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Abstract. The problem of finding motifs of binding sites is very important to the understanding of gene regulatory networks. Motifs are generally represented by matrices (PWM or PSSM) or strings. However, these representations cannot model biological binding sites well because they fail to capture nucleotide interdependence. It has been pointed out by many researchers that the nucleotides of the DNA binding site cannot be treated independently, e.g. the binding of zinc finger in proteins. In this paper, a new representation called Scored Position Specific Pattern (SPSP), which is a generalization of the matrix and string representations, is introduced which takes into consideration the dependent occurrences of neighboring nucleotides. Even though the problem of finding the optimal motif in SPSP representation is proved to be NP-hard, we introduce a heuristic algorithm called SPSP-Finder, which can effectively find optimal motifs in most simulated cases and some real cases for which existing popular motif-finding software, such as MEME and AlignACE, fail.
1   Introduction
A gene is a segment of DNA that is the blueprint for protein. In most cases, genes seldom work alone; rather, they cooperate to produce different proteins for a particular function. In order to start the protein decoding process (gene expression), a molecule called transcription factor will bind to a short region (binding site) preceding the gene. One kind of transcription factor can bind to the binding sites of several genes to cause these genes to co-express. These binding sites have similar patterns called motifs. Finding motifs and the binding sites from a set of DNA sequences is a critical step for understanding the gene regulatory network.

In order to discover motifs, we must first have a model to represent the motif. There are two popular models: string representation [3, 5-7,11,12,15,17,19, 20, 22-28] and matrix representation [1,2,8,9,13,14,16,18]. String representation is the most basic representation which uses a length-l string of symbols (or nucleotides) ‘A’, ‘C’, ‘G’ and ‘T’ to describe a motif. To improve the representation’s descriptive power, wildcard symbols [5,22,26] can be introduced into the string to represent choice from a subset of symbols at a particular position (e.g. ‘K’ can denote ‘G’ or ‘T’). Matrix representation further improves descriptive power. In the matrix model, motifs of length l are represented by position weight matrices (PWMs) or position specific scoring matrices (PSSMs) of size 4 × l with the jth column of the matrix, which has four elements corresponding to the four nucleotides, effectively giving the occurrence probability of each of the four nucleotides at position j. While the matrix representation model appears superior, the solution space for PWMs and PSSMs, which consists of 4l real numbers, is infinite in size, and thus, algorithms generally either produce a sub-optimal motif matrix (e.g. [1,2,8,13,14,18]) or take too long to run when the motif is longer than 10 (e.g. [16]).

As it turns out, the string and the matrix models share an important common weakness: they assume the occurrence of each nucleotide at a particular position of a binding site is independent of the occurrence of nucleotides at other positions. This assumption does not represent the true picture. According to Bulyk et al [4], analysis of wild-type and mutant Zif268 (Egr1) zinc fingers gives compelling evidence that nucleotides of transcription factor binding sites should not be treated independently, and a more realistic motif model should be able to describe nucleotide interdependence. Man and Stormo [21] have arrived at a similar conclusion in their analysis of Salmonella bacteriophage repressor Mnt: they found that interactions of Mnt with nucleotides at positions 16 and 17 of the 21 bp binding site are in fact not independent. 
Representing motifs using the hidden Markov model (HMM) [30], or using regular expressions, can overcome the above weakness. However, the limitation on these two alternative models is infeasibility because the input data usually does not contain enough information for deriving the hidden motif since there are only a few known binding sites for a particular transcription factor. Hence, these are far less popular models.
In this paper, we introduce a new motif representation called Scored Position Specific Pattern (SPSP) which has the following advantages:
(a) Better representation. SPSP can describe the interdependence between neighboring nucleotides. 
(b) Generalization of string and matrix representation. These two commonly-used representations are special cases of the SPSP representation. Thus SPSP representation can model more motifs than these two representations.
(c) Computationally feasible. Finding the optimal motif in SPSP representation, for some restricted cases, is more feasible than finding the optimal PWM or PSSM.
This paper tackles a “restricted” motif discovering problem based on the SPSP representation. Although this is a restricted problem, it can model all motifs in string representation and most motifs in matrix representation. Because this restricted problem is NP-complete (proof shown in the Appendix), we introduce a heuristic algorithm called SPSP-Finder which can find the optimal SPSP motifs in most simulated cases and some real cases, for which MEME [14], AlignACE [10] and the Voting algorithm [7,15] fail.
This paper is organized as follows. In Section 2, we describe the SPSP representation, the corresponding motif problem and its restricted version in detail. In Section 3, we introduce the heuristic algorithm SPSP-Finder. Experimental results on simulated data and real biological data comparing SPSP-Finder with some popular software are given in Section 4, followed by concluding remarks in Section 5.

