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ABSTRACT 
Motivation: Finding common patterns, or motifs, in the promoter 
regions of co-expressed genes is an important problem in 
bioinformatics. A common representation of the motif is by 
probability matrix or PSSM (Position Specific Scoring Matrix). 
However, even for a motif of length 6 or 7, there is no algorithm that 
can guarantee finding the exact optimal matrix from an infinite 
number of possible matrices.  
Results: This paper introduces the first algorithm called EOMM for 
finding the exact optimal matrix-represented motif, or simply optimal 
motif. Based on branch-and-bound search by partitioning the 
solution space recursively, EOMM can find the optimal motif of size 
up to 8 or 9, and a motif of larger size with any desired accuracy on 
the principle that the smaller the error bound, the longer the running 
time. Experiments show that for some real and simulated data sets, 
EOMM finds the motif despite very weak signals when existing 
software, such as MEME and MITRA-PSSM, fails to do so. 
Contact: {cmleung2, chin, mychan}@cs.hku.hk 

1 INTRODUCTION  
One important problem in bioinformatics is to understand how 
genes cooperate to perform functions, i.e. the gene regulatory 
network. Related to this is the sub-problem of finding motifs for 
co-regulatory genes.  

The context behind the motif finding problem is the following. 
Gene expression is the process whereby a gene is decoded to form 
a RNA sequence which is then used to produce the corresponding 
protein sequence. In order to start the gene expression process, a 
molecule called a transcription factor will bind to a short substring 
in the promoter region of the gene. We call this substring a binding 
site of the transcription factor. A transcription factor can bind to 
several binding sites in the promoter regions of different genes to 
make these genes co-express, and such binding sites should have 
common pattern. The motif finding problem is to find the common 
pattern, or motif, from a set of promoter regions without knowing 
the positions of the binding sites. 

Before we discuss how to find motifs, we need a model to 
represent motifs. There are two common models: string 
representation [Brazma et al., 1995; Buhler and Tompa, 2001; 
Chin et al., 2005; Leung and Chin, 2005; Li et al., 2002; Liang, 
2003; Pevzner and Sze, 2000; Rocke and Tompa, 1998; Sagot, 
1998; Staden, 1989; Tompa, 1999; Wolfertsteeter et al., 1996] and 
matrix representation [Bailey and Elkan, 1995; Barash et al., 2001; 
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Chin et al., 2004; Eskin, 2004a; Lawrence et al.,1993; Leung et al., 
2005; Liu et al., 1995]. 

String representation uses a length-l string of symbols (or 
nucleotides) A, C, G and T to describe a motif. In this model, the 
number of different length-l motifs is limited to 4l and, when l is 
small, it is possible to find the “optimal” motif (highest-scoring 
with respect to some specified scoring function that compares the 
motif against binding sites). Unfortunately, many motifs in real 
biological data cannot be adequately described in this way. For 
example, the motif may be better described by allowing more than 
one symbol (e.g. not only G but G or T) to occupy a single position. 
Thus, some researchers have tried to improve string representation 
by introducing wildcard characters [Shinozaki et al., 2003; Sinha 
and Tompa, 2000] into the string to represent choice from a subset 
of symbols at a particular position. For example, K denotes G or T. 

Matrix or PSSM (Position Specific Scoring Matrix) 
representation uses a 4×l matrix of real numbers to represent the 
motif where the j-th column of 4 numbers gives us the probability, 
respectively, that symbol A, C, G or T occupies the j-th position of 
the motif. Although the matrix is more expressive than the string, 
there are an infinite number of 4×l matrices of real numbers that 
form the solution space and no algorithm has been able to 
guarantee that the optimal motif, according to some scoring 
function, can be found. Thus, for matrix representation, there are 
computational hurdles to overcome. 

This paper tackles the motif finding problem in which motifs 
are represented by matrices. Our solution extends the novel idea 
used in the algorithm MITRA-PSSM [Eskin, 2004a]. MITRA-
PSSM partitions the infinite matrices in the solution space into a 
fixed number of categories based on strings of nucleotides {A, C, 
G, T} and wildcard characters representing two nucleotides. Then 
it estimates an upper bound on the scores of all matrices within 
each category. For categories that have high estimated scores, a 
local search, based on Expectation-Maximization (EM) theory, is 
performed to find the optimal matrix within each category. 
Unfortunately, MITRA-PSSM’s “partitions” (categories) are not 
really partitions because they do not cover all matrices in the 
solution space and are not disjoint. Moreover, there is no guarantee 
that the EM algorithms will find the optimal solution within each 
category, and with incomplete coverage of the solution space, the 
optimal matrix may even not fall into a category to be considered. 

