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Abstract

A database system contains base data items which record and model a physical, real
world environment. For better decision support, base data items are summarized and corre-
lated to derive views. These base data and views are accessed by application transactions to
generate the ultimate actions taken by the system. As the environment changes, updates are
applied to the base data, which subsequently trigger view recomputations. There are thus
three types of activities: base data update, view recomputation, and transaction execution.
In a real-time system, two timing constraints need to be enforced. We require transactions
meet their deadlines (transaction timeliness) and read fresh data (data timeliness). In this
paper we define the concept of absolute and relative temporal consistency from the perspec-
tive of transactions. We address the important issue of transaction scheduling among the
three types of activities such that the two timing requirements can be met. We also discuss
how a real-time database system should be designed to enforce different levels of temporal
consistency.

keywords: updates, view maintenance, transaction scheduling, temporal consistency,
real-time database.

1 Introduction

A real-time database system (RTDB) is often employed in a dynamic environment to monitor
the status of real-world objects and to discover the occurrences of “interesting” events [15, 10,
2, 3]. As an example, a program trading application monitors the prices of various stocks,
financial instruments, and currencies, looking for trading opportunities. A typical transaction
might compare the price of German Marks in London to the price in New York and if there
is a significant difference, the system will rapidly perform a trade. The state of a dynamic
environment is often modeled and captured by a set of base data items within the system.
Changes to the environment are represented by updates to the base data. For example, a
financial database refreshes its state of the stock market by receiving a “ticker tape” — a

stream of price quote updates from the stock exchange.

To better support decision making, the large numbers of base data items are often summa-
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Figure 1: A Real Time Database System

rized into views. Some example views in a financial database include composite indices (e.g.,
S&P 500, Dow Jones Industrial Average and sectoral sub-indices), time-series data (e.g., 30-day
moving averages), and theoretical financial option prices, etc. For better performance, these
views are materialized. When a base data item is updated to reflect certain external activity,

the related materialized views need to be updated or recomputed as well.

Besides base item updates and view recomputations, application transactions are executed
to generate the ultimate actions taken by the system. These transactions read the base data
and views to make their decisions. For instance, application transactions may request the
purchase of stock, perform trend analysis, signal alerts, or even trigger the execution of other
transactions. Application transactions may also read other static data, such as a knowledge

base capturing expert rules.

Figure 1 shows the relationships among the various activities in such a real-time database
system. Notice that updates to base data or recomputations for derived data may also be run
as transactions (e.g., with some of the ACID properties). In those cases, we refer to them as
update transactions and recomputation transactions. When we use the term transaction alone,

we are referring to an application transaction.

Application transactions can be associated with one or two types of timing requirements:
transaction timeliness and data timeliness. Transaction timeliness refers to how “fast” the
system responds to a transaction request, while data timeliness refers to how “fresh” the data
read is, or how closely in time the data read by a transaction models the environment. Stale

data is considered less useful due to the dynamic nature of the data.

Satisfying the two timeliness properties poses a major challenge to the design of a scheduling
algorithm for such a database system. This is because the timing requirements pose conflicting
demands on the system resources. To keep the data fresh, updates on base data should be
applied promptly. Also, whenever the value of a base data item changes, affected derived
views have to be recomputed accordingly. The computational load of applying base updates

and performing recomputations can be extremely high, causing critical delays to transactions,



either because there are not enough CPU cycles for them, or because they are delayed waiting
for fresh data. Consequently, application transactions may have a high probability of missing

their deadlines.

In this paper we study the intricate balance in scheduling the three types of activities:
updates, recomputations, and application transactions to satisfy the two timing requirements

of data and transactions. Our goals are:

e to define temporal correctness from the perspective of transactions;

e to investigate the performance of various transaction scheduling policies in meeting the

two timing requirements of transactions under different correctness criteria;

o to address the design issues of an RTDB such that temporal correctness can be enforced.

To make the right decision, application transactions need to read fresh data that faithfully
reflects the current state of the environment. The most desirable situation is that all the
data items read by a transaction are fresh until the transaction commits. This requirement,
however, could be difficult to meet. As a simple example, if a transaction whose execution time
is 1 second requires a data item that is updated once every 0.1 seconds. The transaction will
hold the read lock on the data item for an extensive period of time, during which no new updates
can acquire the write lock and be installed. The data item will be stale throughout most of the
transaction’s execution, and the transaction cannot be committed without using outdated data.
A stringent data timing requirement also hurts the chances of meeting transaction deadlines.
Let us consider our simple example again. Suppose the data update interval is changed from 0.1
seconds to 2 seconds. In this scenario, even though it is possible that the transaction completes
without reading stale data, there is a 50% chance that a new update on the data arrives while
the transaction is executing. To insist on a no-stale-read system, the transaction has to be
aborted and restarted. The delay suffered by transactions due to aborts and restarts, and the
subsequent waste of system resources (CPU, data locks) is a serious problem. The definition
of data timeliness thus needs to be relaxed to accommodate those difficult situations (e.g., by
allowing transactions to read slightly outdated data, probably within a predefined tolerance

level). We will discuss a number of options for relaxing the data timing requirement in this

paper.

Given a correctness criterion, we need a suitable transaction scheduling policy to enforce
it. For example, a simple way to ensure data timeliness is to give updates and recomputations
higher priorities over application transactions, and to abort a transaction when it engages in
a data conflict with an update or recomputation. This policy ensures that no transactions
can commit using old data. However, giving application transactions low priorities severely
lower their chances of meeting deadlines. This is especially true when updates (and thus
recomputations) arrive at a high rate. We will investigate how transaction should be scheduled

to balance the contrary requirements of data and transaction timeliness.



The rest of this paper is organized as follows. In Section 2 we discuss some related works. In
Section 3 we discuss the properties of updates, recomputations, and application transactions.
In particular, we will discuss the implications of these properties on the design of a transaction
scheduler and a concurrency controller. Section 4 proposes three temporal correctness criteria.
In Section 5 we list out the options of transaction scheduling and concurrency control that
support the different correctness criteria. In Section 6 we define a simulation model to evaluate
the performance of the scheduling policies. The results are presented in Section 7. We conclude

the paper in Section 8.