2   Scored Position Specific Pattern (SPSP)
Consider the wildcard-augmented string representation with 15 symbols representing all combinations of the four nucleotides ‘A’, ‘C’, ‘G’ and ‘T’. For example, the wildcard symbol ‘Y’ represents ‘C’ or ‘T’ and wildcard symbol ‘D’ represents ‘A’, ‘G’ or ‘T’. Consider the motif for the transcription factor HAP2 [29] which exists as a heterotrimeric complex with the HAP3 and HAP4 proteins. The HAP2/3/4 complex binds to the patterns “CCAATTA”, “CCAATCA” or “CCAACCA”. We can represent the motif by “CCAAYYA” with two wildcard symbols. In fact, we may also represent “CCAAYYA” as follows:
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However, this representation has the problem that the pattern “CCAACTA” is also considered as a binding site (false positive). In order to prevent the false positive patterns, we replace the substring “YY” by a set of length-2 patterns: i.e.,
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The Scored Position Specific Pattern (SPSP) representation uses such an idea to represent motifs. Based on this SPSP representation, our algorithm can find the motif and binding sites of HAP2 while the other software fails to do so. The formal definition of SPSP is described in the following section.
2.1   Formal Definition of Pattern Sets Representation
A set of length-l binding site patterns can be described by a Scored Position Specific Pattern (SPSP) representation P which contains c (c ≤ l) sets of patterns Pi, 1 ≤ i ≤ c, where each set of patterns Pi contains length-li patterns Pi,j of symbols ‘A’, ‘C’, ‘G’ and ‘T’, and ∑i li = l. Each length-li pattern Pi,j is associated with a score si,j. The score of a length-l string σ = σ1σ2…σc where |σi| = li, 1 ≤ i ≤ c with respect to P can be defined as follows:
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A string σ is a binding site with respect to an SPSP motif P if and only if score(σ,P) is no more than some predefined threshold α.
For example, consider the following SPSP representation for the length-11 binding sites of the transcription factor CSRE [31] which activate the gluconeogenic structural genes.
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Note that the score si,j is the negative of the logarithm of the occurrence probability of the corresponding pattern Pi,j. The score of the length-11 string σ = “CGGATAAAAGG” with σ1 = “CGGA”, σ2 = “TAA”, σ3 = “A”, σ4 = “A” and σ5 = “GG” can be calculated as -log(1) – log(0.3) – log(1) – log(0.7) – log(1) = -log(0.21). On the other hand, the score of σ = “CTGATAAAAGG” is ∞ as σ1 = “CTGA” 
[image: image7.wmf]Ï

 P1. The scores of these strings represent the log likelihood of these strings being binding sites of P. A string with smaller score is more likely to be a binding site of P.
Based on the SPSP representation, we can define the Motif Discovering Problem as follows: 

