IDBA - A Practical Iterative de Bruijn Graph De Novo
Assembler

Yu Peng, Henry C.M. Leung, S.M. Yiu, Francis Y.Lhi€

Department of Computer Science, The University ofiglong
Pokfulam Road, Hong Kong
{ypeng, cmleung2,smyiu,chin}@cs.hku.hk

Abstract. The de Bruijn graph assembly approach breaks readsk-mers
before assembling them into contigs. The stringlgrapproach forms contigs
by connecting two reads wittk or more overlapping nucleotides. Both
approaches must deal with the following problerasse-positive vertices, due
to erroneous reads; gap problem, due to non-unifooverage; branching
problem, due to erroneous reads and repeat regiomsoper choice ok is
crucial but for singlk there is always a trade-off: a smiallavors the situation
of erroneous reads and non-uniform coverage, datjak favors short repeat
regions.

We propose an iterative de Bruijn graph approadtatiteg from small to
large k exploring the advantages of the in between valu@sr IDBA
outperforms the existing algorithms by constructiogger contigs with similar
accuracy and using less memory, both with real aimculated data. The
running time of the algorithm is comparable to 8#rgg algorithms.

Availability: IDBA is available at http://www.cs.hku.hk/~alse/idba

Keywords: De novo assembly, de Bruijn graph, string graph,erpair, high
throughput short reads

1 Introduction

Despite tremendous research efforts, de novo asgemimains an only partially
solved problem. Although more reference genomes ka@vn for efficient re-
sequencing, de novo assembly remains a criticgh &te studying a genome.
Applications such as detection of structural vésiag [1] cannot be done easily based
on resequencing techniques and there are eviddhaesshow genome assembly
based on resequencing may produce errors espeftalypecies with high mutation
rates [1].

With high throughput sequencing technologies (dugnina Genome Analyzer and
Applied Biosystems SOLID), mate-pair short readsn{3to 75nt) of a mammalian
genome can be generated in a few weeks at low Assshort reads have different
characteristics (i.e. shorter length, higher cogeraut relatively higher error rates)
when compared to traditional Sanger reads, newrddgdools have emerged [2-11].
The first batch of tools (e.g. SSAKE [3], VCAKE [4BHARCGS [5]) uses the

“overlap-then-extend” idea but need to rely on ddtactures such as prefix trees, so
they require lots of memory and run very slowly.eTiewer tools are divided into
those based on the de Bruijn graph (e.g. Velvet Mjyss [8], Euler-SR[2, 6],
AllPaths[11]) and those based on the string grapb. (Edena [9]). Each of the two
approaches has merits and limitations, and it i<lear which is better.

De Bruijn graph algorithmg7-8, 12-13] assemble reads by constructing a de
Bruijn graph in which each vertex represents atlekgubstring k-mer) in a length-
read and connects vertaxo vertexv if u andv areconsecutive k-meiis a read, i.e.
the last k — 1) nucleotides of themer represented hyis the same as the fird{ 1)
nucleotides of theék-mer represented by. Intuitively, maximal paths of vertices
without branches in the graph correspond to comtigse outputted by algorithms.

String graphalgorithms [9, 14] represent each read by a vertex and tlee
directed edge from vertaxto vertexv if the suffix of at leask nucleotides of read
is the same as the prefix of readThe value of x is the number of overlapping
nucleotides for two consecutive reads. Similar @oBttuijn graph algorithms, string
graph algorithms report maximal paths without brescas a contigs.

When the reads are error-free with high coveragestriools work well. However,
because of repeats, erroneous reads, and non+ariforerage, their performances is
not always acceptable. In this paper, we focushwaet major problems: (Ifplse
positive verticegdue to errors in reads); (8ap problem(due to non-uniform or low
coverage) and; (Hranching problenfdue to repeats or errors in reads).

Three major problems:

(a) False Positive VerticesErrors in reads introduce false positive vertigdsch
make both graphs bigger and consume more memoryexample, for the human
genome with 30x coverage, the memory requirementadfet [7] and Abyss[8] is
more than 250G.

(b) Gap problemDue to non-uniform or low coverage, reads mayhbesampled for
every position in the genome. For the de Bruijnprawvhen all the (possible— k)
reads covering consecutikemers are missing, we may have short “dead-endispat
The larger the&, the more serious is the gap problem. The samieapp the string
graph if all the (possible—x) reads following another read are missing.

(c) Branching problem Thosek-mers which connect with multiple-mers due to
repeat regions or erroneous reads introduce branichthe de Bruijn graph. Many
algorithms [7-9] stop the contigs at branches ansl mot possible to extend a contig
without additional information. A smak will lead to more branches. The same
branching problem occurs in string graph algorithamsl depending on the valuexpf
the same read can be connected with multiple odzats.