2 Related Works

In [2], the load balancing issues between updates and transactions in a real-time database system
are studied. In the system model, updates come at a very high rate, while transactions must
be committed before their deadlines. The authors propose several heuristics and examine their
effectiveness in maintaining data freshness while not sacrificing transaction timeliness. They
point out that the On-Demand strategy, with which updates are only applied when required by

transactions, gives the best overall performance.

In [3], the balancing problems between derived data (views)! updates and transactions
are studied. It is noted that recomputations often come in bursts, obeying the principle of
update locality. The authors propose the Forced Delay approach which delays the triggering of
a recomputation for a short period, so that recomputations on the same view object can be
batched into a single computation. The study shows that batching significantly improves the
performance of the RTDB.

The two studies reported in [2] and [3] are very closely related; The former studies updates
and transactions, while the latter studies recomputation transactions. However, they do not
consider the case when updates, recomputations, and transactions are all present. Also, the
studies report how likely temporal consistency is maintained under different scheduling policies,
but do not discuss how to enforce the consistency constraints. In this paper we consider
various scheduling policies for enforcing temporal consistency in an RTDB in which updates,

recomputations, and transactions co-exist.

In [13], Song and Liu discuss data temporal consistency in a real-time system that exe-
cutes periodic tasks. In their model, tasks are either sensor (write-only) transactions, read-only
transactions or update (read-and-write) transactions. Transactions must read temporally con-
sistent data (absolutely or relatively) in order to deliver correct results. Since multiversion
databases have been shown to offer a significant performance gain over single-version ones, the
authors propose and evaluate two multiversion concurrency control algorithms (lock-based and

optimistic) in their studies.

'In this paper, we use the terms “views” and “derived items” interchangeably.



In multiversion locking concurrency control, two-phase locking is used to serialize the
read /write operations of update transactions, while timestamps are used to locate the ap-
propriate versions to be read by read-only transactions. In multiversion optimistic concurrency
control, an update goes through three phases: a read phase, a validation phase, and a possible
write phase. During the read phase, a transaction reads and writes the most recent versions of
data in its own workspace without locking the data. When it is ready to commit, the trans-
action enters the validation phase. Any conflicting update transactions found are immediately
aborted and restarted. If a transaction passes its validation phase, it enters the write phase in
which the new version of each object in the transaction’s local workspace becomes permanent
in the system. Read-only transactions will read the most recent and committed version of data,

and go through only one phase — the read phase.

The use of multiversion techniques in both algorithms serve the common purpose of elim-
inating the conflicts between read-only and update transactions. This is because read-only
transactions can always read the committed versions, without contending resources with write
operations. Hence read-only transactions are never restarted, and the costs of concurrency

control and restart can be significantly reduced.

3 TUpdates, Recomputations, and Transactions

In this section we take a closer look at some of the properties of updates, recomputations, and
application transactions. We will discuss how these properties affect the design of a real-time
database system. In particular, we discuss the concept of update locality, high fan-in/fan-out
of recomputations, and the timing requirements of transactions. These properties are common

in many real-time database systems such as programmed stock trading.

For many real-time database applications, managing the data input streams and applying
the corresponding database updates represents a non-trivial load to the system. For example,
a financial database for program trading applications needs to keep track of more than three
hundred thousand financial instruments. To handle the U.S. markets alone, the system needs
to process more than 500 updates per second [5]. An update usually affects a single base data

item (plus a number of related views).

The high volume of updates and their special properties (such as write-only or append-
only) warrant special treatment in an RTDB. In particular, they should not be executed with
full transactional support. If each update is treated as a separate transaction, the number
of transactions will be too large for the system to handle. (Recall that a financial database
may need to process more than 500 updates per second.) Application transactions will also
be adversely affected because of resource conflicts against updates. As is proposed in [3], a
better approach is to apply the update stream using a single update process. Depending on the
scheduling policy employed, the update process installs updates in a specific order. It could be

linear in a first-come-first-served manner, or on-demand upon application transactions’ requests.



When a base data item is updated, the views which depend on the base item have to be
updated or recomputed as well. The system load due to view recomputations can be even higher
than that is required to install updates. While an update involves a simple write operation,

2 and

recomputing a view may require reading a large number of base data items (high fan-in),
complex operations®. Also, an update can trigger multiple recomputations if the updated base

item is used to derive a number of views (high fan-out).

One way to reduce the load due to updates and recomputations is to avoid useless work.
An update is useful only if the value it writes is read by a transaction. So if updates are done
in-place, an update to a base item b needs not be executed if no transactions request b before
another update on b arrives. Similarly, a recomputation on a view needs not be executed if no
transactions read the view before the view is recomputed again. This savings, however, can
only be realized if successive updates or recomputations on the same data or view occur closely

in time. We call this property update locality [3].

Fortunately, many applications that deal with derived data exhibit such a property. Locality
occurs in two forms: time and space. Updates exhibit time locality if updates on the same item
occur in bursts. Space locality refers to the phenomenon that when a base item b, which
affects a derived item d, is updated, it is very likely that a related set of base items, affecting
d, will be updated soon. For example, changes in a bank’s stock price may indicate that a
certain event (such as an interest rate hike) affecting bank stocks has occurred. It is thus likely
that other banks’ stock prices will change too. Each of these updates could trigger the same
recomputation, say for the finance sectoral index. An example of update locality found in real

financial data is reported in [3].

Update locality implies that recomputations for derived data occur in bursts. Recomputing
the affected derived data on every single update is probably very wasteful because the same
derived data will be recomputed very soon, often before any application transaction has a
chance to read the derived data for any useful work. Instead of recomputing immediately,
a better strategy is to defer recomputations by a certain amount of time and to batch or
coalesce the same recomputation requests into a single computation. We call this technique

recomputation batching.

