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ABSTRACT 
Motivation: Metagenomic binning remains an important topic in 
Metagenomic analysis. Existing unsupervised binning methods for 
NGS reads do not perform well on (1) samples with low-abundance 
species, or (2) samples (even with high-abundance) when there are 
many extremely-low-abundance species. These two problems are 
common for real metagenomic datasets. Binning methods that can 
solve these problems are desirable. 
Results: We proposed a two-round binning method (MetaCluster 
5.0) that aims at identifying both low-abundance and high-
abundance species in the presence of a large amount of noise due 
to many extremely-low-abundance species. In summary, MetaClus-
ter 5.0 uses a filtering strategy to remove noise from the extremely-
low-abundance species. It separate reads of high-abundance spe-
cies from those of low-abundance species in two different rounds. 
To overcome the issue of low coverage for low-abundance species, 
multiple w values are employed to group reads with overlapping w-
mers ,whereas reads from high-abundance species are grouped 
with high confidence based on a large w and then binning expands 
to low-abundance species using a relaxed (shorter) w. Compared to 
the recent tools, TOSS and MetaCluster 4.0, MetaCluster 5.0 can 
find more species (especially those with low abundance of say 6x to 
10x) and can achieve better sensitivity and specificity using less 
memory and running time. 
Availability: http://i.cs.hku.hk/~alse/MetaCluster/ 
Contact: chin@cs.hku.hk 

1 INTRODUCTION  
Metagenomics is the study of genomes of multiple species from 
environmental samples, such as soil, sea water and the human gut. 
Successful metagenomic projects provide deeper insight into the 
microbial world. For example, the diversity of microbes in the 
human gut has been found to be related to common diseases like 
Inflammatory Bowel Disease (IBD) (Qin, et al., 2010) and gastro-
intestinal disturbance (Khachatryan, et al., 2008). High-throughput 
next-generation sequencing (NGS) techniques can sequence reads 
(short DNA fragments) from a sample containing genomes of mul-
tiple species. An important step in metagenomic analysis is group-
ing reads from similar species together, which is known as binning. 

Existing binning algorithms fall into two main categories, su-
pervised methods and unsupervised methods. Supervised methods 
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(Brady and Salzberg, 2009; McHardy, et al., 2006) align reads to 
known genomes and group reads aligned to similar genomes to-
gether. Since up to 99% (Eisen, 2007) of bacteria found in envi-
ronmental samples are unknown or cannot be cultured and separat-
ed in laboratories (Amann, et al., 1990), most reads cannot be 
aligned and binned. Instead of aligning reads to known genomes 
directly, some semi-supervised methods use taxonomic markers 
(e.g. recA, rpoB and 16S rRNA (Cole, et al., 2005)) to classify 
reads into different groups. However, the precision of these meth-
ods may be low because species may contain multiple markers and 
different species may share markers (Case, et al., 2007). Moreover, 
since only a small part (<1%) of the genome (or reads) contains 
these taxonomic markers (Garcia Martin, et al., 2008), most of the 
reads cannot be binned by these methods. 

When the corresponding genomes are unknown, unsupervised 
methods usually bin reads based on three observations: (A) the k-
mer frequency from reads of a genome is usually linearly propor-
tional to that of the genome’s abundance (Wu and Ye, 2010); (B) 
sufficiently long w-mers are usually unique in each genome 
(Fofanov, et al., 2004); and (C) the short q-mer frequency distribu-
tions (or q-mer distributions in short) of individual sufficiently 
long reads (Chatterji, et al., 2008; Prabhakara and Acharya, 2011; 
Teeling, et al., 2004; Wu and Ye, 2010; Yang, et al., 2010; Yang, 
et al., 2010) sampled from the same genome or similar genomes 
are similar (Yang, et al., 2010).  

AbundanceBin (Wu and Ye, 2010) groups reads based on Ob-
servation (A) but fails when the species in the sample have similar 
abundance. TOSS (Tanaseichuk, et al., 2011) bins reads based on 
Observations (A) and (B), and since TOSS relies on Abundance-
Bin to handle genomes with different abundances, it carries all the 
shortcomings of AbundanceBin. MetaCluster 4.0 (Wang, et al., 
2012) has three phases: Phase 1 groups reads together based on 
observation (B); Phase 2 derives the q-mer distribution of each 
group; and Phase 3 merges the groups of reads based on Observa-
tion (C) by the well-known K-means clustering approach. Meta-
Cluster 4.0 handles high-abundance species (with different abun-
dances) in Phase 1 by having similar numbers of groups for each 
species (high-abundance species will have more reads in their 
groups). MetaCluster 4.0 works reasonably well for those species 
whose abundance (sequencing depth) of at least 10x, even in a 
sample with 100 species.  

