
Vol. 00 no. 0 2005, pages 1–5
doi:10.1093/bioinformatics/bti283

© Oxford University Press 2005 1

BIOINFORMATICS

Finding Exact Optimal Motif in Matrix Representation
by Partitioning
Henry C.M. Leung, Francis Y.L. Chin and Bethany M.Y. Chan
Department of Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong

ABSTRACT
Motivation: Finding common patterns, or motifs, in the promoter
regions of co-expressed genes is an important problem in
bioinformatics. A common representation of the motif is by
probability matrix or PSSM (Position Specific Scoring Matrix).
However, even for a motif of length 6 or 7, there is no algorithm that
can guarantee finding the exact optimal matrix from an infinite
number of possible matrices.
Results: This paper introduces the first algorithm called EOMM for
finding the exact optimal matrix-represented motif, or simply optimal
motif. Based on branch-and-bound search by partitioning the
solution space recursively, EOMM can find the optimal motif of size
up to 8 or 9, and a motif of larger size with any desired accuracy on
the principle that the smaller the error bound, the longer the running
time. Experiments show that for some real and simulated data sets,
EOMM finds the motif despite very weak signals when existing
software, such as MEME and MITRA-PSSM, fails to do so.
Contact: {cmleung2, chin, mychan}@cs.hku.hk

1 INTRODUCTION
One important problem in bioinformatics is to understand how
genes cooperate to perform functions, i.e. the gene regulatory
network. Related to this is the sub-problem of finding motifs for
co-regulatory genes.

The context behind the motif finding problem is the following.
Gene expression is the process whereby a gene is decoded to form
a RNA sequence which is then used to produce the corresponding
protein sequence. In order to start the gene expression process, a
molecule called a transcription factor will bind to a short substring
in the promoter region of the gene. We call this substring a binding
site of the transcription factor. A transcription factor can bind to
several binding sites in the promoter regions of different genes to
make these genes co-express, and such binding sites should have
common pattern. The motif finding problem is to find the common
pattern, or motif, from a set of promoter regions without knowing
the positions of the binding sites.

Before we discuss how to find motifs, we need a model to
represent motifs. There are two common models: string
representation [Brazma et al., 1995; Buhler and Tompa, 2001;
Chin et al., 2005; Leung and Chin, 2005; Li et al., 2002; Liang,
2003; Pevzner and Sze, 2000; Rocke and Tompa, 1998; Sagot,
1998; Staden, 1989; Tompa, 1999; Wolfertsteeter et al., 1996] and
matrix representation [Bailey and Elkan, 1995; Barash et al., 2001;

The research was supported in parts by the RGC grant HKU 7135/04E

Chin et al., 2004; Eskin, 2004a; Lawrence et al.,1993; Leung et al.,
2005; Liu et al., 1995].

String representation uses a length-l string of symbols (or
nucleotides) A, C, G and T to describe a motif. In this model, the
number of different length-l motifs is limited to 4l and, when l is
small, it is possible to find the “optimal” motif (highest-scoring
with respect to some specified scoring function that compares the
motif against binding sites). Unfortunately, many motifs in real
biological data cannot be adequately described in this way. For
example, the motif may be better described by allowing more than
one symbol (e.g. not only G but G or T) to occupy a single position.
Thus, some researchers have tried to improve string representation
by introducing wildcard characters [Shinozaki et al., 2003; Sinha
and Tompa, 2000] into the string to represent choice from a subset
of symbols at a particular position. For example, K denotes G or T.

Matrix or PSSM (Position Specific Scoring Matrix)
representation uses a 4×l matrix of real numbers to represent the
motif where the j-th column of 4 numbers gives us the probability,
respectively, that symbol A, C, G or T occupies the j-th position of
the motif. Although the matrix is more expressive than the string,
there are an infinite number of 4×l matrices of real numbers that
form the solution space and no algorithm has been able to
guarantee that the optimal motif, according to some scoring
function, can be found. Thus, for matrix representation, there are
computational hurdles to overcome.

This paper tackles the motif finding problem in which motifs
are represented by matrices. Our solution extends the novel idea
used in the algorithm MITRA-PSSM [Eskin, 2004a]. MITRA-
PSSM partitions the infinite matrices in the solution space into a
fixed number of categories based on strings of nucleotides {A, C,
G, T} and wildcard characters representing two nucleotides. Then
it estimates an upper bound on the scores of all matrices within
each category. For categories that have high estimated scores, a
local search, based on Expectation-Maximization (EM) theory, is
performed to find the optimal matrix within each category.
Unfortunately, MITRA-PSSM’s “partitions” (categories) are not
really partitions because they do not cover all matrices in the
solution space and are not disjoint. Moreover, there is no guarantee
that the EM algorithms will find the optimal solution within each
category, and with incomplete coverage of the solution space, the
optimal matrix may even not fall into a category to be considered.

Our contribution is to introduce an algorithm EOMM (i.e.
Exact Optimal Motif in Matrix representation) to find the exact
optimal scoring motif in matrix representation (calculating the
exact values of all entries in the optimal matrix), or simply optimal

Henry Leung and Francis Chin

2

motif, which, through a recursive partitioning of the solution space,
has the features of robustness, efficiency and accuracy as explained
in the next section.

