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ABSTRACT 

Motivation: RNA sequencing based on next-generation sequencing 
technology is effective for analyzing transcriptomes. Like de novo genome 
assembly, de novo transcriptome assembly does not rely on any reference 
genome or additional annotation information, but is more difficult. In 
particular, isoforms can have very uneven expression levels (e.g. 1:100), 
which make it very difficult to identify low-expressed isoforms. One 
challenge is to remove erroneous vertices/edges with high multiplicity 
(produced by high-expressed isoforms) in the de Bruijn graph without 
removing correct ones with not-so-high multiplicity from low-expressed 
isoforms. Failing to do so will result in the loss of low-expressed isoforms 
or having complicated subgraphs with transcripts of different genes mixed 
together due to erroneous vertices/edges. 
Contributions: Unlike existing tools, which remove erroneous 
vertices/edges with multiplicities lower than a global threshold, we use a 
probabilistic progressive approach to iteratively remove them with local 
thresholds. This enables us to decompose the graph into disconnected 
components, each containing a few genes, if not a single gene, while 
retaining many correct vertices/edges of low-expressed isoforms. 
Combined with existing techniques, IDBA-Tran is able to assemble both 
high-expressed and low-expressed transcripts and outperform existing 
assemblers in terms of sensitivity and specificity for both simulated and 
real data.  
Availability: http://www.cs.hku.hk/~alse/idba_tran. 

1 INTRODUCTION  

Recent development of massively parallel cDNA sequencing 
(RNA-Seq) provides a more powerful and cost-effective way to 
analyze transcriptome data. RNA-Seq has been used successfully 
to identify novel genes, refine 5’ and 3’ ends of genes, study gene 
functions (Graveley, 2008), locate exon/intron boundaries 
(Nagalakshmi, et al., 2008; Trapnell, et al., 2009) and estimate 
expression levels of isoforms (Jiang and Wong, 2009). 

However, transcriptome reconstruction (the reconstruction of all 
expressed transcripts) from RNA-seq data remains a challenging 
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unresolved problem when there is splicing, i.e. when different 
combinations of regions (exons) of a single gene are decoded to 
multiple transcripts (isoforms) (Trapnell, et al., 2010). Currently, 
there are two computational approaches to solve this problem. 
Alignment-based methods, such as Cufflinks (Trapnell, et al., 2010) 
and Scripture (Guttman, et al., 2010), first align reads to reference 
genomes using splice junction mappers, such as TopHat (Trapnell, 
et al., 2009), to identify exon-intron boundary and then build a 
graph in which exons are the nodes and two exons are connected if 
reads connect them. Cufflinks (Trapnell, et al., 2010) attaches 
weights to edges and models the isoform reconstruction problem as 
a minimum path cover problem, while Scripture (Guttman, et al., 
2010) creates a statistical model to identify significant segments as 
isoforms. In contrast, de novo assembly methods, such as Trinity 
(Grabherr, et al., 2011), Oases (Schulz, et al., 2012), Trans-Abyss 
(Robertson, et al., 2010) and T-IDBA (Peng, et al., 2010), 
assemble transcripts directly from reads. 

Alignment-based transcriptome assembly methods, which rely 
on reference genomes and additional annotation information, may 
suffer from missing/erroneous information. Also, the quality of 
these methods depends heavily on the accuracy of the alignment 
tools (Trapnell, et al., 2009), which is  also complicated by splicing 
and sequencing errors. As RNA-Seq technology becomes more 
mature, there will be an increasing need to reconstruct unknown 
transcriptomes without reference genome information, and de novo 
transcriptome assembly will become increasingly more important.  

Difficulties: At first glance, the de novo transcriptome assembly 
problem looks similar to the de novo genome assembly problem. 
In fact, many existing methods for de novo transcriptome assembly, 
like genome assembly, apply the de Bruijn graph approach with 
fragments of transcripts being simple paths in graph, in which a 
vertex is a k-mer and an edge exists between two vertices u and v if 
u and v appear consecutively in a read. However, two main aspects 
make the two assembly problems different.  
(1) Exons shared by multiple isoforms. In this paper, we focus on 
transcriptome assembly for eukaryotes with splicing since, without 
splicing, the problem is much easier. Consider the example 
(LOC_Os10g02220 from rice) in Figure 1. A to I represent 
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different exons forming 5 isoforms (in red). Shared exons (e.g. D 
and H) look like repeats, and most genome assemblers try to 
resolve repeats at the branch level, i.e., each branch needs to be 
supported by paired-end reads. In our case, since all 5 isoforms are 
real, branches BD and CD as well as DE and DF will be supported. 
Some assemblers may stop at the junctions, reporting B, C, D, E 
and F as separate (short) contigs or falsely regard CDE as a 
transcript (provided both CD and DE have enough support). For 
example, running Velvet on the rice data (see Section 3.2 for 
details) results in contigs of mean length 245 bp only, while the 
mean length of transcripts is about 1,700 bp. Some metagenomic 
(Bankevich, et al., 2012) and single-cell assemblers (Vyahhi, et al., 
2012) try to find a path with maximum paired-end reads support; 
however, as the insert distance of transcriptome data usually 
cannot cover more than one branch (splicing junction) and there 
are multiple correct paths (isoforms) with paired-end reads support, 
these assembliers also fail to reconstruct the isoforms. 
(2) Different expression levels of isoforms of the same gene. 
Isoforms of the same gene may have very different expression 
levels. There are two problems. First, low-expressed isoforms may 
have little support from reads and thus are missed by the assembler. 
For example, in Figure 1, if there are only a few paired-end reads 
supporting branch BD and FH, isoform ABDFH is unlikely to be 
obtained. Second, support from reads of erroneous k-mers from 
high-expressed transcripts may be higher than that of correct k-
mers from low-expressed transcripts. These erroneous k-mers 
introduce branches in the de Bruijn graph and make the graph very 
complicated. Figure 2 shows an example from a real rice 
transcriptome dataset (LOC-Os12g12850). This subgraph (k = 50) 
is supposed to contain only 2 isoforms (Figure 2(a) shows the 
conceptual view of the isoforms). There are 92,353 and 90,126 
erroneous k-mers and branches respectively in the de Bruijn graph 
(Figure 2(b)) when we simulated reads with 1% sequencing error 
(details shown in Section 3). Existing approaches usually employ a 
global threshold to remove erroneous k-mers and branches if the 
multiplicities of these components are smaller than the threshold. 
This simple approach will not work for transcriptome data. Since 
the error positions of each read are known, we can count the 
number of correct and erroneous k-mers for simulated data on rice 
(Section 3.1) for different multiplicities (Figure 2(c)). No matter 
how we set the threshold of multiplicity for removing erroneous k-
mers (draw a vertical line and consider all k-mers on the left with 
lower multiplicities as erroneous k-mers), some erroneous k-mers 
will remain and correct k-mers will be removed. These 
complicated components will make isoform finding extremely 