Application transactions may read both base data and derived views. One very important
design issue in the RTDB system is whether to guarantee consistency between base data and
the views. To achieve consistency, recomputations for derived data are folded into the triggering
updates. Unfortunately, running updates and recomputations as coupled transactions is not
desirable in a high performance, real-time environment. It makes updates run longer, blocking
other transactions that need to access the same data. Indeed, [4] shows that transaction response

time is much improved when events and actions (in our case updates and recomputations) are

2For example, the S&P 500 index is derived from a set of 500 stocks; a summary of a stock’s price in an
one-hour interval could involve hundreds of data points.

?For example, computing the theoretical value of a financial option price requires computing some cumulative
distributions.



decoupled into separate transactions. Thus, we assume that recomputations are decoupled from

updates. We will discuss how consistency can be maintained in Section 5.

Besides consistency constraints, application transactions are associated with deadlines. We
assume a firm real-time system. That is, missing a transaction’s deadline makes the transaction
useless, but it is not detrimental to the system. In arbitrage trading, for example, it is better not
to commit a tardy transaction, since the short-lived price discrepancies which trigger trading
actions disappear quickly in today’s efficient markets. Occasional losses of opportunity are not
catastrophic to the system. The most important performance metric is thus the fraction of
deadlines the RTDBS meets. In Section 5 we will study a number of scheduling policies and in

Section 7 we evaluate their performance on meeting deadlines.

4 Temporal Correctness

One of the requirements in an RTDB system is that transactions read fresh and consistent
data. Temporal Consistency refers to how well the data maintained by the RTDB models the
actual state of the environment [11, 13, 6, 7, 8, 14]. Temporal consistency consists of two
components: absolute consistency (or external consistency) and relative consistency. A data
item is absolutely consistent if it timely reflects the state of an external object that the data
item models. A set of data items are relatively consistent if their values reflect the states of the

external objects at the same time instant.

One option to define absolute consistency (opp staleness) is to compare the current time
with an update’s arrival time (a timestamp) which is an indication of which snapshot of the
external object the update is representing. A data item is considered stale if the difference of
its last update’s timestamp and the current time is larger than some predefined maximum age
T. (The value T is also called the absolute validity interval.) We call this definition Mazimum
Age (MA) [2]. Notice that with MA, even if a data object does not change value, it must still be
periodically updated, or else it will become stale. Thus, MA makes more sense in applications

where data items are continuously changing in time.

Another option is to be optimistic and assume that a data object is always fresh unless
an update has been received by the system but not yet applied to the data. We will refer to
this definition as Unapplied Update (UU). UU is more suitable for discrete data objects which
change at discrete point in time and not continuously [12]. For example, in program trading,
stock prices are updated when trades are made, not periodically. In such a context, age has
less meaning since a price quote could be old but still be correct. UU is more general than MA,
since the arrival times of updates are not assumed known in advance. Figure 2 illustrates the

two staleness models.

If a base data item is updated but its associated views are not recomputed yet, the database

is not relatively consistent. It is clear that an absolutely consistent database must also be rel-
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Figure 2: Maximum Age (MA) and Unapplied Update (UU)

atively consistent. However, the converse is not true. For example, a relatively consistent
database that never installs updates remains relatively consistent even though its data are
all stale. An ideal system that performs updates and recomputations instantaneously would
guarantee both absolute and relative consistency. However, as we have argued, to improve per-
formance, updates and recomputations are decoupled, and recomputations are batched. Hence,
a real system is often in a relatively inconsistent state. Fortunately, inconsistent data do no
harm if no transactions read them. Hence, we need to extend the concept of temporal consis-
tency from the perspective of transactions. Here, we formally define our notion of transaction
temporal consistency. We start with the definition of an ideal system first, based on which

correctness and consistency of real systems are measured.

Definition 1: instantaneous system (IS) An instantaneous system applies base data
updates and performs all necessary recomputations as soon as an update arrives, taking zero

time to do it.

Definition 2: absolute consistent system (ACS) In an absolute consistent system, an
application transaction, with a commit time t and a readset R, is given the values of all the

objects 0o € R such that this set of values can be found in an instantaneous system at time t.

The last definition does not state that in an absolute consistent system data can never be
stale or inconsistent. It only states that no transactions can read stale or inconsistent data.
It is clear that transactions are given a lower execution priority comparing with updates and
recomputations. For example, if an update (or the recomputations it triggers) conflicts with a
transaction on certain data item, the transaction has to be aborted. Maintaining an absolute
consistent system may thus compromise transaction timeliness. To have a better chance of
meeting transactions’ deadlines, we need to upgrade their priorities. A transaction’s priority
can be upgraded in two ways, with respect to its accessibility to data and CPU. For the former,
transactions are not aborted by updates due to data conflicts, while for the latter, transactions

are not always scheduled to execute after updates and recomputations.
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Figure 3: This figure illustrates the differences between ACS, weak ACS and RCS. Suppose a transaction
T reads objects 0; and 05 during its execution, with maximum staleness A. Let o;; denote the j** version
of object 0;. In an ACS, the set of objects read by T must be (012, 022) because only this set of values
can be found in an IS at the commit time of 7. In a weak ACS, the object versions read can be (011,
092) and (o012, 022) as they can be found in an IS at a time not earlier than the start time of 7. In an
RCS, the object versions available to T are (011, 021), (011, 022) or (012, 022) as they can be found in an
IS at a time not earlier than ¢,.

Definition 3: weak absolute consistent system (weak ACS) In a weak absolute consis-
tent system, an application transaction, with a start time t and a readset R, is given the values
of all the objects o € R such that this set of values can be found in an instantaneous system at
time t1, and t1 > t.

A weak ACS is very similar to an ACS in that transactions in both systems read relative
consistent data. The major difference is that in a weak ACS, the data that a transaction reads
need only be fresh to the point when the transaction reads them, not when the transaction
commits (as is in an ACS). The implication is that once a transaction successfully read-locks a
set of relatively consistent data, it needs not be aborted by later updates due to data conflicts.

The transaction thus has a better chance of finishing before its deadline.