This paper is organized as follows. Section 2 gives background
on the dividing method used by MITRA-PSSM. Section 3
describes the details of matrix representation. In Section 4, we
describe how to divide the infinite matrices into categories by
dividing the column vectors of the matrices into partitions and how
to calculate the upper bound on scores for each category/partition.
Algorithm EOMM is described in Section 5. Experimental results
on both real data and simulated data are shown in Section 6,
followed by a discussion in Section 7.

2 BACKGROUND
MITRA-PSSM [Eskin, 2004a] finds motifs which are represented
by matrices. First, the solution space of 4×l matrices is partitioned
into 21l categories which are represented by length-l strings taken
from an alphabet of 21 symbols, resembling the IUPAC alphabets
[Sinha and Tompa, 2002] which represent single nucleotides and
combinations of two nucleotides. Then an upper bound on the
score of a solution within each category is calculated. The next
step is to search through the strings to identify categories which
could contain the optimal solution using a branch-and-bound
approach similar to SPELLER [Sagot, 1998], and then to search
for the solution within each such category using EM algorithms.

The 21-character alphabet (Table 1) for the strings represents
the “centers” of 21 groups of column vectors (of the motif matrix).
Note that the 4×l matrices are partitioned into “categories” while
column vectors into “groups” in MITRA-PSSM or “partitions” in
our algorithm EOMM. Each “center” can be represented by a
motivating vector (MV). Column vector (vA,vC,vG,vT) is in the
group with MV (mA,mC,mG,mT) iff log(v) � log(m)+0.58 or v �
20.58m � 1.5m where can be any nucleotide {A,C,G,T} and
vA+vC+vG+vT = mA+mC+mG+mT = 1. In order to better characterize
these 21 groups, we further represent each group by a
representative column vectors (RCV), a four-tuple of real numbers
(rA,rC,rG,rT) obtained by scaling up each MV by a factor of 20.58 �
1.5, more precisely r = min{20.58m ,1} where ∈{A, C, G, T}. In
other words, an arbitrary column vector (vA,vC,vG,vT) is in the

group with RCV (rA,rC,rG,rT) iff 0 ≤ v ≤ r where ∈{A, C, G,
T}. For example, column vector (0.1, 0.9, 0, 0) is in group c
represented by RCV (0.12, 1, 0.12, 0.12). Similarly, column vector
(0, 0, 0.4, 0.6) is in group K represented by RCV (0, 0, 0.75, 0.75)
where K is the IUPAC alphabet for nucleotide G or T.

The 21 different MVs (or RCVs) are not defined arbitrarily,
but have some motivation behind them. They are classified into 5
classes: Strictly conserved, Slightly conserved, Strictly 2-symbol,
Slightly 2-symbol, and Unconserved. In order to map a 4×l matrix
to the 21l groups, each column of the matrix is mapped into the
appropriate RCV which represents that column, resulting in a
mapping of the matrix to a category as described by a length-l
string with 21 alphabets. For example, when l = 5, a 4×5 matrix

�
�
�

�

�

�
�
�

�

�

=
1.02.006.00
1.035.01.04.00
2.025.01.009.0
6.02.08.001.0

M

is in the category represented by “cKaNm” or “ckaNm”
Unfortunately, because of the way the 21 MVs or RCVs are

defined (Table 1), some column vectors do not lie in any group (i.e.
incomplete partitioning) and some lie in more than one group
(groups are not disjoint). For example, column vector (0.4, 0.3, 0.2,
0.1) does not lie in any group, while the second column vector (0,
0, 0.4, 0.6) of the above matrix M (another example is (0, 0, 0.5,
0.5)) lies in groups K and k with corresponding RCVs (0, 0, 0.75,
0.75) and (0.15, 0.15, 0.6, 0.6) respectively. An important
consequence of not covering the solution space completely is that
the optimal solution may not be found. The consequence of non-
distinct groups is that more groups may have to be considered,
especially when the optimal or good solutions fall into more than
one group.

As mentioned in the introduction, we focus on how to partition
the set of the column vectors and introduce EOMM with the
following features:

(1) [Robustness through true partitioning] EOMM performs a true
partitioning of the solution space, giving disjoint categories that
cover the entire solution space so that no (optimal) solution will be
missed.

Table 1. Representative Column Vectors and their Motivation

Class Group
Motivating vector

(MV) value set
Representative column
vector (RCV) value set

Class Group

Motivating vector
(MV) value set

Representative column
vector (RCV) value set

Strictly
conserved

A
C
G
T

(1.0, 0.0, 0.0, 0.0)
(0.0, 1.0, 0.0, 0.0)
(0.0, 0.0, 1.0, 0.0)
(0.0, 0.0, 0.0, 1.0)

(1.0, 0.0, 0.0, 0.0)
(0.0, 1.0, 0.0, 0.0)
(0.0, 0.0, 1.0, 0.0)
(0.0, 0.0, 0.0, 1.0)

 Slightly
conserved

a
c
g
t

(0.75, 0.08, 0.08, 0.08)
(0.08, 0.75, 0.08, 0.08)
(0.08, 0.08, 0.75, 0.08)
(0.08, 0.08, 0.08, 0.75)

(1.00, 0.12, 0.12, 0.12)
(0.12, 1.00, 0.12, 0.12)
(0.12, 0.12, 1.00, 0.12)
(0.12, 0.12, 0.12, 1.00)