For easy discussion, we classify the abundances into three cate-
gories: (a) high-abundance: at least 10x; (b) low-abundance: 6x to 
10x; and (c) extremely-low-abundance: at most 5x. There are at 
least two problems that MetaCluster 4.0 fails to address. (1) Inter-
ference from extremely-low-abundance species: MetaCluster 4.0 
does not perform well even for high-abundance species when there 
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are many extremely-low-abundance species in the sample. Table 1 
shows such a case for a sample of 100 species with 85 extremely-
low-abundance species. MetaCluster 4.0 can only detect 4 high-
abundance species. (2) Difficulty in recovering low-abundance 
species: MetaCluster 4.0 does not work well for low-abundance 
species even without too much noise from extremely-low-
abundance species. Table 3 shows an example of 20 species in a 
sample with only 5 extremely-low-abundance species, for which 
MetaCluster 4.0 is not able to bin any of the low-abundance spe-
cies. 

In fact, none of the existing binning tools can handle these two 
problems, which are common in real datasets. For example, in 
samples from real applications, there are usually many reads (can 
be over 50% of the total reads) sampled from extremely-low-
abundance genomes and there is usually a portion of low-
abundance species that may be significant to the biological system 
(e.g (Qin, et al., 2010)). An ideal binning solution should be able to 
identify all species regardless of their abundance. However, it is 
very difficult to bin extremely-low-abundance species, and we 
leave it as an open problem to identify all these extremely-low-
abundance species. In this paper, we aim at identifying low-
abundance species, in addition to indentifying high-abundance 
species when there is interference from the extremely-low-
abundance species. We first discuss why the aforementioned two 
problems are difficult to solve.  

1.1 Difficulties of the problems 
Recall that existing tools are all based on the aforementioned three 
Observations. Note that Observation (C) relies very much on the 
grouping of reads using Observations (A) and (B). However, a 
direct application of Observations (A) and (B) cannot solve the 
problems satisfactorily. Binning based on Observation (A) has 
been known to fail if some species in the sample have similar 
abundance, a feature often found for real datasets. Even worse, the 
abundances of a large number of species in a real sample usually 
form a continuous spectrum from extremely-low-abundance (1x) 
to moderately high-abundance (say 20x). This continuous spectrum 
of abundances causes reads from different species to mix together 
(we show an example of this mixing together in Section 3 using 
AbundanceBin). 

In applying Observation (B), there is the technical issue of pick-
ing the value w. Intuitively, picking a larger w can decrease the 
number of false positives (reads from different species mixing 
together in a group), but also might make the groups too small for 
the application of Observation (C) and thus can only favor high-
abundance species. Low-abundance species will likely be missed 
due to not enough coverage to connect the reads with large w-mers. 
Picking a smaller w can make the groups bigger and allow more 
low-abundance species to be identified but will increase the num-
ber of false positives, especially when there is noise from extreme-
ly-low-abundance species. Since there are high-abundance species, 
reads from the low-abundance species will likely be merged into 
the groups of high-abundance species or be mixed together with 

some reads from extremely-low-abundance species. Thus, how to 
set this w is not trivial and a single w value may not be appropriate 
for obtaining both high-abundance and low-abundance species. 

On the other hand, while extremely-low-abundance species may 
not have enough reads for binning, low-abundance species seem to 
have enough reads for binning if we can eliminate the noise from 
extremely-low-abundance species and separate them from high-
abundance species.  