Our contribution is to introduce an algorithm EOMM (i.e. 
Exact Optimal Motif in Matrix representation) to find the exact 
optimal scoring motif in matrix representation (calculating the 
exact values of all entries in the optimal matrix), or simply optimal 
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motif, which, through a recursive partitioning of the solution space, 
has the features of robustness, efficiency and accuracy as explained 
in the next section. 

This paper is organized as follows. Section 2 gives background 
on the dividing method used by MITRA-PSSM. Section 3 
describes the details of matrix representation. In Section 4, we 
describe how to divide the infinite matrices into categories by 
dividing the column vectors of the matrices into partitions and how 
to calculate the upper bound on scores for each category/partition. 
Algorithm EOMM is described in Section 5. Experimental results 
on both real data and simulated data are shown in Section 6, 
followed by a discussion in Section 7. 

2 BACKGROUND 
MITRA-PSSM [Eskin, 2004a] finds motifs which are represented 
by matrices. First, the solution space of 4×l matrices is partitioned 
into 21l categories which are represented by length-l strings taken 
from an alphabet of 21 symbols, resembling the IUPAC alphabets 
[Sinha and Tompa, 2002] which represent single nucleotides and 
combinations of two nucleotides. Then an upper bound on the 
score of a solution within each category is calculated. The next 
step is to search through the strings to identify categories which 
could contain the optimal solution using a branch-and-bound 
approach similar to SPELLER [Sagot, 1998], and then to search 
for the solution within each such category using EM algorithms. 

The 21-character alphabet (Table 1) for the strings represents 
the “centers” of 21 groups of column vectors (of the motif matrix). 
Note that the 4×l matrices are partitioned into “categories” while 
column vectors into “groups” in MITRA-PSSM or “partitions” in 
our algorithm EOMM. Each “center” can be represented by a 
motivating vector (MV). Column vector (vA,vC,vG,vT) is in the 
group with MV (mA,mC,mG,mT) iff log(v ) � log(m )+0.58 or v � 
20.58m � 1.5m   where can be any nucleotide {A,C,G,T} and 
vA+vC+vG+vT = mA+mC+mG+mT = 1. In order to better characterize 
these 21 groups, we further represent each group by a 
representative column vectors (RCV), a four-tuple of real numbers 
(rA,rC,rG,rT) obtained by scaling up each MV by a factor of 20.58 � 
1.5, more precisely r  = min{20.58m ,1} where ∈{A, C, G, T}. In 
other words, an arbitrary column vector (vA,vC,vG,vT) is in the 

group with RCV (rA,rC,rG,rT) iff 0 ≤ v  ≤ r  where ∈{A, C, G, 
T}. For example, column vector (0.1, 0.9, 0, 0) is in group c 
represented by RCV (0.12, 1, 0.12, 0.12). Similarly, column vector 
(0, 0, 0.4, 0.6) is in group K represented by RCV (0, 0, 0.75, 0.75) 
where K is the IUPAC alphabet for nucleotide G or T. 

The 21 different MVs (or RCVs) are not defined arbitrarily, 
but have some motivation behind them. They are classified into 5 
classes: Strictly conserved, Slightly conserved, Strictly 2-symbol, 
Slightly 2-symbol, and Unconserved. In order to map a 4×l matrix 
to the 21l groups, each column of the matrix is mapped into the 
appropriate RCV which represents that column, resulting in a 
mapping of the matrix to a category as described by a length-l 
string with 21 alphabets. For example, when l = 5, a 4×5 matrix 
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=
1.02.006.00
1.035.01.04.00
2.025.01.009.0
6.02.08.001.0

M  

is in the category represented by “cKaNm” or “ckaNm” 
Unfortunately, because of the way the 21 MVs or RCVs are 

defined (Table 1), some column vectors do not lie in any group (i.e. 
incomplete partitioning) and some lie in more than one group 
(groups are not disjoint). For example, column vector (0.4, 0.3, 0.2, 
0.1) does not lie in any group, while the second column vector (0, 
0, 0.4, 0.6) of the above matrix M (another example is (0, 0, 0.5, 
0.5)) lies in groups K and k with corresponding RCVs (0, 0, 0.75, 
0.75) and (0.15, 0.15, 0.6, 0.6) respectively. An important 
consequence of not covering the solution space completely is that 
the optimal solution may not be found. The consequence of non-
distinct groups is that more groups may have to be considered, 
especially when the optimal or good solutions fall into more than 
one group. 