We can further relax the requirement of data freshness by allowing transactions to read
slightly stale data. Although this is not desirable in respect to the usefulness of the information

read by a transaction, this can improve the probability of meeting transaction deadlines.

Definition j: relative consistent system (RCS) In a relative consistent system with a
mazimum staleness A, an application transaction with a start time t and a readset R is given
the values of all the objects o € R such that this set of values can be found in an instantaneous

system at time t1, and t1 >t — A,

Essentially, an RCS allows some updates and recomputations to be withheld for the benefit
of expediting transaction execution. Data absolute consistency is compromised but relative
consistency is maintained. Note that we can consider weak ACS as a special case of RCS with

a zero A. Figure 3 illustrates the three correctness criteria, namely, ACS, weak ACS, and RCS.



5 Transaction Scheduling and Consistency Enforcement

In this section we discuss different policies to schedule updates, recomputations, and application
transactions to meet the different levels of temporal consistency requirements. As we have
argued, data timeliness can best be maintained if updates and recomputations are given higher
priorities than application transactions. We call this scheduling policy URT (for update first,
recomputation second, transaction last). On the other hand, the On-Demand (OD) strategy [2],
with which updates and recomputations are executed upon transactions’ requests, can better
protect transaction timeliness. We will therefore focus on these two scheduling policies and
compare their performance under the different temporal consistency requirements. Later on,
we will discuss how URT and OD can be combined into the OD-H policy. In simple terms, OD-
H switches between URT and OD depending on whether application transactions are running
in the system. We will show that OD-H performs better than URT and OD in Section 7. In
these policies, we assume that the relative priorities among application transactions are set
using the traditional earliest-deadline-first priority assignment. We start with a brief reminder

of the characteristics of the three types of activities.

Updates. We assume that updates arrive as a single stream. Under the URT policy, there
is only one update process in the system executing the updates in a FCFS manner. For OD,
there could be multiple update activities running concurrently: one from the arrival of a new
update, and others triggered by application transactions. We distinguish the latters from the
formers by labeling them “On-demand updates” (or OD-updates for short).

Recomputations. When an update arrives, it spawns recomputations. Under URT, we as-
sume that recomputation batching is employed to reduce the system’s workload [3]. With
batching, a triggered recomputation goes to sleep for a short while during which other newly
triggered instances of the same recomputation are ignored. Under OD, recomputations are
only executed upon transactions’ requests, and hence batching is not applied. To ensure tem-
poral consistency, however, a recomputation induced by an update may have to perform some
book-keeping processing, even though the real recomputation process is not executed immedi-
ately. We distinguish the recomputations that are triggered on-demand by transactions from
those book-keeping recomputation activities by labeling them “On-demand recomputations”

(or OD-recoms for short).

Application Transactions. Finally, we assume that application transactions are associated

with firm deadlines. A tardy transaction is useless and thus should be aborted by the system.

Scheduling involves “prioritizing” the three activities with respect to their accesses to the
CPU and data. We assume that data accesses are controlled by a lock manager employing
the HP-2PL protocol (High Priority Two Phase Locking) [1]. Under HP-2PL, a lock holder is
aborted if it conflicts with a lock requester that has a higher priority than the holder. CPU
scheduling is more complicated due to the various batching/on-demand policies employed. We

now discuss the scheduling procedure for each activity under four scenarios. These scenarios

10



correspond to the use of the URT/OD policy in an ACS/RCS. (We consider a WACS as a

special case of an RCS and hence do not explicitly discuss it in this section.)

5.1 Policies for ensuring absolute consistency

As defined in last section, an AC system requires that all items read by a transaction be fresh
and relatively consistent up to the transaction’s commit time. It is the toughest consistency

requirement for data timeliness.

5.1.1 URT

Ensuring absolute consistency under URT represents the simpliest case among the four sce-
narios. Since the update process and recomputations have higher priorities than application
transactions, in general, no transactions can be executed unless all outstanding updates and re-
computations are done. The only exception occurs when a recomputation is forced-delayed (for
batching). In this case the view to be updated by the recomputation is temporarily outdated.
To ensure that no transactions read the outdated view, the recomputation should issue a write
lock on the view once it is spawned, before it goes to sleep. Since transactions are given the
lowest priorities, an HP-2PL lock manager is sufficient to ensure that a transaction is restarted
(and thus cannot commit) if any data item (base data or view) in the transaction’s read set is

invalidated by the arrival of a new update or recomputation.

5.1.2 OD

The idea of On-Demand is to defer most of the work on updates and recomputations so that
application transactions get a bigger share of the CPU cycles. To implement OD, the system
needs an On-Demand Manager (ODM) to keep track of the unapplied updates and recom-
putations. Conceptually, the ODM maintains a set of data items z (base or view) for which
unapplied updates or recomputations exist (we call this set the unapplied set). For each such
z, the ODM associates with it the unapplied update/recomputation, and an OD bit signifying
whether an OD-update/OD-recom on x is currently executing. There are five types of activities
in an OD system, namely, update arrival, recomputation arrival, OD-update, OD-recom, and

application transaction. We list the procedure for handling each type of event as follows:

e On an update or recomputation arrival. Newly arrived updates and recomputations have
the highest priorities in the system.? An update/recomputation P on a base/view item
x is first sent to the OD Manager. The ODM checks if 2 is in the unapplied set. If

not, z is added to the set with P associated with it, and a write lock on z is requested®;

*Newly arrived updates and recomputations are handled in a FCFS manner.
®The write lock is set to ensure AC, since any running transaction that has read (an outdated) = will be
restarted due to lock conflict.