1.2 Our contributions 
In this paper, we introduce an unsupervised binning tool, Meta-
Cluster 5.0, which extends MetaCluster 4.0 (Wang, et al., 2012) 
with the addition of a few techniques to handle the abovemen-
tioned problems. MetaCluster 5.0 works in a two-round manner. In 
the first round, we group reads from high-abundance species, and 
in the second round, we handle reads from low-abundance species. 
• Filtering the extremely-low-abundance species. Since reads 

from extremely-low-abundance species have adverse effects 
on the binning results, MetaCluster 5.0 removes these reads at 
the initial step based on Observation (A) so as to improve the 
accuracy of the results and so as to reduce the size and thus 
the complexity of the problem. In order not to mistakenly re-
move reads (with some errors) from high-abundance species, 
we apply the following observation to remove the reads. If a 
read comes from an extremely-low-abundance species, it is 
likely that all its k-mers’ frequencies (if k is large enough) are 
low and it should be removed, but note that the value of k is 
not the same as that of w in w-mers. w-mers aim at uniqueness 
in a genome while k-mers aim at handling sequencing errors. 
A read will not be removed as long as one of its k-mers has 
high frequency as some of its k-mer frequencies (which con-
tain errors) for high-abundance species can be very low. For 
details on how to set k and the thresholds for filtering, please 
refer to Section 2. 

• Low-abundance species grouping. After filtering extremely-
low-abundance species using k-mer frequencies and after 
grouping reads from high-abundance species with longer w-
mers overlaps in the first round, we will have reads mostly 
from low-abundance species remaining in our dataset for the 
second round. However, a direct application of Observation 
(B) using a smaller w may still fail since there is still a chance 
that reads from different genomes are grouped, and any 
grouping mistake may affect the quality of the group signifi-
cantly. So, we adopt a multiple w approach, we first use a 
large w to group reads with high confidence, then use a small-
er w to increase the size of each group to facilitate q-mer dis-
tribution estimation (Observation (C)).  
 

By removing reads from low-abundance species and by consider-
ing reads from different ranges of abundance ratio genomes one 
after another, MetaCluster 5.0 also enjoys the advantage of using 
less memory and running time.  
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We have compared MetaCluster 5.0 with existing binning meth-
od MetaCluster 4.0. We used three simulated datasets (one with the 
problem of many extremely-low-abundance species; one with the 
problem of low-abundance-species without too many extremely-
low-abundance species; one with both problems) and a real dataset 
(from (Qin, et al., 2010)) to evaluate the tools. MetaCluster 5.0 
outperforms MetaCluster 4.0 substantially for all three simulated 
datasets. MetaCluster 5.0 is able to identify almost all low-
abundance species in all cases with high sensitivity and precision 
while MetaCluster 4.0 can only identify very few and sometimes 
none at all. In terms of high-abundance species, MetaCluster 5.0 
also performs better than MetaCluster 4.0 especially in datasets 
with many extremely-low-abundance species (with 15 species in 
total, MetaCluster 5.0 identifies 14 species while MetaCluster 4.0 
can only identify 4) with even higher precision and sensitivity. For 
the real dataset, MetaCluster 5.0 can also identify all 5 known low-
abundance species and 6 out of 7 high-abundance species, while 
MetaCluster 4.0 cannot identify any of the low-abundance species 
and can only identify the three most abundant species.  

2 METHODS 
MetaCluster 5.0 is a two-round binning method using Observations 
(A), (B) and (C), developed based on MetaCluster 4.0 (Wang, et al., 
2012). In the first round, it filters those reads sampled from both 
low-abundance and extremely-low-abundance genomes and bins 
the reads sampled from high-abundance genomes (or species) only. 
In the second round, it filters those reads sampled from extremely-
low-abundance genomes and bins the reads sampled from low-
abundance genomes. Since some reads are filtered in each round 
(up to 50% of reads), MetaCluster 5.0 requires less memory and 
running time (usually proportional to the square of the number of 
reads) than MetaCluster 4.0. A workflow of MetaCluster 5.0 is 
shown in Figure 1 and we will describe MetaCluster 5.0 in detail in 
the following sections. 

 

2.1 First Round 

2.1.1. Filtering reads 

Figure 1: Workflow of MetaCluster 5.0 
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MetaCluster 5.0 first filters reads from low-abundance genomes as 
well as reads with many error bases. Based on the observation that 
k-mer frequency from reads of a genome is usually linearly propor-
tional to that genome’s abundance (Observation A), reads with all 
k-mers appearing rarely in the dataset are likely to be sampled from 
low-abundance genomes. MetaCluster 5.0 filters those reads with 
all k-mers appearing at most T times in the whole dataset (Step 1 
filtering). We have a strict filtering requirement that all k-mers 
instead of part of them to be appearing at most T times because 
some reads sampled from high-abundance genomes may contain k-
mers with low frequencies because of sequencing bias or sequenc-
ing errors. We pick k = 16 based on the research findings in 
(Fofanov, et al., 2004) and calculate the threshold T according to 
the target genome’s abundance as follows . 

