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Abstract. Wireless Communication Networks based on Frequency Di-
vision Multiplexing (FDM in short) plays an important role in the field
of communications, in which each request can be satisfied by assigning a
frequency. To avoid interference, each assigned frequency must be differ-
ent to the neighboring assigned frequencies. Since frequency is a scarce
resource, the main problem in wireless networks is how to utilize the
frequency as fully as possible. In this paper, we consider the call con-
trol problem. Given a fixed bandwidth of frequencies and a sequence of
communication requests, in handling each request, we must immediately
choose an available frequency to accept (or reject) it. The objective of
call control problem is to maximize the number of accepted requests. We
study the asymptotic performance, i.e., the number of requests in the
sequence and the number of available frequencies are very large positive
integers. In this paper, we give a 7/3-competitive algorithm for call con-
trol problem in cellular network, improving the previous 2.5-competitive
result. Moreover, we investigate the triangle-free cellular network, pro-
pose a 9/4-competitive algorithm and prove that the lower bound of
competitive ratio is at least 5/3.

1 Introduction

Frequency Division Multiplexing (FDM in short) is commonly used in wireless
communications. To implement FDM, the wireless network is partitioned into
small regions (cell) and each cell is equipped with a base station. When a call
request arrives at a cell, the base station in this cell will assign a frequency to
this request, and the call is established via this frequency. Since frequency is a
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scarce resource, to satisfy the requests from many users, we have to reuse the
same frequency for different call requests. But if two neighboring calls are using
the same frequency, interference will appear to violate the quality of communica-
tions. Thus, to avoid interference, the same frequency cannot be assigned to two
different calls with distance close to each other. In general, the same frequency
cannot be assigned to two calls in the same cell or neighboring cells.

There are two research directions on the fully utilization of the frequencies.
One is frequency assignment problem, and the other is call control problem. In
frequency assignment problem, each call request must be accepted, and the ob-
jective is to minimize the number of frequencies to satisfy all requests. In call
control problem, the bandwidth of frequency is fixed, thus, when the number
of call requests in a cell or in some neighboring cells is larger than the total
bandwidth, the request sequence cannot be totally accepted, i.e., some requests
would be rejected. The objective of call control problem is to accept the requests
as many as possible.

Problem Statement:

In this paper, we consider the online version of call control problem. There
are ω frequencies available in the wireless networks. A sequence σ of call requests
arrives over time, where σ = {r1, r2, ..., rt, ...}, ct denote the t-th call request and
also represent the cell where the t-th request arrives. When a request arrives at
a cell, the system must either choose a frequency to satisfy this request without
interference with other assigned frequencies in this cell and its neighboring cells,
or reject this request. When handling a request, the system does not know any
information about future call requests. We assume that when a frequency is
assigned to a call, this call will never terminate and the frequency cannot be
changed. The objective of this problem is to maximize the number of accepted
requests.

We focus on the call control problem in cellular networks and triangle-free
cellular networks. In the cellular network, each cell is a hexagonal region and
has six neighbors, as shown in Figure 1(a). The cellular network is widely used
in wireless communication networks. A network is triangle-free if there are no
3-cliques in the network, i.e., there are no three mutually-adjacent cells. An ex-
ample of a triangle-free cellular network is shown in Fig. 1(b).

Performance Measure:

To measure the performance of online algorithms, we often use the com-
petitive ratio, which compare the output between the online algorithm and the
optimal offline algorithm, which knows the whole request sequence in advance.
In call control problem, the output is the number of accepted requests. For a
request sequence σ, let A(σ) and O(σ) denote the number of accepted request
of an online algorithm A and the optimal offline algorithm O, respectively. The
competitive ratio of algorithm A is RA = supσ O(σ)/A(σ). For the call control
problem, we focus on the asymptotic performance, i.e., the number of requests
and the number of frequencies are large positive integers. The asymptotic com-
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Fig. 1. An example of the cellular network and triangle-free cellular network

petitive ratio for an online algorithm A is

R∞
A = lim sup

n→∞
max
σ

{O(σ)

A(σ)
|O(σ) = n}.

Related Works:

How to fully utilize the frequencies to satisfy the communication requests
is a very fundamental problem in theoretical computer science and engineering.
Both the frequency assignment problem and the call control problem are well
studied during these years. From the description of these two problems, we know
that the call control problem is the dual problem of the frequency assignment
problem.