Strictly
2-symbol

M
R
W
S
Y
K

(0.5, 0.5, 0.0, 0.0)
(0.5, 0.0, 0.5, 0.0)
(0.5, 0.0, 0.0, 0.5)
(0.0, 0.5, 0.5, 0.0)
(0.0, 0.5, 0.0, 0.5)
(0.0, 0.0, 0.5, 0.5)

(0.75, 0.75, 0.00, 0.00)
(0.75, 0.00, 0.75, 0.00)
(0.75, 0.00, 0.00, 0.75)
(0.00, 0.75, 0.75, 0.00)
(0.00, 0.75, 0.00, 0.75)
(0.00, 0.00, 0.75, 0.75)

 Slightly
2-symbol

m
r
w
s
y
k

(0.4, 0.4, 0.1, 0.1)
(0.4, 0.1, 0.4, 0.1)
(0.4, 0.1, 0.1, 0.4)
(0.1, 0.4, 0.4, 0.1)
(0.1, 0.4, 0.1, 0.4)
(0.1, 0.1, 0.4, 0.4)

(0.60, 0.60, 0.15, 0.15)
(0.60, 0.15, 0.60, 0.15)
(0.60, 0.15, 0.15, 0.60)
(0.15, 0.60, 0.60, 0.15)
(0.15, 0.60, 0.15, 0.60)
(0.15, 0.15, 0.60, 0.60)

Unconserved N (0.25, 0.25, 0.25, 0.25) (0.375, 0.375, 0.375, 0.375)

RCV is a vector which is 20.58 times the corresponding MV with the restriction that each entry is at most 1.

Finding Exact Optimal Motif in Matrix Representation
by Partitioning

3

(2) [Efficiency with fewer categories] EOMM uses fewer
categories (9l instead of 21l) than MITRA-PSSM to cover the
entire solution space, without sacrifice to accuracy. Consequently,
in EOMM, much fewer categories have to be considered when
searching for the optimal solution. Moreover, disjoint categories
are more efficient than non-disjoint categories, because, with non-
disjoint categories, more categories may need to be studied when
the optimal or near optimal solutions fall into more than one
category. Note that the disjointedness and reduction in the number
of categories can be achieved because the column vectors can be
divided into 9 disjoint partitions instead of 21 non-disjoint groups.

(3) [Guaranteed Accuracy through recursion] EOMM’s initial
partitioning has 0.5 as the maximum error which is the same as
that in MITRA-PSSM’s. For example, a column vector (0.6, 0.1,
0.15, 0.15), which is in group m with RCV (0.6, 0.6, 0.15, 0.15),
may have an error of 0.5 for nucleotide C. Moreover, EOMM has,
as its parameter, error � which controls the accuracy of the solution
desired. Definitely, the smaller is the error �, the longer the running
time. Since all partitions in EOMM have the same properties in the
sense that all column vectors in each partition can be characterized
by four intervals of real numbers in the solution space, each
partition can be further recursively divided into smaller partitions
with the same properties. The error between the solution
candidates and the optimal matrix can also be reduced accordingly
until the solution matrix is within any desired accuracy. Finally
when the partition is sufficiently small as well as the number of
binding sites for solution candidates in the partition, a brute force
approach will be employed to find the exact optimal matrix.

3 MOTIF MODEL
As in [Bailey and Elkan, 1995; Eskin, 2004a; Lawrence and Reilly,
1990], input sequences are broken up conceptually into a set of
length-l overlapping substrings {si}. We assume that all these
substrings are either generated according to an unknown
probability matrix M or the background probability B. M is a 4×l
matrix where M(,j) is the probability that the j-th nucleotide of a
length-l binding site is and M(A,j) + M(C,j) + M(G,j) + M(T,j) =
1, 1 � j � l. For any length-l substring �, the probability that � is
generated by M is ∏= =

l
j jjMM 1)],[()(σσ where �[j] is the j-th

nucleotide of �. B is a 4-dimensional vector (B(A), B(C), B(G),
B(T)) with B(A) + B(C) + B(G) + B(T) = 1, which represents the
probability of each nucleotide occurring in the non-binding region.
The probability that a length-l substring � generated by B is

∏= =
l
j jBB 1])[()(σσ . For each length-l substring si, we have a

hidden variable ai to indicate if si is a binding site. If the substring
si is a binding site, ai = 1; otherwise, ai = 0. Given the value of the
hidden variable ai and the prior probability P(M) of a substring
being generated by M, the likelihood of the input sequences
[Bailey and Elkan, 1995; Eskin, 2004a; Lawrence and Reilly, 1990]
is

()

() ()∏∏
∏∏

−
−

=

−=

=

==

iii

iiii

s ias
i

i

as ias i

sBMP
sBMP

sMMP

sBMPsMMPL

)()(1
)()(1

)()(
)()(1)()(

1:

0:1:

The motif finding problem is to find the probability matrix M
and the hidden variables {ai} so as to maximize the log likelihood
log(L) for the input sequences.