Given a target abundance (sequencing depth) d, read length r, 
genome length g, sequencing error rate e and reads randomly 
picked from the genome, the expected number of sampled reads 
from this genome is: 

r
dgn =  

For a particular k-mer, the probability of an arbitrary sampled read 
contains this k-mer is:  

k
sample e

rg
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1
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Assume that the frequency of this k-mer in the dataset follows 
normal distribution:  

))1(,(~ samplesamplesample pnpnpNf −  

It is easy to see that frequency f is not sensitive to genome 
length g as g is much larger than read length r. Assume that we 
want to preserve those reads sampled from genome with abun-
dance at least d with probability at least p in the first round. We 
can calculate the value of T such that:  

pdxf
T

−≤∫ 1
0

 

For example, when read length r = 75, d = 10, p = 80%, k = 16 and 
e = 0.01, g ~ 3 million, we should pick T = 4. 

2.1.2. Grouping reads 
The reads are then grouped based on the common w-mer appearing 
in the reads (Observation (B)). Two groups of reads are merged if 
and only if each group contains a read with common w-mers.  In 
the first round, since the target abundance is 10x or more, we let w 
= 36 so as to have two reads sampled in a nearby region of a ge-
nome merged together in the same group with 99% accuracy ac-
cording to the study in (Wang, et al., 2012). Some reads sampled 
from low-abundance genomes may still not be filtered in the first 
step. Since the probability of reads sampled in nearby region of a 
low-abundance genome are merged into the same group is low, the 
sizes of these groups will be small. As each group of reads repre-

sents a virtual contig of a genome, those small groups of reads 
whose virtual contigs are of length less than 1000 bp will be fil-
tered (Step 2 filtering). 

2.1.3. Binning virtual contigs 
The 5-mer distribution of each virtual contig is estimated and the 
virtual contigs are grouped using K-means clustering method based 
on the Spearman distance of the 5-mer distribution (Observation 
C). Although this step is similar to MetaCluster 4.0 [], the length of 
virtual contigs produced by MetaCluster 5.0 is much longer than 
those produced by MetaCluster 4.0. Thus, we can estimate the 5-
mer distribution, instead of 4-mer distribution used in MetaCluster 
4.0, to get a better binning result. 

2.2 Second Round 
After the first round, reads sampled from high-abundance genomes 
have been binned. In the second round, we target for binning reads 
sampled from low-abundance genomes. For filtering reads sampled 
from extremely-low-abundance genomes (sequencing depth < 6x), 
we applied the Step 1 filtering again, but with a lower threshold T, 
say T = 2. In other words, a read will be discarded in this step if 
and only if all its k-mers are unique. As such reads will never be 
grouped in later phases, we filter them to save space and time.  

2.2.1. Grouping reads with multiple w 
In order to guarantee that two reads sampled in a nearby region of 
a low-abundance genome (with sequencing depth 6x or more) can 
be merged in the same group with 99% probability, we should use 
a smaller w (w = 22 deduced from the study in (Wang, et al., 2012) 
for common w-mer grouping). However, reads sampled from dif-
ferent genomes may be merged incorrectly as w is small (false 
positives). For reducing the false positive effect of small w, Meta-
Cluster 5.0 groups the reads sharing longer w-mer first because 
two reads sharing a longer common substring have higher proba-
bility to be from the same species. 

Since the abundance is low, some groups of reads may be small 
and may represent short virtual contigs. Thus, the 4-mer distribu-
tion, instead of 5-mer distribution used in the first round, is esti-
mated based on each virtual contig for binning. 

2.3 Time and Space Complexity 
Since the numbers of k-mers and w-mers are at most nr where n is 
the number of input reads and r is the length of read. The space 
complexity is O(nr).  
For the time complexity, O(nr) time is required for filtering reads, 
O(∑i≤K(nrvi

2)) time is required for grouping reads with at most 
nr different w-mers and the frequency of the i-th w-mer is vi . The 
virtual contigs for q-mer distribution can be constructed in O(nr) 
times and the K-means clustering takes O(gtc·lg(c)) time where 
g is the number of groups of reads, t is the number of iterations and 
c is the initial number of centers used in the K-means algorithm. 
The total time complexity is: O(gtc·lg(c)+∑i≤K(nrvi

2)). 