As mentioned in the introduction, we focus on how to partition 
the set of the column vectors and introduce EOMM with the 
following features: 

(1) [Robustness through true partitioning] EOMM performs a true 
partitioning of the solution space, giving disjoint categories that 
cover the entire solution space so that no (optimal) solution will be 
missed. 

Table 1. Representative Column Vectors and their Motivation 

Class Group 
Motivating vector 

(MV) value set 
Representative column 
vector (RCV) value set 

 
Class Group 

Motivating vector 
(MV) value set 

Representative column 
vector (RCV) value set 

Strictly 
conserved 

A 
C 
G 
T 

(1.0, 0.0, 0.0, 0.0) 
(0.0, 1.0, 0.0, 0.0) 
(0.0, 0.0, 1.0, 0.0) 
(0.0, 0.0, 0.0, 1.0) 

(1.0, 0.0, 0.0, 0.0) 
(0.0, 1.0, 0.0, 0.0) 
(0.0, 0.0, 1.0, 0.0) 
(0.0, 0.0, 0.0, 1.0) 

 Slightly 
conserved 

a 
c 
g 
t 

(0.75, 0.08, 0.08, 0.08) 
(0.08, 0.75, 0.08, 0.08) 
(0.08, 0.08, 0.75, 0.08) 
(0.08, 0.08, 0.08, 0.75) 

(1.00, 0.12, 0.12, 0.12) 
(0.12, 1.00, 0.12, 0.12) 
(0.12, 0.12, 1.00, 0.12) 
(0.12, 0.12, 0.12, 1.00) 

Strictly 
2-symbol 

M 
R 
W 
S 
Y 
K 

(0.5, 0.5, 0.0, 0.0) 
(0.5, 0.0, 0.5, 0.0) 
(0.5, 0.0, 0.0, 0.5) 
(0.0, 0.5, 0.5, 0.0) 
(0.0, 0.5, 0.0, 0.5) 
(0.0, 0.0, 0.5, 0.5) 

(0.75, 0.75, 0.00, 0.00) 
(0.75, 0.00, 0.75, 0.00) 
(0.75, 0.00, 0.00, 0.75) 
(0.00, 0.75, 0.75, 0.00) 
(0.00, 0.75, 0.00, 0.75) 
(0.00, 0.00, 0.75, 0.75) 

 Slightly 
2-symbol 

m 
r 
w 
s 
y 
k 

(0.4, 0.4, 0.1, 0.1) 
(0.4, 0.1, 0.4, 0.1) 
(0.4, 0.1, 0.1, 0.4) 
(0.1, 0.4, 0.4, 0.1) 
(0.1, 0.4, 0.1, 0.4) 
(0.1, 0.1, 0.4, 0.4) 

(0.60, 0.60, 0.15, 0.15) 
(0.60, 0.15, 0.60, 0.15) 
(0.60, 0.15, 0.15, 0.60) 
(0.15, 0.60, 0.60, 0.15) 
(0.15, 0.60, 0.15, 0.60) 
(0.15, 0.15, 0.60, 0.60) 

Unconserved N (0.25, 0.25, 0.25, 0.25) (0.375, 0.375, 0.375, 0.375)      

RCV is a vector which is 20.58 times the corresponding MV with the restriction that each entry is at most 1. 
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(2) [Efficiency with fewer categories] EOMM uses fewer 
categories (9l instead of 21l) than MITRA-PSSM to cover the 
entire solution space, without sacrifice to accuracy. Consequently, 
in EOMM, much fewer categories have to be considered when 
searching for the optimal solution. Moreover, disjoint categories 
are more efficient than non-disjoint categories, because, with non-
disjoint categories, more categories may need to be studied when 
the optimal or near optimal solutions fall into more than one 
category. Note that the disjointedness and reduction in the number 
of categories can be achieved because the column vectors can be 
divided into 9 disjoint partitions instead of 21 non-disjoint groups. 

(3) [Guaranteed Accuracy through recursion] EOMM’s initial 
partitioning has 0.5 as the maximum error which is the same as 
that in MITRA-PSSM’s. For example, a column vector (0.6, 0.1, 
0.15, 0.15), which is in group m with RCV (0.6, 0.6, 0.15, 0.15), 
may have an error of 0.5 for nucleotide C. Moreover, EOMM has, 
as its parameter, error � which controls the accuracy of the solution 
desired. Definitely, the smaller is the error �, the longer the running 
time. Since all partitions in EOMM have the same properties in the 
sense that all column vectors in each partition can be characterized 
by four intervals of real numbers in the solution space, each 
partition can be further recursively divided into smaller partitions 
with the same properties. The error between the solution 
candidates and the optimal matrix can also be reduced accordingly 
until the solution matrix is within any desired accuracy. Finally 
when the partition is sufficiently small as well as the number of 
binding sites for solution candidates in the partition, a brute force 
approach will be employed to find the exact optimal matrix. 