For a fixed M and P(M), the likelihood is maximized if ai = 1
whenever M(si)/B(si) � (1-P(M))/P(M), i.e., length-l substring si is
considered as a binding site. Then the maximum log likelihood is

()
()()

())(/)(1log where

)()(1log
)(
)(

log)log(
)(/)(log:

MPMPt

sBMPt
sB
sM

L
iiii s

i
tsBsMs i

i

−=

−+�
�

�

�

�
�

�

�
−��
�

�
��
�

�
= ��

>

Since ()()� −
is isBMP)()(1log is independent of the

probability matrix M, we define the information content for a
probability matrix M as

()
�

>
�
�

�

�

�
�

�

�
−��

�

�
��
�

�
=

tsBsMs i

i

iii

t
sB
sM

MIC
)(/)(:log)(

)(
log)(

The motif-finding problem is now reduced to finding the
probability matrix M so as to maximize IC(M). In [Eskin, 2004a],
it is mentioned that flexibility exists because many types of
additional information can be incorporated into this search problem
by using different threshold value t, e.g. non-uniform background
probability distribution, different prior probabilities of binding
sites at different string positions, etc.

4 PARTITIONING OF THE SEARCH SPACE
Since there are infinite numbers of probability matrices M, we
cannot find the optimal matrix with maximum IC(M) by
exhaustion. In this section, we will describe how to divide the
infinite number of probability matrices into categories and how to
calculate the upper bound of IC(M) for all matrices M within a
particular category. By further dividing the search space
recursively, we can reduce the error between the solution matrix
and the optimal matrix as small as needed.

4.1 Partition all Column Vectors
First we will describe how to divide all possible column vectors of
any probability matrix M into partitions. Each entry of a column
vector (vA,vC,vG,vT) can be any real number between 0 and 1 with
the constraint that the sum of all entries in the column vector is 1.
Figure 1 is the graphical representation of all possible column
vectors. Since vA + vC + vG + vT = 1, we use a 3-tuple (vC,vG,vT) to
represent a column vector (vA,vC,vG,vT). The x-axis, y-axis and z-
axis represent the values of vC, vG and vT respectively and the
corresponding vA of the column vector equals 1 – vC – vG – vT. All
column vectors can be mapped to a point lies in the tetrahedron
with corner points (0,0,0), (1,0,0), (0,1,0), (0,0,1) which represent
four column vectors (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)
respectively. Moreover, column vectors with the same value of vA
will lie on the same plane vC + vG + vT = k where k = 1 – vA.

In order to have a partition whose maximum IC value can be
estimated efficiently, we represent a partition P of column vectors
by 4 ordered pairs (s , r) where ∈{A, C, G, T}. A column
vector (vA,vC,vG,vT) is in partition P if s < v � r where ∈ {A,
C, G, T}, < is replaced by � if s = 0. Figure 2 gives the graphical
representation of a partition. A partition is bounded by eight planes
and its shape is like a cuboid with two corners removed. In order to

Henry Leung and Francis Chin

4

make sure each column vector lies in exactly one partition, we
need to divide the search space (the tetrahedron with corner points
(0,0,0), (1,0,0), (0,1,0), (0,0,1)) into a set of non-overlapping
partitions. The volume of a partition P over the volume of the
tetrahedron (1/6 unit3) represents the percentage of the column
vectors which lie in the partition P. One might think that we should
divide the search space into smaller tetrahedrons with equal shape
and volume so that the probability that a randomly picked column
vector would lie in each partition is equal. However, this partition
method has two weaknesses. First, since we must bound the
partition with 8 planes parallel to the planes vC = 0, vG = 0, vT = 0
or vC + vG + vT = 1, not all shapes can be described. For example, we
cannot represent the tetrahedron with corner points at (0.3, 0, 0), (0,
0.3, 0), (0, 0, 0.3) and (0.2, 0.2, 0.2) using 4 intervals as some of
the surfaces of this tetrahedron are not parallel to the planes vC = 0,
vG = 0, vT = 0 or vC + vG + vT = 1. As a result, we cannot describe the
small tetrahedron properly and will introduce overlapped partitions.
Second, in practice, the probability of each column vector
appearing in the motif is not equal. A motif usually contains many
conserved columns. This means that the occurrence probability of
a conserved column vector, with one entry significantly larger than
the rest of the entries, in the motif is higher than the occurrence
probabilities of the other column vectors. We need to divide the
search space into partitions with different volumes. Those
partitions near the four corner points (representing the conserved
column vectors) should be smaller while the partition in the center

(representing the unconserved column vectors) should be larger, so
that the probability of a column vector being a solution in each
partition is almost the same. Based on this idea, all column vectors
are divided into 9 non-overlapped partitions {A, C, G, T, a, c, g, t,
N} whose ordered pairs are shown in Table 2. Partitions A, C, G
and T are closest to the four corner points, so their volume
(0.00563 unit3) is relatively small. On the other hand, the volume
of partition N, near the center, is relatively large (0.08 unit3).

It is easy to show that every column vector lies in exactly one
of these partitions. Assume the j-th column of the optimal matrix
M* lies in partition P, the difference between each entry in the j-th
column of M* and the corresponding entry of any column vector in
P is at most = max{ s – r | = A, C, G, T} � 0.5, the same
maximum error as MITRA-PSSM’s partitions. Therefore, if we
replace the 21 groups used in MITRA-PSSM by the 9 partitions in
Table 2, the running time of MITRA-PSSM will decrease without
increasing the error bound. Moreover, our partition method has an
advantage that we can further divide a partition into smaller
partitions by planes parallel to planes vC = 0, vG = 0, vT = 0 or vC +
vG + vT = 1 and determine in which partition the optimal matrix M*
should lie. For example, if we divide the partition A = ((0.85, 1), (0,
0.15), (0, 0.15), (0, 0.15)) by the plane vG = 0.075, we will get two
smaller partitions, ((0.85, 1), (0, 0.15), (0, 0.075), (0, 0.15)) and
((0.85, 1), (0, 0.15), (0.075, 0.15), (0, 0.15)). Note that it might not
be necessary to partition P across all dimensions. Only the
dimensions which introduce a large error � will be partitioned.