difficult as there are many paths to be considered. In the ideal case, 
the de Bruijn graph should have many isolated components, each 
representing isoforms from one gene unless there are repeats in 
different genes. In most cases, the structure of the component 
should be simple as most genes do not contain many isoforms. To 
tackle this issue, we need a method to separate components that are 
falsely connected by erroneous k-mers and we need to remove 
erroneous k-mers from each component.  

Existing solutions: Oases (Schulz, et al., 2012) and Trinity 
(Grabherr, et al., 2011) are two popular de novo transcriptome 
assemblers for RNA-Seq data. In order to solve the splicing 
problem (Issue (1)), both apply a dynamic programming approach 
to identify potential paths in the graph, which are supported by 
many reads or paired-end reads. In other words, they try to identify 
isoforms more globally through a path-level analysis instead of a 
local branch-level analysis. The results are much better than those 
of genome assemblers. However, since the problem is NP-
complete (proved in the Appendix), the running time of the 
dynamic programming approach increases exponentially with the 
number of branches in the de Bruijn graph. Due to Issue (2), 
erroneous reads sampled from high-expressed transcripts introduce 
many branches (with more support than reads sampled from low-
expressed transcripts) and thus dynamic programming takes a long 
time. In practice, these tools fall back on heuristic search instead of 
dynamic programming for large components.  

To tackle Issue (2), T-IDBA (Peng, et al., 2010) uses another 
approach to isolate components. Based on the observation that 
transcripts from different genes share less common vertices when k 
value is large, T-IDBA builds a de Bruijn graph from small k and 
iteratively updates the graph with larger k values. It then finds 
transcripts in the de Bruijn graph with large k value where 
transcripts from the same gene usually form a single component. 
However, it does not perform very well for low-expressed 
transcripts because there are more missing k-mers when k is large. 
There is no dedicated solution in T-IDBA that solves the issue of 
erroneous k-mers within a component and methods for isolating 
components are not sensitive to low-expressed isoforms. 

To recover low-expressed transcripts, several post-processing 
methods (Robertson, et al., 2010; Surget-Groba and Montoya-
Burgos, 2010) were developed for Velvet (Zerbino and Birney, 
2008) and Abyss (Simpson, et al., 2009). They are all based on the 
observation that lower k values make the assembler more sensitive 
to low-expressed transcripts, while larger k values make it more 
specific to high-expressed transcripts. In order to combine the 
advantages of different values of k, the resultant contigs, generated 
by different k-mer lengths independently, are merged together. 

However, merging assembly results from different runs is not a 
straightforward task. Although output transcripts are clustered and 
duplicated transcripts are removed, many duplicates are difficult to 
detect and errors can accumulate in the cluster-remove step. As a 
result, multiple contigs with errors are generated for the same 
transcripts and the number of resulting contigs is much more than 
the number of expressed transcripts. Oases-M, an extension of 
Oases, makes use of multiple k to improve its assembly result and 
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Fig. 1.Example of de Bruijn graph for five isoforms from the same gene. 
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is now the best tool using this approach. However, since the 
fundamental problem of removing erroneous vertices from high-
expressed isoforms while keeping correct vertices from low-
expressed isoforms is not solved, there are still many false 
positives as well as duplicated transcripts (Section 3). 

Some single-cell genome assemblers (Chitsaz, et al., 2011; Peng, 
et al., 2012) also have a problem with uneven multiplicities of 
correct k-mers. They resolve the problem based on the assumption 
that, although the multiplicities of these erroneous k-mers are high, 
their multiplicities should be lower than the nearby correct k-mers. 
Thus, they calculate a local threshold, based on the multiplicities of 
nearby k-mers or contigs, for removing erroneous k-mers. However, 
as a k-mer representing the common exon of several expressed 
isoforms can have relatively higher multiplicity than nearby correct 
k-mers (Li and Jiang, 2012), calculating the local threshold from 
only one or two nearby k-mers or contigs may be misleading and 
the algorithms may remove many correct k-mers near these high 
multiplicity k-mers. 