The offline version of the frequency assignment problem in cellular net-
works was proved to be NP-hard by McDiarmid and Reed [6], and two 4/3-
approximation algorithms were given in [6, 7]. For the online frequency assign-
ment problem, when a call request arrives, the network must immediately assign
a frequency to this call without any interference. There are mainly three strate-
gies: Fixed Allocation [5], Greedy Assignment [1], and Hybrid Assignment [3]. If
the duration of each call is infinity and the assigned frequency cannot be changed,
the hybrid algorithm gave the best result for online frequency assignment, i.e., a
2-competitive algorithm for the absolute performance and a 1.9126-competitive
algorithm for the asymptotic performance. When the background network is
triangle-free, a 2-local 5/4-competitive algorithm was given in [9], an inductive
proof for the 7/6 ratio was reported in [4], where k-local means when assigning
a frequency, the base station only knows the information of its neighboring cells
within distance k. In [11], a 1-local 4/3-competitive algorithm was given.

For the call control problem, the offline version is NP-hard too [6]. To handle
such problem, greedy strategy is always the first try, when a call request arrives,
the network choose the minimal available frequency to serve this request, if any
frequency is interfere with some neighboring assigned frequency, the request will
be rejected. Pantziou et al. [8] analyzed the performance of the greedy strategy,
proved that the asymptotic competitive ratio of the greedy strategy is equal
to the maximal degree of the network. Caragiannis et al. [1] gave a random-
ized algorithm for the call control problem in cellular networks, the asymptotic
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competitive ratio of their algorithm is 2.651. Later, the performance of the ran-
domized algorithms was improved to 16/7 by the same authors [2], they also
proved the lower bound of the asymptotic competitive ratio for the randomized
algorithm is at least 2. Very recently, a deterministic algorithm with asymptotic
competitive ratio 2.5 was given in [10], and the lower bound of the asymptotic
competitive ratio for the deterministic algorithm was proved to be 2.

Our Contributions:
In this paper, we consider the deterministic algorithms for the call con-

trol problem in cellular networks and triangle-free cellular networks. In cellu-
lar network, we give a 7/3-competitive algorithm, improving the previous 2.5-
competitive result. In triangle-free network, we propose a 9/4-competitive al-
gorithm, moreover, the lower bound of the competitive ratio in triangle-free
network is proved to be at least 5/3.

2 Call Control in Cellular Networks

2.1 Algorithm

The idea of our algorithm for call control problem in cellular networks is similar
to the algorithm in [10]. By using a totally different analysis, we can show our
algorithm is better, moreover, our algorithm is best possible among this kind of
algorithms.

Cellular networks is 3 colorable, each cell can be associated with a color from
{R,G,B} and any two neighboring cells are with different colors. Partition the
frequencies into four sets, FR, FB , FG, and FS , where FX (X ∈ {R,G,B}) can
be only used in cells with color X and FS can be used in any cell. Since we
consider the asymptotic performance of the call control problem, we may regard
the number ω of frequencies in the system is a multiple of 7. Divide the the
frequencies into four disjoint set as follows:

FR = {1, ..., 2ω/7},
FG = {2ω/7 + 1, ..., 4ω/7},
FB = {4ω/7 + 1, ..., 6ω/7}, and
FS = {6ω/7 + 1, ..., ω}

Obviously, the ratio between the number of frequencies in FR, FG, FB , and
FS is 2 : 2 : 2 : 1.

Now we describe our algorithm CACO as follows:

2.2 Analysis

The high level idea to prove the performance of our algorithm CACO is to show
that the ratio between the total number of accepted requests by CACO and the
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Algorithm 1 CACO : When a request arrives at a cell C with color c ∈
{R,G,B}
1: if Fc is not totally used up then
2: assign the minimal available frequency from Fc to satisfy this request.
3: else if FS is not totally used up in cell C and its neighboring cells then
4: assign the minimal available frequency from FS to satisfy this request.
5: else
6: reject this request.
7: end if

total number of satisfied requests by the optimal offline algorithm is at least 3/7.
To prove this, we analyze the number of satisfied requests in each cell and its
neighboring cells, then compare the number with the optimum value.

Let Ri be the number of the requests arrived at cell Ci. Let Oi be the number
of requests accepted by the optimal offline algorithm in cell Ci.

∑
Oi is the total

number of accepted request by the optimal offline algorithm. Let Ai be the
number of requests accepted by our online algorithm CACO in cell Ci.

∑
Ai is

the total number of accepted request by CACO. Let Gx(Ci) be the the number
of requests accepted by CACO in cell Ci by assigning frequencies from Fx. It
can be seen that Ai = GR(Ci) + GG(Ci) + GB(Ci) + GS(Ci). If Ci is colored
with x ∈ {R,G,B}, then Ai = Gx(Ci) +GS(Ci).