Motif Discovering (MD) Problem: Given t length-n DNA sequences T, we want to find a motif M in SPSP representation (P and score {si,j} satisfying certain properties) to maximize/minimize some target function calculated based on the binding sites of M in T
The following will show that SPSP representation is a generalization of the string and matrix representation. By applying different target functions, we can discover motifs with different properties under a certain score {si,j}.
(a) Restricting c = l (that means li = 1, 1 ≤ i ≤ c = l), the SPSP representation P is equivalent to a position weight matrix (PWM) or position specific scoring matrix (PSSM) [1, 13, 14, 16]. Using the following probability matrix for CSRE with threshold 0.04 as an example.
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It is equivalent to the following SPSP representation:
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with threshold α = -log(0.04). Note that –log(1.0) = 0.
In order to find a set of binding sites with the minimum negative log likelihood, the MD problem is to find P and {si,j} such that for 1 ≤ i ≤ c = l, si,j = -log(pi,j) with ∑jpi,j = 1 so as to minimize the target function ∑σscore(σ, P) for all binding site σ (i.e. with score(σ, P) ≤ α (threshold)).
(b) Restricting c = l, si,j = 0 or 1, ∑j si,j = 3 and α = d, the SPSP representation P is equivalent to a string representation [3,7,19,20,23] for the planted (l,d)-motif problem. For example, the HAP2 motif “CCAATTA” for the planted (7,d)-motif problem is equivalent to the following SPSP representation:
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with threshold α = d.
In order to find the maximum number of binding sites with at most d substitutions from a string motif, the MD problem is to find {si,j} such that for 1 ≤ i ≤ c = l, si,j = 0 for a particular j and = 1 for all other j, so as to maximize the number of binding sites as its target function. Note that the SPSP representation P is already fixed as shown above.
(c) Restricting c = l, si,j = 0 and α = 0, the SPSP representation P is equivalent to a length-l string with wildcard symbols [17,26]. For example, the BAS2 [31] motif “TAATRA” in string representation with wildcard symbols is equivalent to the following SPSP representation
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with threshold α = 0.
In order to find a set of binding sites with a minimum z-score [26] or p-value [17], the MD problem is to find the SPSP representation P such that for all i, j, si,j = 0, so as to minimize the z-score or p-value of the binding sites as its target function. Note that the z-score or p-value decreases with the inverse of the number of binding sites and the number of conserved symbols.
2.2   Restricted Motif Discovering Problem
In the real biological situation, transcription factors bind to binding sites by some components called DNA-binding domains (e.g. zinc finger). Each domain of the transcription factor can bind to 3-4 bp consecutive regions of the binding sites only. Therefore, the length li of each pattern Pi,j should not be larger than 4. Instead of solving the general Motif Discovering Problem described in Section 2.1, this paper tackles a “restricted” version of the motif problem based on the assumption that li is small, i.e. li ≤ lmax for a predefined value lmax. Besides, the overall binding site patterns should be similar, i.e. the score si,j of each length-li pattern Pi,j must be equal to its Hamming distance with some length-li string Si. A length-l string σ is a binding site of M if and only if score(σ,P) ≤ d, i.e. σ should be within Hamming distance d from a particular motif pattern.
Intuitively the Restricted Motif Discovering (RMD) Problem is finding an SPSP representation P such that the number of possible string patterns for binding sites ∏i|Pi| = w is minimized and at the same time P can cover the maximum number of binding sites b.
For example, given the following binding sites {si} and motif P1 and P2:
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Score {si,j} are defined such that score(σ,P) = Hamming distance between σ and “GTATAAC”. Since the number of possible patterns of binding sites for P1 and P2 are the same, i.e. w = 4 × 3 and 2 × 3 × 2 respectively, P2 is more likely to be a correct motif than P1 as P2 covers more binding sites (s3 to s10) than P1 (s1 to s6).
Usually, it might not be so obvious which motif is more likely to be correct, e.g. when w1 < w2 and b1 < b2. In such case, we compare two motifs by the occurrence probabilities (p-values) of their corresponding binding sites in T with the assumption that T is a set of random sequences. Given a motif with ∏i|Pi| = w having b binding sites in T, the occurrence probability of ≥ b binding sites in a set of random sequences can be calculated as
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Here we assume the occurrence probabilities of ‘A’, ‘C’, ‘G’ and ‘T’ are the same. A motif with low p-value means that it is likely to be an answer. Note that p-value increases as w, the number of possible binding site patterns increases, and decreases as b, the number of binding sites, increases. Thus, we define the Restricted Motif Discovering Problem formally as follow.
Restricted Motif Discovering (RMD) Problem: Given t length-n DNA sequences T, the threshold value d and lmax, we want to find a length-l motif P and a set of score {si,j} such that si,j is equal to the Hamming distance between Pi,j and some length-li string Si and having the minimum p-value of the corresponding binding sites.
Although we have restricted the MD problem, this restricted SPSP representation is still more flexible than the string representation in the sense that all string representations are special cases of this restricted representation. This restricted representation takes into account the dependence of the occurrence of the nucleotides in a binding site. Under the RMD problem all possible binding sites have equal occurrence probability. Thus, we cannot determine whether this restricted representation is more flexible than the matrix representation. Besides, as we assume the transcription factor bind to the binding sites by DNA-binding domains at short consecutive regions, the RMD problem do not model binding sites with dependency over a long region.
We shall show in the next section that there is an efficient heuristic to solve the RMD problem with which we can successfully find motifs in some case for which popular motif-finding software fail.