Our contributions: If Issue (2) can be resolved, Issue (1) can 
be tackled by existing path-level analysis as the components will 
be simple enough. Thus, our core contribution is handling Issue (2). 
As mentioned before, the traditional filtering method of using one 
single global threshold for multiplicity cannot separate correct k-
mers sampled from low-expressed transcripts from erroneous k-
mers sampled from high-expressed transcripts, and single-cell 
genome assemblers calculating local thresholds from nearby k-
mers may remove many correct k-mers. Thus, we propose a 
probabilistic progressive approach to solve this problem. Our 
proposed assembler IDBA-Tran calculates the probability that a k-
mer or short simple path (contigs) contains error using not only the 
multiplicity of the k-mer or contig (or their neighboring k-mers or 
contigs) but also uses a multi-normal distribution to model the 
multiplicities of all k-mers in the whole connected component. 
Based on the multi-normal distribution and the contig length (as a 
short simple path is more likely to have error than a long one), 
IDBA-Tran calculates a local threshold for determining whether a 
k-mer or contig has error. By progressively removing erroneous k-
mers, connected components representing isoforms from a single 
gene are identified. Since we successfully remove many erroneous 
k-mers, the size of each component is small. We can employ a 
path-level analysis (similar to Oases and Trinity) to identify 
transcripts from each component (Issue (1)). Thus IDBA-Tran can 
perform better than Oases and Trinity, producing more contigs, 
particularly for low-expressed transcripts. Results show that 

IDBA-Tran outperforms other de novo transcriptome assembly 
approaches in terms of both sensitivity and specificity for both 
simulated and real data. IDBA-Tran also makes use of other 
techniques used in genome assemblers, such as tips pruning, path 
merging and error correction.  

2 METHODS 

Similar to Oases-M, IDBA-Tran also adopts the idea of multiple k to 

handle transcripts with different expression levels. However, instead of 

generating a de Bruijn graph and finding transcripts for each k value, an 

accumulated de Bruijn graph is built to capture all information from both 

high-expressed and low-expressed transcripts. During each iteration, an 

accumulated de Bruijn graph Hk for a fixed k is constructed from the input 

reads and the contigs constructed in previous iterations, i.e. those contigs 

constructed in Hk-s are treated as input reads for the construction of Hk. The 

depth information is used to separate de Bruijn graph into components. 

Ideally, transcripts from different genes are decomposed into different 

components. In each component, alternative splicing can be detected and 

transcripts can be reconstructed. To accumulate information, all 

reconstructed transcripts are used as input reads for the next iteration. 

Figure 3 shows the workflow of IDBA-Tran for assembling a set of 

paired-end reads. In the first iteration when k = kmin, Hk is equivalent to a de 

Bruijn graph for vertices whose corresponding k-mers have multiplicity of 

at least m (2 by default) times in all reads. During all subsequent iterations, 

sequencing errors are first removed according to the topological structure 

of Hk in a slightly different way to other assemblers (Section 2.1). The tips 

(dangling paths in Hk of length shorter than 2k) are likely to be false 

positives (Li, et al., 2010; Simpson, et al., 2009; Zerbino and Birney, 2008). 

Similar paths (bubbles) representing very similar contigs with the same 

starting vertex and ending vertex are likely to be caused by errors or SNPs 

and they should be merged (Li, et al., 2010; Simpson, et al., 2009; Zerbino 

and Birney, 2008). Then, the depth information for contigs and components 

is used to decompose the graph into components (Section 2.2). Paths with 

high support for the paired-end reads are reconstructed as transcripts in 

each component (Section 2.3). Errors in the assembled contigs are 

corrected by aligning reads to the contigs (Section 2.4). When constructing 

Hk+s from Hk, each length s+1 path in Hk is converted into a vertex ((k+s)-

mer) and there is an edge between two vertices if the corresponding 

(k+s+1)-mer appears f (1 by default) times in reads or once in contigs in 

CkLCkTk, where Ck represents the set of contigs, LCk is the set of contigs 

constructed by local assembly using paired-end information (Section 2.5), 

and Tk is the set of transcripts when considering Hk. In the following 

subsections, we describe each step of IDBA-Tran in detail. 

Fig.2.Example of de Bruijn graph for two 
isoforms from the same gene. a) de Bruijn graph 
of two isoforms without error. b) de Bruijn graph 
of two isoforms when there is 1% sequencing error 
in reads. c) Multiplicity of correct and erroneous 
k-mers for simulated data. 
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2.1 Pruning short tips and merge similar path 

Many de novo assemblers remove tips (short simple paths leading to dead 

ends) in the de Bruijn graph as erroneous contigs. It would not be advisable 

to remove such tips in transcriptome assembly, because transcripts are very 

short (could be several hundred bases) when compared to genomes. 