3 MOTIF MODEL 
As in [Bailey and Elkan, 1995; Eskin, 2004a; Lawrence and Reilly, 
1990], input sequences are broken up conceptually into a set of 
length-l overlapping substrings {si}. We assume that all these 
substrings are either generated according to an unknown 
probability matrix M or the background probability B. M is a 4×l 
matrix where M( ,j) is the probability that the j-th nucleotide of a 
length-l binding site is  and M(A,j) + M(C,j) + M(G,j) + M(T,j) = 
1, 1 � j � l. For any length-l substring �, the probability that � is 
generated by M is ∏= =

l
j jjMM 1 )],[()( σσ  where �[j] is the j-th 

nucleotide of �. B is a 4-dimensional vector (B(A), B(C), B(G), 
B(T)) with B(A) + B(C) + B(G) + B(T) = 1, which represents the 
probability of each nucleotide occurring in the non-binding region. 
The probability that a length-l substring � generated by B is 

∏= =
l
j jBB 1 ])[()( σσ . For each length-l substring si, we have a 

hidden variable ai to indicate if si is a binding site. If the substring 
si is a binding site, ai = 1; otherwise, ai = 0. Given the value of the 
hidden variable ai and the prior probability P(M) of a substring 
being generated by M, the likelihood of the input sequences 
[Bailey and Elkan, 1995; Eskin, 2004a; Lawrence and Reilly, 1990] 
is 
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The motif finding problem is to find the probability matrix M 
and the hidden variables {ai} so as to maximize the log likelihood 
log(L) for the input sequences. 

For a fixed M and P(M), the likelihood is maximized if ai = 1 
whenever M(si)/B(si) � (1-P(M))/P(M), i.e., length-l substring si is 
considered as a binding site. Then the maximum log likelihood is 
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Since ( )( )� −
is isBMP )()(1log  is independent of the 

probability matrix M, we define the information content for a 
probability matrix M as 
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The motif-finding problem is now reduced to finding the 
probability matrix M so as to maximize IC(M). In [Eskin, 2004a], 
it is mentioned that flexibility exists because many types of 
additional information can be incorporated into this search problem 
by using different threshold value t, e.g. non-uniform background 
probability distribution, different prior probabilities of binding 
sites at different string positions, etc.  

4 PARTITIONING OF THE SEARCH SPACE 
Since there are infinite numbers of probability matrices M, we 
cannot find the optimal matrix with maximum IC(M) by 
exhaustion. In this section, we will describe how to divide the 
infinite number of probability matrices into categories and how to 
calculate the upper bound of IC(M) for all matrices M within a 
particular category. By further dividing the search space 
recursively, we can reduce the error between the solution matrix 
and the optimal matrix as small as needed. 

4.1 Partition all Column Vectors 
First we will describe how to divide all possible column vectors of 
any probability matrix M into partitions. Each entry of a column 
vector (vA,vC,vG,vT) can be any real number between 0 and 1 with 
the constraint that the sum of all entries in the column vector is 1. 
Figure 1 is the graphical representation of all possible column 
vectors. Since vA + vC + vG + vT = 1, we use a 3-tuple (vC,vG,vT) to 
represent a column vector (vA,vC,vG,vT). The x-axis, y-axis and z-
axis represent the values of vC, vG and vT respectively and the 
corresponding vA of the column vector equals 1 – vC – vG – vT. All 
column vectors can be mapped to a point lies in the tetrahedron 
with corner points (0,0,0), (1,0,0), (0,1,0), (0,0,1) which represent 
four column vectors (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1) 
respectively. Moreover, column vectors with the same value of vA 
will lie on the same plane vC + vG + vT = k where k = 1 – vA. 