3 RESULTS 
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Table 1.  Performance on Dataset A with 100 species (15 high-abundance and 85 extremely-low-abundance) 

 Species discovered Sensitivity Overall performance 

≥10x <6x ≥10x <6x Precision Sensitivity Memory  Time 

MetaCluster4.0 4 0 0.79 - 0.67 0.79 29G 70min 
MetaCluster5.0 14 0 0.90 - 0.92 0.90 20G 38min 

We evaluate the performance of MetaCluster 5.0 on simulated data 
and real data. MetaCluster 4.0, AbundanceBin and TOSS1 are the 
latest unsupervised binning tools for NGS reads. However, TOSS 
and AbundanceBin are very slow. TOSS (based on ouput of Abun-
danceBin) cannot finish any of the datasets in a week. Abun-
danceBin can only finish the smallest dataset with 8.3 million 
reads from 20 species, but the result is not satisfactory and all the 
reads grouped together even though the species are of uneven 
abundance. Since the performance of TOSS relies on Abundance-
Bin results, it is likely that TOSS may not perform well for species 
with similar abundance. As MetaCluster 4.0 outperforms Abun-
danceBin and TOSS in many situations (Wang, et al., 2012), we 
mainly compare the performances of MetaCluster 5.0 and Meta-
Cluster 4.0.  

All experiments were performed on a UNIX machine with 
4CPU of Intel Xeon X5650@2.4GHz. 

3.1 Experiments on simulated data 
The simulated data are generated based on genomes in NCBI da-

tabase (ftp.ncbi.nih.gov/genomes/) and the NCBI taxonomy is 
downloaded from ftp://ftp.ncbi.nih.gov/pub/taxonomy/. Given a set 
of genomes with the corresponding abundances, a set of length-75 
paired-end reads are randomly generated with 1% sequencing error 
and 250±50 bp insert distance from the genomes. The performanc-
es of the binning algorithms are evaluated on precision, sensitivity 
and the number of discovered species. Assume there are N ge-
nomes in the dataset and a binning algorithm outputs M clusters Ci 
(1 ≤ i ≤ M). Let Rij be the number of reads in Ci which are from 
genome j and Cj represents genome j0 when Rij0 = maxj Rij. The 
overall precision and sensitivity is calculated as:  

∑ ∑
∑

= =

=
= M

i

N

j ij

M

i ijj

R

R
precision

1 1

1
max

readsedunclassifiofnumberR

R
ysensitivit M

i

N

j ij

N

j iji

+
=
∑ ∑

∑
= =

=

1 1

1
max

 

If M >> N, the majority of reads in each cluster probably belongs 
to a single genome and thus precision would be high. However, 
   
1 The software tool of TOSS was obtained through a private communica-
tion with the authors of the paper. 

sensitivity would be low as some genomes are represented by mul-
tiple clusters. If M << N, some clusters would contain reads from 
multiple genomes and precision would be low. Thus, precision 
increases while sensitivity decreases with the number of predicted 
clusters.  

Consider all the reads sampled from a particular species S, if 
there is a cluster C such that >50% of the reads are sampled from S 
and >50% reads sampled from S are in cluster C, we say species S 
is discovered by cluster C. Note that each species can be discov-
ered by at most one cluster and each cluster can discover at most 
one species. 

We simulated three datasets with different difficulties mentioned 
in the introduction: (1) many reads from extremely-low-abundance 
genomes, (2) some reads from low-abundance genomes and (3) 
reads from low-abundance genomes as well as many reads from 
extremely-low-abundance genomes. 

3.1.1. Noise from extremely-low-abundance species 
If there are many reads sampled from extremely-low-abundance 
genome, reads sampled from high-abundance genomes are difficult 
to be binned well. Existing binning algorithms cannot perform well 
on such datasets. To illustrate this, we construct a dataset (dataset 
A) with 100 species randomly picked from 18 genera. 20 of them 
are of sequencing depth 1x; 20 of them are of sequencing depth 2x; 
20 of them are of sequencing depth 3x; 20 of them are of sequenc-
ing depth 4x; 5 of them are of sequencing depth 5x; the remaining 
15 are of sequencing depth 11x,12x,…,25x. In total, there are 23.2 
million reads. MetaCluster 4.0 and MetaCluster 5.0 were tested on 
this dataset and the performance is shown in Table 1. 

Table 2. Percentage of filtered reads by MetaCluster 5.0 (Dataset 
A) 

 First Round Second Round 

≥10x <6x ≥6x <6x 

Filter Step 1 3.6% 90.4% 12% 9% 
Filter Step 2 6.2% 95.4% - 

Among the 15 high-abundance species (≥ 10x), MetaCluster 5.0 
discovers 14 and MetaCluster 4.0 discovers 4 species. The poor 
performance of MetaCluster 4.0 is due to the noise introduced by 
the large number of reads from extremely-low-abundance species. 
On the other hand, as MetaCluster 5.0 can successfully filter the 
reads from extremely-low-abundance species (< 6x) as shown in 
Table 2, most of the high-abundance species can be discovered. 
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Table 3.  Performance on Dataset B with 20 species (11 high-abundance, 4 low-abundance and 5 extremely-low-abundance) 

 Species discovered Sensitivity Overall performance 

≥10x [6x, 10x) <6x ≥10x [6x, 10x) Precision Sensitivity Memory  Time 

MetaCluster4.0 9 0 0 0.79 - 0.82 0.82 12.5G 16min 
MetaCluster5.0 11 3 0 0.87 0.80 0.92 0.87 7.7G 14min 

Table 5.  Performance on Dataset C with 100 species (16 high-abundance, 4 low-abundance and 80 extremely-low-abundance) 

 Species discovered Sensitivity Overall performance 

≥10x [6x, 10x) <6x ≥10x [6x, 10x) Precision Sensitivity Memory  Time 

MetaCluster4.0 9 1 1 0.81 0.60 0.62 0.80 31G 87min 
MetaCluster5.0 16 3 3 0.91 0.72 0.87 0.88 21G 45min 

The only species not discovered by MetaCluster 5.0 appears in 3 
clusters and all these three clusters have high precision (more than 
90% reads in these clusters are from the missing species). 

     Obviously, MetaCluster 5.0 can produce results with higher 
sensitivity and precision.  Besides, as some of the reads can be 
filtered in each round, MetaCluser5.0 requires less space and time. 

3.1.2. Low-abundance species 
MetaCluter 5.0 optimizes the two binning rounds to discover more 
species, while existing binning algorithms can only discover high-
abundance species. To illustrate this, we constructed a dataset (da-
taset B) with 20 species randomly picked from 4 genera, with se-
quencing depths are 1x, 2x, 3x, …, 20x, and 8.3 million reads in 
total. 

Table 4. Percentage of filtered reads by MetaCluster 5.0(Dataset B) 

 First Round Second Round 

≥10x [6x, 10x) <6x ≥6x <6x 

Filter Step 1 3.4% 37.1% 86.2% 20% 22% 
Filter Step 2 6.2% 61.4% 97.5% - 

 
The binning performance of MetaCluster 4.0 and MetaCluster 

5.0 are shown in Table 3.  While MetaCluster 5.0 can successfully 
discover all 11 high-abundance species, MetaCluster 4.0 can dis-
cover 9 of them. Moreover, MetaCluster 5.0 can discover 3 out of 
4 low-abundance species and MetaCluster 4.0 can discover none of 
them. Besides, the precision and sensitivities of MetaCluster 5.0 
are higher than those of MetaCluster 4.0 in all categories. It is be-
cause MetaCluster 5.0 can filter the reads from low-abundance 
species in the first round (Table 4) and bin them successfully in the 
second round. However, the sensitivity of low-abundance species 
is a bit low because of their short virtual contigs due to the low 
coverage. Thus the binning performance in second round is not as 
good as the first round.  

3.1.3. Dataset with both difficulties 
The above two datasets demonstrate that MetaCluster 5.0 can solve 

the two difficulties mentioned in Section 1 independently. Here, 
we construct a dataset (dataset C) which has both difficulties. 100 
species are randomly picked from 18 genera; 20 of them are of 

sequencing depth 1x; 20 of them are of sequencing depth 2x; 20 of 
them are of sequencing depth 3x; 20 of them are of sequencing 
depth 4x; 20 of them are of sequencing depth 6x, 7x,…,25x respec-
tively. In total, there are 24.3 million reads. 

Table 6. Percentage of filtered reads by MetaCluster 5.0(Dataset C) 

 First Round Second Round 

≥10x [6x, 10x) <6x ≥6x <6x 

Filter Step 1 3.5% 39.9% 93% 13% 11% 
Filter Step 2 4.6% 60.1% 97% - 

 
The performance is shown in Tables 5 and 6. Among all the 16 

high-abundance species (≥ 10x), MetaCluster 5.0 discovers all of 
them while MetaCluster 4.0 only discovers 9 of them. For the 4 
low-abundance species (≥ 6x and < 10x), MetaCluster 5.0 discov-
ers 3 of them while MetaCluster 4.0 only discovers 1 of them. 
MetaCluster 5.0 has much higher precision (0.87 vs 0.62); better 
sensitivity (0.88 vs 0.80) and runs faster than MetaCluster 4.0. 

3.2 Experiments on real data  
To evaluate the performance of MetaCluster 5.0 on real dataset, the 
dataset provided by the study of Qin et al. in (Qin, et al., 2010), 
which collected samples from the feces of 124 European adults, is 
studied. Since the dataset contain different samples with read 
length varies from 44 bp to 75 bp, we selected one sample from 57 
Denmark adults with 75 bp pair-end reads with matches with the 
common experimental setting. 

Since there are many reads sampled from genomes with un-
known reference, it is difficult evaluate the performance of a bin-
ning algorithm. In order to calculate the precision and sensitivity of 
the binning algorithms, all reads are not sampled from the most 
abundant 15 species with known reference genomes are filtered. 
Software BLAT (Kent, 2002) to map reads to the 15 reference 
genomes with 5% mismatch allowed. After filtering, there are 8 
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million reads in the dataset. The results obtained by MetaCluster 
5.0 are shown in Table 7. 

Table 7.  Performance of MetaCluster 5.0 on the real dataset. 

Groups Major Species Precision Sensitivity

Group 1 Bacteroides uniformis 0.82 0.84 
Group 2 Alistipes putredinis 0.79 0.54 
Group 3 Parabacteroides merdae 0.65 0.65 
Group 4 Eubacterium hallii DSM 3355 0.98 0.70 
Group 5 Ruminococcus torques L2 14 0.59 0.55 
Group 6 Faecalibacterium 0.76 0.69 
Group 7 Dorea formicigenerans ATCC 27755 0.59 0.78 
Group 8 Roseburia intestinalis M501 0.71 0.62 

 
In this dataset, there are 3 low-abundance species (between 6x 

and 10x), and MetaCluster 5.0 can discover all of them. For the 6 
high-abundance species (≥10x), MetaCluster 5.0 finds 5 of them. 
The only missing one is of sequencing depth 11x and mixed with 
other species from the same genus. As highly related genomes 
share too many common regions, their reads can be easily mixed 
together. MetaCluster 5.0 has an overall precision and sensitivity 
of above 70%.  

Table 8.  Performance of MetaCluster 4.0 on the real dataset 

Groups Major Species Precision Sensitivity

Group 1 Bacteroides uniformis 0.79 0.53 
Group 2 Alistipes putredinis 0.77 0.56 
Group 3 Roseburia intestinalis M501 0.51 0.89 

 
    MetaCluster 4.0 cannot discover any of the low-abundance spe-
cies and it can only discover the most abundant three species in the 
dataset. As MetaCluster 4.0 outputs too many clusters, we list the 
discovered species in Table 8. Its overall precision and sensitivity 
are both lower than those of MetaCluster 5.0.  

4 CONCLUSION 
Metagenomics binning remains a crucial step in metagenomics 
analysis. Existing unsupervised binning algorithms fail to bin reads 
from low-abundance species, or cannot bin reads from high-
abundance species when there are many reads from extremely-low-
abundance species. In this paper, we introduce MetaCluster 5.0 
which overcomes these two problems by binning the reads in two 
rounds with a filtering step to remove noise from extremely-low-
abundance species. MetaCluster 5.0 outperforms existing binning 
algorithms for both simulated and real biological datasets. 

A trivial extension of MetaCluster 5.0 is to bin reads with differ-
ent abundances using multiple (more than two) rounds. However, 
the filtering error may accumulate in each round and fewer reads 
can be preserved in each subsequent round. One possible direction 
is to reuse some of the reads used in the previous rounds. How to 
make the multiple-round approach more effective requires more in-
depth investigation. Another important direction for future work is 

to bin reads from extremely-low-abundance species, which is basi-
cally a well-known open problem in this area.  
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