Removing one hundred bases from the end of a genome may not be a 

problem, but removing one hundred bases from the end of a transcript may 

lose much important information. When constructing the accumulated de 

Bruijn graph in IDBA-Tran, the tip removal process will take place at each 

iteration. Instead of removing all tips and producing shorter transcripts, 

IDBA-Tran keeps the longest tip (with highest probability of being a 

correct path) and removes all other short tips. For each branch in the graph, 

IDBA-Tran checks each outgoing (and incoming) edge, keeps the branch 

which leads to the longest path, and removes all other branches (tips) which 

lead to paths shorter than 2k. Usually, the correct branch leads to longer 

paths than tips, and this method preserves correct branches. 

As transcriptome sequencing data contains more errors and 

insertions/deletions than genome sequencing data, IDBA-Tran identifies 

and merges paths with same starting point and end point and higher than 98% 

similarity (including insertions and deletions). 

2.2 Decomposing the graph by iterating depth 

Recall that T-IDBA (Peng, et al., 2011) also tries to decompose the de 

Bruijn graph into components. It is based on the observation that there are 

not many repeat patterns between two transcripts from different genes 

while isoforms from the same gene share common exons. Thus, it 

decomposes the graph into different components such that there are 

relatively more branches inside each component and relatively fewer 

branches between two components. However, erroneous k-mers (from 

high-expressed isoforms) still cannot be removed effectively since 

components representing isoforms from different genes may be connected 

by these erroneous k-mers to form a very large component preventing the 

assembler from determining isoforms in the component. Instead of 

considering the number of branches for decomposing the de Bruijn graph 

into components, IDBA-Tran detects and removes erroneous paths 

connecting two components by considering the lengths and sequencing 

depths (depths in short) of the paths using a probabilistic approach. The 

depth of a path (contig) is the average multiplicity of the k-mer on the path.  

Long contigs (simple paths in the de Bruijn graph) are usually correct, 

because long simple paths are unlikely to be formed by erroneous reads, 

and similarly for high-depth contigs which have supports from many reads. 

For a contig, whether its length is long or short and whether its depth is 

high or low cannot be judged by absolute values as the length of a contig 

depends on the value of k and the depth of a contig depends on the depths 

of neighboring contigs (contigs in the same component). Since erroneous 

contigs in high-depth regions may have higher depths than correct contigs 

in low-depth regions, short (< l) and relatively low-depth contigs are likely 

to be erroneous and can be removed. The removal takes place in an 

iterative manner (Chitsaz, et al., 2011; Peng, et al., 2012), because after 

some low-depth errors are removed, some short low-depth contigs may be 

connected together to form long contigs. Increasing depth cutoff 

progressively may help to preserve more low-depth correct contigs.  

IDBA-Tran removes contigs (simple paths) shorter than l with average 

sequencing depth lower than β where β is a threshold calculated based on 

value of l and the depth distribution of the connected component which 

contains the contig. When β is large, many correct contigs are removed and 

many true positive transcripts cannot be assembled. When β is small, many 

erroneous contigs are not removed and transcripts from different genes may 

form a large component such that correct transcripts are difficult to 

reconstruct in later steps (Section 2.3). Thus, we should select the largest 

threshold β such that not too many correct contigs are removed, say < 1%. 

Consider a correct exon with length at least l. It should be represented by 

a simple path P in the de Bruijn graph. However, as there are sequencing 

errors in reads, there may be branches in P and simple path P may be 

broken into several shorter paths with length less than l. Consider a 

particular edge u→v in P with the corresponding k-mer v sampled x times 

(some may contain errors). There is another edge u→v’ in the de Bruijn 

graph if at least m (the multiplicity threshold used for removing erroneous 

k-mers) out of the x k-mers sampled from v having the same error at the last 

nucleotide, i.e. v and v’ differ by the last nucleotide, thus introduces 

branching at u. This probability can be calculated as follows. 

Assume the probability of a sequencing error per base is e and the 

probabilities that the erroneous base is changed to each other nucleotide are 

the same, i.e. 1/3. Although this simple assumption is not correct for real 

Prune short tips 

Merge similar path 

Paired-end reads

Construct de Bruijn Hk for k = kmin 

Progressive- 

Component-Depth 

Error Correction 

Local Assembling 

Find-transcripts 

Build Hk+s until kmax 
Contigs 

Fig. 3.Workflow of IDBA-Tran. 
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biological data, the calculation can be readily refined for different 

probabilities. The probability that v is sampled as v’ with the last nucleotide 

changed to a particular nucleotide, say ‘A’, is  

௘௥௥݌ ൌ
݁
3
ሺ1 െ ݁ሻ௞ିଵ 

As v can be sampled with error as v’, i.e. at least m of the x samples have 

the same error at the last nucleotide. Since there are 3 possible v’, the 

existence probability of v’ (probability of branching at u) is 
 ܲሺ݉, ,ݔ  ௘௥௥ሻ݌
= 3P(≥ 1 v’ exist) – 3P(≥ 2 v’ exist) + P(3 v’ exist) 
= 3∑ ܲሺ൒ exist)௫ି௠ ݒ exist)ܲሺ݅ ݇-mer ݒ exist|݅ ݇-mer ′ݒ 1