11



Otherwise, the OD bit is checked. If the OD bit is “off”, the ODM simply associates P
with z (essentially replacing the old unapplied update/recomputation by P); If the OD
bit is “on”, it means that an OD-update/OD-recom on z is currently executing. The
OD Manager aborts the running OD-update/OD-recom and releases P for execution. In
the case of an update arrival, any view that is based on z will have its corresponding

recomputation spawned as a new arrival.

e On an application transaction read request. Before a transaction reads a data item xz, the
read request is first sent to the OD Manager. The ODM checks if z is in the unapplied
set. If so, and if the OD bit is “on” (i.e., there is an OD-update/OD-recom being run),
the transaction waits; otherwise, the ODM sets the OD bit “on” and releases the OD-
update/OD-recom associated with z. The OD-update/OD-recom inherits the priority of

the reading transaction.

e On the release of an OD-update/OD-recom. An OD-update/OD-recom executes as a
usual update or recomputation transaction. When it finishes, however, the OD Manager

is notified to remove the updated item from the unapplied set.

5.2 Policies for ensuring relative consistency

The major difficulty in an ACS is that an application transaction is easily restarted if some
update/recomputation conflicts with the transaction. An RCS ameliorates this difficulty by
allowing transactions read slightly outdated (but relatively consistent) data. An RCS is thus
meaningful only if it can maintain multiple versions of a data item; each version records the

data value that is valid within a window of time (its validity interval).

For notational convenience, we use a numeric subscript to enumerate the versions of a data
item. For example, z; represents the i** version of the data item z. We define the validity
interval of an item version x; by VI(z;) = [LTB(z;), UTB(z;)], where LTB and UTB stand for
the lower time bound and the upper time bound of the validity interval respectively. Given a
set of item versions D, we define the validity interval of D as VI(D) = ({ VI(#z;)|2; € D}. That
is, the set of values in D is valid throughout the entire interval VI(D). Also, we denote the
arrival time of an update u by ¢s(u). Finally, for a recomputation or an application transaction
T, we define its validity interval VI(T') as the time interval such that all values read by 7" must
be valid within VI(T).

Our RCS needs a Version Manager (VM) to handle the multiple versions of data items. The
function of the Version Manager is twofold. First, it retrieves, given an item 2z and a validity
interval I, a value of a version of x that is valid within /. Note that if there are multiple updates
on z during the interval I, the Version Manager would have a choice of a valid version. We
defer our discussion on this version selection issue later. Second, the VM keeps track of the
validity intervals of transactions and the data versions they read. The VM is responsible for

changing a transaction’s validity interval if the validity interval of a data version read by the

12



transaction changes. We will discuss the VI management shortly. Finally, we note that since

every

write on a base item or a view generates a new version, no locks need to be set on item

accesses. We will discuss how the “very-old” versions are pruned away to keep the multi-version

database small at the end of this section.

5.2.1

URT

Similar to an ACS, there are three types of activities under URT in an RCS:

5.2.2

On an update arrival. As mentioned, each version of a data item in an RCS is associated
with a validity interval. When an update w on a data item version x; arrives, the validity
interval VI(z;) is set to [ts(u),00]. Also, the UTB of the previous version z;_q is set to
ts(u), signifying that the previous version is only valid till the arrival time of the new

update. The Version Manager checks and sees if there is any running transaction 7' that

has read the version z;_q. If so, it sets UTB(VI(T)) = min{ UTB(VI(T)), ts(u)}.

On a recomputation arrival. If an update u spawns a recomputation r on a view item
v whose latest version is v;, the system first sets the UTB of v; to ts(u). That is, the
version v; is no longer valid from ts(u) onward. Similar to the case of an update arrival,
the VM updates the validity interval of any running transaction that has read v;. With
batching, the recomputation r is put to sleep, during which all other recomputations on
v are ignored. A new version v;4; is not computed until » wakes up. During execution, r
will use the newest versions of the data in its read set. The validity interval of » (VI(r))
and that of the new view version ( VI(v;4;)) are both equal to the intersection of all the

validity intervals of the data items read by r.

Running an application transaction. Given a transaction 7" whose start time is ts( 1), we
first set its validity interval to [ts(T) — A, 00].5 If T reads a data item z, it consults the
Version Manager. The VM would select a version @; for T such that VI(z;)N VI(T) # 0.
That is, the version x; is relatively consistent with the other data already read by T.
VI(T) is then updated to VI(z;) N VI(T). If the VM cannot find a consistent version
(ie., VI(z;) N VI(T) = 0 Ya;), T is aborted. Note that the wider VI(T) is, the more
likely that the VM is able to find a version of z that is consistent with what 7T has already
read. Hence, in our study, we always pick the version x; whose validity interval has the

biggest overlapping with that of 7.

oD

Applying on-demand in an RCS requires both an OD Manager and a Version Manager. The

ODM and the VM serve similar purposes as described previously, with the following modifica-

tions:

5Recall that A is the maximum staleness tolerable with reference to a transaction’s start time.
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e Since multiple versions of data are maintained, the OD Manager keeps, for each base item

x in the unapplied set, a list of unapplied updates of x.

e In an ACS (single version database), an unapplied recomputation to a view item v is
recorded in the ODM so that a transaction that reads » knows that the current database
version of v is invalid. However, in an RCS (multi-version database), the validity intervals
of data items already serve the purpose of identifying the right version. If no such version
can be found in the database, the system knows that an OD-recom has to be triggered.

Therefore, the ODM in an RCS does not maintain unapplied recomputations.

e In an ACS, an OD bit of a data item z is set if there is an OD-update/OD-recom currently
executing to update #. The OD bit is used so that a new update/recomputation arrival
will immediately abort the (useless) OD-update/OD-recom. In an RCS, since multiple
versions of data are kept, it is not necessary to abort the (old but useful) OD-update/OD-

recom. Hence, the OD bits are not used.

e Since different versions of a data item can appear in the database as well as in the
unapplied list, the Version Manager needs to communicate with the OD Manager to
retrieve a right version either from the database or by triggering an appropriate OD-

update from the unapplied lists.

