
IDBA - A Practical Iterative de Bruijn Graph De Novo
Assembler

Yu Peng, Henry C.M. Leung, S.M. Yiu, Francis Y.L. Chin

Department of Computer Science, The University of Hong Kong
Pokfulam Road, Hong Kong

{ypeng, cmleung2,smyiu,chin}@cs.hku.hk

Abstract. The de Bruijn graph assembly approach breaks reads into k-mers
before assembling them into contigs. The string graph approach forms contigs
by connecting two reads with k or more overlapping nucleotides. Both
approaches must deal with the following problems: false-positive vertices, due
to erroneous reads; gap problem, due to non-uniform coverage; branching
problem, due to erroneous reads and repeat regions. A proper choice of k is
crucial but for single k there is always a trade-off: a small k favors the situation
of erroneous reads and non-uniform coverage, and a large k favors short repeat
regions.

We propose an iterative de Bruijn graph approach iterating from small to
large k exploring the advantages of the in between values. Our IDBA
outperforms the existing algorithms by constructing longer contigs with similar
accuracy and using less memory, both with real and simulated data. The
running time of the algorithm is comparable to existing algorithms.
Availability: IDBA is available at http://www.cs.hku.hk/~alse/idba/

Keywords: De novo assembly, de Bruijn graph, string graph, mate-pair, high
throughput short reads

1 Introduction

Despite tremendous research efforts, de novo assembly remains an only partially
solved problem. Although more reference genomes are known for efficient re-
sequencing, de novo assembly remains a critical step in studying a genome.
Applications such as detection of structural variations [1] cannot be done easily based
on resequencing techniques and there are evidences that show genome assembly
based on resequencing may produce errors especially for species with high mutation
rates [1].

With high throughput sequencing technologies (e.g. Ilumina Genome Analyzer and
Applied Biosystems SOLiD), mate-pair short reads (35nt to 75nt) of a mammalian
genome can be generated in a few weeks at low cost. As short reads have different
characteristics (i.e. shorter length, higher coverage, but relatively higher error rates)
when compared to traditional Sanger reads, new assembly tools have emerged [2-11].
The first batch of tools (e.g. SSAKE [3], VCAKE [4], SHARCGS [5]) uses the

“overlap-then-extend” idea but need to rely on data structures such as prefix trees, so
they require lots of memory and run very slowly. The newer tools are divided into
those based on the de Bruijn graph (e.g. Velvet [7], Abyss [8], Euler-SR[2, 6],
AllPaths[11]) and those based on the string graph (e.g. Edena [9]). Each of the two
approaches has merits and limitations, and it is not clear which is better.

De Bruijn graph algorithms [7-8, 12-13] assemble reads by constructing a de
Bruijn graph in which each vertex represents a length-k substring (k-mer) in a length-l
read and connects vertex u to vertex v if u and v are consecutive k-mers in a read, i.e.
the last (k – 1) nucleotides of the k-mer represented by u is the same as the first (k – 1)
nucleotides of the k-mer represented by v. Intuitively, maximal paths of vertices
without branches in the graph correspond to contigs to be outputted by algorithms.

String graph algorithms [9, 14] represent each read by a vertex and there is a
directed edge from vertex u to vertex v if the suffix of at least x nucleotides of read u
is the same as the prefix of read v. The value of x is the number of overlapping
nucleotides for two consecutive reads. Similar to de Bruijn graph algorithms, string
graph algorithms report maximal paths without branches as a contigs.

When the reads are error-free with high coverage, most tools work well. However,
because of repeats, erroneous reads, and non-uniform coverage, their performances is
not always acceptable. In this paper, we focus on three major problems: (1) false
positive vertices (due to errors in reads); (2) gap problem (due to non-uniform or low
coverage) and; (3) branching problem (due to repeats or errors in reads).

Three major problems:
(a) False Positive Vertices: Errors in reads introduce false positive vertices which
make both graphs bigger and consume more memory; for example, for the human
genome with 30x coverage, the memory requirement of Velvet [7] and Abyss[8] is
more than 250G.
(b) Gap problem: Due to non-uniform or low coverage, reads may not be sampled for
every position in the genome. For the de Bruijn graph, when all the (possible l – k)
reads covering consecutive k-mers are missing, we may have short “dead-end” paths.
The larger the k, the more serious is the gap problem. The same applies to the string
graph if all the (possible l – x) reads following another read are missing.
(c) Branching problem: Those k-mers which connect with multiple k-mers due to
repeat regions or erroneous reads introduce branches in the de Bruijn graph. Many
algorithms [7-9] stop the contigs at branches and it is not possible to extend a contig
without additional information. A small k will lead to more branches. The same
branching problem occurs in string graph algorithms, and depending on the value of x,
the same read can be connected with multiple other reads.