T

G

C
(0,1,0,0)

(0,0,0,1)

(0,0,1,0)

(1,0,0,0) vA = 0.5

vA = 0.25

vA = 0.75

vG vT

vC

(0.25,vC, vG, vT)

Fig 1. Graphical representation of all column vectors (vA,
vC, vG, vT) of a probability matrix

T

G

(maxC, maxG, maxT)

C
vA = minA

vA = maxA

Fig 2. Graphical representation of a partition of column vectors

Table 2. 9 partitions of all possible column vectors

Class Partition ((sA, rA], (sC, rC], (sG, rG], (sT, rT]) Class Partition ((sA, rA], (sC, rC], (sG, rG], (sT, rT])

Strictly
conserved

A
C
G
T

((0.85,1], [0,0.15], [0,0.15], [0,0.15])
([0,0.15], (0.85,1], [0,0.15], [0,0.15])
([0,0.15], [0,0.15], (0.85,1], [0,0.15])
([0,0.15], [0,0.15], [0,0.15], (0.85,1])

 Slightly
conserved

a
c
g
t

((0.5,0.85], [0,0.5], [0,0.5], [0,0.5])
([0,0.5], (0.5,0.85], [0,0.5], [0,0.5])
([0,0.5], [0,0.5], (0.5,0.85], [0,0.5])
([0,0.5], [0,0.5], [0,0.5], (0.5,0.85])

Unconserved N ([0,0.5], [0,0.5], [0,0.5], [0,0.5])

Finding Exact Optimal Motif in Matrix Representation
by Partitioning

5

Thus, we can repeat this process with different numbers of
partitions at each subsequent step so as to reduce the error .

4.2 Divide Matrix into Categories and Calculate the
Upper Bound of its IC (Information Content)

Each column vector of a 4×l probability matrix M must lie in one
of the 9 partitions of column vectors. Depending on which
partition of each column vector of a probability matrix belongs to,
we can divide all 4×l probability matrices into 9l categories. Let M
be a probability matrix in category W, represented by l partitions of
column vectors from P1 to Pl. Let MW be the matrix formed by the
maximum values of the corresponding partitions, i.e. MW(, j) =
r� of the partition Pj, where ∈ {A, C, G, T}, 1 � j � l. For
example, matrix M in category CtaNa and its corresponding
matrix MW are

�
�
�

�

�

�
�
�

�

�

=
�
�
�

�

�

�
�
�

�

�

=
5.05.05.085.015.0
5.05.05.05.015.0
5.05.05.05.01

85.05.085.05.015.0

1.02.006.00
1.035.01.04.00
2.025.01.009.0
6.02.08.001.0

WMM

Note that the sum of all entries in the j-th column of MW may larger
than 1. Let the binding sites of a probability matrix M be those
substrings si such that M(si)/B(si) � (1 – P(M))/P(M). Similar to
MITRA-PSSM [Eskin, 2004a], we can show in the Appendix that
IC(MW) is the upper bound of IC(M) for all matrices in category W
and thus if IC(MW) is small, then none of the matrices in category
W can be the optimal matrix and W can be skipped.

Although MITRA-PSSM uses a similar method to find the
motifs, its groups cannot cover all the probability matrices. For
example, a probability matrix with a column vector (0.4, 0.3, 0.2,
0.1) is not in any of its groups. Moreover, MITRA-PSSM applies
an EM-algorithm in each group, which tries, but cannot guarantee,
the finding of the optimal matrix. The error of its solution, i.e., the
difference between an entry of the solution matrix and the
corresponding entry in the optimal matrix, can be as large as 0.5.

5 ALGORITHM
As SPELLER [Sagot, 1998] and MITRA-PSSM [Eskin, 2004a],
we search among the categories by a branch-and-bound approach,
but our search will continue by further partitioning the search

space recursively or by exhausting all the possible solutions when
the search space is sufficiently small. In this section, we shall
describe the data structures used to support searching when the
categories are further partitioned and how the number of possible
solutions can be limited for brute-force searching. EOMM divides
all possible 4×l probability matrices into 9l categories. We use
IC(MW) as the upper bound of information content for all matrices
in category W (see Appendix). If IC(MW) is larger than the
information content IC* of the best matrix found so far, we will
further divide all matrices in category W into smaller categories
and repeat the process until the error � is less than a predefined
threshold. However, since the number of categories to be tested
increases exponentially with l, we use the following approach to
speed up the computation of IC(MW) and to reduce the number of
categories to be tested.

5.1 Traverse a suffix trie
Since not all categories contain a probability matrix with high
information content, the running time of the algorithm can be
reduced if we do not consider those categories which would have a
low IC(MW). We use an approach similar to SPELLER and
MITRA-PSSM to rule out those categories with low IC(MW).