௜ୀ଴  

 െ3∑ ܲሺ൒ exist)௫ିଶ௠ ݒ exist)ܲሺ݅ ݇-mer ݒ exist|݅ ݇-mer ′ݒ 2
௜ୀ଴  

 ൅∑ ܲሺ3 ݒ′ exist|݅ ݇-mer ݒ exist)ܲሺ݅ ݇-mer ݒ exist)௫ିଷ௠
௜ୀ଴  

= 3∑ ଶܥ
௫ି௠ି௜ାଶ݌௘௥௥୶ି୧ሺ1 െ ௘௥௥ሻ௜݌

௫ି௠
௜ୀ଴  

 െ3∑ ଶܥ
௫ିଶ௠ି௜ାଶ݌௘௥௥୶ି୧ሺ1 െ ௘௥௥ሻ௜݌

௫ିଶ௠
௜ୀ଴

 ൅∑ ଶܥ
௫ିଷ௠ି௜ାଶ݌௘௥௥୶ି୧ሺ1 െ ௘௥௥ሻ௜݌

௫ିଷ௠
௜ୀ଴  

In order to estimate the value of depth x, we use a multi-normal 

distribution to model the depth distribution of a component as there can be 

multiple isoforms, say t, in a component. Given a set of k-mers with 

different multiplicities in the same component, we assume the multiplicities 

of the k-mers are sampled from t normal distributions. Although the mean 

and standard deviation of each normal distribution can be estimated by 

expectation-maximization algorithm (Tanaseichuk, et al., 2012), the time is 

too long because there are many k-mers and components. Thus IDBA-Tran 

applies an approximation by clustering the k-mers based on their 

multiplicities (the distance between two k-mers equals their difference in 

multiplicities) using K-means clustering method. The mean and standard 

deviation can then be calculated for each cluster. We set t = 3 in the 

experiments based on the assumption that there are at most 3 transcripts in 

each components (at the final step). 

Let N(μ,σ) be a normal distribution of depth with minimum mean 

depth value μ. The probability that we wrongly remove a correct contig 

with average depth ≤ β is at most  

ܲሺfalse positiveሻ ൌ
1

ଶߪߨ2√
න ݁

షሺೣషഋሻమ

మσమ

ఉ

ି∞
· 2݈ܲሺ݉, ,ۂݔہ  ݔ௘௥௥ሻ݀݌

Note that for an exon of length at least l of sequencing depth x, the 

probability of branching is 2݈ܲሺ݉, ,ۂݔہ  .௘௥௥ሻ݌

The value of l should be selected based on the length of exons. If a very 

large l is selected, true positive k-mers and paths are removed. If a very 

small l is selected, most true negative k-mers and paths cannot be removed. 

We should select different values for l depending on the properties of the 

data (we use l = 2k in the experiments). Once l is selected, we can calculate 

the largest β such that P(false positive) is lower than some value, say 1%, 

so as to remove most erroneous contigs without too many false positives. 

Algorithm 1 shows the pseudocode for the decomposing step. According 

to (Peng, et al., 2010), when the size of the component is small (with ≤ γ = 

30 contigs), the component is likely to represent isoforms from a single 

gene and we can use a very low depth threshold β = 0.1 × T(comp), where 

T(comp) is the average depth of connected component comp, to prevent 

removing correct contigs. The filtering depth cutoff threshold t is increased 

by a factor of α progressively (10% by default). In each iteration, short 

contig c is removed if its depth T(c) is lower than the minimum of cutoff 

threshold t and the depth threshold β. 

2.3 Finding transcripts 

For each connected component in the de Bruijn graph, IDBA-Tran 

discovers those paths starting from a vertex with zero in-degree to a vertex 

with zero out-degree with the highest support from paired-end reads. A 

path is supported by paired-end reads if the paired-end reads can be 

aligned to the path with the distance between the aligned positions 

matching the insert distance of the paired-end reads. The problem 

definition can be simplified as follows (Transcripts Discovering (TD) 

Problem): given a de Bruijn graph G(V,E) with a set of vertices V and 

edges E, a set of paired-end reads P = {(vi,vj)}, vi, vj  ∈ V, an insert distance 

d and error s, find t paths in G with the maximum number of supporting 

paired-end reads P’ ⊆ P. A path p has a supporting paired-end read (vi,vj) 

iff p contains vertices vi and vj and the distance between vi and vj in p is 

between d – s and d + s.  

Since the TD problem is a NP-hard problem (see Appendix), IDBA-

Tran performs a heuristic depth-first search to find paths from a zero in-

degree vertex to a zero out-degree vertex with maximum supporting paired-

end reads. At each branch, the path with many supporting paired-end reads 

will be considered before other paths. In practice, IDBA-Tran reports at 

most tmax (default 3) potential transcripts for each zero in-degree vertex in 

each connected component. IDBA-Tran applies a seed and extend method 

for aligning reads to contigs (paths in de Bruijn graph). k-mers in a read 

appearing in the de Bruijn graph is considering as potential aligned position 

and IDBA-Tran will try to extend both ends of alignment considering 

substitution error only. Note that insertion and deletion error can be 

implemented in IDBA-Tran easily. However, as the number of substitution 

errors appears much more than the insertion/deletion errors, IDBA-Tran 

considers substitution error only for speeding up the alignment process. 

2.4 Error correction 

The error correction step is performed on reads and assembled contigs 

during the assembling process. At first, reads are aligned to each contig. 

The consensus of the aligned reads will replace the original contig, i.e. 

positions of the contig inconsistent with the majority of aligned reads will 

be corrected. Then aligned reads are corrected according to the aligned 

position in contigs, i.e. positions in the reads with nucleotides inconsistent 

with the consensus will be corrected. This error correction step can reduce 

the number of erroneous reads and branches in the de Bruijn graph. 