Existing assembly algorithms:
Table 1 summarizes the major techniques used by existing algorithms to solve the
above problems. There are two methods for handling false positive vertices. (1) Dead-
end removal: False positive vertices usually lead to short dead-end paths. Both de
Bruijn and string algorithms (e.g. [7-8]) remove false positive vertices by removing
these paths. However, due to the gap problem, some paths may be removed by
mistake. (2) Filtering: de Bruijn graph algorithms remove false positive vertices if the
corresponding k-mers appear no more than m times. However, some correct k-mers

with low coverage might also be removed especially for large k for which the
expected k-mer occurrence frequency is low. As for string graph algorithms, the
expected occurrence of each read is also low (1 or 2) and they rely on error correction
which falls back to the multiplicity of k-mers [15] to correct errors in each read before
forming contigs.

Problems Techniques de Bruijn graph String graph
1) False positive
vertices

(i) Dead-end removal Yes Yes
(ii) Filtering Yes (not effective

if k is large)
Not applicable (relies on
error correction algorithms)

2) Gap No effective method (try to
use a reasonable small k or x)

-- --

3) Branching (i) Using read information Yes Not applicable (already use
the whole read information)

(ii) Bubble removal Yes Yes

Table 1: Major techniques used to handle the three problems.

There is no effective method to deal with the gap problem except all algorithms try
to avoid gaps by using a small k (or x in string graphs).

Some de Bruijn graph algorithms [12] solve the branching problem by considering
only those branches that are supported by reads. However, this method may easily
lead to erroneous contigs [12] if the reads are erroneous especially when error rates
are high. This method cannot be applied to string graph algorithms as they already
consider the read information. The other technique is bubble removal, which is used
by both approaches [7-9] and tries to merge similar paths of very similar vertices into
one path as the small differences may only be due to SNPs or errors. However, the
merging might be incorrect and this process increases the length of contigs at the
expense of their accuracy.

 High Coverage
Low Error Rate

(100x, 0.5%)

Low Coverage
Low Error Rate

(30x, 1%)

High Coverage
High Error Rate

(100x, 2%)

Low Coverage
High Error Rate

(30x, 2%)
Edena (string Graph) 63256 5104 53491 147
Velvet (de Bruijn Graph) 63214 24772 59285 16527
Abyss (de Bruijn Graph) 58678 22109 50009 10992
IDBA (our algorithm) 63218 63218 59287 32612

Table 2: Performance (N50) of three existing assembly algorithms (Edena, Velvet, Abyss)
against IDBA under different coverage and error rates for the simulated dataset using E.coli
where read length is 75nt. The best results generated are used for comparison.

To summarize, string graph algorithms do not have an effective method to remove
errors from reads and have the gap problem if x is set to a reasonable value to avoid
the branching problem. However, string graph algorithms, which make use of the
direct information in the whole read, perform very well in case of high coverage and
low error rate. For other cases, de Bruijn graph algorithms may perform better. Our
observations are confirmed by the N50 comparison of Edena [9] (currently one of the
best string graph algorithms), Velvet [7] and Abyss [8] (the best de Bruijn graph
algorithms) based on different coverage and error rates of the data as shown in Table
2 (more details on the comparison can be found in Section 4.)

The best existing assembly algorithms are Edena (string graph based), Velvet and
Abyss (both de Bruijn graph based, differing in the exact details for handling dead-
ends and bubble removal). However, setting the correct parameter k in de Bruijn
graph algorithms (or x in string graph algorithms) is crucial. The k parameter (or x)
affect the filtering and, moreover, provides a trade-off between the gap problem and
the branching problem. In order to minimize the number of gaps, a smaller k (or x)
should be used. But with a small k (or x), the branching problem becomes more
serious. Existing algorithms usually pick a moderate value for k (or x) to balance
between the two problems. None of the existing approaches try to take advantage of
using different k (or x) values1.

Our contributions:
We propose a new assembly algorithm (IDBA) based on the de Bruijn graph. The
idea is simple but practical in that it alleviates the difficulties in setting a correct k and
the filtering threshold m, gives good results, uses much less memory (many existing
tools require huge amount of memory making them impractical for large genomes) at
the expense of a reasonable increase in running time. Instead of using a fixed k, our
algorithm iterates from small to large k (kmin to kmax) capturing the merits of all values
in between. The key step is to maintain an accumulated de Bruijn graph to carry
useful information forward as k increases. Note that this is not the same as running the
algorithm for many different k values independently as it is not clear how to combine
contigs from different runs to get a better result. We show theoretically that the
accumulated de Bruijn graph can capture good contigs and these contigs can be made
longer as k increases. Based on experiments on simulated and real data, we show that
IDBA can produce longer contigs (see Table 2 for the N50 comparison) with similar
accuracy (very few wrong contigs and high coverage). More detailed results are
presented in Section 4.