Two data structures, a suffix trie S and a category tree T, are
maintained when searching for the optimal matrix. The suffix trie S
represents all length-l’ substrings with 0 � l’ � l in the input
sequences. This data structure is also called l-factor trie. Each
length-l’ substring s in the input sequences can be represented by
a particular node S at level l’. Every length-(l’+1) substring s�
with prefix s is represented by a child node S� of S . For each
node S , f(S) represents the number of occurrences of substring s
in the input sequences. Figure 3a shows a suffix trie for the
sequence “AACACCTCACG”.

The category tree T has a similar structure as suffix trie S. T
represents all categories of 4×l’ (0 � l’ � l) probability matrices
under consideration. Each category T of 4×l’ probability matrices
is represented by a node at level l’. Each category T� of 4×(l’+1)
probability matrices with the first l’ column vectors same as T is
represented as a child node of T . Figure 3b shows a category tree.
In the following, we describe the pruning condition for the branch-
and-bound approach in finding the optimal IC* value. Let w be the
maximum value of log(M(,j)/B()) for any nucleotide and
position j. Assume leaf node T� is in the subtree rooted at the
internal node T , the information content of every 4×l probability
matrix in category T� is at most

()[]� ∈
•−−+=

Us
SftwllsBsMT W

'

)()'())(/)(log()(IC '''max
γ

γγγγγ

where U contains all substrings in the input sequences which may
be binding sites of some matrix in T�, that is

})'())(/)(log(|{ ''' twllsBsMsU W >−+= γγγ γ

and S ’ is the trie node representing the length-l’ substring s ’. If
ICmax(T) is less than the current maximum IC value, we need not
consider all leaf nodes T� of the subtree rooted at T and the
subtree rooted at T can be pruned. We calculate IC(MT�) for all
leaf nodes T� of the category tree T and update the current

Fig. 3a. Suffix trie S (4-factor trie) for the sequence “AACACCTCACG”
when l = 4. e.g. node represents the substring “CC” and its child node S�
represents the substring “CCT” where the prefix of “CCT” is “CC”.
Fig. 3b. Category tree T when l = 4.

Fig. 3a Fig. 3b

T�

T�

C

c

t

N

A a
….

c

….

C

C A T

A

C

A

C

A

C T

C

A

C

A

C

C

G

C

T

C

S�
C

A

T

1 1 1 1 1 1 1 1

2 1 1 1 1 1 1

1 1 1 2 2 1

3 4 1

8

Henry Leung and Francis Chin

6

maximum IC value if IC(MT�) is no less than the current maximum
IC value.

Let {S ’} be the set of nodes in S such that log(MT (s ’)/B(s ’))
+ (l - l’)w > t for category T of length l’. Consider a category T�
for 4×(l’+1) probability matrices with the first l’ column vector
same as T . Let {S�’} be the set of nodes in S such that
log(MT�(s�’)/B(s�’)) + (l - l’ - 1)w > t. S�’ must be a child of node S ’
in S such that the prefix of s�’ is s ’ and we can calculate ICmax(T�)
based on ICmax(T) to reduce the running time as follows

wlsBllsM
wllsBsM

wllsBsM

T

T

T

−++++
−+=

−−+

]))1'[(/)1'],1'[(log(
)'())(/)(log(

)1'())(/)(log(

''

''

''

ββ

ττ

ββ

β

τ

β

5.2 Update data structure when dividing a category
recursively

When we divide a category W into smaller categories {Wv}, we can
simply construct a category tree T’ for {Wv} and perform a depth-
first search on T’. However, since each Wv is a partition of matrices
in category W, the binding sites of MW is a superset of the binding
sites of all matrices in each Wv. Instead of searching binding sites
in S, we construct a suffix trie S’ for all binding sites of MW,
substring s� such that log(MW(s�)/B(s�)) > t. Since the size of S’
should be much smaller than S (suffix trie of all input sequences),
the time needed for searching T’ should be smaller than the time
needed for searching T.

5.3 Derive the exact optimal matrix
When the number of patterns for the binding sites of MW is small,
that is, the number of different length-l substrings which are the
binding sites of MW is small, we use the brute force approach to
find the optimal matrix M* instead of dividing category W further.

Assume the binding sites of MW have K different patterns {�i},
and pattern �i occurs ki times in the input sequences. If the optimal
matrix M* is in category W, the binding sites of M* must be a
subset of these �i ik binding sites. Assume the set of binding
patterns of M* is }{ *

iρ , It is shown in [Eskin, 2004a] that M*(,j)
= �� =• i ii ii kjk *** /)][I((αρ where I(p) returns 1 if the statement
p is true and returns 0 otherwise. If K is small, it may be more
efficient to find the corresponding M* for each of the 2K possible
subsets of {�i}, and update the optimal matrix with M* with the
maximum IC(M*). If the optimal matrix lies in category W, we
must be able to find the optimal solution M* exactly with no error.

6 EXPERIMENTS
We implemented EOMM and tested it on both simulated and real
biological data. All experiments were run on a P4 2.4G computer
with 1GB memory, in which only 50MB memory was used.

6.1 Experiments on simulated data
We generated 10 length-500 DNA sequences with 0.25 as the
occurrence probability of each nucleotide A, C, G and T, and
planted 25 binding sites, according to a randomly-generated 4×7
probability matrix M, in the 10 DNA sequences at random
positions. When we generated the data, the expected score E(M) of
matrix M for each binding site was also calculated, where E(M)
measures how easy the optimal motif can be found.