Existing assembly algorithms:

Table 1 summarizes the major techniques used kstimgialgorithms to solve the
above problems. There are two methods for handdilsg positive vertices. (Dead-
end removal False positive vertices usually lead to shortddead paths. Both de
Bruijn and string algorithms (e.g. [7-8]) removdsta positive vertices by removing
these paths. However, due to the gap problem, suaties may be removed by
mistake. (2)Filtering: de Bruijn graph algorithms remove false positreetices if the
corresponding-mers appear no more thamtimes. However, some correlcimers

with low coverage might also be removed especiédly large k for which the
expectedk-mer occurrence frequency is low. As for stringpdraalgorithms, the
expected occurrence of each read is also low @) and they rely on error correction
which falls back to the multiplicity of k-mers [15 correct errors in each read before
forming contigs.

Problems Techniques de Bruijn graph String graph
1) False positive (i) Dead-end removal Yes Yes
vertices (ii) Filtering Yes (not effective Not applicable (relies on
if kis large) error correction algorithms)
2) Gap No effective method (try to-- --
use a reasonable smialbr x)
3) Branching (i) Using read information Yes Not bgable (already use
the whole read information)
(ii) Bubble removal Yes Yes

Table 1: Major techniques used to handle the three problems

There is no effective method to deal with the gegbfem except all algorithms try
to avoid gaps by using a smkl{or x in string graphs).

Some de Bruijn graph algorithms [12] solve the bhamg problem by considering
only those branches that are supported by readsetdr, this method may easily
lead to erroneous contigs [12] if the reads arermwous especially when error rates
are high. This method cannot be applied to striraplg algorithms as they already
consider the read information. The other technigugubble removalwhich is used
by both approaches [7-9] and tries to merge simpigahs of very similar vertices into
one pathas the small differences may only be due to SNPsrmars. However, the
merging might be incorrect and this process in@gabe length of contigs at the
expense of their accuracy.

High Coverage Low Coverage High Coverage Low Coverage
Low Error Rate Low Error Rate High Error Rate High Error Rate

(100x, 0.5%) (30x, 1%) (100x, 2%) (30x, 2%)
Edena (string Graph) 63256 5104 53491 147
Velvet (de Bruijn Graph) 63214 24772 59285 16527
Abyss (de Bruijn Graph) 58678 22109 50009 10992
IDBA (our algorithm) 63218 63218 59287 32612

Table 2: Performance (N50) of three existing assembly dlgms (Edena, Velvet, Abyss)
against IDBA under different coverage and errorgdte the simulated dataset using E.coli
where read length is 75nt. The best results gezgteate used for comparison.

To summarize, string graph algorithms do not haveféective method to remove
errors from reads and have the gap problerisf set to a reasonable value to avoid
the branching problem. However, string graph atbars, which make use of the
direct information in the whole read, perform vevgll in case of high coverage and
low error rate. For other cases, de Bruijn gragohms may perform better. Our
observations are confirmed by the N50 comparisofdena [9] (currently one of the
best string graph algorithms), Velvet [7] and Aby8% (the best de Bruijn graph
algorithms) based on different coverage and eatasrof the data as shown in Table
2 (more details on the comparison can be founceti@n 4.)

The best existing assembly algorithms are Edemnadsgraph based), Velvet and
Abyss (both de Bruijn graph based, differing in theact details for handling dead-
ends and bubble removal). However, setting theecbrparametek in de Bruijn
graph algorithms (ox in string graph algorithms) is crucial. The k paeder (or x)
affect the filtering and, moreover, provides a &adf between the gap problem and
the branching problem. In order to minimize the bemof gaps, a smallés (or x)
should be used. But with a sm#l(or x), the branching problem becomes more
serious. Existing algorithms usually pick a moderaalue fork (or x) to balance
between the two problems. None of the existing aaghies try to take advantage of
using differenk (or x) values.

Our contributions:

We propose a new assembly algorithm (IDBA) basedhende Bruijn graph. The
idea is simple but practical in that it alleviatbe difficulties in setting a correktand
the filtering thresholdm, gives good results, uses much less memory (mzisyire
tools require huge amount of memory making thenraoiical for large genomes) at
the expense of a reasonable increase in running fimstead of using a fixek] our
algorithm iterates from small to largekin t0 ke Capturing the merits of all values
in between. The key step is to maintain an accutedlae Bruijn graph to carry
useful information forward asincreases. Note that this is not the same asmgrthi
algorithm for many differenk values independently as it is not clear how to lmiom
contigs from different runs to get a better resMite show theoretically that the
accumulated de Bruijn graph can capture good cemtigl these contigs can be made
longer ak increases. Based on experiments on simulatedesmidiata, we show that
IDBA can produce longer contigs (see Table 2 fer 60 comparison) with similar
accuracy (very few wrong contigs and high coveragédre detailed results are
presented in Section 4.