Fact 1 For each cell Ci, Oi ≤ Ri, Ai ≤ Ri, and Ai ≥ 2ω/7 when Ri ≥ 2ω/7.

According to the number of satisfied requests by the optimal offline algorithm,
we classify the cells into two types: cell ci is safe if Oi ≤ 2ω/3, and dangerous
otherwise.

Lemma 2 If Ci is safe, then Ai ≥ 3Oi/7

Proof. This lemma can be proved by analyzing the following two cases.

– If Ri ≤ 2ω/7, Ai = Ri ≥ Oi, then Ai ≥ 3Oi/7.
– If Ri > 2ω/7, CACO will accept at least 2ω/7 requests by assigning frequen-

cies from Fx, thus, Ai ≥ 2ω/7. Since Ci is safe, Oi ≤ 2ω/3, thus, Ai ≥ 3Oi/7.
⊓⊔

Fact 3 A safe cell has at most 3 dangerous neighboring cells. All neighboring
cells around a dangerous cell are safe.

Proof. This fact can be proved by contradiction. If a safe cell C has more than
3 dangerous neighboring cells, since C has 6 neighboring cells, there must exist
two dangerous cells which are neighbors. From the definition of dangerous cell,
the total number of accepted request in these two dangerous neighboring cells is
strictly more than ω, contradiction!

Similarly, if a dangerous cell C ′ is a neighboring cell of another dangerous
cell C, the total number of accepted request in C and C ′ is strictly more than
ω. Contradiction! ⊓⊔
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According to the algorithm, when a request cannot be satisfied in a cell C
with color c, all frequencies in Fc must be used in C, and all frequencies in FS

must be used in C and its six neighbors. Thus, we have the following fact:

Fact 4 If cell C cannot satisfy any request according to the algorithm CACO ,
then GS(C) +

∑
GS(Ck) ≥ ω/7, where Ck is the neighboring cell of C.

To compare the number of satisfied requests in each cell with the optimal
offline solution, we define Bi as follows.

Bi =

{
3Oi/7 if Ci is safe
Ai +

∑
(Ak − 3Ok/7)/3 if Ci is dangerous (Ck is the neighboring cell of Ci)

Lemma 5
∑

Bi ≤
∑

Ai.

Proof. According to Lemma 2, if Ci is safe, we have Ai ≥ 3Oi/7. From Fact 3,
we know there are at most three dangerous neighbors around Ci, thus, after
counting Bi = 3Oi/7 frequencies in Ci, the remaining Ai − 3Oi/7 frequencies
can compensate the frequencies in the dangerous neighboring cells, and each
dangerous cell receives (Ai−3Oi/7)/3 frequencies. From the definition of Bi, we
can see that

∑
Bi ≤

∑
Ai. ⊓⊔

Theorem 1 The asymptotic competitive ratio of algorithm CACO is at most
7/3.

Proof. From the definition of Oi and Bi, we can say Oi/Bi ≤ 7/3 for any
cell leads to the correctness of this theorem. That is because

∑
Oi/

∑
Ai ≤∑

Oi/
∑

Bi ≤ maxOi/Bi

If the cell is safe, i.e., Oi ≤ 2ω/3, we have Oi/Bi = 7/3.

If the cell Ci is dangerous, i.e., Oi > 2ω/3, since Ri ≥ Oi > 2ω/3 > 3ω/7,
that means the number of requests Ri in this cell is larger than Ai. Thus, some
requests are rejected in cell Ci, moreover, this cell cannot accept any further
requests.

– If the number of accepted requests in any neighbor of Ci is no more than
2ω/7, we can say that all the shared frequencies in FS are assigned to requests
in cell Ci. Thus, Ai = 3ω/7. We have

Oi/Bi = Oi/(Ai + (
∑

(Ak − 3Ok/7))/3) ≤ Oi/Ai ≤ ω/Ai = 7/3.

– Otherwise, suppose there are m neighbors of Ci in which the number of
accepted requests are more than 2ω/7. Let Ôi denote the average number
of optimum value of accepted requests for these m neighboring cells around
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Ci.