We are able to reduce the memory consumption by 50-80% as compared to
existing algorithms which use a fixed k of moderate size. Because k is of moderate
size, the algorithms cannot do filtering in the first step especially when the coverage is
not high and thus create a big graph due to false positive vertices. However, since
IDBA starts with a small k, many false positive vertices are pruned with a
conservative and effective filtering in the first step (e.g., set m=1). Although IDBA
iterates through different k values, with implementation tricks (described in Section 2),
IDBA runs a lot faster than Abyss and is comparable with other existing algorithms.

Organization of the paper and remarks:
We organize the paper as follows. In Section 2, we introduce our algorithm IDBA and
show the advantages of using small and large k values. Also, we provide key
implementation details which help to reduce the memory consumption and running
time. Section 3 compares the performance of IDBA with existing algorithms on both
simulated and real data. We conclude the paper in Section 4.

1 The SHARCGS [5] algorithm uses fixed x values (the number of overlapping nucleotides)

when extending a read, but they repeat the whole assembling procedure independently using
a few different x values and combine the resulting contigs from different runs only.

We note that using mate-pair information to resolve repeats that are longer than
reads is another important aspect of an assembly tool. In this paper, we mainly focus
on short repeats, which account for the largest portion of repeats in genomes and
cannot be resolved by mate-pair information easily as the variation of the insert size
may be even larger than the length of the repeat. We leave the problem of how to use
mate-pair information in assembly more effectively for future study. Hence, the last
step of our assembly tool, which uses mate-pair information to connect the contigs,
simply follows Abyss [8]. Note also that, although our approach can be applied to the
string graph with a range of x values, currently there is no effective way to remove
errors from reads for string graphs, and so we focus on de Bruijn graphs.

2 Algorithm IDBA

Given a set of reads, we denote the de Bruijn graph for any fixed k as Gk. Instead of
using only one fixed k, IDBA (Iterative de Bruijn Graph short read Assembler)
iterates on a range of k values from k = kmin to k = kmax and maintains an accumulated
de Bruijn graph Hk at each iteration. In the first step, k = kmin, Hk is equivalent to the
graph Gk after deleting all vertices whose corresponding k-mers appear no more than
m times (we set m = 1 or 2 in practice depending on the coverage of the input reads)
in all reads. Theorem 3(in the Appendix) shows that these k-mers are very likely to be
false positives.

To construct Hk+1 from Hk, we first construct potential contigs in Hk by identifying
maximal paths v1, v2, …, vp in which all vertices have in-degree and out-degree equal
to 1 except v1 and vp which may have in-degree 0 and out-degree 0, respectively. Note
that a path of p vertices represents a potential contig of length p + k – 1. We remove
all reads that can be represented by potential contigs in Hk i.e. those reads that are
substrings of a contig (as these reads cannot be used to resolve any branch). In the
construction of Hk+1, we only consider the remaining reads and the potential contigs in
Hk. We perform two steps to convert Hk to Hk+1. (1) For each edge (vi, vj) in Hk, we
convert the edge into a vertex (representing a (k+1)-mer xi1 xi2 … xik xjk = xi1 xj1 …xjk).
(2) We connect every two such vertices by an edge if the corresponding two
consecutive (k+1)-mers have support from one of the remaining reads or potential
contigs of Hk, i.e. the corresponding (k+2)-mer exists.

Note that in practice, we do not need to go from k to k+1; we can jump from k to
k+s, in which case, for (1), we convert each path of length s in Hk into a vertex. In
Theorem 5 in the Appendix, we show that by setting s = 1, we may get high quality
contigs. As s increases, we expect the quality of contigs will drop, so it is always
better to use a small s. The choice of s will represent a trade-off on the efficiency of
the algorithm and the quality of the contigs.

For each Hk, we follow other algorithms [7] to remove dead-ends (potential contig
shorter than 3k – 1 with one end with 0 in-degree or out-degree, which represents a
path in Hk of length at most 2k). Note that removing a dead-end may create more
dead-ends, the procedure will repeat until no more dead-ends exist in the graph. These
dead-end contigs are likely to be false positives (to be discussed in the Appendix). In
fact, most of the remaining false positive vertices after the first filtering step can be

removed as dead ends and the accuracy of the contigs produced by IDBA is high.
After obtaining Hkmax, we merge bubbles where bubbles are two paths representing
two different contigs going from the same vertex v1 to the same vertex vp where these
two contigs differ by only one nucleotide. This scenario is likely to be caused by an
error or a SNP. Like other assembly algorithms [7-9], we merge the two contigs into
one. We base on mate-pair information to connect the contigs as much as possible by
using a similar algorithm as Abyss[8] and report the final set of contigs.