3   Algorithm SPSP-Finder
In this section, we describe a heuristic algorithm, SPSP-Finder, to solve the Restricted Motif Discovering Problem. This algorithm starts with a set of “good” string patterns and, based on local search, finds some local optimal SPSP representations and their corresponding binding sites. This algorithm has two main steps. The first step, served as seed searching, is to find a set of length-l string motifs with many binding sites in the input sequences. In the second step, we start with each length-l string S as a seed SPSP representation and merge some positions of S’s binding sites to form another SPSP representation with smaller p-value. This merging step is repeated until the p-value cannot be further reduced. Definitely, this algorithm cannot guarantee the finding of the best SPSP representation. However, the more seed sequences are considered, the larger is the running time, the better will be the solution.
3.1   Seed Searching
We applied the Voting Algorithm [7,15] to discover length-l string motifs. Voting is developed for solving the planted (l,d)-motif problem where a motif is represented by a length-l string S and the binding site are d-variants of S. d-variant of S is a length-l string derivable from S with at most d symbol substitutions. This algorithm based on the idea that if each length-l substring in the input sequences T gives a vote to its d-variant, a string S with b d-variants in T will get exactly b votes. Finding the number of d-variants of each length-l string S in T takes O(nt(3l)d) time [7,15]. As the string with most number of d-variants is more likely to be one of the motif patterns, we refine each length-l strings one by one (Section 3.2) in decreasing order of the number of d-variants, i.e. the number of votes received.
3.2   Refining the SPSP Representation
Given string S, we can find all length-l d-variants of S in the t length-n DNA sequences T. By aligning these length-l d-variants, we can construct a restricted SPSP representation P for these d-variants. However, as some of these d-variants might not be binding sites, the value of ∏i|Pi| as well as the p-value may be very large. In order to reduce the value of ∏i|Pi|, we shall construct a restricted SPSP representation for a subset of d-variants. Since finding the optimal subset of d-variants (largest subset with ∏i|Pi| ≤ w) is NP-complete (see Appendix), a heuristic approach is being considered. We begin with all d-variants. At each iteration, we remove the d-variant whose removal decreases the value of ∏i|Pi| most. If we find a motif candidate M with smaller p-value than the best motif M* found so far, we shall update M* by M. We repeat this step until the p-value of new motif candidate M cannot be lowered. 
After considering (or refining) one string, we shall consider (or refine) the next candidate string having the largest number of d-variants. When the number of d-variants of the remaining candidates (as the candidates have been sorted in decreasing order of d-variants) is too small that they cannot be refined to a better motif than M*, we stop the process and report M* as the answer.
4   Experimental Results