We are able to reduce the memory consumption bB®0-as compared to
existing algorithms which use a fixédof moderate size. Becaukds of moderate
size, the algorithms cannot do filtering in theffistep especially when the coverage is
not high and thus create a big graph due to fatsitipe vertices. However, since
IDBA starts with a small k, many false positive tegs are pruned with a
conservative and effective filtering in the firdéep (e.g., set m=1). Although IDBA
iterates through differetvalues, with implementation tricks (described et%on 2),
IDBA runs a lot faster than Abyss and is comparabita other existing algorithms.

Organization of the paper and remarks:

We organize the paper as follows. In Section 2intreduce our algorithm IDBA and
show the advantages of using small and lakgealues. Also, we provide key
implementation details which help to reduce the mwgntonsumption and running
time. Section 3 compares the performance of IDB#hwiisting algorithms on both
simulated and real data. We conclude the papeedtich 4.

1 The SHARCGS [5] algorithm uses fixedvalues (the number of overlapping nucleotides)
when extending a read, but they repeat the whalenalsling procedurimdependentlysing
a few differentx values and combine the resulting contigs fromedéit runs only.

We note that using mate-pair information to resalepeats that are longer than
reads is another important aspect of an assemblyltothis paper, we mainly focus
on short repeats, which account for the largestigorof repeats in genomes and
cannot be resolved by mate-pair information eaadlythe variation of the insert size
may be even larger than the length of the repeatla&ve the problem of how to use
mate-pair information in assembly more effectividy future study. Hence, the last
step of our assembly tool, which uses mate-paorinétion to connect the contigs,
simply follows Abyss [8]. Note also that, althoughr approach can be applied to the
string graph with a range of values, currently there is no effective way to ogm
errors from reads for string graphs, and so wedasude Bruijn graphs.

2 Algorithm IDBA

Given a set of reads, we denote the de Bruijn gfaplany fixedk asGy. Instead of
using only one fixedk, IDBA (Iterative de Bruijn Graph short read Assdenp

iterates on a range &fvalues fronk = Ky, to k = knax and maintains aaccumulated
de Bruijn graphH, at each iteration. In the first stdp= Kmin, Hk is equivalent to the

graphGy after deleting all vertices whose correspondingers appear no more than
m times (we setn = 1 or 2 in practice depending on the coveragefinput reads)

in all reads. Theorem 3(in the Appendix) shows thatek-mers are very likely to be
false positives.

To construcHy,; from Hy, we first construct potential contigs lfy by identifying
maximal pathsn, v, ..., v, in which all vertices have in-degree and out-degrgual
to 1 excepw, andv, which may have in-degree 0 and out-degree 0, réispsc Note
that a path op vertices represents a potential contig of lenqgthk — 1. We remove
all reads that can be represented by potentialigoim H, i.e. those reads that are
substrings of a contig (as these reads cannot &g tasresolve any branch). In the
construction oHy.;, we only consider the remaining reads and thenpiatecontigs in
Hi. We perform two steps to convedtf to Hy.;. (1) For each edges(v;) in Hy, we
convert the edge into a vertex (representinkta }-merx; X ... X Xk = Xi1 X1 -+ Xjk)-

(2) We connect every two such vertices by an edgthe corresponding two
consecutive K+1)-mers have support from one of the remainingisear potential
contigs ofH,, i.e. the correspondingg{2)-mer exists.

Note that in practice, we do not need to go floto k+1; we can jump fronk to
k+s, in which case, for (1), we convert each patheofgths in Hy into a vertex. In
Theorem 5 in the Appendix, we show that by setdrgl, we may get high quality
contigs. Ass increases, we expect the quality of contigs wibpd so it is always
better to use a smal The choice of will represent a trade-off on the efficiency of
the algorithm and the quality of the contigs.

For eachH,, we follow other algorithms [7] to remove dead-gifdotential contig
shorter than B— 1 with one end with 0 in-degree or out-degrekictv represents a
path inH, of length at most k). Note that removing a dead-end may create more
dead-ends, the procedure will repeat until no nde@d-ends exist in the graph. These
dead-end contigs are likely to be false posititesé discussed in the Appendix). In
fact, most of the remaining false positive vertiedtgr the first filtering step can be

removed as dead ends and the accuracy of the sgmtigluced by IDBA is high.
After obtainingHy,., we mergebubbleswhere bubbles are two paths representing
two different contigs going from the same vertgxo the same vertex, where these
two contigs differ by only one nucleotide. This isago is likely to be caused by an
error or a SNP. Like other assembly algorithms];7w& merge the two contigs into
one. We base on mate-pair information to connexttintigs as much as possible by
using a similar algorithm as Abyss[8] and repoet final set of contigs.