In order to have a partition whose maximum IC value can be 
estimated efficiently, we represent a partition P of column vectors 
by 4 ordered pairs (s , r ) where ∈{A, C, G, T}. A column 
vector (vA,vC,vG,vT) is in partition P if  s  < v  � r  where ∈ {A, 
C, G, T}, < is replaced by � if s  = 0. Figure 2 gives the graphical 
representation of a partition. A partition is bounded by eight planes 
and its shape is like a cuboid with two corners removed. In order to 
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make sure each column vector lies in exactly one partition, we 
need to divide the search space (the tetrahedron with corner points 
(0,0,0), (1,0,0), (0,1,0), (0,0,1)) into a set of non-overlapping 
partitions. The volume of a partition P over the volume of the 
tetrahedron (1/6 unit3) represents the percentage of the column 
vectors which lie in the partition P. One might think that we should 
divide the search space into smaller tetrahedrons with equal shape 
and volume so that the probability that a randomly picked column 
vector would lie in each partition is equal. However, this partition 
method has two weaknesses. First, since we must bound the 
partition with 8 planes parallel to the planes vC = 0, vG = 0, vT = 0 
or vC + vG + vT = 1, not all shapes can be described. For example, we 
cannot represent the tetrahedron with corner points at (0.3, 0, 0), (0, 
0.3, 0), (0, 0, 0.3) and (0.2, 0.2, 0.2) using 4 intervals as some of 
the surfaces of this tetrahedron are not parallel to the planes vC = 0, 
vG = 0, vT = 0 or vC + vG + vT = 1. As a result, we cannot describe the 
small tetrahedron properly and will introduce overlapped partitions. 
Second, in practice, the probability of each column vector 
appearing in the motif is not equal. A motif usually contains many 
conserved columns. This means that the occurrence probability of 
a conserved column vector, with one entry significantly larger than 
the rest of the entries, in the motif is higher than the occurrence 
probabilities of the other column vectors. We need to divide the 
search space into partitions with different volumes. Those 
partitions near the four corner points (representing the conserved 
column vectors) should be smaller while the partition in the center 

(representing the unconserved column vectors) should be larger, so 
that the probability of a column vector being a solution in each 
partition is almost the same. Based on this idea, all column vectors 
are divided into 9 non-overlapped partitions {A, C, G, T, a, c, g, t, 
N} whose ordered pairs are shown in Table 2. Partitions A, C, G 
and T are closest to the four corner points, so their volume 
(0.00563 unit3) is relatively small. On the other hand, the volume 
of partition N, near the center, is relatively large (0.08 unit3). 

It is easy to show that every column vector lies in exactly one 
of these partitions. Assume the j-th column of the optimal matrix 
M* lies in partition P, the difference between each entry in the j-th 
column of M* and the corresponding entry of any column vector in 
P is at most = max{ s  – r | = A, C, G, T} � 0.5, the same 
maximum error as MITRA-PSSM’s partitions. Therefore, if we 
replace the 21 groups used in MITRA-PSSM by the 9 partitions in 
Table 2, the running time of MITRA-PSSM will decrease without 
increasing the error bound. Moreover, our partition method has an 
advantage that we can further divide a partition into smaller 
partitions by planes parallel to planes vC = 0, vG = 0, vT = 0 or vC + 
vG + vT = 1 and determine in which partition the optimal matrix M* 
should lie. For example, if we divide the partition A = ((0.85, 1), (0, 
0.15), (0, 0.15), (0, 0.15)) by the plane vG = 0.075, we will get two 
smaller partitions, ((0.85, 1), (0, 0.15), (0, 0.075), (0, 0.15)) and 
((0.85, 1), (0, 0.15), (0.075, 0.15), (0, 0.15)). Note that it might not 
be necessary to partition P across all dimensions. Only the 
dimensions which introduce a large error � will be partitioned. 

T 

G 

C 
(0,1,0,0) 

(0,0,0,1) 

(0,0,1,0) 

(1,0,0,0) vA = 0.5 
 

vA = 0.25 
 

vA = 0.75 

vG vT 

vC 

(0.25,vC, vG, vT) 

Fig 1. Graphical representation of all column vectors (vA, 
vC, vG, vT) of a probability matrix 

T 

G 

(maxC, maxG, maxT) 

C 
vA = minA 

 
vA = maxA 

Fig 2. Graphical representation of a partition of column vectors 

Table 2. 9 partitions of all possible column vectors 

Class Partition ((sA, rA], (sC, rC], (sG, rG], (sT, rT])  Class Partition ((sA, rA], (sC, rC], (sG, rG], (sT, rT]) 

Strictly 
conserved 

A 
C 
G 
T 

((0.85,1], [0,0.15], [0,0.15], [0,0.15]) 
([0,0.15], (0.85,1], [0,0.15], [0,0.15]) 
([0,0.15], [0,0.15], (0.85,1], [0,0.15]) 
([0,0.15], [0,0.15], [0,0.15], (0.85,1]) 

 Slightly 
conserved 

a 
c 
g 
t 

((0.5,0.85], [0,0.5], [0,0.5], [0,0.5]) 
([0,0.5], (0.5,0.85], [0,0.5], [0,0.5]) 
([0,0.5], [0,0.5], (0.5,0.85], [0,0.5]) 
([0,0.5], [0,0.5], [0,0.5], (0.5,0.85]) 

Unconserved N ([0,0.5], [0,0.5], [0,0.5], [0,0.5])     
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Thus, we can repeat this process with different numbers of 
partitions at each subsequent step so as to reduce the error . 