2.5 Local assembly 

Let C be the set of contigs. We extract the beginning and end of each contig 

c in C to form a set of contigs C'. Assume the insert distances of paired-end 

reads satisfy the normal distribution N(d, ). IDBA-Tran performs local 

assembly (Peng, et al., 2012) on the last d + 3 bases of each end of the 

contig and the paired-end read with one end aligned to it. Since those reads 

Algorithm 1. Progressive-Component-Depth(G, k)  
1 t← 1 

2 repeat until t > maxc∈GT(c) 

3    for each component comp in G 
4       if size(comp) > γ, then calculate β, else β←0.1 × T(comp) 
5       for each contig c in comp 
6 if len(c) < 2k and T(c) <min(t, β) 
7 remove c from G 
8 t←t × (1+α) 
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which are far away from contig c will not mix with reads with one end 

aligned to c, some missing k-mers can be reconstructed and the contigs can 

be extended longer. 

2.6 Estimating expression levels 

Since IDBA-Tran is designed for assembling reads to reconstruct expressed 

transcripts, sophisticated algorithms can be then applied to estimate the 

expression levels of each transcript. IDBA-Tran also provides an estimated 

expression level for each transcript by aligning reads to the transcript. 

RPKM (Reads Per Kilobase per Million mapped reads) is estimated by 

dividing the total length of reads uniquely aligned to a transcript by the 

total length of regions of transcript uniquely aligned by reads. 

3 RESULTS 

To evaluate the performance of IDBA-Tran, experiments were 
carried out on both simulated and real data. We compared IDBA-
Tran with the latest transcriptome assemblers Trinity (Grabherr, et 
al., 2011) and Oases (Schulz, et al., 2012). We also compared 
IDBA-Tran with the single-cell genome assembler IDBA-UD 
(Peng, et al., 2012) and Velvet-SC (Chitsaz, et al., 2011), which 
apply multiple depths when assembling genomes. IDBA-Tran and 
IDBA-UD were run with k ranging from 20 to 50 with step size 5. 
For Oases and Velvet-SC, k values ranging from 20 to 50 with step 
size 5 were used, and the best result was selected as output. As the 
k value of Trinity was fixed to 25, the default parameters were 
used to run it. 

For transcriptome assembly, the most important indicator of 
assembly quality is the number of correct transcripts an assembler 
can reconstruct. In the experiments, known transcript references 
were used for benchmarking. A known transcript is reconstructed 
successfully if a certain portion, say 80% (referred as 
completeness), of its sequence is covered by a contig with 95% 
similarity. Similarly, the contig is considered correct if it can be 
aligned to at least 80% of a transcript with 95% similarity. The 
alignment of contigs to transcripts was performed by BLAT (Kent, 
2002) without considering long gaps representing introns (as we 
aligned contigs to transcripts instead of genome). The sensitivity 
and specificity were calculated to measure performance. 
Sensitivity is the percentage of reconstructed transcripts over all 
expressed transcripts. Specificity is the percentage of correct 
contigs over all reported contigs. 

We also compared the performance of IDBA-Tran and CEM (Li 
and Jiang, 2012) on estimating expression levels of reconstructed 
transcripts. CEM requires the genome sequence as additional 
information. By aligning reads to the reference genome, CEM can 
predict the expressed transcript sequences and estimate the 
expression level of each transcript based on a statistical model 
(quasi-multinomial model). Since some transcripts may align to 
multiple contigs and some contigs may align to multiple transcripts, 
we considered only those transcripts and contigs with one-to-one 
correspondence. The Pearson’s correlation between the predicted 
expression levels and the exact expression levels was calculated. 
As suggested in Li and Jiang, 2012, we also calculated the 
Pearson’s correlation between the logarithm of predicted 
expression levels and the logarithm of exact expression levels. 

3.1 Simulated data 

In order to simulate more realistic data, we aligned all reads in a 
real RNA-Seq data of Oryza sativa Transcriptome to known 
transcripts of Oryza sativa in the database. Based on the alignment 
results, we identified the set of expressed transcripts and estimated 
their expression levels. Note that, since the transcript sequences 
were known, no long gap (representing an intron) alignments were 
allowed. Reads aligned to multiple transcripts were not considered 
for estimating the depth of the transcript. We used all transcripts 
with at least 80% of the region aligned by reads and with depth at 
least 0.5x to generate the simulated data, i.e. there were 0.5 reads 
covering each nucleotide on average. We sampled paired-end reads 
from the transcripts according to their expression levels. The read 
length was 100 bp, error rate was 1% and the insert distance 
followed a normal distribution with mean 250 bp and standard 
deviation 25 bp. 

Figure 4 shows the quality of the assembly results of the 
assemblers for different levels of completeness. Velvet-SC 
reconstructed the least number of transcripts in all completeness 
settings because it is designed for assembling genomic data and 
cannot handle multiple isoforms of the same gene well. IDBA-UD, 
which is designed for assembling genomic and metagenomic data, 
handled some simple cases of multiple isoforms of the same gene 
and had better performance than Velvet-SC. Trinity and Oases 
found more transcripts than Velvet-SC and IDBA-UD because 
they are designed for assembling transcriptome data. Oases had its 
best performance when k was set to 25, the same k value for 

  
Fig.4.Experiment result of each assembler on different completeness level for simulated data. 
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Trinity. IDBA-Tran reconstructed the most transcripts and 
consistently reported more correct contigs. Table 1 shows the 
detailed figures when completeness was 0.8. The number of 
correct contigs and reconstructed transcripts for IDBA-Tran were 
the highest among the tools. IDBA-Tran also had the highest 
sensitivity and specificity.  

Table 2 shows the expression level distribution of reconstructed 
transcripts of the assemblers when completeness was 0.8. For low-
expressed transcripts with sequencing depth less than 5, IDBA-
Tran reconstructed 664 more transcripts (33% more) than the 
second best tool (Trinity). This is probably due to the fact that 
IDBA-Tran can separate transcripts from different genes into 
components efficiently while preserving the low-expressed 
transcripts.  We also checked the quality of decomposition and 
found that over 80% of the transcripts were still inside the same 
component after the decomposition step (referred to “unbroken 
transcripts after decomposition). Except transcripts with very low 
sequencing depth (< 5), most transcripts were not broken after the 

decomposition and could be constructed successfully. Similar 
results were found for transcripts with sequencing depth between 5 
and 10. For transcripts with higher sequencing depth, in general, 
IDBA-Tran also performed better (even though all assemblers had 
better performance for high-expressed transcripts). 

For IDBA-Tran, we verified the effectiveness of its component 
separation algorithm and show the distribution of transcripts in 
Table 3. If a component contained a certain portion (80%) of a 
transcript, the component was deemed to have contained this 
transcript. There were 2,865 components containing no transcripts 
and 10,611 components, each of which contained at most 5 
transcripts, together containing most of the transcripts (16,663). 
Since very low-expressed transcripts cannot be assembled by any 
assemblers, the total number of transcripts (18,180) in all 
components was less than the total number of expressed transcripts 
(22,402). A component containing a transcript does not guarantee 
that the transcript can be reconstructed. Thus, the number of 
reconstructed transcripts (17,243) is less than the total number of 

Table 1. Statistics of assembly result of each assembler for simulated data set (completeness = 0.8). 

 contigs # avg. len. (nt) total len. (nt) reconstructed transcripts # correct contigs # sens. spec. 

Trinity 26189 1941 41M 14910 14389 66.56% 54.94% 

Oases 22804 1963 39M 14420 14712 64.37% 64.51% 

IDBA-UD 18020 1322 24M 10941 8406 48.58% 46.65% 

Velvet-SC 22868 613 14M 389 357 1.74% 1.56% 

IDBA-Tran 22708 1933 39M 17242 16707 76.98% 73.57% 

Table 2.Expression level distribution of reconstructed transcripts of each assembler for simulated data set (completeness = 0.8) 

Depth (0,5) [5,10) [10, 15) [15,20) ≧20 

Total number of transcripts 5943 5011 2943 1857 6646 

Trinity 1955 3251 2393 1527 5782 

Oases 1648 3224 2461 1606 5481 

IDBA-UD 1629 2563 1753 1107 3831 

Velvet-SC 58 139 106 55 31 

IDBA-Tran (unbroken transcripts after decomposition) 2619 (2700) 4177 (4337) 2746 (2824) 1723 (1811) 5977 (6505) 

Table 3.Distribution of transcripts in IDBA-Tran components for simulated data set (completeness = 0.8) 

transcripts in component 0 1 2 3 4 5 6 7 8 9 >=10 total 

# of components 2865 6722 2407 954 370 158 71 28 24 4 22 13625 

# of unbroken transcripts (after 

decomposition) 

0 6720 4814 2859 1480 790 426 196 192 37 666 18180 

# of reconstructed transcripts 0 6676 4682 2672 1324 667 349 164 141 33 535 17243 

Table 4. Statistic on estimating expression levels of reconstructed transcripts of each assembler for simulated data set (completeness = 0.8) 

 Transcripts reconstructed by both algorithms Transcripts reconstructed by only one algorithm 

 number of transcripts Pearson’s corr (based on log value) number of transcripts Pearson’s corr (based on log value) 

CEM 
5611 

0.95 (0.91) 100 0.89 (0.79) 

IDBA-Tran 0.95 (0.94) 37 0.93 (0.85) 
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transcripts in all components (18,180). However, experiments 
showed that most transcripts decomposed correctly can be 
reconstructed successfully.  

Table 4 shows the performance of IDBA-Tran and CEM on 
estimating expression levels of transcripts. Although CEM had the 
additional information of the rice genome, the number of 
expression transcripts reconstructed by IDBA-Tran and CEM were 
similar. Moreover, IDBA-Tran had similar performance to CEM in 
estimating the expression levels because it could reconstruct most 
of the expressed transcripts making the estimation process easier.  

3.2 Real data 

We verified IDBA-Tran and other assemblers on the real RNA-Seq 
data of Oryza sativa transcriptome. There were 24,855,142 paired-
end length-90 reads in the data set. The insert distance was about 
200. Previous simulated data used the expression level profile of 
this data set, so they had the same set of expressed transcripts and 
expression levels. The distribution of expressed transcripts is also 
included in Table 6 for comparison (with the distribution of 
expressed transcripts estimated as mentioned in Section 3.1). Note 
that since the expressed transcripts and expression levels were 
estimated from alignments, there may be some error due to the 
existence of unknown transcripts and transcripts with over 80% 
similarity. The sensitivities and specificities shown are 
approximation of the real sensitivities and specificities only. 