Algorithm IDBA:
k <- Kpin (Knin = 25 by default)
Filter out k-mers appearing <= mtines
Construct H,,
Repeat
a) Renmove dead-ends with | ength < 2k
b) Get all potential contigs
c) Renove reads represented by potential contigs
d) Construct Hus (s = 1 by default)
e) k <- k +s
10 Stop if k >= Kpex (Kmex = 50 by defaul t)
11 Renove dead-end with | ength shorter than 2Kkgay
12 Merge bubbl es
13 Connect potential contigs in H., using mate-pair informtion
14 CQutput all contigs

O©CoOoO~NOYUTh, WN PP

Note that the probability of removing a true pastivertex in our filtering step is
very low (Theorem 3 in Appendix A.3 gives the asidy as long a&.,, and the
filtering thresholdm are set to a reasonable value (g 1). For example, if 1.6x£0
length-75 reads are sampled from a genome of ledtklG (45x coverage) with
error rate 1%, the probability of filtering outraié positive vertex ittys is 1.1410°,
i.e. the expected number of false negative verie@€0047 << 1 which is very small.
Even for some cases where the expected numbelsef fi@gative vertices is large,
say 10, it is still relatively very small when coanpd with the genome size. Thus, for
simplicity in analysis, we assume there is no fategative vertex irH, The
filtering step can remove a large portion of thisdapositive vertices. Most of the
remaining false positive vertices are removed iterlasteps by dead-ends The
probability of removing a correct contig as a dead-is also small (see Theorem 4 in
Appendix A.3 for the exact calculation of the prbllides). The probability of
determining a dead-end wrongly is only 2.46%1@hen the above example is
considered.

Due to the gap problem a contig that appearG,jrfor a small k, might not be a
contig inGy for k'>k. However, in IDBA, if a contig appears iH, there must be a
contigc’ in Hy containingc (Theorem 1). That is, the contig information isriz
over fromH, to H,. As k increases, more branches can be resolved whilgahs
solved wherk is small in previous iterations will be preserved.

Theorem 1 Assume thak,, = k andk < K. If there is a contigc in Gy of length at
least ¥.x— 1 with all true positive vertices, there mustabeontigc’ in Hy such that
C’' containsc.

Proof. By induction onk. Letk = k + 1 andc = X;X...Xp D€ a contig inHy
represented by the paphe (v, v, ..., Vp), all verticesv,, v;, ..., v, have in-degree and
out-degree< 1, it is easy to see that the path= (v, V2, ..., Vpt') in Hiq where
each k+1)-mervi’ = xx.,;.--X+x also has in-degree and out-degree. As the length
of the contig represented by pgth> 3k,.x— 1, there must be a contig including path
p, i.e.C, in Hy;. 0

Corollary: Hy.,smust contain all contigs i@, of length at leastk@.x— 1 with all
true positive vertices.

In practiceHy,. always contains longer contigs th@g,;, by resolving branches at
each iteration. As Figure 1 shows, by iteratingdhephH, towards largek, we may
get longer and longer contigs as some of the bemn¢h.g. lengtlk-repeat region
(Case 1) and error branchedHp; (Case 2)) may be resolved when using a lakger

S S Si\Y VS
\" O 'C)
Case 1: —
O———0O
% S SV Vs,
C u Ccu
Case 2: — O\O
Hy v Hy1 uv

Fig. 1. Two cases for having longer contigs

Case 1: Let; = sv;S, andc, = VS, be two substrings in the genome wheres a
common lengthk substring representing a repeat regian,s, Ss, S are different
substringsc; andc, are represented by five contigsHpas thek-merv; has in-degree
of 2 and out-degree of 2. If there are two cornesads containing;, and its 2
neighboring nucleotides at both endscinandc, respectively, and there is no error
read containing,v,s; or %V;S,, then there must be two contigs, one contaicingnd
the other containing, in Hy1.

Case 2: Let be a contig irH that stops before vertexwhose in-degree is 1 and
out-degree is >1. Assume that among all branches afly u to v is correct. If there
is a correct read containingand its 2 pairs of neighboring nucleotides at terds
and there is no error read linkilegwith other branches, there will be a longer contig
¢’ in Hy, that contains.

Case 1 and Case 2 prove the following theorem.

Theorem 2: If there is a contig in G, of length at leastl®,.x— 1 with all vertices are
true positive which satisfies case 1 or case Blink = kyin < K < knay there is a
longer contige’ in Hy,, that containg.

In the algorithm, we increase the valuekoby 1 at each iteration, i.e. = 1.
Theorem 5 in Appendix A.3 shows that for a bettealify of the contigs, this is
essential. On the other hand, as a trade-off betwlee efficiency of the algorithm
and the quality of the contigs, it is possible ébss> 1, i.e. to increase the valuelof
by more than 1 at each iterative step.