4.2 Divide Matrix into Categories and Calculate the 
Upper Bound of its IC (Information Content) 

Each column vector of a 4×l probability matrix M must lie in one 
of the 9 partitions of column vectors. Depending on which 
partition of each column vector of a probability matrix belongs to, 
we can divide all 4×l probability matrices into 9l categories. Let M 
be a probability matrix in category W, represented by l partitions of 
column vectors from P1 to Pl. Let MW be the matrix formed by the 
maximum values of the corresponding partitions, i.e. MW( , j) = 
r� of the partition Pj, where ∈ {A, C, G, T}, 1 � j � l. For 
example, matrix M in category CtaNa and its corresponding 
matrix MW are 

�
�
�

�

�

�
�
�

�

�

=
�
�
�

�

�

�
�
�

�

�

=
5.05.05.085.015.0
5.05.05.05.015.0
5.05.05.05.01

85.05.085.05.015.0
     

1.02.006.00
1.035.01.04.00
2.025.01.009.0
6.02.08.001.0

WMM

 

Note that the sum of all entries in the j-th column of MW may larger 
than 1. Let the binding sites of a probability matrix M be those 
substrings si such that M(si)/B(si) � (1 – P(M))/P(M). Similar to 
MITRA-PSSM [Eskin, 2004a], we can show in the Appendix that 
IC(MW) is the upper bound of IC(M) for all matrices in category W 
and thus if IC(MW) is small, then none of the matrices in category 
W can be the optimal matrix and W can be skipped. 

Although MITRA-PSSM uses a similar method to find the 
motifs, its groups cannot cover all the probability matrices. For 
example, a probability matrix with a column vector (0.4, 0.3, 0.2, 
0.1) is not in any of its groups. Moreover, MITRA-PSSM applies 
an EM-algorithm in each group, which tries, but cannot guarantee, 
the finding of the optimal matrix. The error of its solution, i.e., the 
difference between an entry of the solution matrix and the 
corresponding entry in the optimal matrix, can be as large as 0.5. 

5 ALGORITHM 
As SPELLER [Sagot, 1998] and MITRA-PSSM [Eskin, 2004a], 
we search among the categories by a branch-and-bound approach, 
but our search will continue by further partitioning the search 

space recursively or by exhausting all the possible solutions when 
the search space is sufficiently small. In this section, we shall 
describe the data structures used to support searching when the 
categories are further partitioned and how the number of possible 
solutions can be limited for brute-force searching. EOMM divides 
all possible 4×l probability matrices into 9l categories. We use 
IC(MW) as the upper bound of information content for all matrices 
in category W (see Appendix). If IC(MW) is larger than the 
information content IC* of the best matrix found so far, we will 
further divide all matrices in category W into smaller categories 
and repeat the process until the error � is less than a predefined 
threshold. However, since the number of categories to be tested 
increases exponentially with l, we use the following approach to 
speed up the computation of IC(MW) and to reduce the number of 
categories to be tested. 

5.1 Traverse a suffix trie 
Since not all categories contain a probability matrix with high 
information content, the running time of the algorithm can be 
reduced if we do not consider those categories which would have a 
low IC(MW). We use an approach similar to SPELLER and 
MITRA-PSSM to rule out those categories with low IC(MW). 

Two data structures, a suffix trie S and a category tree T, are 
maintained when searching for the optimal matrix. The suffix trie S 
represents all length-l’ substrings with 0 � l’ � l in the input 
sequences. This data structure is also called l-factor trie. Each 
length-l’ substring s  in the input sequences can be represented by 
a particular node S  at level l’. Every length-(l’+1) substring s� 
with prefix s  is represented by a child node S� of S . For each 
node S , f(S ) represents the number of occurrences of substring s  
in the input sequences. Figure 3a shows a suffix trie for the 
sequence “AACACCTCACG”. 