Here, we summarize the key procedures for handling the various activities in an OD-RCS

system.

e On an update arrival. Newly arrived updates have the highest priorities in the system
and are handled FCFS. An update u on a base item z is sent to the OD Manager. FEach
unapplied update is associated with a validity interval. The validity interval of u is set
to [ts(u),o0]. If there is a previous unapplied update u’ on 2 in the ODM, the UTB of
VI(u') is set to ts(u); otherwise the latest version of z in the database will have its UTB
set to ts(u). Similarly, for any view item v that depends on z, if its latest version in the
database has an open UTB (i.e., 00), The UTB will be updated to ts(u). The changes to
the data items’ UTBs may induce changes to some transactions’ validity intervals. The

Version Manger is again responsible for updating the transactions’ Vls.

e Running an application transaction. A transaction 7" with a start time ts(7') has its
validity interval initialized to [ts(7T) — A, occ0]. If T reads a base item z, The VM would
select a version x; for T' that is valid within VI(T). If such a version is unapplied, an
OD-update is triggered by the OD Manager. The OD-update inherits the priority of T'. If
T reads a view item v, The VM would select a version v; for 1" that is valid within VI(T').
If no such version in the database is found, an OD-recom r to compute v is triggered.
This OD-recom inherits the priority and the validity interval of T, and is processed by

the system in the same way as for an application transaction.
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5.2.3 Pruning the multi-version database

Our RC system requires a multi-version database and an OD Manager that keeps multiple
versions of updates in the unapplied lists. We remark that it is not necessary that the system
keeps the full history on-line. One way to prune away old versions is to maintain a Virtual
Clock (VC) of the system. We define VC to be the minimum of the start times of all running
transactions minus A. Any versions (be they in the database or in the unapplied lists) whose
UTBs are smaller than the virtual clock can be pruned. This is because these versions are not
valid with respect to any transaction’s validity interval and thus will never be chosen by the
Version Manager. The virtual clock is updated only on the release or commit of an application

transaction.

5.2.4 A Hybrid Approach

In OD, updates and recomputations are performed only upon transactions’ requests. If the
transaction load is low, few OD-updates and OD-recoms are executed. Most of the database
is thus stale. Consequently, an application transaction may have to materialize quite a num-
ber of items it intends to read on-demand. This may cause severe delay to the transaction’s
execution and thus a missed deadline. A simple modification to OD is to execute updates and
recomputations while the system is idling, in a way similar to URT, and switch to OD when

transactions arrive. We call this hybrid strategy OD-H.

6 Simulation

To study the performance of the scheduling policies, we simulate an RTDB system with the
characteristics described in Sections 1, 3 and 5. This section describes the specifics of our

simulation model.

Before we proceed to discuss the details of the model, we would like to remark that the
purpose of the simulation experiments is not to study the performance of a specific RTDB
system when it uses URT or On-Demand. Instead, they are aimed to identify the performance
characteristics of the scheduling policies in meeting the different temporal consistency require-
ments. In practice, an RTDB system can be very complex. Application transactions generated
from the users can be extremely varied, ranging from ones with short computation to ones that
have thousands of operations; Recomputations can be simple aggregate functions or ones that
require complex computational analyses. If we model all this complexity, our results will be
obscured by many intricate factors which impair our understanding of the basic tradeoffs of
the scheduling policies. Instead, we chose a relatively simple model that captures the essential

features of the scheduling problem, so that the observations made are more comprehensible.

In our simulation model, we implemented all the necessary components as described in
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Section 5. These include a HP-2PL lock manager, an update installer, a disk manager, a
buffer manager, an OD manager (for the On-Demand policy), a version manager (for RCS),
and a transaction manager (which handles priority assignment, transaction aborts and restarts,
recomputation batching, and transaction scheduling). We simulate a disk-based database with
Ny, base items and N, derived items (views). The number of views that a base item derives (i.e.,
fan-out) is uniformly distributed in the range [F, _in,Fo_maz]. Each derived item is derived from
arandom set of base items. If the average values of fan-out and fan-in are F, and F} respectively,

we have
Ny-F, = Ng-F,.

We assume the system caches its database accesses with a cache hit rate pegene_nit-

Updates are generated as a stream of update bursts. Burst arrivals are modeled as Poisson
processes with an arrival rate A,. Each burst consists of burst_size updates. The value burst_size
is picked uniformly from the range [BS)in,B54,]. To model locality, each update would have
a probability of py., of triggering the same set of recomputations as those triggered by the
previous update. Under the URT policy, recomputations are batched. A recomputation is
delayed tpp seconds before execution, during which all instances of the same recomputation
are ignored. Application transactions are generated as another stream of Poisson processes
with an arrival rate A;. A transaction consists of a number of read/write operations. Each
database object has an equal probability of being accessed by an operation. Fach transaction
performs N,, database operations. Each transaction T is associated with a deadline given by

the following formula:

dl(T) = ex(T') x slack + ar(T)

where ex(T) is the expected execution time of the transaction’, ar(T) is the arrival time of

T. and slack is the slack factor. In the simulation, slack is uniformly chosen from the range

[Sminvsmax]-

The values of the simulation parameters were chosen as reasonable values for a typical
financial application. Where possible, we have performed sensitivity analysis of key parameter
values. The simulator is written in CSIM 18 [9]. Each simulation run (generating one data
point) processed 10,000 update bursts. Table 1 shows the parameter settings of our baseline

experiment.®

"Calculated by multiplying the number of operations by the amount of I/O and CPU time taken by each
operation.

8We chose a relatively small database (3,000 base items) to model “hot items”. That is, those data items
that are frequently updated and those that cause recomputations. In practice, the database would have many
other “cold items” as well: those that get updated occasionally and do not trigger recomputations. We have
done experiments modeling “cold items”. Since the results show similar conclusion as our simple model, we do
not explicitly model “cold items” in this paper.

We assume a high-end disk, such as Seagate ST39103LC.