2.1 Implementation details

The memory used by IDBA is only about 20-30% oft theed by the other existing
tools because 80% of false positive vertices amoxed in the filtering step (line 2 in
algorithm IDBA) and IDBA uses a compact hash tableepresent de Bruijn graph
implicitly with each edge represented by one biyon

Although IDBA constructsHy,., from Hy., step by step, the running time of
IDBA is not directly proportional to the number bfvalues betweel,,, and Kny,.
According to Theorem 1, a contig Iy is also a contig i3, thus IDBA only needs
to check whether a branch iy can be resolved iH,.;. Since reads represented by a
contig are removed in each iteration, the numbeeafls in each iteration decreased.
In practice, about half of the reads are removednatonstructingy,,,; and IDBA
runs much faster than Abyss, and about three tatosger than Velvet.

3 Experimental Results

The genome of Escherichia coli (O157:H7 str. EC3Xidm NCBI [16] is used for
simulated experiments (the genome length is 5.6 R&ads are randomly sampled
uniformly with coverage 30x. In our experiments, generated reads with error rates
1%, read length 75 and insert distance 250. No#&t the have repeated the
experiments using other coverage (e.g. 50x, 10€vpr rates (e.g. 2%) and read
length (e.g. 50). The results are similar, so wiy show the result for 30x coverage
with 1% error on length-75 reads. We also use kdaga set, namely Bacillus Subtilis,
to evaluate our algorithm. The length of the gen@sne1M. The reads are sequenced
using Solexa machine with coverage 45x, read ledgtand insert distance 400. The
estimated error rate is about 1%.

3.1 Simulated data

We compare the performance of Vel@ibyss, Edena and our algorithm IDBA on
the simulated data based on differkialues (orx values). For IDBA, we fixmi, =
25, m = 1 and compare the performance of IDBA with dife k... For the other
algorithms, defaults parameters provided by therabers are used. We also plot the

2 Since pair-end version of Velvet performs not weid pair-end version of Abyss outperforms Velvethe
quality of results, we only show result of singlederersion of Velvet.

3 Since SHARCGS s too slow and Abyss applies alainiilea as Euler with better performance, we leave
SHARCGS and Euler out of our comparison.

upper bound that can be achieved by building aalide Bruijn graph with no false
positive or false negative vertices and edges aoduge all single paths as contigs.

We calculate N50 and coverage only for valid cantighich are longer than 100
bps and can be aligned to the reference with 9&@8#arity. Figure 2(a) shows the
comparison of the algorithms based on N50. As watimeed in the introduction
(Section 1), existing assembly algorithms have méalge positive vertices and
branching problems whehnis small and they have many gaps whkes large. Thus
these algorithms have the best performance (lafg®&8j for in-between values &f
(the optimalk for Velvet, Edena and Abyss are 35, 40 and 40eatsgely in this data
set). Since IDBA considers a range lofalues, its performance is better than the
others even when considering a range of 10 valoek tkyi, = 25 andky.x = 35).
Furthermore, when IDBA considers a larger rangekf(i,,, = 25 andkyax = 50), its
performance is close to the upper bound. We halelénhfalse positive contigs when
settingkin = 25 andkyax = 50 while Abyass, Velvet and Edena produce 48%rid
650 false positive contigs respectively.

140k I 200k
— - 4= Velvet ",
= % = Velvet e —
—&— IDBA 180k o IDBA
120k — —i— — Abyss — —i& — Abyss /
— #— — Edena 160k — %= — Edena f
_— IDBA-pe)___,_....-+-.._.______4 ———fi— |DBA-p & /
100k i — BBosene 140k Abysspe o T -
Upper-bound o /
g0k 120k AV 4
100k /
G0k /
20k /
40k 60k Y P -
a0k v b _ -
20k ’ A =
20k »
¢ LT <2
ok ok N R k
25 30 35 a0 a5 50

Fig. 2. (a) N50 for contigs produced by assembly algorghmith differentk-values x-values if
the software is string graph based) on simulated daing E.coli as the reference genome
where read length is 75nt, coverage is 30x and eate is 1%. (IDBA-pe and abyss-pe are the
results for using mate-pair information to extehd tontigs while Edena does not use mate-
pair information) (b) N50 for contigs produced kgsembly algorithms with differert (or x)
values on real data from bacillus subtilis wherdréength is 75nt, coverage is 45x and error
rate is 1%.

' Contigs

Time ~ Memory k Number N50 Max Iengthg False pos. contigs (total Ien.)coverage
Velvet 155s 1641M 35 1412 24772 127265 70(35589) 295
Edena 957s 678M 40 4672 5104 46908 650 (72019) 29¢.2
IDBA 371s 360M 25-50 1563 63218 217365 9(4654) 97.96%
IDBA-pe 412s 360M 25-45 709 105579 217365 43 (164120) 93.94%
Abyss 1114s 1749M 40 1390 22109 87118 66 (34998) 95.05%
abyss-pe 1237s 1749M 40 484 59439 226626 186 (352437) 91.39%
upper-bound - - 50 1561 63218 217365 0 (0) 99.11%

Table 3. Statistics of optimal (w.r.t. N50) result of eaalorithm for simulated data

For IDBA and Abyss, we also apply the mate-paioinfation to connect the
resulting contigs to make them longer. The resales shown in the same graph
(IDBA-pe and abyss-pe). Note thatlagmcreases, the N50 may drop when applying
the mate-pair procedure since more branches hareresolved incorrectly and some
short contigs are removed as dead-ends. In fathefuresearch is required on how to
use mate-pair information effectively for assemBlige pair-end version of Abyss has
optimal result whelk is 35 while IDBA has optimal result whéris 45.

Table 3 shows a comprehensive statistics on thfenpesince of the algorithms on
their optimalk values (w.r.t. N50). IDBA produced much longer tigs than all other
algorithms. When mate-pair information is not aahlié, the N50 of IDBA (63218) is
about three times that of the next best algoritBdv{2 by Velvet) and is the same as
the upper bound. IDBA also produced the fewest ramalh wrong contigs (a contig
which cannot be aligned to the reference genomie 98t9% similarity) and the total
length of all wrong contigs is only about 4500ntiethis much less than the other
algorithms. The coverage of IDBA is also the besbag all algorithms. Since IDBA
performs well on assembling single end reads, ipedorms other algorithms even
when use mate-pair information. To conclude, IDBétperforms other algorithms
substantially and produces much longer contigs higlher accuracy.

3.2 Realdata

Figure 2(b) shows the N50 of the contigs producgélvet, Abyss, Edena and our
algorithm IDBA on the real reads from Bacillus Slibtusing differentk values ¥
values). Since the reads may not be uniformly sacthpi the real data set, we use a
smallerkq, (20nt) and keem = 1 to run IDBA. For the other algorithms, we tiseir
default parameters except fkrWe do not have the reference genome to check if a
contig is valid. We calculate the N50 for all refgak contigs longer than 100bp. Note
that the result may not be accurate, because stlyoetlhms may produce longer but
invalid contigs. The results are consistent withttbf the simulated data. Velvet,
Edena and Abyss get their best performance when40, 40 and 45 respectively.
IDBA can keep improving the result whikg . is increasing.

In this data set, mate-pair information is not seful for IDBA because using read
information can already solve most of the brancliéisen usingd<,.x equal to 50, the
N50 pair-end version of IDBA produced is 30% longean single end version. The
performance of mate-pair version Abyss has sinpiaformance as in simulated data.
Its optimalk is 35, and the longest N50 it produces is evemtshthan single end
IDBA. In conclusion, IDBA produced the longest dgstamong all algorithms. A
detailed comparison is given in Table 4 in AppendliR.

3.3 Running time and memory consumption

Other than Abyss (12.8 minutes — 7 hours for sitedladata and 10 minutes — 1.2
hours for real data depending on the valuk)pthe running time of other algorithms
are more or less the same. Abyss runs much slowenkvis small, probably due to
its slow procedure for dealing with graphs with mdalse positive vertices. Velvet
(120 — 220 seconds for simulated data and 130 —s2@0nds for real data) is the
fastest among all algorithms. IDBA (180 — 350 setsofor simulated data and 280 —

330 seconds for real data) runs faster than Abydssaabout three times slower than
Velvet. Refer to Figures 3 and 4 in the Appendixdetails.

The memory consumption is about the same for diffek values across the
existing algorithms. Abyss and Velvet require ab@@ bytes of memory for
simulated data and 1G memory for real data. IDBAy aaquires about 400M and
300M respectively because 80% of false positivdices are removed in the first
filtering step. Note that only 8 25-mers are rentbireorrectly in simulated data set
(it matches with expected number 8.88 calculatedhrorem 3). So, the memory
consumption of IDBA is only about 20 — 30% of theséng de Bruijn graph tools.
Edena consumes less memory than Abyss and Veleaube the number of reads is
small, but still double the size used by IDBA. Refie Tables 3 in Section 3.2 and
Table 4 in the Appendix for details.

4 Conclusions

Our IDBA algorithm, based on de Bruijn graphs, capture the merits of atlvalues
in betweerk, andk., to achieve a good performance in producing lordy@nrect
contigs. Because the initial filtering step remowasny false positivé&-mers and the
number of reads considered at each iterative stegdiuced, the required memory and
running time is much reduced. Though an accumuldéBruijn graph is maintained
at each iterative step, the running time is comparwith the existing algorithms. In
fact, this running time can be further reducedify, one or twd values are skipped
at each iterative step. In practice, the qualityhaf result is only slightly affected by
the skipping of values, in exchange for shortenmig time.