Based on the ideas in Section 3, we have implemented SPSP-Finder in C++. SPSP-Finder was used to find motifs in both simulated and real biological data. All experiments were made on a 2.4GHz P4 CPU with 1 GB memory. The performance of SPSP-Finder was compared with various existing motif-finding algorithms.
Table 1. Experimental results on simulated data

	l
	α
	Voting
	MEME
	AlignACE
	SPSP-Finder

	5
	0
	100%
	68%
	10%
	100%

	5
	1
	8%
	16%
	4%
	42%

	7
	1
	100%
	72%
	14%
	100%

	7
	2
	6%
	12%
	2%
	38%

	9
	2
	100%
	68%
	18%
	100%

	9
	3
	2%
	12%
	8%
	52%

	11
	3
	100%
	74%
	14%
	100%

	11
	4
	4%
	14%
	0%
	32%


4.1   Simulated Data

The simulated data were generated in the following manner. Twenty length-600 sequences were generated with each nucleotide having the same occurrence probability 0.25. Then a length-l motif M in SPSP representation with lmax = 4 was picked randomly according to the following two steps.

(1) A set of c numbers l1 …lc such that c ≤ l and ∑i li = l, corresponding to the parameters of an SPSP representation, was generated randomly;

(2) For i = 1, …, c, an integer ri was randomly picked from 1 to 4 with equal probability. ri length-li random string are generated independently with each nucleotide having the same occurrence probability 0.25.
A binding site of M was randomly picked with equal probability and planted at a random position of each sequence in T. The Voting Algorithm [7,15], MEME [14], AlignACE [10] and SPSP-Finder were used to discover this hidden motif M. For each set of parameters, i.e. length l and threshold (Hamming distance) α, we ran 50 test cases. Table 1 shows the success rate of the algorithms in discovering the motif.
Buhler and Tompa [3] proved that when α is large with respect to l (e.g. the (5,1), (7,2), (9,3) and (11,4) problems), there are many random patterns having the same number of α-variants as the motif, so algorithms are unlikely to be able to discover the motif without extra information. Indeed, the Voting Algorithm, MEME and AlignACE do not perform well in these cases. MEME has a better performance than the other two algorithms because it allows different occurrence probabilities for each nucleotide at each position. Since SPSP-Finder considers the dependence of the nucleotides, it can discover more motifs than Voting, MEME and AlignACE.
4.2   Real Biological Data

SCPD [31] contains different transcription factors for yeast. For each set of genes regulated by the same transcription factor, we chose the 600 base pairs in the upstream of these genes as the input sequences T. The Voting Algorithm, MEME, AlignACE and SPSP-Finder were used to discover the motifs. As shown by the experimental results in Table 2, motifs of BAS2, CSRE and HAP2 and their binding sites can be discovered by SPSP-Finder but not by other algorithms.
Table 2. Experimental results on real biological data

	Factor Name
	Pattern
	Voting
	MEME
	AlignACE
	SPSP-Finder

	AP1
	TTANTAA
	TTACTAA
	-
	-
	TTACTAA

	BAS1
	TGACTC
	TGACTC
	TGACTC
	-
	TGACTC

	BAS2
	TAATRA
	-
	-
	-
	TAATTA

	CCBF
	CNCGAAA
	CACGAAA
	-
	-
	-

	CSRE
	CGGAYRRAWGG
	-
	-
	-
	CGGATGAATGG

	CuRE
	TTTGCTC
	TTTGCTC
	
	-
	TTGCTCA

	GAL4
	CGGN11CCG
	-
	CGGAGGAC

TCTCGTCCG
	CGGAGGAC
AGTCCGCCG
	CGGAGGAA
TGTCGTCCG

	GATA
	CTTATC
	CTTATC
	CTTATC
	-
	CTTATC

	GCR1
	CTTCC
	CTTCC
	CTTCC
	-
	CTTCC

	HAP2/3/4
	CCAATGA
	-
	-
	-
	CCAATGA

	IRE
	TTTTCGTCTTC
GAGGGGAAGG
ATCAAAGGCGC
	TTTTCGTCTTC
GAGGGGAAGG
ATCAAAGGCGC
	-
	-
	TTTTCGTCTTC
GAGGGGAAGG
ATCAAAGGCGC

	LEU
	CCGNNNNCGG
	CCGGAACCGG
	CCGGAACCGG
	-
	CCGGATCCGG

	MATα2
	CRTGTWWWW
	CATGTTGAA
	-
	CATGTAATT
	CATGTACAT

	NBF
	ATGYGRAWW
	ATGTGAAAA
	-
	-
	ATGTGCAAT


‘N’ stands for any nucleotide. R stands for ‘A’ or ‘G’. ‘Y’ stands for ‘C’ or ‘T’. ‘W’ stands for ‘A’ or ‘T’. Those motifs that all four algorithms can/cannot discover are not shown.
The HAP2/3/4 complex is related to carbon catabolite repression. It appears in both yeast and human genomes as a CCAAT-binding complex. The HAP2/3/4 complex mainly binds to the sequence “CCAATTA”, but it also binds to the sequences “CCAATCA” and “CCAACCA”. Since the binding sites are short and there are two non-conserved positions (positions 5 and 6), Voting fails to discover the published motif because there are many length-7 random patterns whose 2-variants occur more frequently than the binding sites of “CCAATTA” and these random patterns could be mistaken as the hidden motif. Similarly, MEME and AlignACE fail because there are many PSSMs having a higher score than the published motif if we do not consider the dependency in positions 5 and 6. By considering the dependency in positions 5 and 6, SPSP-Finder can discover the SPSP
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which has a lower p-value than “CCAAYYA” and other random patterns.

CSRE is responsible for the transcriptional activation of gluconeogenic structural genes. There are five binding sites in the data set which can be represented by the motif “CGGAYRRAWGG”. This motif contains 4 wildcard symbols and represents 16 different binding sequences instead of 5. Since this motif cannot model the binding sites specifically, many length-11 random patterns have frequently-occurring 4-variants and could be mistaken as the hidden motif. Therefore, Voting cannot discover the motif. Similarly, MEME and AlignACE fail even using the more precise PSSM representation. SPSP-Finder can discover the following motif in SPSP representation
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Although this motif in SPSP representation represents 6 instead of 5 binding patterns, it can describe the binding sites better than those motifs in string representation or PSSM. Therefore, it can be expected that SPSP-Finder can discover the published motif successfully while Voting, MEME and AlignACE fail.
BAS2 is required for purine nucleotide and histidine biosynthesis. It binds to either “TAATAA” or “TAATGA”. SPSP-Finder can discover the following motif in SPSP representation
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Voting cannot discover the motif because it assumes that each input sequence contains at least one binding site. MEME and AlignACE cannot discover the motif because their heuristic search methods cannot guarantee the finding of the motif. 

Apart from these three data sets, SPSP-Finder has the best performance among the four algorithms. Note that in Table 2, we have not shown those transcription factors for which the above four algorithms have the same performance, i.e. cases in which all four algorithms can discover the published motifs or all of them fail to do so.
5   Concluding Remarks
In this paper, we have proposed a new and better representation based on Scored Position Specific Pattern (SPSP) to describe a motif and its binding sites. With the proposed heuristic algorithm for the Restricted Motif Discovering (RMD) Problem, we can successfully find motifs and their binding sites even in some situations for which existing popular software fail. In the RMD problem, the possible scores received by the binding sites are limited to a small set of integers. In the real biological situation, each binding site should have a different score. With this assumption, we would expect an increase in the success rate of finding the correct motif. However, finding the optimal motif for the general Motif Discovering Problem without restrictions is very difficult and should be no easier than finding the optimal motif in matrix representation. The difficulty lies not only with the large solution space of the score {si,j}, but also with the exponential number of possible sets of patterns for a length-l motif. At this moment, no heuristic algorithm for the general MD problem with reasonable performance is known.
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Appendix
Restricted Motif Discovering Problem is NP-complete
In this section, we will show that the Restricted Motif Discovering (RMD) Problem is NP-complete. In order to answer whether the RMD problem is NP-complete, we convert it into a decision problem: given t length-n DNA sequences T, whether there exists a motif P, ∏i|Pi| ≤ w, that has exactly b binding sites in T? It is easy to see that the RMD problem is in NP because given a motif P, we can verify whether P has b binding sites in T and ∏i|Pi| ≤ w in polynomial time. In order to show that the RMD problem is NP-complete, we reduce the Clique Decision Problem (CDP) to it.

Clique Decision Problem (CDP): Given a graph G = (V,E) and an integer k > 0, the CDP is to determine whether G contains a clique of size k.

Denote V = {vi, 1 ≤ i ≤ n} and E = {ej, 1 ≤ j ≤ m}. Let deg(vi) be the degree of vertex vi and D = maxi{deg(vi)}. We construct 2n length-(nD – m) DNA sequences as follows: For each vertex vi, a length-(nD – m) DNA sequence σi representing a binding site is constructed such that σi has all symbols ‘T’ except D ‘A’ or ‘C’. The first m symbols of these n sequences (one for each vertex) resemble the incidence matrix such that the jth symbols of σi and σi’ are ‘A’ and ‘C’ corresponding to the jth edge connecting vi and vi’ respectively. Thus σi should have deg(σi) symbols of ‘A’ or ‘C’ in its first m symbols. If deg(σi) < D, then D –  deg(σi) symbol ‘A’ will be packed after the first m symbols such that no two sequences have symbol ‘A’ at the same position and each σi has exactly D symbols of ‘A’ or ‘C’. Precisely, we have
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Denote this set of n strings by T1.
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In addition to these n length-(nD – m) DNA sequences, we have another n length-(nD – m) DNA sequences with symbol ‘T’ only. Denote this set of strings by T2, T = T1∪T2. We solve the RMD problem with l = α = nD – m, lmax = 1 and w = 2kD – k(k – 1)3k(k – 1)/2. If there exists a motif P, ∏i|Pi| ≤ w having b = n + k binding sites in T, the answer of CDP is yes, otherwise, the answer is no. Figure 1 shows an example of this reduction. Theorem 1 proves the correctness of this reduction. 
Fig. 1. An example of the reduction from CDP to RMD Problem

Theorem 1: There is a motif P, ∏i|Pi| ≤ 2kD – k(k – 1) 3k(k – 1)/2 having b = n + k binding sites in T if and only if there is a clique of size k in G.

Proof: w.l.o.g assume {vi | 1 ≤ i ≤ k} with {ej | 1 ≤ j ≤ k(k – 1)/2} form a clique of size k in G, the set of binding sites should contain all the strings in T2 and k strings (corresponding to the vertices of the clique) in T1, i.e. n + k strings. The motif should have its first k(k – 1)/2 positions having the symbols ‘A’, ‘C” and ‘T’, i.e.
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and exactly kD – k(k – 1) positions having the symbols {‘A’ and ‘T’} or {‘C’ and ‘T’}. Note that all the other positions should be conserved and have symbol ‘T’. Thus, these n + k strings can be represented in SPSP representation with ∏i|Pi| = 2kD – k(k – 1)3k(k – 1)/2.

Assume there is a motif P in the SPSP representation with ∏i|Pi| ≤ 2kD – k(k – 1)3k(k – 1)/2 having exactly n + k binding sites and y (y ≥ k) out of these n + k binding sites are in set T1. Since each binding site in T1 has exactly D symbols ‘A’ or ‘C’, we have ∏i|Pi| ≥ 2yD – y(y – 1)3y(y – 1)/2 ≥ 2kD – k(k – 1)3k(k – 1)/2. Therefore ∏i|Pi| = 2kD – k(k – 1)3k(k – 1)/2 and y = k. Since 2 and 3 are prime number, there are k(k–1)/2 pattern sets Pi with 3 symbols ‘A’, ‘C’ and ‘T’ and the corresponding vertices of the k sequences in T1 form a clique of size k in G.
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RMP Problem: whether there is a motif, ∏i|Pi| ≤ 23˙3 – 3(3 – 1) 33(3 – 1)/2 = 2333 having 5 + k binding sites in T?





CDP: whether there is a clique of size 3 in G?
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G = {V,E}
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