Algorithm IDBA:
1 k <- kmin (kmin = 25 by default)
2 Filter out k-mers appearing <= m times
3 Construct Hkmin
4 Repeat
5 a) Remove dead-ends with length < 2k
6 b) Get all potential contigs
7 c) Remove reads represented by potential contigs
8 d) Construct Hk+s (s = 1 by default)
9 e) k <- k + s
10 Stop if k >= kmax (kmax = 50 by default)
11 Remove dead-end with length shorter than 2kmax
12 Merge bubbles
13 Connect potential contigs in Hkmax using mate-pair information
14 Output all contigs

Note that the probability of removing a true positive vertex in our filtering step is
very low (Theorem 3 in Appendix A.3 gives the analysis) as long as kmin and the
filtering threshold m are set to a reasonable value (e.g. m = 1). For example, if 1.6×106
length-75 reads are sampled from a genome of length 4.1×106 (45x coverage) with
error rate 1%, the probability of filtering out a true positive vertex in H25 is 1.14×10-9,
i.e. the expected number of false negative vertices is 0.0047 << 1 which is very small.
Even for some cases where the expected number of false negative vertices is large,
say 10, it is still relatively very small when compared with the genome size. Thus, for
simplicity in analysis, we assume there is no false negative vertex in Hkmin. The
filtering step can remove a large portion of the false positive vertices. Most of the
remaining false positive vertices are removed in later steps by dead-ends The
probability of removing a correct contig as a dead-end is also small (see Theorem 4 in
Appendix A.3 for the exact calculation of the probabilities). The probability of
determining a dead-end wrongly is only 2.46×10-4 when the above example is
considered.

Due to the gap problem a contig that appears in Gk, for a small k, might not be a
contig in Gk' for k'>k. However, in IDBA, if a contig c appears in Hk, there must be a
contig c’ in Hk’ containing c (Theorem 1). That is, the contig information is carried
over from Hk to Hk’. As k increases, more branches can be resolved while the gaps
solved when k is small in previous iterations will be preserved.

Theorem 1: Assume that kmin = k and k < k’. If there is a contig c in Gk of length at
least 3kmax – 1 with all true positive vertices, there must be a contig c’ in Hk’ such that
c’ contains c.

Proof: By induction on k. Let k’ = k + 1 and c = x1x2…xp+k–1 be a contig in Hk
represented by the path p = (v1, v2, …, vp), all vertices v1, v2, …, vp have in-degree and
out-degree ≤ 1, it is easy to see that the path p’ = (v1’, v2’, …, vp–1’) in Hk+1 where
each (k+1)-mer vi’ = xixi+1…xi+k also has in-degree and out-degree ≤ 1. As the length
of the contig represented by path p’ ≥ 3kmax – 1, there must be a contig including path
p, i.e. c, in Hk+1. �

Corollary: Hkmax must contain all contigs in Gkmin of length at least 3kmax – 1 with all
true positive vertices.

In practice Hkmax always contains longer contigs than Gkmin by resolving branches at

each iteration. As Figure 1 shows, by iterating the graph Hk towards larger k, we may
get longer and longer contigs as some of the branches (e.g. length-k repeat region
(Case 1) and error branches in Hk+1 (Case 2)) may be resolved when using a larger k.

Fig. 1. Two cases for having longer contigs

Case 1: Let c1 = s1vrs2 and c2 = s3vrs4 be two substrings in the genome where vr is a
common length-k substring representing a repeat region, s1, s2, s3, s4 are different
substrings. c1 and c2 are represented by five contigs in Hk as the k-mer vr has in-degree
of 2 and out-degree of 2. If there are two correct reads containing vr and its 2
neighboring nucleotides at both ends in c1 and c2 respectively, and there is no error
read containing s1vrs4 or s3vrs2, then there must be two contigs, one containing c1 and
the other containing c2 in Hk+1.

Case 2: Let c be a contig in Hk that stops before vertex u whose in-degree is 1 and
out-degree is >1. Assume that among all branches of u, only u to v is correct. If there
is a correct read containing u and its 2 pairs of neighboring nucleotides at both ends
and there is no error read linking c with other branches, there will be a longer contig
c’ in Hk+1 that contains c.

Case 1 and Case 2 prove the following theorem.

Theorem 2: If there is a contig c in Gk of length at least 3kmax – 1 with all vertices are
true positive which satisfies case 1 or case 2 in Hk’, k = kmin ≤ k’ < kmax, there is a
longer contig c’ in Hkmax that contains c.