Our next target is to investigate how to better nsate-pair information for
resolving long repeats in order to produce evegéomnd more accurate contigs.

References

1. Wang, J., et al.The diploid genome sequence of an Asian individNature, 2008.
456(7218): p. 60-5.

2. Chaisson, M.J., D. Brinza, and P.A. PevzBernovo fragment assembly with short mate-
paired reads: Does the read length matt&@nome Res, 20029(2): p. 336-46.

3. Warren, R.L., et al. Assembling millions of short DNA sequences usingK&SA
Bioinformatics, 200723(4): p. 500-1.

4. Jeck, W.R., et al.Extending assembly of short DNA sequences to haedia.
Bioinformatics, 200723(21): p. 2942-4.

5. Dohm, J.C., et alSHARCGS, a fast and highly accurate short-read asiseaigorithm
for de novo genomic sequenci@genome Res, 200T7(11): p. 1697-706.

6. Chaisson, M.J. and P.A. Pevzn8hort read fragment assembly of bacterial genomes.
Genome Res, 20088(2): p. 324-30.

7. Zerbino, D.R. and E. Birneyelvet: algorithms for de novo short read assenuising de
Bruijn graphs.Genome Res, 200&8(5): p. 821-9.

8. Simpson, J.T., et alABySS: a parallel assembler for short read sequelata. Genome
Res, 200919(6): p. 1117-23.

9. Hernandez, D., et aDe novo bacterial genome sequencing: millions oy ghort reads
assembled on a desktop compu@enome Res, 20088(5): p. 802-9.

10. Chaisson, M., P. Pevzner, and H. Tamgagment assembly with short reads.
Bioinformatics, 200420(13): p. 2067-74.

11. Butler, J., et alALLPATHS: de novo assembly of whole-genome shotgenoreads.
Genome Res, 200&8(5): p. 810-20.

12. Pevzner, P.A.,, H. Tang, and M.S. Waterman, Eulerian path approach to DNA
fragment assemblyroc Natl Acad Sci U S A, 20098(17): p. 9748-53.

13. Idury, R.M. and M.S. Watermaf,new algorithm for DNA sequence assemblg€omput
Biol, 1995.2(2): p. 291-306.

14. Myers, E.W.The fragment assembly string graioinformatics, 200521 Suppl 2 p.
ii79-85.

15. Chin, F.Y., et alFinding optimal threshold for correction error readh DNA assembling.
BMC Bioinformatics, 200910 Suppl 1 p. S15.

16. http://www.ncbi.nim.nih.gov/

Appendix

A.1 Running Times of the Assembly Algorithms

Figure 3 and Figure 4 show the running time of IDBAd existing assembly
algorithms, Velvet, Abyss and Edena on the simdlatata set and the real data set.
From the figures, we can see that IDBA has simileming time as other assembly
algorithms except Abyss which takes a very longetimhenk is small due to a
complicated method for removing dead-ends.

Abyss took longer than 20|
2000 seconds wherk smaller tha |'l
40. (It took 27000 secon J— ey
1800 < whenk=25) :}i +— - Velvet
1600 ~ : .
S —— A
1400 AN \
1200 <) ~ =k = Abyss
1000 =
’ ' il e
300 =~ = - > — »= —Edena
— e
600 =
200 —+—— IDBA-pe
500 ———‘F--"E5?‘::gEf===q-=====:-==jzf=-___ ‘
C—— —— — — =& - Abyss-pe
0

k
25 30 35 40 45 50

Fig. 3. Running time of assembly algorithms with differdat(or x) values on
simulated data.

1400 X
Abyss took longer thar |
1600 seconds wherk P
1200 smaller than 40. (It took | "
8000 seconds whek = v — +— Velvet
1000 30)
T
~ i —=— IDBA
S
200 —_—
Ean S , - —& - Abyss
600 == :"-h " = — Edena
-~y -)
. w T IDbApe
200 T—— . —— . ‘ Abyss-pe
0 k
25 30 35 40 45 50

Fig. 4. Running time of assembly algorithms with differ&rfbr x) values on real data.
A.2 Detailed comparison of the Assembly Algorithra for real data

In Table 4, we show comprehensive statistics orp#rérmance of the algorithms on
their optimalk value (w.r.t. N50) for the real dataset. IDBA puodd much longer
contigs than all other algorithms no matter whethersingle-end or the pair-end
version is used. The result is consistent with tiidhe simulated dataset.

) Contigs
Time Memory K Total No. N50 Max length

Velvet 150s 893M 40 335 57656 181399
Edena 649s 632M 40 926 19423 66455
IDBA 325s 310M 25-50 267 140067 602412
IDBA-pe 361s 310M 25-50 203 187648 613166
Abyss 729s 923M 40 445 30081 134067
Abyss-pe 3766s 936M 35 406 120807 537397

Table 4. Statistics for the optimal (w.r.t. N50) resultezch algorithm for real data.

A.3 Theorems and proofs

Theorem 3: Assumem is the filtering threshold, the probability thaka,-merv in
the genome (except the filst- ki, and last — Ky, kmin-mer in the whole genome)
does not appear iHy.,, (false negative) whenlengtht reads are uniformly sampled

from a lengthg genome with error rate is at most X7, (')p' (1- p)” where
p=[(1~Ky, +D /(g =1 +D)] - .

Proof:
Pr(vissampledn aread)

_ Pr(readcontainss issampled Pr(v is sampled readcontains issampled

o+ Pr(readdoesnotcontainvis sampled Pr(vis sampled readdoesnot containvis sampledl

> Pr(readcontainsvissampled Pr(v issampled readcontainsy is sampledl
-k +
2 I km|n 1 Hl_ e) Kein
g-1+1
The probability that a correkt,-merv appears no more thamtimes is at most

mty) Kk
Z[.jp' (- p)"~ where p :M‘Hl_e)km .
i=0

g-1+1

Theorem 4: Assume that a contig in Hy is treated as dead-end and removed. The
probability thatc is a correct contig is less than

| -k-2 '
21- 1-g) 2
[g—I+1[()

Proof: A contigc in H is treated as dead-end onlycifs of length less thank3- 1
and is not a dead end M. Since all contigs irH,; are preserved i, c is
removed because (1) the lengtltd$ at least 3(— 1) — 1 and shorter thak 3 1, or

(2) cis shorter than &(— 1) — 1 and one of its ends has 0 in-degree bdegree in
Hy. Thusc will not be treated as a dead-end if the two ashiag+3)-mers ofc is
sampled. By considerinig,, =k + 3 andm = 0 in Theorem 1, the probability that no
read contains a particuldet3)-mer is at most

I-k-2 k+3
{1_ g-lI +1E(1—e) }

and the probability that no read contains a pdeic{+3)-mer cover a particular end

of cis at most
l-k=2 | -
2[1 1 L-e) } O

g-I

Ci1C2 cou CiC2u Couv

uv vw uvw
—

Hioe1.1 Hi1

C1CoU couv
— uvw

Hyoe2 Hi,.2

Fig. 5. Cases that a longer contighiy, .1 does not exist i,

Let Hys denote the accumulated de Bruijn gragphwith step sizes. Theorem 5
shows thatHy...1 has at most the same number of gapslgs,.. There are some
cases (Figure 5) that there is a longer contigfip,,1 which is not inHy,,.. For
example, consider a cont@in H, which stops before vertaxwhose in-degree = 1

and out-degree >1 and all branchesi afre shorter thank?and onlyu to v is correct.

If there is only two reads containsand its 2 pairs of neighboring nucleotides at two
ends respectively and there is no error read lmkinvith other branches, there is a
longer contigc’ in Hy.z 1 that containg which does not appear k. ».

Theorem 5: If a kpaxmer Kmax«rmer) in the genome appears iy, it also
appears itHy,a,1-

Proof: By induction orkpa,. Considekmnax = Kmin + 2. Given &maxmer (Kmadt1)-mer)
v does not appear Ify.,,1, letVv be the shortest substring wbf lengthk which does
not appear as a vertexly; or an edge ity_; 1, Kmin < K < Kmax

Case 1K = kyin, i.€.V’ does not appear Hy,,,», v does not appear ly,.¢1.2

Case 2Kk = knint1, there are two cases: d)does not appear ify,,1 as an edge
or (b) V' is a vertex on a dead-end with length less th@q;21) in Hy,.+11 In case
(a), since anykqin+2)-mer contains” as substring does not appearHg,,,», v does
not appear irHy,..o. In case (b)y is a vertex on a dead-end with length less than
2(Kmint2) in Hy,...» which will be removed.

Case 3k =k, t2, there are two cases: (ajloes not appear idy,.+11as an edge
or (b)vis a vertex on a dead-end with length less thig2@Q) in Hy,.+2.1. In case (a),
consider the pathv, v,, V3) in Hy,..1 representing thek,+2)-merv. Sincev does not
appear inHy,+11 as an edgey, has >1 in-degree or out-degree and there is b rea
containingv’ as subsring. Thus the in-degree and out-degreeacéd O inH,..» andv
will be removed as dead-end. In case (k¥ a vertex on a dead-end with length less
than 2Kmint+2) in Hy...2 Which will be removed.

Case 4k = kpint3, i.e.v does not appear iy,.,1 as an edge, the path,(vy, v, v3)
in He.n1 representing thekgin+3)-merv is not a potential contig and there is no read
containingv as a substring. Thusdoes not appear y..,.> as an edge. 0