Figure 5 shows the number of reconstructed transcripts and 
aligned (correct) contigs reported by each assembler under 
different completeness. The results were consistent with those for 
the simulated data. IDBA-Tran still performed the best for all 
levels of completeness. All assemblers had poorer performance for 
real data than for simulated data. Oases still had its best 
performance when k was set to 25, and had very similar 
performance in terms of reconstructed transcripts compared with 
Trinity in all completeness settings.  

Detailed statistics of assembly results are shown in Table 5 
when completeness is set to 0.8. IDBA-Tran, Oases and Trinity 
had about the same number of contigs and total contig bases. 
IDBA-UD assembled relatively fewer contigs than others. IDBA-
Tran had the highest sensitivity (42.08%) and specificity (22.94%) 
while other assemblers had much lower sensitivity and specificity. 

Table 6 shows the expression level distribution of reconstructed 
transcripts for different assemblers when completeness is set to 0.8. 

When comparing Table 2 and Table 6, it is clear that the real data 
was more difficult to assemble than simulated data, especially for 
low-expressed transcripts. Only 732 transcripts (~25%) with depth 
less than 5 were reconstructed by IDBA-Tran and worse for other 
assemblers. Similar to simulated data, IDBA-Tran had better 
performance than other assemblers for all expression levels.  

Table 7 shows the distribution of transcripts in components. 
Since the sampling depths of a single transcript may be uneven, 
many transcripts were broken into fragments. Moreover, there 
were some unknown transcripts in the data set. So, quite a number 
of components did not contain 80% of a transcript. However, for 
the other components, IDBA-Tran did a good job: 6,353 
components, each of which contained at most 5 transcripts, 
contained 9,082 transcripts all together. Similar to simulated data, 
once a transcript was correctly assigned to a component, the 
transcript was reconstructed with high probability. 

4 DISCUSSION 

We have identified one key issue in transcriptome assembly, 
namely how to remove erroneous vertices/edges of high 
multiplicity (due to high-expressed isoforms) from the de Bruijn 
graph while keeping correct ones with relatively lower multiplicity 
(due to low-expressed isoforms). We developed a probabilistic 
progressive approach with local thresholds to solve the problem. 
We proposed IDBA-Tran, combined with other techniques, to 
assemble transcriptome sequencing data. Experiments on both 
simulated and real data confirm that IDBA-Tran can outperform 
existing de novo transcriptome assemblers in terms of both 
sensitivity and specificity. In particular, for low-expressed 
transcripts, the improvement of IDBA-Tran is substantial. 

Recall that there is another approach to recover both low-
expressed and high-expressed transcripts, namely: run the 
assembler for different k values and merge all contigs as output. 
Oases-M, which runs Oases several times with multiple k values, is 
a post-processing tool based on this approach. Oases-M can 
reconstruct many transcripts for both simulated and real data. 
However, since erroneous contigs cannot be merged, Oases-M 
produces many incorrect contigs and has a low specificity (see 
Table 8 in the Appendix). Moreover, contigs representing some 
transcripts may appear multiple times (with small difference) in the 
output such that the number of correct contigs is double the 
number of reconstructed transcripts. The large number of 

 
Fig.5.Experiment result of each assembler on different completeness level for real data. 
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erroneous contigs and redundant contigs may make analysis 
difficult, and it is very hard to distinguish the erroneous contigs 
from the correct ones. On the other hand, we found that Oases-M 
had slightly better performance than IDBA-Tran for high-
expressed transcripts for real data (see Table 9 in the Appendix). 
Thus, it may be a good idea to investigate how to integrate both 
approaches to reconstruct more transcripts. 
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Table 5. Statistics of assembly result of each assembler for real data set (completeness = 0.8) 

 contigs # avg. len. (nt) total len. (nt) reconstructed transcripts # correct contigs # sens. spec. 

Trinity 39974 966 39M 7052 6121 31.48% 15.31% 

Oases 36684 1041 38M 5666 5162 25.29% 14.07% 

IDBA-UD 28753 890 25M 6164 4567 27.51% 15.88% 

Velvet-SC 28626 518 15M 233 208 1.04% 0.73% 

IDBA-Tran 40010 1055 42M 9428 9177 42.08% 22.94% 

Table 6.Expression level distribution of reconstructed transcripts of each assembler for real data set (completeness = 0.8) 

Depth (0,5) [5,10) [10, 15) [15,20) ≧20 

Total number of transcripts 5943 5011 2943 1857 6646 

Trinity 410 910 983 743 4004 

Oases 431 907 1005 776 3946 

IDBA-UD 287 978 985 723 3124 

Velvet-SC 28 55 55 28 67 

IDBA-Tran (unbroken transcripts after decomposition) 732 (921) 1480 (1525) 1417 (1472) 1041 (1083) 4758 (5325) 

Table 7.Distribution of transcripts in IDBA-Tran components for real data set (completeness = 0.8) 

transcripts in component 0 1 2 3 4 5 6 7 8 9 >=10 total 

# of components 20288 4482 1265 408 145 53 21 17 6 6 15 26706 

# of unbroken transcripts  

(after decomposition) 

0 4482 2531 1224 580 265 126 119 48 54 593 10022 

# of reconstructed transcripts 0 4371 2450 1152 553 265 126 119 48 28 316 9428 