Case 1:

s1

v

s2

s3 s4

s1v vs2

s3v vs4

Case 2:
c u

v

cu

uv Hk
Hk+1

In the algorithm, we increase the value of k by 1 at each iteration, i.e. s = 1.
Theorem 5 in Appendix A.3 shows that for a better quality of the contigs, this is
essential. On the other hand, as a trade-off between the efficiency of the algorithm
and the quality of the contigs, it is possible to set s > 1, i.e. to increase the value of k
by more than 1 at each iterative step.

2.1 Implementation details

The memory used by IDBA is only about 20-30% of that used by the other existing
tools because 80% of false positive vertices are removed in the filtering step (line 2 in
algorithm IDBA) and IDBA uses a compact hash table to represent de Bruijn graph
implicitly with each edge represented by one bit only.

Although IDBA constructs Hkmax from Hkmin step by step, the running time of
IDBA is not directly proportional to the number of k values between kmax and kmin.
According to Theorem 1, a contig in Hk is also a contig in Hk+1, thus IDBA only needs
to check whether a branch in Hk can be resolved in Hk+1. Since reads represented by a
contig are removed in each iteration, the number of reads in each iteration decreased.
In practice, about half of the reads are removed when constructing Hkmin+1 and IDBA
runs much faster than Abyss, and about three times slower than Velvet.

3 Experimental Results

The genome of Escherichia coli (O157:H7 str. EC4115) from NCBI [16] is used for
simulated experiments (the genome length is 5.6 M). Reads are randomly sampled
uniformly with coverage 30x. In our experiments, we generated reads with error rates
1%, read length 75 and insert distance 250. Note that we have repeated the
experiments using other coverage (e.g. 50x, 100x), error rates (e.g. 2%) and read
length (e.g. 50). The results are similar, so we only show the result for 30x coverage
with 1% error on length-75 reads. We also use a real data set, namely Bacillus Subtilis,
to evaluate our algorithm. The length of the genome is 4.1M. The reads are sequenced
using Solexa machine with coverage 45x, read length 75 and insert distance 400. The
estimated error rate is about 1%.

3.1 Simulated data

We compare the performance of Velvet2, Abyss3, Edena and our algorithm IDBA on
the simulated data based on different k values (or x values). For IDBA, we fix kmin =
25, m = 1 and compare the performance of IDBA with different kmax. For the other
algorithms, defaults parameters provided by the assemblers are used. We also plot the

2 Since pair-end version of Velvet performs not well and pair-end version of Abyss outperforms Velvet in the

quality of results, we only show result of single-end version of Velvet.
3 Since SHARCGS is too slow and Abyss applies a similar idea as Euler with better performance, we leave

SHARCGS and Euler out of our comparison.

upper bound that can be achieved by building an ideal de Bruijn graph with no false
positive or false negative vertices and edges and produce all single paths as contigs.

We calculate N50 and coverage only for valid contigs which are longer than 100
bps and can be aligned to the reference with 99.9% similarity. Figure 2(a) shows the
comparison of the algorithms based on N50. As we mentioned in the introduction
(Section 1), existing assembly algorithms have many false positive vertices and
branching problems when k is small and they have many gaps when k is large. Thus
these algorithms have the best performance (largest N50) for in-between values of k
(the optimal k for Velvet, Edena and Abyss are 35, 40 and 40 respectively in this data
set). Since IDBA considers a range of k values, its performance is better than the
others even when considering a range of 10 values for k (kmin = 25 and kmax = 35).
Furthermore, when IDBA considers a larger range for k (kmin = 25 and kmax = 50), its
performance is close to the upper bound. We have only 10 false positive contigs when
setting kmin = 25 and kmax = 50 while Abyass, Velvet and Edena produce 489, 19 and
650 false positive contigs respectively.

Fig. 2. (a) N50 for contigs produced by assembly algorithms with different k-values (x-values if
the software is string graph based) on simulated data using E.coli as the reference genome
where read length is 75nt, coverage is 30x and error rate is 1%. (IDBA-pe and abyss-pe are the
results for using mate-pair information to extend the contigs while Edena does not use mate-
pair information) (b) N50 for contigs produced by assembly algorithms with different k (or x)
values on real data from bacillus subtilis where read length is 75nt, coverage is 45x and error
rate is 1%.

 Time Memory k Contigs Coverage
Number N50 Max length False pos. contigs (total len.)