Bi = 2ω/7 +GS(Ci) + (
∑

for all safe neighbors

(Ak − 3Ok/7))/3

≥ 2ω/7 +GS(Ci) + (m× 2ω/7 +
∑

for the neighbors with Ak > 2ω/7

GS(Ck)−m× 3Ôi/7)/3

≥ 2ω/7 + (m× 2ω/7 +
∑

for the neighbors with Ak > 2ω/7

GS(Ck) +GS(Ci)−m× 3Ôi/7)/3

= 2ω/7 + (m× 2ω/7 + ω/7−m× 3Ôi/7)/3

≥ 2ω/7 + (2ω/7 + ω/7− 3Ôi/7)/3

(that is because for any neighbor with Ak > 2w/7,

Ok ≤ (ω −Oi) ≤ ω/3, thus, Ôi ≤ ω/3 and 2ω/7− 3Ôi/7 ≥ 0.)

≥ 2ω/7 + (3ω/7− 3(ω −Oi)/7)/3

(since Ok ≤ ω −Oi leads to Ôi ≤ ω −Oi)

= 2ω/7 +Oi/7

Thus, Oi/Bi ≤ Oi/(2w/7 +Oi/7) ≤ 7/3. ⊓⊔

In this kind of algorithms, the frequencies are partitioned into FR, FG, FB

and FS , when a request arrives at a cell with color c, first choose the frequency
from the set Fc, then from FS if no interference appear. The performances are
different w.r.t. the ratio between |FR| (|FG|, |FB |) and |FS |. Note that from
symmetry, the size of FR, FG and FB should be same. Now we show that CACO
is best possible among such kind of algorithms. Suppose the ratio between |FR|
and |FS | is x : y. Consider the configuration shown in Figure 2. In the first step,
ω requests arrive at the center cell C with color c, the algorithm will use up
all frequencies in Fc and FS , in this case, the ratio of accepted requests by the
optimal offline algorithm and the online algorithm is (3x+ y)/(x+ y) since the
optimal algorithm will accept all these requests. In the second step, ω requests
arrive at C1, C2 and C3 with the same color c′. The online algorithm can only
accept xω/(3x + y) requests in each Ci (1 ≤ i ≤ 3) since the frequencies in FS

are all used in C. In this case, the ratio between the optimal offline algorithm
and the online algorithm is 3(3x+ y)/(4x+ y) since the optimal algorithm will
accept all ω requests in Ci (1 ≤ i ≤ 3) and reject all requests in C. Balancing
these two ratios, we have x : y = 2 : 1, and the ratio is at least 7/3.

3 Call Control in Triangle-Free Cellular Networks

The call control problem in cellular network is hard. But for some various
graph classes, this problem may have a better performance. For example, in
linear network, an optimal online algorithm with competitive ratio 3/2 can be
achieved [10]. An interesting induced network, triangle-free cellular network, has
been studied for many problems including frequency assignment problem[4, 9].
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C

C1

C2C3

Fig. 2. Algorithm CACO is best possible among this kind of algorithms

For a given cell Ci, from the definition of triangle-free, only two possible
configurations may exist for the structure of neighboring cells, which are shown
in Fig. 3. It is easy to see that if Ci has 3 neighbors, the neighboring vertices are
of the same color. On the other hand, if the neighbors are of different colors, Ci

has at most 2 neighbors. There exists a simple structure in triangle-free cellular
network, i.e., a cell has only one neighbor, we can regard this structure as the
case in Fig. 3(b).

Ci

(a) Structure A:
neighbors with the
same base color

Ci CkCj

(b) Structure B:
neighbors with dif-
ferent base colors

Fig. 3. Structure of neighboring cells

For the three base colors R, G and B, we define a cyclic order among them
as R → G, G → B and B → R. Partition the frequency set {1, ..., ω} into three
disjoint sets:

FR = {1, ..., ω/3}, FG = {ω/3 + 1, ..., 2ω/3}, FB = {2ω/3 + 1, ..., ω}

To be precisely, assigning frequencies from a set must in order of bottom-to-
top (assigning frequencies from lower number to higher number) or top-to-bottom
(assigning frequencies from higher number to lower number). Now we describe
our algorithm for call control problem in triangle-free cellular networks.

Algorithm CACO2 : Handling request in a cell C with color X ∈ {R,G,B}

1. If cell C has no neighbors, just assign frequency from 1 to ω.
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2. If cell C has neighboring structure A (Fig. 3(a)), let Y be the base color of
C’s neighbors and Z be the other third color. Assign frequency in cell C as
follows if no interference appear:
(a) Assign frequencies from FX in bottom-to-top order.
(b) If all frequencies in FX are used up, assign frequencies from FZ in

bottom-to-top order if X → Y ; and in top-to-bottom order otherwise.
Such assignment can make sure if C uses the frequency from FZ after
using up all frequencies from FX , and its neighboring cell C ′ also uses
the frequency from FZ after using up the frequencies from FY , C and C ′

must assign frequency from FZ in different order no matter the neighbor
configuration of C ′ is. (This can be verified by checking this case (case
2) and the next case (case 3) of CACO2.)