“CPU time per operation” includes the time to perform data locking, memory accesses, CPU computation.
We assume transactions perform complex data analysis such as those performed in a financial expert system.
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Description Parameter Value
Update burst arrival rate (/sec) Au 1.2
Burst size [BSmin,BSmaz] [1,12]
Forced delay time (sec) trp 1.0
Update similarity Psim 0.8
Transaction arrival rate (/sec) At 2.0
7t of operations per transaction Nop 50
Slack factor [Smin,Smaz) [1.3,3.0]
Number of base items Ny 3000
Number of derived items Ny 300
Fan-out [Fo_min,Fomax) [0,4]
Disk access time (ms) tro 5.0
CPU time per operation (ms) tcpu 1.0
I/0 cache hit rate Peache_hit 0.7
maximum staleness (sec) A 10.0

Table 1: Baseline settings

7 Results

In this section we present selected results obtained from our simulation experiments. We com-
pare the performance of the various scheduling policies in an ACS and an RCS based on how

well they can meet transaction deadlines.

To aid our discussion, we use the notation MDE to represent the fraction of missed deadlines
(or miss rate) of scheduling policy A when applied to a B system. For example, MD‘gg = 10%
means that 10% of the transactions miss their deadlines when OD is used in an ACS. Also, in
the graphs presented below, we consistently use solid lines for ACS and dotted lines for RCS.
The three scheduling policies (URT, OD, and OD-H) are associated with different line-point

symbols.

7.1 Absolute Consistent System

Effect of transaction arrival rate In our first experiment, we vary the transaction arrival
rate (A;) from 0.5 to 5 and compare the performance of the three scheduling policies (URT, OD,
and OD-H) in an absolute consistent system. Figure 4 shows the result. From the figure, we
see that, for a large range of A\; (A; > 1.0), URT performs the worst among the three, missing
14% to 26% of the deadlines. Three major factors account for URT’s high miss rate.

First, since transactions have the lowest priorities, their executions are often blocked by
updates and recomputations (in terms of both CPU and data accesses). This causes severe
delays and thus high miss rates to transactions. We call this factor Low Priority. Second,
under URT with recomputation batching, a recomputation is not immediately executed on
arrival. It is forced to sleep for a short while during which it holds a write lock on the derived

item (say, v) it updates. If a transaction requests item v, it will experience an extended delay
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blocked by the sleeping recomputation. We call this factor Batching Wait. Third, in an
ACS, a transaction is restarted by an update or a recomputation whenever a data item that the
transaction has read gets a new value. A restarted transaction loses some of its slack and risks
missing its deadline. Similarly, a recomputation can be restarted by an update if they engage
in a data conflict. Restarting recomputations means adding extra high priority workload to the
system under URT. This intensifies the Low Priority factor which causes missed deadlines. We
call this restart factor Transaction Restart.® From our experiment result, we observe that
the average restart rate of transactions due to lock conflicts is about 2% to 3%, while that of
recomputations is about 0.5%. We remark that even though the restart rate of recomputations
is not too high, its effect could be significant, since recomputations are in general numerous

and long.

By using the On-Demand approach, transactions are given its fair share of CPU cycles and
disk services. Hence, OD effectively eliminates the Low Priority factor. Also, recomputations
are executed on-demand, hence Batching Wait does not exist. This results in a smaller miss
rate. In our baseline experiment (Figure 4), we see that MD4A% is smaller than MD$%, for
At > 1.0. The improvement (about 5% for large A;) is good but is lower than expected. After
all, we just argued that OD removes two of the three adverse factors of URT. Moreover, it is
interesting to see that when the transaction arrival rate is small (A; < 1.0), reducing transaction

workload (i.e., reducing \;) actually increases MD 3.

The reason for the anomaly and the lower-than-expected improvement is that under the
pure OD policy, updates and recomputations are executed only on transaction requests. Hence,
when JA; is small, the total number of on-demand requests are small. Many database items
are therefore stale. When a transaction executes, quite a few items that it reads are outdated
and thus OD-updates/OD-recoms are triggered. The transaction is blocked waiting for the
on-demand requests to finish. This causes a long response time and thus a high miss rate. As
evidence, Figures 6 and 7 show the numbers of OD-updates and OD-recoms per transaction

respectively. We see that as many as 12 updates and 3.5 recomputations are triggered by (and

®“Transaction and Recomputation Restart” would be a more precise term. However, we use the shorter form
to save space.
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blocking) an average transaction under the OD policy. We call this adverse factor 0D Wait.

In order to improve OD’s performance, the database should be kept fresh so that few on-
demand requests are issued. One simple approach is to apply updates and recomputations
(as in URT) when no transactions are present. When a transaction arrives, however, all up-
dates/recomputations are suspended, and the system reverts to on-demand. We call this policy
OD-H. OD-H can thus be considered a hybrid of OD and URT. Figure 4 shows that OD-H
greatly improves the performance of OD. In particular, the anomaly of a higher miss rate at
a lower transaction arrival rate exhibited in OD vanishes in OD-H. The improvement is at-
tributable to a very small number of on-demand requests (Figures 6 and 7). The effect of OD
Wait is thus relatively mild. The problem of Transaction Restart, however, still exists when

OD-H is applied to an ACS.

Effect of update arrival rate In another experiment, we vary the update arrival rate
(Ay). Figure 5 shows the result. We see that a larger A, causes more missed deadlines under all
the scheduling policies. More updates implies a higher update load and more recomputations.
This directly intensifies the effects of Low Priority, Batching Wait, and Transaction Restart.
Also, a higher update rate causes data items to become stale faster. This worsen the effect of
OD Wait. Hence, all policies suffer. Among the three, MD‘?,%T increases most rapidly with A,
since it is affected by three factors. On the contrary, OD-H suffers the least, since it is mainly

affected by Transaction Restart only.

Effect of slack Our next experiment tests the sensitivity of the three policies against
transaction slack. Figure 8 shows the miss rates versus the maximum slack 9,,4,. From the
figure we see that when slack is tight (e.g., Si. < 2.5), MD‘gg rises sharply as 9,4, decreases.
Recall that OD suffers when a transaction runs into stale data, in which case the transaction
has to wait for some OD requests to finish (OD Wait). It is thus important that a transaction
be given enough slack for it to live through the wait. In other words, OD is very sensitive to
the amount of slack transactions have. In order to improve OD’s performance, again, the key
is to keep the database as fresh as possible (e.g., by OD-H). From Figure 8 we see that OD-H

maintains a very small miss rate, and is relatively unrattled even under a small slack situation.
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7.2 Relative Consistent System

Our previous discussion illustrates that in an ACS, URT suffers from three adverse factors,
namely Low Priority, Batching Wait, and Transaction Restart. These three factors lead to a
high MD‘ngT. By switching from URT to OD, we eliminate Low Priority and Batching Wail,
but introduce OD Wait. We then show that the hybrid approach, OD-H, can greatly reduce
the effect of OD Wait (see Figures 6 and 7). Hence, the only culprit left to tackle is Transaction
Restart.

As mentioned in Section 5.2, an RCS uses a multi-version database. Each update or re-
computation creates a new data item version, and thus does not cause any write-read conflicts
with transactions. A transaction therefore never gets restarted because of data conflict with
updates/recomputations. The only cases of transaction abort due to data accesses occur under
URT, when the version manager could not find a materialized data version that is consistent
with the VI of a transaction that is requesting an item. From our experiment, we observe that
the chances of such aborts are very small, e.g., only about 0.1% of transactions are aborted
in our baseline experiment under URT. The on-demand strategies would not perform such
aborts, since any data version can be materialized on-demand. As a result, an RCS effectively

eliminates the problem of Transaction Restart.

Figure 9 shows the miss rates of the three scheduling policies in an RCS (dotted lines). For
comparison, the miss rates in an ACS (solid lines) are also shown. Figure 10 magnifies the part

containing the curves for MD4% y and MDEG ,; for clarity.

From the figures, we see that fewer deadlines are missed in an RCS than in an ACS across
the board. This is because the problem of Transaction Restart is eliminated in an RCS. Among
the three policies, URT registers the biggest improvement. This is because a transaction that
reads a derived item can choose an old, but materialized version. It thus never has to wait for
any sleeping recomputation to wake up and to calculate a new version of the item. Batching
Wait therefore does not exist in an RCS. Hence, two of the three detrimental factors that plague

URT are gone, leading to a much smaller miss rate.
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For OD, we see that the improvement achieved by an RCS is not as big as in the case of
URT. This is because, although Transaction Restart is eliminated, the problem of OD Wait is
not fixed. Figures 11 and 12 show the numbers of OD-updates and OD-recoms per transaction
respectively in an RCS. If we compare the curves in Figures 11 and 12 with those in Figures 6
and 7, we see that, under OD, an average transaction triggers more or less the same number
of OD requests in the two systems. Recall that a transaction would issue an OD request if it
attempts to read a not-yet-materialized data item. In an ACS, each item has only one (the
latest) version. A transaction is forced to issue an OD request if the latest version is not yet
updated. On the other hand, in an RCS, each item has multiple versions. A transaction can
avoid issuing an OD request if it can find a materialized version within the transaction’s validity
interval. So in theory, fewer OD requests are issued in an RCS than in an ACS. Unfortunately,
the pure OD policy does not actively perform updates and recomputations. Hence, few of the
data versions are materialized before transactions read them. The effect of OD Wait, therefore,
does not get improved. As we have discussed, the effect of OD Wait is the strongest when
transactions are scarce. From Figure 9, we see that MDES is much higher than MD%S, when

At 1s small.

In last sub-section, we explained how OD-H reduces transaction miss rate by avoiding three
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of the four adverse factors faced by URT and OD. Figure 10 shows that the performance of
OD-H can be further improved in an RCS by eliminating Transaction Restart. FEssentially,
by applying OD-H to an RCS, the system is rid of any of the adverse factors we discussed.
MDERG 1 is close to 0 except when ); is big. When the transaction arrival rate is high, missed
deadlines are caused mainly by CPU and disk queueing delays. From Figure 10 we see that
the improvement of MDES , over MDAY y is very significant. For example, when \; = 5.0,
about half of the deadlines missed in an ACS are salvaged in an RCS. The percentage of saved

deadlines by an RCS is even more marked when A; is small.

8 Conclusions

In this paper we defined temporal consistency from the perspective of transactions. In an
absolute consistent system, a transaction cannot commit if some data it reads become stale at
the transaction’s commit time. We showed that this consistency constraint is very strict. It
often results in high transaction miss rate. If transactions are allowed to read slightly stale
data, however, the system’s performance can be greatly improved through the use of a multi-
version database. We defined a relative consistent system as one with which a transaction reads
relatively consistent data items and that those items are not more than a certain threshold (A)
older than the transaction’s start time. We argued that a relative consistent system has a higher

potential of meeting transaction deadlines.

We studied three scheduling policies: URT, OD, and OD-H in a system where three types
of activities: updates, recomputations, and application transactions are present. We discussed
how the policies are implemented in a real-time database system to ensure absolute consistency
or relative consistency. We showed that an ACS using URT is the easiest to implement. An HP-
2PL lock manager and a simple static priority-driven scheduler suffice. This system, however,
could have a very high transaction miss rate. To improve performance, two techniques were
considered. One is to perform updates and recomputations on-demand, and the other is to relax
the temporal consistency constraint from absolute to relative. Implementing these techniques
add complexities to the implementation, though. For example, an on-demand manager is needed
for OD; a version manager is needed for an RCS. We showed the pure On-Demand strategy
does not perform well in a system where transactions arrive at a low rate and have very tight
deadlines. To improve the pure OD policy, a third technique of combining the benefit of URT
and OD was studied. The resulting scheduling policy, OD-H, is shown to perform much better
than the others.

We carried out an extensive simulation study on the performance of the three scheduling
policies, under both an ACS and an RCS. We identified four major factors that adversely affect
the performance of the policies. These factors are Low Priority, Batching Wait, Transaction
Restart, and OD Wait. Different policies coupled with different consistency systems suffer from

different combinations of the factors. Table 2 summarizes our result. From the performance
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ACS RCS

URT | OD | OD-H | URT | OD | OD-H
Low Priority X X
Batching Wait X
Transaction Restart X X X
0D Wait X X

Table 2: Factors that cause missed deadlines

study, we showed that OD-H when applied to an RCS results in the smallest miss rate.
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