Velvet 155s 1641M 35 1412 24772 127265 70(35589) 95.29%
Edena 957s 678M 40 4672 5104 46908 650 (72019) 97.22%
IDBA 371s 360M 25–50 1563 63218 217365 9(4654) 97.96%
IDBA-pe 412s 360M 25–45 709 105579 217365 43 (164120) 93.94%
Abyss 1114s 1749M 40 1390 22109 87118 66 (34998) 95.05%
abyss-pe 1237s 1749M 40 484 59439 226626 186 (352437) 91.39%
upper-bound -- -- 50 1561 63218 217365 0 (0) 99.11%

Table 3. Statistics of optimal (w.r.t. N50) result of each algorithm for simulated data

For IDBA and Abyss, we also apply the mate-pair information to connect the
resulting contigs to make them longer. The results are shown in the same graph
(IDBA-pe and abyss-pe). Note that as k increases, the N50 may drop when applying
the mate-pair procedure since more branches have been resolved incorrectly and some
short contigs are removed as dead-ends. In fact, further research is required on how to
use mate-pair information effectively for assembly. The pair-end version of Abyss has
optimal result when k is 35 while IDBA has optimal result when k is 45.

Table 3 shows a comprehensive statistics on the performance of the algorithms on
their optimal k values (w.r.t. N50). IDBA produced much longer contigs than all other
algorithms. When mate-pair information is not available, the N50 of IDBA (63218) is
about three times that of the next best algorithm (24772 by Velvet) and is the same as
the upper bound. IDBA also produced the fewest number of wrong contigs (a contig
which cannot be aligned to the reference genome with 99.9% similarity) and the total
length of all wrong contigs is only about 4500nt which is much less than the other
algorithms. The coverage of IDBA is also the best among all algorithms. Since IDBA
performs well on assembling single end reads, it outperforms other algorithms even
when use mate-pair information. To conclude, IDBA outperforms other algorithms
substantially and produces much longer contigs with higher accuracy.

3.2 Real data

Figure 2(b) shows the N50 of the contigs produced by Velvet, Abyss, Edena and our
algorithm IDBA on the real reads from Bacillus Subtilis using different k values (x
values). Since the reads may not be uniformly sampled in the real data set, we use a
smaller kmin (20nt) and keep m = 1 to run IDBA. For the other algorithms, we use their
default parameters except for k. We do not have the reference genome to check if a
contig is valid. We calculate the N50 for all reported contigs longer than 100bp. Note
that the result may not be accurate, because some algorithms may produce longer but
invalid contigs. The results are consistent with that of the simulated data. Velvet,
Edena and Abyss get their best performance when k = 40, 40 and 45 respectively.
IDBA can keep improving the result while kmax is increasing.

In this data set, mate-pair information is not so useful for IDBA because using read
information can already solve most of the branches. When using kmax equal to 50, the
N50 pair-end version of IDBA produced is 30% longer than single end version. The
performance of mate-pair version Abyss has similar performance as in simulated data.
Its optimal k is 35, and the longest N50 it produces is even shorter than single end
IDBA. In conclusion, IDBA produced the longest contigs among all algorithms. A
detailed comparison is given in Table 4 in Appendix A.2.

3.3 Running time and memory consumption

Other than Abyss (12.8 minutes – 7 hours for simulated data and 10 minutes – 1.2
hours for real data depending on the value of k), the running time of other algorithms
are more or less the same. Abyss runs much slower when k is small, probably due to
its slow procedure for dealing with graphs with many false positive vertices. Velvet
(120 – 220 seconds for simulated data and 130 – 200 seconds for real data) is the
fastest among all algorithms. IDBA (180 – 350 seconds for simulated data and 280 –

330 seconds for real data) runs faster than Abyss and is about three times slower than
Velvet. Refer to Figures 3 and 4 in the Appendix for details.

The memory consumption is about the same for different k values across the
existing algorithms. Abyss and Velvet require about 2G bytes of memory for
simulated data and 1G memory for real data. IDBA only requires about 400M and
300M respectively because 80% of false positive vertices are removed in the first
filtering step. Note that only 8 25-mers are removed incorrectly in simulated data set
(it matches with expected number 8.88 calculated in Theorem 3). So, the memory
consumption of IDBA is only about 20 – 30% of the existing de Bruijn graph tools.
Edena consumes less memory than Abyss and Velvet because the number of reads is
small, but still double the size used by IDBA. Refer to Tables 3 in Section 3.2 and
Table 4 in the Appendix for details.

4 Conclusions

Our IDBA algorithm, based on de Bruijn graphs, can capture the merits of all k values
in between kmin and kmax to achieve a good performance in producing long and correct
contigs. Because the initial filtering step removes many false positive k-mers and the
number of reads considered at each iterative step is reduced, the required memory and
running time is much reduced. Though an accumulated de Bruijn graph is maintained
at each iterative step, the running time is comparable with the existing algorithms. In
fact, this running time can be further reduced if, say, one or two k values are skipped
at each iterative step. In practice, the quality of the result is only slightly affected by
the skipping of values, in exchange for shorter running time.

