we assign weight pe to each edge e ∈ E and satisfying
∑

(u,v) p(u,v) ≤ w(u)
for each u ∈ V , we have the following fact.

Fact 3
∑

e∈E pe ≤ w(S) for any vertex cover S.

Proof.
∑

e∈E pe ≤
∑

u∈S

∑
(u,v) p(u,v) ≤

∑
u∈S w(u) = w(S). The first inequal-

ity holds because S is a vertex cover set. ⊓⊔
Let pe denote the weight assigned to edge e ∈ E, let p′e = pe/2 for each

e ∈ E, we have

w(S) =
∑
u∈S

wo(u) ≤
∑
u∈S

∑
(u,v)

p(u,v) = 2 ·
∑
u∈S

∑
(u,v)

p′(u,v).

From Lemma 2, we know that for any u ∈ V ,
∑

(u,v) p
′
(u,v) ≤ wo(u), then

from Fact 3, the total weights of p′e for all edges is no more than the total weights
of any vertex cover, including the minimum vertex cover S∗. Thus,

w(S) ≤ 2 ·
∑
u∈S

∑
(u,v)

p′(u,v) ≤ 2 ·
∑
u∈V

∑
(u,v)

p′(u,v) = 4 ·
∑
e∈E

p′e ≤ 4 · w(S∗)

The third equality holds because each edge is incident to two vertices and
counted twice. Therefore, we have the following conclusion:

Theorem 4 Our algorithm 4-approximates the minimum weighted vertex cover
with round complexity O(∆).

Proof. From previous analysis, we know the algorithm is 4-approximation. From
the description of algorithm, the round complexity is O(∆). ⊓⊔
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