()[]{ }
()[]{ }

[]{ } { }
[]

[]{ }� �
� �

� �� �
� �
� �

−−−=
−+=

−+=
−+=

−=

•

•

•

•

•

j

j

jj

j

j

tjMjMl

tljMjM

tjMjMjM

tjMjM

tBjMjMM

α

α

αα

α

α

αα
αα

ααα
αα

ααα

),(log),(2

2),(log),(

),(2),(log),(

2),(log),(

)(/),(log),()E(

which is 2l minus the sum of entropy of each column vector in M
minus the threshold t. A high value for E(M) means that each
binding site carries a strong signal of the motif and it is easier to
find the motif [Chin et al., 2004, Leung et al, 2005].

We compared EOMM with two different algorithms, MITRA-
PSSM and the popular motif-finding software MEME, for each set
of simulated data. MITRA-PSSM finds the optimal matrix by
partitioning the searching space into fixed categories and
performing EM algorithm on those categories that may contain the
optimal matrix. MEME finds the motif by using EM algorithm
directly. Different random matrices M within each range of
expected score E(M) were tested and the results are shown in Table
3. For each range of E(M), we repeated the experiment 20 times
and counted the number of times the algorithms could find the
correct motif. We say an algorithm can find the motif if matrix M
is within the top 10 answers of the algorithm.

When the expected score for each binding site was large (1.0 <
E(M) � 3.0), all three algorithms found the correct motif most of
the time. When the expected score decreased (-1.0 < E(M) � 1.0),
MITRA-PSSM and MEME might not be able to find the correct

Table 3. Experimental results on simulated data

Number of times the algorithm find the planted motif Expected score per
binding site E(M) MEME MITRA-PSSM EOMM average time

-3.0 < E(M) � -1.0 0 / 20 1 / 20 2 / 20 1.5 hour
-1.0 < E(M) � 1.0 10 / 20 9 / 20 17 / 20 58 min
1.0 < E(M) � 3.0 18 / 20 20 / 20 20 / 20 40 min

For each range of E(M), the experiment was repeated 20 times with different
probability matrices and the number of successes for each algorithm was counted.

Table 4. Experimental results on real biological data

Rank of the motif in the answer list Transcription
factor

Pattern of the
published motif EOMM MITRA-PSSM MEME

ACE2 GCTGGT 2 - -
BAS1 TGACTC 1 1 1
CuRE, MAC1 TTTGCTC 1 - 1
GATA CTTATC 1 1 1
GCFAR GGGCCC 1 1 1
GCRE, GCN4 TGANTN 1 1 1

The data are collected from the SCPD[22]. We show the pattern of the motif
(instead of its matrix representation) to make it more readable. For each set of data,
we look for motifs with length equal to the published motif. Rank is the position of
the correct motif in the answer list. ‘-’ means the algorithm cannot find the correct
motif.

Finding Exact Optimal Motif in Matrix Representation
by Partitioning

7

motif. This is because there might be many local maxima in the
input sequences and EM algorithm does not guarantee that the
optimal matrix can be found. Moreover, MITRA-PSSM failed to
find the correct motif because it has been modified to improve its
time complexity at the expense of accuracy [Eskin, 2004b].
However, with a longer execution time, EOMM could usually find
the optimal matrix M. When the expected score decreased further
(E(M) � -3.0), no algorithm could find matrix M because the signal
of matrix M was too weak and there were many matrices with
information content larger than M [Chin et al., 2004, Leung et al,
2005].

6.2 Experiments on real biological data
SCPD[Zhu and Zhang, 1999] is a database of transcription factors
for yeast. For each set of genes regulated by the same transcription
factor, we chose the promoter regions of these genes as the input
sequences. Table 4 shows the results of the three algorithms. On
those real biological data with weak signal motif, EOMM works
well when compared with MITRA-PSSM and MEME.

7 DISCUSSION
Most existing algorithms find matrix-represented motifs using
local searching methods which do not guarantee that the optimal
matrix can be found and the error of the solution can be very large.
The MITRA-PSSM algorithm partitions the search space before
performing the EM-algorithm. It can bound the error of the
solution by 0.5 and has a higher probability of finding the optimal
matrix than the other algorithms. In this paper, we introduce
EOMM which divides the search space into fewer categories than
MITRA-PSSM without increasing the error. Thus our algorithm
should run faster than MITRA-PSSM before its modification.
Moveover, EOMM can find motifs with any accuracy by
partitioning the search space recursively.

Since EOMM usually takes much longer time to find the
optimal motif, it is not advisable to use EOMM for discovering
strong signal motif. However, EOMM outperforms all the existing
algorithms to find motifs with very weak signal at the expense of
long execution time. We can now find motif of length l � 8 in
reasonable time, say a couple hours. For motifs with larger l, we
can use local searching method to find all partitions containing at
least one probability matrix with high score and then use EOMM
to find the optimal matrix in these partitions.

Moreover, instead of using the maximum likelihood model
when calculating the score of a matrix, we can extend our
algorithm to use other models like maximum aposteriori (MAP)
likelihood and Bayesian priors.