Our next target is to investigate how to better use mate-pair information for
resolving long repeats in order to produce even longer and more accurate contigs.

References

1. Wang, J., et al., The diploid genome sequence of an Asian individual. Nature, 2008.
456(7218): p. 60-5.

2. Chaisson, M.J., D. Brinza, and P.A. Pevzner, De novo fragment assembly with short mate-
paired reads: Does the read length matter? Genome Res, 2009. 19(2): p. 336-46.

3. Warren, R.L., et al., Assembling millions of short DNA sequences using SSAKE.
Bioinformatics, 2007. 23(4): p. 500-1.

4. Jeck, W.R., et al., Extending assembly of short DNA sequences to handle error.
Bioinformatics, 2007. 23(21): p. 2942-4.

5. Dohm, J.C., et al., SHARCGS, a fast and highly accurate short-read assembly algorithm
for de novo genomic sequencing. Genome Res, 2007. 17(11): p. 1697-706.

6. Chaisson, M.J. and P.A. Pevzner, Short read fragment assembly of bacterial genomes.
Genome Res, 2008. 18(2): p. 324-30.

7. Zerbino, D.R. and E. Birney, Velvet: algorithms for de novo short read assembly using de
Bruijn graphs. Genome Res, 2008. 18(5): p. 821-9.

8. Simpson, J.T., et al., ABySS: a parallel assembler for short read sequence data. Genome
Res, 2009. 19(6): p. 1117-23.

9. Hernandez, D., et al., De novo bacterial genome sequencing: millions of very short reads
assembled on a desktop computer. Genome Res, 2008. 18(5): p. 802-9.

10. Chaisson, M., P. Pevzner, and H. Tang, Fragment assembly with short reads.
Bioinformatics, 2004. 20(13): p. 2067-74.

11. Butler, J., et al., ALLPATHS: de novo assembly of whole-genome shotgun microreads.
Genome Res, 2008. 18(5): p. 810-20.

12. Pevzner, P.A., H. Tang, and M.S. Waterman, An Eulerian path approach to DNA
fragment assembly. Proc Natl Acad Sci U S A, 2001. 98(17): p. 9748-53.

13. Idury, R.M. and M.S. Waterman, A new algorithm for DNA sequence assembly. J Comput
Biol, 1995. 2(2): p. 291-306.

14. Myers, E.W., The fragment assembly string graph. Bioinformatics, 2005. 21 Suppl 2: p.
ii79-85.

15. Chin, F.Y., et al., Finding optimal threshold for correction error reads in DNA assembling.
BMC Bioinformatics, 2009. 10 Suppl 1: p. S15.

16. http://www.ncbi.nlm.nih.gov/.

Appendix

A.1 Running Times of the Assembly Algorithms

Figure 3 and Figure 4 show the running time of IDBA and existing assembly
algorithms, Velvet, Abyss and Edena on the simulated data set and the real data set.
From the figures, we can see that IDBA has similar running time as other assembly
algorithms except Abyss which takes a very long time when k is small due to a
complicated method for removing dead-ends.

Fig. 3. Running time of assembly algorithms with different k (or x) values on
simulated data.

Abyss took longer than 2000
seconds when k smaller than
40. (It took 27000 seconds
when k = 25)

Fig. 4. Running time of assembly algorithms with different k (or x) values on real data.

A.2 Detailed comparison of the Assembly Algorithms for real data

In Table 4, we show comprehensive statistics on the performance of the algorithms on
their optimal k value (w.r.t. N50) for the real dataset. IDBA produced much longer
contigs than all other algorithms no matter whether the single-end or the pair-end
version is used. The result is consistent with that of the simulated dataset.

Time Memory k

Contigs
Total No. N50 Max length

Velvet 150s 893M 40 335 57656 181399
Edena 649s 632M 40 926 19423 66455
IDBA 325s 310M 25 – 50 267 140067 602412
IDBA-pe 361s 310M 25 – 50 203 187648 613166
Abyss 729s 923M 40 445 30081 134067
Abyss-pe 3766s 936M 35 406 120807 537397

Table 4. Statistics for the optimal (w.r.t. N50) result of each algorithm for real data.

A.3 Theorems and proofs

Theorem 3: Assume m is the filtering threshold, the probability that a kmin-mer v in
the genome (except the first l – kmin and last l – kmin kmin-mer in the whole genome)
does not appear in Hkmin (false negative) when t length-l reads are uniformly sampled

from a length-g genome with error rate e is at most ∑ =
m
i 0 (i

t iti pp −−)1() where
min)1()]1/()1[(min

kelgklp −⋅+−+−= .