3. If cell C has neighboring configuration B (Fig. 3(b)), let Y and Z be the base
colors of its two neighbors, respectively. Without loss of generality, assume
X → Y . Assign frequency in cell C as follows if no interference appear:
(a) Assign frequencies from FX in bottom-to-top order.
(b) If all frequencies in FX are used up, assign frequencies from FY in top-

to-bottom order.

Theorem 2 The competitive ratio of CACO2 is at most 9/4.

Proof. Assume at some time, let Oi and Ai denote the number of accepted
requests in cell Ci by the optimal offline algorithm and online algorithm CACO2,
respectively. The theorem holds if

∑
Oi/

∑
Ai ≤ 9/4. Similar to the analysis for

CACO, we define Bi as the amortized number of accepted requests in cell Ci.
Thus, our target is to prove that Oi/Bi ≤ 9/4 and

∑
Bi ≤

∑
Ai. W.l.o.g., let

X, Y and Z denote the three colors in the network.
Intuitively, we may set Bi = 4Oi/9 if Ai ≥ 4Oi/9 in cell Ci, and the remain-

ing uncounted frequencies can be used to compensate the number of accepted
frequencies in its neighboring cells. Next, we describe how to partition the re-
maining uncounted frequencies according to cell Ci’s neighboring configuration.
Let Hij to be the number of frequencies used in Ci but will compensate the
number of frequencies in Cj .

1. The neighboring configuration of Ci is A (Fig. 3(a)), the uncounted number
of frequencies is Ai − 4Oi/9, evenly distribute this number to the three
neighboring cells, i.e., each neighboring cell Cj of Ci receives Hij = (Ai −
4Oi/9)/3.

2. The neighboring configuration of Ci is B (Fig. 3(b)), denote the color of Ci

to be X, and the colors of its neighboring cells to be Y (cell Cj) and Z (cell
Ck) respectively. W.l.o.g., assume X → Y , Y → Z and Z → X.
– If Ai > ω/3,

In this case, the requests in cell Ci will use some frequencies from FY .
If Aj < 4Oj/9, there exist rejected request in Cj , thus, Ai +Aj = 2ω/3.
The remaining uncounted number of frequencies in Ci can be partitioned
into (4Oj/9− Aj) and ω/9, the former part (4Oj/9− Aj) compensates
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the number in Cj (i.e., Hij = 4Oj/9− Aj if Aj < 4Oj/9) and the later
part ω/9 compensates the number in Ck (i.e.,Hik = ω/9 if Ak < 4Ok/9).
This compensation is justified since 4Oi/9+(4Oj/9−Aj)+ω/9 = 4(Oi+
Oj)/9−Aj + ω/9 ≤ 5ω/9−Aj < Ai.

– If Ai ≤ ω/3,
In this case, all frequencies used in Ci are from FX , and some frequencies
used in Ck may from FX too. If Ak < 4Ok/9, all remaining uncounted
number Ai − 4Oi/9 of frequencies in Ci will compensate the number in
Ck, i.e., Hik = Ai − 4Oi/9 and no extra number of frequencies compen-
sates the number of frequencies in Cj , i.e., Hij = 0.

Next, we define Bi as follows,

Bi =

{
4Oi/9 if Ai ≥ 4Oi/9
Ai +

∑
Hji if Ai < 4Oi/9, where Hji is the compensation from neighboring cell Cj

From previous description, we can say that 4Oi/9 +
∑

j Hij ≤ Ai if Ai ≥
4Oi/9, thus,∑

Bi =
∑

Ai≥4Oi/9

4Oi/9 +
∑

Ai<4Oi/9

(Ai +
∑

Ci and Cj are neighbors

Hji)

=
∑

Ai≥4Oi/9

(4Oi/9 +
∑

Ci and Cj are neighbors

Hij) +
∑

Ai<4Oi/9

Ai

≤
∑

Ai≥4Oi/9

Ai +
∑

Ai<4Oi/9

Ai

≤
∑
i

Ai

Now we analyze the relationship between Bi and Oi. Assuming the color of Ci

is X.

1. If Ai ≥ 4Oi/9, Bi = 4Oi/9.
2. If Ai < 4Oi/9,

(a) If Ai < ω/3
Since Ai < 4Oi/9, there must exist some rejected requests in Ci. Some
frequencies in FX are used in one of Ci’s neighbor Cj . According to
the algorithm, the neighboring structure of Cj is B (Fig. 3(b)), and
Ai +Aj = 2ω/3.
In this case, Hji = 4Oi/9−Ai, thus,

Bi = Ai +
∑

Ck and Ci are neighboring cells

Hki ≥ Ai +Hji = 4Oi/9.

(b) If Ai ≥ ω/3 and Ci has two neighbors Cj with color Y and Ck with
color Z as shown in Fig. 3(b). W.l.o.g., assume that X → Y , Y → Z
and Z → X. According to the algorithm, after using up the frequencies
in FX , Ci will use some frequencies from FY until interference appear,
thus, Ai +Aj ≥ 2ω/3.
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i. If the neighboring configuration around Cj is A (Fig. 3(a)), we claim
that Aj ≥ 4Oj/9. That is because Oj ≤ ω − Oi ≤ ω − 9Ai/4 ≤
ω − 9ω/12 = ω/4, Ai ≤ 4Oi/9 ≤ 4ω/9, and Ai +Aj ≥ 2ω/3.
In this case, Hji = (Aj − 4Oj/9)/3, and

Bi ≥ Ai +Hji = Ai + (Aj − 4Oj/9)/3 ≥ 4Oi/9.

ii. If the neighboring configuration around Cj is B (Fig. 3(b)),

– if Aj ≤ ω/3, we have Hji = Aj − 4Oj/9. Thus,

Bi ≥ Ai +Hji = Ai +Aj − 4Oj/9 ≥ 2ω/3− 4Oj/9 ≥ 4Oi/9.

– If Aj ≥ ω/3, Hji = ω/9, thus,

Bi ≥ Ai +Hji = Ai + ω/9 ≥ ω/3 + ω/9 = 4ω/9 ≥ 4Oi/9.

(c) If Ai ≥ ω/3 and the neighbors of Ci are of the same color (Fig. 3(a)),
assume the color of its neighboring cell is Y . According to the algorithm,
after using up the frequencies from FX , Ci will use some frequencies
from FZ to satisfy some requests. Since Ci rejects some requests, we
have Ai + Aj = ω for some neighboring cell Cj of Ci. This is because
Ci and Cj assign frequencies from FZ in different order, and Cj will use
the frequency from FZ after using up the frequency from FY .
In this case, Hji = (Aj − 4Oj/9)/3 if the neighboring configuration of
Cj is A (Fig. 3(a)), or Hji = ω/9 if the neighboring configuration of Cj

is B (Fig. 3(b)). In the former case,

Bi ≥ Ai +Hji = Ai + (Aj − 4Oj/9)/3 > 4Oi/9;

in the later case,

Bi ≥ Ai +Hji = Ai + ω/9 ≥ 4ω/9 ≥ 4Oi/9.

Combine all above cases, we have Oi/Bi ≤ 9/4 in each cell Ci. Since
∑

Bi ≤∑
Ai, we have

∑
Oi/

∑
Ai ≤ 9/4.

Next, we show that the lower bound of competitive ratio for call control
problem in triangle-free cellular networks is at least 5/3.

Theorem 3 The competitive ratio for call control problem in triangle-free cel-
lular network is at least 5/3.

Proof. We prove the lower bound by using an adversary who sends request ac-
cording to the assignment of the online algorithm.

Consider the configuration shown in Figure 4.
In the first step, the adversary sends ω requests in the center cell C. Suppose

the online algorithm accepts x requests. If x ≤ 3ω/5, the adversary stop sending
request. In this case, the optimal offline algorithm can accept all these ω requests,
thus, the ratio is at least 5/3.
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C
C2

C3

C1

Fig. 4. lower bound of competitive ratio is at least 5/3

If x > 3ω/5, the adversary then sends ω requests in each cell of C1, C2 and
C3. To avoid interference, the online algorithm can accept at most ω−x requests
in each cell, and the total number of accepted requests is x+3(ω−x) = 3ω−2x.
In this case, the optimal offline algorithm will accept 3ω requests, i.e., reject all
requests in the center cell C. Thus, the ratio in this case is 3ω/(3ω − 2x). Since
x > 3ω/5, this value is at least 5/3.

Combine the above two cases, we can say that the competitive ratio is at
least 5/3. ⊓⊔
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