The category tree T has a similar structure as suffix trie S. T 
represents all categories of 4×l’ (0 � l’ � l) probability matrices 
under consideration. Each category T  of 4×l’ probability matrices 
is represented by a node at level l’. Each category T� of 4×(l’+1) 
probability matrices with the first l’ column vectors same as T  is 
represented as a child node of T . Figure 3b shows a category tree. 
In the following, we describe the pruning condition for the branch-
and-bound approach in finding the optimal IC* value. Let w be the 
maximum value of log(M( ,j)/B( )) for any nucleotide and 
position j. Assume leaf node T� is in the subtree rooted at the 
internal node T , the information content of every 4×l probability 
matrix in category T� is at most 
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where U contains all substrings in the input sequences which may 
be binding sites of some matrix in T�, that is 

})'())(/)(log(|{ ''' twllsBsMsU W >−+= γγγ γ
 

and S ’ is the trie node representing the length-l’ substring s ’. If 
ICmax(T ) is less than the current maximum IC value, we need not 
consider all leaf nodes T� of the subtree rooted at T  and the 
subtree rooted at T  can be pruned. We calculate IC(MT�) for all 
leaf nodes T� of the category tree T and update the current 

Fig. 3a. Suffix trie S (4-factor trie) for the sequence “AACACCTCACG” 
when l = 4. e.g. node  represents the substring “CC” and its child node S� 
represents the substring “CCT” where the prefix of “CCT” is “CC”. 
Fig. 3b. Category tree T when l = 4. 
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maximum IC value if IC(MT�) is no less than the current maximum 
IC value. 

Let {S ’} be the set of nodes in S such that log(MT (s ’)/B(s ’)) 
+ (l - l’)w > t for category T  of length l’. Consider a category T� 
for 4×(l’+1) probability matrices with the first l’ column vector 
same as T . Let {S�’} be the set of nodes in S such that  
log(MT�(s�’)/B(s�’)) + (l - l’ - 1)w > t. S�’ must be a child of node S ’ 
in S such that the prefix of s�’ is s ’ and we can calculate ICmax(T�) 
based on ICmax(T ) to reduce the running time as follows 
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5.2 Update data structure when dividing a category 
recursively 

When we divide a category W into smaller categories {Wv}, we can 
simply construct a category tree T’ for {Wv} and perform a depth-
first search on T’. However, since each Wv is a partition of matrices 
in category W, the binding sites of MW is a superset of the binding 
sites of all matrices in each Wv. Instead of searching binding sites 
in S, we construct a suffix trie S’ for all binding sites of MW, 
substring s� such that log(MW(s�)/B(s�)) > t. Since the size of S’ 
should be much smaller than S (suffix trie of all input sequences), 
the time needed for searching T’ should be smaller than the time 
needed for searching T. 

5.3 Derive the exact optimal matrix 
When the number of patterns for the binding sites of MW is small, 
that is, the number of different length-l substrings which are the 
binding sites of MW is small, we use the brute force approach to 
find the optimal matrix M* instead of dividing category W further. 

Assume the binding sites of MW have K different patterns {�i}, 
and pattern �i occurs ki times in the input sequences. If the optimal 
matrix M* is in category W, the binding sites of M* must be a 
subset of these �i ik binding sites. Assume the set of binding 
patterns of M* is }{ *

iρ , It is shown in [Eskin, 2004a] that M*( ,j) 
= �� =• i ii ii kjk *** /)][I(( αρ  where I(p) returns 1 if the statement 
p is true and returns 0 otherwise. If K is small, it may be more 
efficient to find the corresponding M* for each of the 2K possible 
subsets of {�i}, and update the optimal matrix with M* with the 
maximum IC(M*). If the optimal matrix lies in category W, we 
must be able to find the optimal solution M* exactly with no error. 

6 EXPERIMENTS 
We implemented EOMM and tested it on both simulated and real 
biological data. All experiments were run on a P4 2.4G computer 
with 1GB memory, in which only 50MB memory was used. 

6.1 Experiments on simulated data 
We generated 10 length-500 DNA sequences with 0.25 as the 
occurrence probability of each nucleotide A, C, G and T, and 
planted 25 binding sites, according to a randomly-generated 4×7 
probability matrix M, in the 10 DNA sequences at random 
positions. When we generated the data, the expected score E(M) of 
matrix M for each binding site was also calculated, where E(M) 
measures how easy the optimal motif can be found. 
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which is 2l minus the sum of entropy of each column vector in M 
minus the threshold t. A high value for E(M) means that each 
binding site carries a strong signal of the motif and it is easier to 
find the motif [Chin et al., 2004, Leung et al, 2005]. 

We compared EOMM with two different algorithms, MITRA-
PSSM and the popular motif-finding software MEME, for each set 
of simulated data. MITRA-PSSM finds the optimal matrix by 
partitioning the searching space into fixed categories and 
performing EM algorithm on those categories that may contain the 
optimal matrix. MEME finds the motif by using EM algorithm 
directly. Different random matrices M within each range of 
expected score E(M) were tested and the results are shown in Table 
3. For each range of E(M), we repeated the experiment 20 times 
and counted the number of times the algorithms could find the 
correct motif. We say an algorithm can find the motif if matrix M 
is within the top 10 answers of the algorithm. 

When the expected score for each binding site was large (1.0 < 
E(M) � 3.0), all three algorithms found the correct motif most of 
the time. When the expected score decreased (-1.0 < E(M) � 1.0), 
MITRA-PSSM and MEME might not be able to find the correct 

Table 3.  Experimental results on simulated data 

Number of times the algorithm find the planted motif Expected score per 
binding site E(M) MEME MITRA-PSSM EOMM average time 

-3.0 < E(M) � -1.0 0 / 20 1 / 20 2 / 20 1.5 hour 
-1.0 < E(M) � 1.0 10 / 20 9 / 20 17 / 20 58 min 
1.0 < E(M) � 3.0 18 / 20 20 / 20 20 / 20 40 min 

For each range of E(M), the experiment was repeated 20 times with different 
probability matrices and the number of successes for each algorithm was counted. 

Table 4.  Experimental results on real biological data 

Rank of the motif in the answer list Transcription 
factor 

Pattern of the 
published motif EOMM MITRA-PSSM MEME 

ACE2 GCTGGT 2 - - 
BAS1 TGACTC 1 1 1 
CuRE, MAC1 TTTGCTC 1 - 1 
GATA CTTATC 1 1 1 
GCFAR GGGCCC 1 1 1 
GCRE, GCN4 TGANTN 1 1 1 

The data are collected from the SCPD[22]. We show the pattern of the motif 
(instead of its matrix representation) to make it more readable. For each set of data, 
we look for motifs with length equal to the published motif. Rank is the position of 
the correct motif in the answer list. ‘-’ means the algorithm cannot find the correct 
motif. 
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motif. This is because there might be many local maxima in the 
input sequences and EM algorithm does not guarantee that the 
optimal matrix can be found. Moreover, MITRA-PSSM failed to 
find the correct motif because it has been modified to improve its 
time complexity at the expense of accuracy [Eskin, 2004b]. 
However, with a longer execution time, EOMM could usually find 
the optimal matrix M. When the expected score decreased further 
(E(M) � -3.0), no algorithm could find matrix M because the signal 
of matrix M was too weak and there were many matrices with 
information content larger than M [Chin et al., 2004, Leung et al, 
2005]. 

6.2 Experiments on real biological data 
SCPD[Zhu and Zhang, 1999] is a database of transcription factors 
for yeast. For each set of genes regulated by the same transcription 
factor, we chose the promoter regions of these genes as the input 
sequences. Table 4 shows the results of the three algorithms. On 
those real biological data with weak signal motif, EOMM works 
well when compared with MITRA-PSSM and MEME.  

7 DISCUSSION 
Most existing algorithms find matrix-represented motifs using 
local searching methods which do not guarantee that the optimal 
matrix can be found and the error of the solution can be very large. 
The MITRA-PSSM algorithm partitions the search space before 
performing the EM-algorithm. It can bound the error of the 
solution by 0.5 and has a higher probability of finding the optimal 
matrix than the other algorithms. In this paper, we introduce 
EOMM which divides the search space into fewer categories than 
MITRA-PSSM without increasing the error. Thus our algorithm 
should run faster than MITRA-PSSM before its modification. 
Moveover, EOMM can find motifs with any accuracy by 
partitioning the search space recursively. 

Since EOMM usually takes much longer time to find the 
optimal motif, it is not advisable to use EOMM for discovering 
strong signal motif. However, EOMM outperforms all the existing 
algorithms to find motifs with very weak signal at the expense of 
long execution time. We can now find motif of length l � 8 in 
reasonable time, say a couple hours. For motifs with larger l, we 
can use local searching method to find all partitions containing at 
least one probability matrix with high score and then use EOMM 
to find the optimal matrix in these partitions. 

Moreover, instead of using the maximum likelihood model 
when calculating the score of a matrix, we can extend our 
algorithm to use other models like maximum aposteriori (MAP) 
likelihood and Bayesian priors. 
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APPENDIX 

Theorem: Let M be a matrix in category W = P1 P2 … Pl . The set 
of binding sites of MW is a superset of the set of binding sites of M 
and IC(M) � IC(MW). 

Proof: Let (sj,�,r j,�) be the order pair in partition Pj represent the 
upper bound and lower bound of the occurrence probability of �. 
Since M is in category W, ∀ � = A, C, G, T and j = 1, …, l 
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From the inequality (1) above, we can show that every binding site 
of M is also a binding site of MW. 