Proof:

)sampled is contain not does read|sampled is Pr()sampled is contain not does readPr(

)sampled is contains read|sampled is Pr()sampled is contains readPr(

read) ain sampled is Pr(

vvv

vvv

v

+
=

Abyss took longer than
1600 seconds when k
smaller than 40. (It took
8000 seconds when k =
30)

min)1(
1

1

)sampled is contains read|sampled is Pr()sampled is contains readPr(

min ke
lg

kl

vvv

−⋅
+−
+−≥

≥

The probability that a correct kmin-mer v appears no more than m times is at most

∑
=

−−






m

i

iti pp
i

t

0

)1(where min)1(
1

1min ke
lg

kl
p −⋅

+−
+−= �

Theorem 4: Assume that a contig c in Hk is treated as dead-end and removed. The
probability that c is a correct contig is less than

t

ke
lg

kl








−⋅

+−
−−− +3)1(

1
2

12

Proof: A contig c in Hk is treated as dead-end only if c is of length less than 3k – 1
and is not a dead end in Hk–1. Since all contigs in Hk–1 are preserved in Hk, c is
removed because (1) the length of c is at least 3(k – 1) – 1 and shorter than 3k – 1, or
(2) c is shorter than 3(k – 1) – 1 and one of its ends has 0 in-degree or out-degree in
Hk. Thus c will not be treated as a dead-end if the two adjacent (k+3)-mers of c is
sampled. By considering kmin = k + 3 and m = 0 in Theorem 1, the probability that no
read contains a particular (k+3)-mer is at most









−⋅

+−
−−− +3)1(

1

2
1 ke

lg

kl

and the probability that no read contains a particular (k+3)-mer cover a particular end
of c is at most

t

ke
lg

kl








−⋅

+−
−−− +3)1(

1
2

12 �

Fig. 5. Cases that a longer contig in Hkmax,1 does not exist in Hkmax,2.

Let Hk,s denote the accumulated de Bruijn graph Hk with step size s. Theorem 5
shows that Hkmax,1 has at most the same number of gaps as Hkmax,2. There are some
cases (Figure 5) that there is a longer contig in Hkmax,1 which is not in Hkmax,2. For
example, consider a contig c in Hk which stops before vertex u whose in-degree = 1

Hkmax–2

c2u c1c2
 uv vw

c2uv c1c2u
 uvw

u

v

c1 c2

w

c2uv c1c2u
 uvw

Hkmax–1,1 Hkmax,1

Hkmax,2

and out-degree >1 and all branches of u are shorter than 2k and only u to v is correct.
If there is only two reads contains u and its 2 pairs of neighboring nucleotides at two
ends respectively and there is no error read linking c with other branches, there is a
longer contig c’ in Hk+2,1 that contains c which does not appear in Hk+2,2.

Theorem 5: If a kmax-mer (kmax+1-mer) in the genome appears in Hkmax,2, it also
appears in Hkmax,1.

Proof: By induction on kmax. Consider kmax = kmin + 2. Given a kmax-mer ((kmax+1)-mer)
v does not appear in Hkmax,1, let v’ be the shortest substring of v of length-k which does
not appear as a vertex in Hk,1 or an edge in Hk–1,1, kmin ≤ k ≤ kmax.

Case 1: k = kmin, i.e. v’ does not appear in Hkmin,2, v does not appear in Hkmax+1,2.
Case 2: k = kmin+1, there are two cases: (a) v’ does not appear in Hkmin,1 as an edge

or (b) v’ is a vertex on a dead-end with length less than 2(kmin+1) in Hkmin+1,1. In case
(a), since any (kmin+2)-mer contains v’ as substring does not appear in Hkmax,2, v does
not appear in Hkmax,2. In case (b), v is a vertex on a dead-end with length less than
2(kmin+2) in Hkmax,2 which will be removed.

Case 3: k = kmin+2, there are two cases: (a) v does not appear in Hkmin+1,1 as an edge
or (b) v is a vertex on a dead-end with length less than 2(kmin+2) in Hkmin+2,1. In case (a),
consider the path (v1, v2, v3) in Hkmin,1 representing the (kmin+2)-mer v. Since v does not
appear in Hkmin+1,1 as an edge, v2 has >1 in-degree or out-degree and there is no read
containing v’ as subsring. Thus the in-degree and out-degree of v are 0 in Hkmax,2 and v
will be removed as dead-end. In case (b), v is a vertex on a dead-end with length less
than 2(kmin+2) in Hkmax,2 which will be removed.

Case 4: k = kmin+3, i.e. v does not appear in Hkmax,1 as an edge, the path (v1, v2, v3, v3)
in Hkmin,1 representing the (kmin+3)-mer v is not a potential contig and there is no read
containing v as a substring. Thus v does not appear in Hkmax,2 as an edge. �

