
The Computer Journal 30 (4): 378−380 (1987)

To wards a Single Criterion

for Identifying Program Unstructuredness*

T.H. Tse

Department of Computer Science

The University of Hong Kong

Pokfulam, Hong Kong

ABSTRACT

We introduce the concepts of fully embedded skeletons and partially overlapping skeletons in

program flowgraphs. We show that only one simple criterion is necessary and sufficient for

the identification of program unstructuredness. Namely, a program flowgraph is unstructured

if and only if it contains partially overlapping skeletons.

1. INTRODUCTION

In [2], we proposed a formal approach for studying the properties of program flowgraphs.

We found two conditions for the identification of unstructuredness. In this paper, we shall

extend our theory to include fully embedded skeletons and partially overlapping skeletons.

We shall show that only one simple criterion is necessary and sufficient for the identification

of unstructuredness in program flowgraphs.

2. DEFINING UNSTRUCTUREDNESS

A program flowgraph is defined as unstructured if and only if it contains at least one of the

following:

(a) An Entry in the Middle of a Selection

Given a condition node n, the module M
n

is said to be a selection module if and only if

neither of its branches** B
α
(n) or B

−α
(n) contains n. A node m in M

n
is defined as an

entry node if and only if there exists some node p outside M
n

such that m is a successor

of p, i.e. m = s
β
(p). A node m is said to be an entry in the middle of a selection if and

only if m ≠ n but is an entry node of a selection module M
n
.

* Part of this research was done at the London School of Economics, University of London under a

Commonwealth Academic Staff Scholarship. It was also supported in part by a University of Hong Kong

Research Grant.

** The notations in this paper will follow those of [2] .

1

Administrator
HKU CSIS Tech Report TR-A7-86

(b) An Entry in the Middle of an Iteration

Given a condition node n, the module M
n

is said to be an iteration module if and only if

one of the branches B
α
(n) contains n. Giv en an iteration module M

n
, we define an entry

in the middle of an iteration as an entry node m such that

(i) m ≠ n or s
α
(n) or s

−α
(n), or

(ii) there exists some other entry node ≠ m.

(c) An Exit in the Middle of a Selection

A selection module M
n

is said to have an exit in the middle if and only if its branches

B
α
(n) and B

−α
(n) hav e a non-empty intersection.

(d) Multiple Exits in an Iteration

A decision node m is defined as an exit of an iteration module M
n

if and only if:

(i) M
m

= M
n
;

(ii) m is in one of the branches B
γ
(m) but not in the opposite branch B

−γ
(m).

An iteration module is said to have multiple exits if and only if it has more than one exits.

3. PARTIALLY OVERLAPPING SKELETONS

In [2], we attempted to relate program unstructuredness to the properties of skeletons in

flowgraphs. We shall extend our theory further in this paper. A skeleton q
δ
(v) is said to be

fully embedded in another skeleton q
γ
(u) if and only if q

γ
(u) contains v as well as all the

nodes of q
δ
(v). Two skeletons q

γ
(u) and q

δ
(v) are said to be partially overlapping if and only

if they are not fully embedded in one another but contain at least one common node m not

equal to u or v.

Lemma 3.1

A skeleton q
δ
(v) is fully embedded in another skeleton q

γ
(u) if and only if q

γ
(u)

contains both v and s
δ
(v).

Proof:

If q
δ
(v) is fully embedded in q

γ
(u), then the latter will of course contain both v and s

δ
(v).

Conversely, suppose q
γ
(u) contains both v and s

δ
(v). Then there exists a sequence of nodes

<w
0
, ... , w

r
> such that

w
0

= s
γ
(u);

w
i
= s

v
(w

i−1
) for i = 1, ... , r (if s

γ
(u) ≠ s

δ
(v));

w
r

= s
δ
(v).

For any node m (≠ s
δ
(v)) in q

δ
(v), there exists a sequence of nodes <w

r
, ... , w

t
> such that

w
r

= s
δ
(v);

w
i
= s

v
(w

i−1
) for i = r+1, ... , t;

w
t
= m.

2

Furthermore, m ≤ s
v
(v) ≤ s

v
(u). Hence any m in q

δ
(v) must lie in q

γ
(u). []

Lemma 3.2

If m is an entry node of M
n
, then there exists a node u outside M

n
such that m is in

q
γ
(u). Furthermore,

(a) m = s
γ
(u), or

(b) m = s
v
(v) for some node v in q

γ
(u) but outside M

n
.

Proof:

Suppose m is an entry node of M
n
. Then there exists some node u

0
outside M

n
such that m =

s
γ
0
(u

0
). If u

0
is a condition node, then (a) follows immediately. If, on the other hand, u

0
is an

action node, then s
v
(u

0
) = m, and there exists a node u

1
outside M

n
such that one of its

skeletons q
γ
1
(u

1
) contains u

0
. If s

v
(m) ≤ s

v
(u

1
), then (b) will follow. Otherwise s

v
(u

1
) = m,

and there exists another node u
2

outside M
n

such that one of its skeletons q
γ
2
(u

2
) contains u

1
.

Proceeding in this way, since the program flowgraph is finite, we shall arrive at some u
r

outside M
n

such that one of its skeletons q
γ
r
(u

r
) contains m, and m = s

v
(u

r−1
) for some node

u
r−1

in q
γ
r
(u

r
) but outside M

n
. []

We can now derive the main theorems of the paper, thus connecting unstructuredness with

partially overlapping skeletons.

Theorem 3.3

A program flowgraph is unstructured if there exist partially overlapping skeletons.

Proof:

Suppose the skeletons q
γ
(u) and q

δ
(v) partially overlap at the node m. By Lemma 3.1, we

have two cases:

(a) v ∉ q
γ
(u). Suppose M

v
is an iteration module. Since there exists an elementary path

from m to end not passing through v, by Lemma 5.1 of [2] , there must be another exit.

On the other hand, suppose M
v

is a selection module. Since there exists an elementary

path from u ∉ M
v

to m ∈ M
v

not passing through v, we must have an entry in the middle

of a selection. Hence we have unstructuredness in either case.

(b) v ∈ q
γ
(u) and s

δ
(v) ∉ q

γ
(u). Let w be the first node in q

δ
(v) such that it is also in q

γ
(u).

Then w is an entry node for M
v
. But since w cannot be v, s

δ
(v) or s

−δ
(v), it must be an

entry in the middle of a selection or an entry in the middle of an iteration. In either case,

we have unstructuredness. []

We shall prove that the converse of the theorem is also true, resulting in a necessary and

sufficient condition for unstructuredness:

Theorem 3.4

A program flowgraph is unstructured if and only if there exist partially overlapping

skeletons.

3

Proof:

Suppose a program flowgraph is unstructured. There are three possible anomalies:

(a) An Entry in the Middle of a Selection or Iteration

Let m be an entry in the middle of a module M
n
. By Lemma 3.2, there exists a node u

outside M
n

such that one of its skeletons q
γ
(u) contains m. Take the smallest submodule

M
v

in M
n

such that m is also an entry in the middle of M
v
. We hav e four cases:

(i) m = s
δ
(v) and there is some other entry node p = s

−δ
(v). Assume that there is no

partially overlapping skeleton. Then v, s
δ
(v) and s

−δ
(v) are in q

γ
(u). Since s

δ
(v) ≤ v

and s
−δ

(v) ≤ v, we must either have s
δ
(v) ≤ s

−δ
(v) ≤ v or s

−δ
(v) ≤ s

δ
(v) ≤ v. Hence all

paths from s
δ
(v) to s

−δ
(v) (or vice versa) do not pass through v, which is clearly a

contradiction. Hence we must have partially overlapping skeletons.

(ii) m = v. Again assume that there is no partially overlapping skeleton. Then q
γ
(u)

should contain both v and s
δ
(v). But since s

δ
(v) ≤ v, q

γ
(u) must be of the form

< ... s
δ
(v), ... , v, ... >. By definition, there exists a sequence of nodes <w

0
... w

t
>

such that

w
0

= s
δ
(v);

w
i
= s

v
(w

i−1
) for i = 1, ... , t;

w
t
= v = m.

Furthermore, all of these nodes are in both q
γ
(u) and M

v
. This contradicts the fact

that, by Lemma 3.2, m = s
v
(w) for some node w in q

γ
(u) but outside M

n
. Hence we

must have partially overlapping skeletons.

(iii) m ≠ v or s
δ
(v) or s

−δ
(v), and m is in q

δ
(v). Then there exists a node w in q

δ
(v) such

that m = s
v
(w). Assume that there is no partially overlapping skeleton. Then both m

and w are in q
γ
(u). The skeleton q

γ
(u) must therefore be of the form < ... , w, m, ...

>. This contradicts the fact that m = s
v
(w) for some node w in q

γ
(u) but outside M

n
.

Hence we must have partially overlapping skeletons.

(iv) m is not in q
δ
(v). By definition, there exists a node w in M

v
such that m is in q

ε
(w).

Then M
w

contains two distinct entries: w and m. This contradicts the fact that M
v

is

the smallest submodule in M
n

such that m is an entry in the middle of M
v
. Hence we

must have partially overlapping skeletons.

(b) An Exit in the Middle of a Selection

Since B
α
(n) and B

−α
(n) hav e a non-empty intersection, there exists u in B

α
(n) and v in

B
−α

(n) such that q
γ
(u) and q

δ
(v) contain a common node m. By definition, we have

partially overlapping skeletons.

(c) Multiple Exits in an Iteration

Let M
n

be the iteration module and suppose that there are more than one exits. We hav e

two cases:

(i) n is an entry node of M
n
. Then there exists a node u outside M

n
such that one of its

skeletons q
γ
(u) contains n. On the other hand, by Corollary 5.6 of [2] , n is in neither

of its own skeletons. Therefore there exists another node v (≠ n) in M
n

such that one

of its skeletons q
δ
(v) contains n. By the definition of skeletons, s

v
(n) ≤ s

v
(v). But

since v is in M
n
, s

v
(v) ≤ s

v
(n). Hence s

v
(v) = s

v
(n), and so v and n cannot both be in

4

q
γ
(u). Thus we must have two partially overlapping skeletons.

(ii) n is not an entry node of M
n
. Unless we are having an entry in the middle of an

iteration, the entry node must be s
α
(n). That is to say, there exists a node u outside

M
n

such that one of its skeletons q
γ
(u) contains s

α
(n). If q

γ
(u) does not contain n,

then we have two partially overlapping skeletons. If q
γ
(u) contains n, then, by

arguments similar to (i), we also have two partially overlapping skeletons. []

Following the line of [1] , fully embedded skeletons and partially overlapping skeletons

can be located in O(N) time, where N is the total number of nodes. Hence unstructuredness

in program flowgraphs can be identified in O(N) time.

4. CONCLUSION

We hav e introduced the concepts of fully embedded skeletons and partially overlapping

skeletons in program flowgraphs. We hav e shown that only one simple criterion is necessary

and sufficient for the identification of program unstructuredness. Namely, a program

flowgraph is unstructured if and only if it contains partially overlapping skeletons.

ACKNOWLEDGEMENTS

The author is grateful to R.K. Stamper of the London School of Economics, University of

London and M.Y. Chan of the University of Hong Kong for their invaluable comments and

suggestions.

REFERENCES

[1] R. Tarjan, ‘‘Depth first search and linear graph algorithms’’, SIAM Journal on Computing

1 (2): 146−160 (1972).

[2] T.H. Tse, ‘‘The identification of program unstructuredness: a formal approach’’, The

Computer Journal 30 (6): 507−511 (1987).

5