REFERENCES
Bailey, T. and Elkan, C. (1995) Unsupervised learning of multiple motifs in

biopolymers using expectation maximization. Machine Learning, 21, 51-80.
Barash, Y., Bejerano, G. and Friedman, N. (2001) A Simple Hyper-Geometric

Approach for Discovering Putative Transcription Factor Binding Sites. WABI,
278-293.

Brazma, A., Jonassen, I., Eidhammer, I., and Gilbert, D. (1998) Approaches to the
automatic discovery of patterns in biosequences. JCB, 5,279-305.

Buhler, J. and Tompa, M. (2001) Finding motifs using random projections.
RECOMB01, 69-76.

Chin, F and Leung, H. (2005) Voting Algorithms for Discovering Long Motifs. APBC,
261-271.

Chin, F., Leung, H., Yau, S.M., Lam, T.W., Rosenfeld, R., Tsang, W.W., Smith, D.
and Jiang, Y. (2004) Finding Motifs for Insufficient Number of Sequences with
Strong Binding to Transcription Factor, RECOMB04, 125-132.

Eskin, E. (2004a) From profiles to patterns and back again: a branch and bound
algorithm for finding near optimal motif profiles. RECOMB04, 115-124.

Eskin, E. (2004b) Personal communication.
Lawrence, C., Altschul, S., Boguski, M., Liu, J., Neuwald, A. and Wootton, J.. (1993)

Detecting subtule sequence signals: a Gibbs sampling strategy for multiple
alignment. Science, 262,208-214.

Lawrence, C. and Reilly, A. (1990) An expectation maximization (em) algorithm for
the identification and characterization of common sites in unaligned biopolymer
sequences. Proteins: Structure, Function and Genetics, 7,41-51.

Leung, H., Chin, F., Yiu, S.M., Rosenfeld, R. and Tsang, W.W. (2005) Finding motifs
with insufficient number of strong binding sites. JCB (to appear)

Leung, H. and Chin, F. (2005) Generalized Planted (l,d)-Motif Problem with Negative
Set. WABI (to appear)

Li, M., Ma, B., and Wang, L. (2002) Finding similar regions in many strings. Journal
of Computer and System Sciences, 65, 73-96.

Liang, S. (2003) cWINNOWER Algorithm for Finding Fuzzy DNA Motifs. Computer
Society Bioinformatics Conference, 260-265.

Liu, J.S., Neuwald, A.F., Lawrence, C.E.. (1995) Bayesian Motifs for Multiple Local
Sequence Alignment and Gibbs Sampling Strategies. Journal of the American
Statistical Association, 432, 1156-1170.

Pevzner, P. and Sze, S.H.. (2000) Combinatorial approaches to finding subtle signals
in dna sequences. ISMB, 269-278.

Rocke, E. and Tompa, M. (1998) An algorithm for finding novel gapped motifs in
DNA sequences. RECOMB98, 228-233.

Sagot, M.F. (1998) Spelling approximate repeated or common motifs using a suffix
tree. In C.L. Lucchesi and A.V. Moura editors, Latin’98: Theoretical informatics,
volume 1380 of Lecture Notes in Computer Science, 111-127.

Shinozaki, D., Akutsu, T. and Maruyama, O. (2003) Finding optimal degenerate
patterns in DNA sequences. Bioinformatics, 19(suppl. 2), ii206-ii214.

Sinha, S. and Tompa, M. (2000) A statistical method for finding transcription factor
binding sites. ISMB, 344-354.

Sinha, S. and Tompa, M. (2002) Discovery of novel transcription factor binding sites
by statistical overrepresentation. Nucleic Acids Research, 30, 5549-5560.

Staden, R. (1989) Methods for discovering novel motifs in nucleic acid sequences.
Computer Applications in Biosciences, 5(4), 293-298.

Tompa, M. (1999) An exact method for finding short motifs in sequences with
application to the ribosome binding site problem. ISMB, 262-271.

Wolfertsteeter, F., Frech, K., Herrmann, G., and Wernet, T. (1996) Identification of
functional elements in unaligned nucleic acid sequences by a novel tuple search
algorithm. Computer Applications in Bio-sciences, 12(1), 71-80.

Zhu, J. and Zhang, M. (1999) SCPD: a promoter database of the yeast Saccharomyces
cerevisiae. Bioinformatics 15, 563-577. http://cgsigma.cshl.org/jian/

APPENDIX

Theorem: Let M be a matrix in category W = P1 P2 … Pl . The set
of binding sites of MW is a superset of the set of binding sites of M
and IC(M) � IC(MW).

Proof: Let (sj,�,r j,�) be the order pair in partition Pj represent the
upper bound and lower bound of the occurrence probability of �.
Since M is in category W, ∀ � = A, C, G, T and j = 1, …, l

() ()

() ()
()

()

()()

)IC()IC(
))(/)(log(

))(/)(log(
0)(/)(log 0)(/)(log

(1) string -length allfor
)(/)(log)(/)(log

),(),(
),(

0)(/)(:log

0)(/)(:log

,

,,

W

tsBsMs iiW

tsBsMs ii

W

W

Wj

jj

MM
tsBsM

tsBsM
tBMtBM

l
tBMtBM

jMrjM
rjMs

iiWi

iii

≤�

−≤
−�

>−→>−�

−≤−�
=≤�
≤≤

�
�

>−

>−

σσσσ
σ

σσσσ
αα

α
α

αα

������������

From the inequality (1) above, we can show that every binding site
of M is also a binding site of MW.

