
Updates and View Maintenance in Soft Real�Time Database

Systems

Ben Kaoz K�Y� Lamy Brad Adelbergx Reynold Chengz Tony Leey

y Department of Computer Science� City University of Hong Kong� Email� cskylam�cs�cityu�edu�hk
z Department of Computer Science� University of Hong Kong� Email� fkao�ckchengg�cs�hku�hk

x Computer Science Department� Northwestern University� Email� adelberg�cs�nwu�edu

Abstract

A database system contains base data items which record and model a physical� real
world environment� For better decision support� base data items are summarized and corre�
lated to derive views� These base data and views are accessed by application transactions to
generate the ultimate actions taken by the system� As the environment changes� updates are
applied to the base data� which subsequently trigger view recomputations� There are thus
three types of activities� base data update� view recomputation� and transaction execution�
In a real�time system� two timing constraints need to be enforced� We require transactions
meet their deadlines �transaction timeliness� and read fresh data �data timeliness�� In this
paper we de�ne the concept of absolute and relative temporal consistency from the perspec�
tive of transactions� We address the important issue of transaction scheduling among the
three types of activities such that the two timing requirements can be met� We also discuss
how a real�time database system should be designed to enforce di�erent levels of temporal
consistency�

keywords� updates� view maintenance� transaction scheduling� temporal consistency�
real�time database�

� Introduction

A real�time database system �RTDB� is often employed in a dynamic environment to monitor

the status of real�world objects and to discover the occurrences of �interesting� events ���	 �
	

�	 �� As an example	 a program trading application monitors the prices of various stocks	

�nancial instruments	 and currencies	 looking for trading opportunities� A typical transaction

might compare the price of German Marks in London to the price in New York and if there

is a signi�cant di�erence	 the system will rapidly perform a trade� The state of a dynamic

environment is often modeled and captured by a set of base data items within the system�

Changes to the environment are represented by updates to the base data� For example	 a

�nancial database refreshes its state of the stock market by receiving a �ticker tape� � a

stream of price quote updates from the stock exchange�

To better support decision making	 the large numbers of base data items are often summa�

�

sin
HKU CSIS Tech Report TR-99-06

Application
Transactions

Items
Dynamic
Environment

Monitor

Updates Recomputations

Other
Data

Views

Base

Figure �� A Real Time Database System

rized into views� Some example views in a �nancial database include composite indices �e�g�	

S�P �

	 Dow Jones Industrial Average and sectoral sub�indices�	 time�series data �e�g�	 �
�day

moving averages�	 and theoretical �nancial option prices	 etc� For better performance	 these

views are materialized� When a base data item is updated to re�ect certain external activity	

the related materialized views need to be updated or recomputed as well�

Besides base item updates and view recomputations	 application transactions are executed

to generate the ultimate actions taken by the system� These transactions read the base data

and views to make their decisions� For instance	 application transactions may request the

purchase of stock	 perform trend analysis	 signal alerts	 or even trigger the execution of other

transactions� Application transactions may also read other static data	 such as a knowledge

base capturing expert rules�

Figure � shows the relationships among the various activities in such a real�time database

system� Notice that updates to base data or recomputations for derived data may also be run

as transactions �e�g�	 with some of the ACID properties�� In those cases	 we refer to them as

update transactions and recomputation transactions� When we use the term transaction alone	

we are referring to an application transaction�

Application transactions can be associated with one or two types of timing requirements�

transaction timeliness and data timeliness� Transaction timeliness refers to how �fast� the

system responds to a transaction request	 while data timeliness refers to how �fresh� the data

read is	 or how closely in time the data read by a transaction models the environment� Stale

data is considered less useful due to the dynamic nature of the data�

Satisfying the two timeliness properties poses a major challenge to the design of a scheduling

algorithm for such a database system� This is because the timing requirements pose con�icting

demands on the system resources� To keep the data fresh	 updates on base data should be

applied promptly� Also	 whenever the value of a base data item changes	 a�ected derived

views have to be recomputed accordingly� The computational load of applying base updates

and performing recomputations can be extremely high	 causing critical delays to transactions	

�

either because there are not enough CPU cycles for them	 or because they are delayed waiting

for fresh data� Consequently	 application transactions may have a high probability of missing

their deadlines�

In this paper we study the intricate balance in scheduling the three types of activities�

updates	 recomputations	 and application transactions to satisfy the two timing requirements

of data and transactions� Our goals are�

� to de�ne temporal correctness from the perspective of transactions�

� to investigate the performance of various transaction scheduling policies in meeting the

two timing requirements of transactions under di�erent correctness criteria�

� to address the design issues of an RTDB such that temporal correctness can be enforced�

To make the right decision	 application transactions need to read fresh data that faithfully

re�ects the current state of the environment� The most desirable situation is that all the

data items read by a transaction are fresh until the transaction commits� This requirement	

however	 could be di�cult to meet� As a simple example	 if a transaction whose execution time

is � second requires a data item that is updated once every
�� seconds� The transaction will

hold the read lock on the data item for an extensive period of time	 during which no new updates

can acquire the write lock and be installed� The data item will be stale throughout most of the

transaction�s execution	 and the transaction cannot be committed without using outdated data�

A stringent data timing requirement also hurts the chances of meeting transaction deadlines�

Let us consider our simple example again� Suppose the data update interval is changed from
��

seconds to � seconds� In this scenario	 even though it is possible that the transaction completes

without reading stale data	 there is a �
� chance that a new update on the data arrives while

the transaction is executing� To insist on a no�stale�read system	 the transaction has to be

aborted and restarted� The delay su�ered by transactions due to aborts and restarts	 and the

subsequent waste of system resources �CPU	 data locks� is a serious problem� The de�nition

of data timeliness thus needs to be relaxed to accommodate those di�cult situations �e�g�	 by

allowing transactions to read slightly outdated data	 probably within a prede�ned tolerance

level�� We will discuss a number of options for relaxing the data timing requirement in this

paper�

Given a correctness criterion	 we need a suitable transaction scheduling policy to enforce

it� For example	 a simple way to ensure data timeliness is to give updates and recomputations

higher priorities over application transactions	 and to abort a transaction when it engages in

a data con�ict with an update or recomputation� This policy ensures that no transactions

can commit using old data� However	 giving application transactions low priorities severely

lower their chances of meeting deadlines� This is especially true when updates �and thus

recomputations� arrive at a high rate� We will investigate how transaction should be scheduled

to balance the contrary requirements of data and transaction timeliness�

�

The rest of this paper is organized as follows� In Section � we discuss some related works� In

Section � we discuss the properties of updates	 recomputations	 and application transactions�

In particular	 we will discuss the implications of these properties on the design of a transaction

scheduler and a concurrency controller� Section � proposes three temporal correctness criteria�

In Section � we list out the options of transaction scheduling and concurrency control that

support the di�erent correctness criteria� In Section � we de�ne a simulation model to evaluate

the performance of the scheduling policies� The results are presented in Section �� We conclude

the paper in Section ��

� Related Works

In ��	 the load balancing issues between updates and transactions in a real�time database system

are studied� In the system model	 updates come at a very high rate	 while transactions must

be committed before their deadlines� The authors propose several heuristics and examine their

e�ectiveness in maintaining data freshness while not sacri�cing transaction timeliness� They

point out that the On�Demand strategy	 with which updates are only applied when required by

transactions	 gives the best overall performance�

In ��	 the balancing problems between derived data �views�� updates and transactions

are studied� It is noted that recomputations often come in bursts	 obeying the principle of

update locality� The authors propose the Forced Delay approach which delays the triggering of

a recomputation for a short period	 so that recomputations on the same view object can be

batched into a single computation� The study shows that batching signi�cantly improves the

performance of the RTDB�

The two studies reported in �� and �� are very closely related� The former studies updates

and transactions	 while the latter studies recomputation transactions� However	 they do not

consider the case when updates	 recomputations	 and transactions are all present� Also	 the

studies report how likely temporal consistency is maintained under di�erent scheduling policies	

but do not discuss how to enforce the consistency constraints� In this paper we consider

various scheduling policies for enforcing temporal consistency in an RTDB in which updates	

recomputations	 and transactions co�exist�

In ���	 Song and Liu discuss data temporal consistency in a real�time system that exe�

cutes periodic tasks� In their model	 tasks are either sensor �write�only� transactions	 read�only

transactions or update �read�and�write� transactions� Transactions must read temporally con�

sistent data �absolutely or relatively� in order to deliver correct results� Since multiversion

databases have been shown to o�er a signi�cant performance gain over single�version ones	 the

authors propose and evaluate two multiversion concurrency control algorithms �lock�based and

optimistic� in their studies�

�In this paper� we use the terms �views� and �derived items� interchangeably�

�

In multiversion locking concurrency control	 two�phase locking is used to serialize the

read�write operations of update transactions	 while timestamps are used to locate the ap�

propriate versions to be read by read�only transactions� In multiversion optimistic concurrency

control	 an update goes through three phases� a read phase	 a validation phase	 and a possible

write phase� During the read phase	 a transaction reads and writes the most recent versions of

data in its own workspace without locking the data� When it is ready to commit	 the trans�

action enters the validation phase� Any con�icting update transactions found are immediately

aborted and restarted� If a transaction passes its validation phase	 it enters the write phase in

which the new version of each object in the transaction�s local workspace becomes permanent

in the system� Read�only transactions will read the most recent and committed version of data	

and go through only one phase � the read phase�

The use of multiversion techniques in both algorithms serve the common purpose of elim�

inating the con�icts between read�only and update transactions� This is because read�only

transactions can always read the committed versions	 without contending resources with write

operations� Hence read�only transactions are never restarted	 and the costs of concurrency

control and restart can be signi�cantly reduced�

� Updates� Recomputations� and Transactions

In this section we take a closer look at some of the properties of updates	 recomputations	 and

application transactions� We will discuss how these properties a�ect the design of a real�time

database system� In particular	 we discuss the concept of update locality	 high fan�in�fan�out

of recomputations	 and the timing requirements of transactions� These properties are common

in many real�time database systems such as programmed stock trading�

For many real�time database applications	 managing the data input streams and applying

the corresponding database updates represents a non�trivial load to the system� For example	

a �nancial database for program trading applications needs to keep track of more than three

hundred thousand �nancial instruments� To handle the U�S� markets alone	 the system needs

to process more than �

 updates per second ��� An update usually a�ects a single base data

item �plus a number of related views��

The high volume of updates and their special properties �such as write�only or append�

only� warrant special treatment in an RTDB� In particular	 they should not be executed with

full transactional support� If each update is treated as a separate transaction	 the number

of transactions will be too large for the system to handle� �Recall that a �nancial database

may need to process more than �

 updates per second�� Application transactions will also

be adversely a�ected because of resource con�icts against updates� As is proposed in ��	 a

better approach is to apply the update stream using a single update process� Depending on the

scheduling policy employed	 the update process installs updates in a speci�c order� It could be

linear in a �rst�come��rst�served manner	 or on�demand upon application transactions� requests�

�

When a base data item is updated	 the views which depend on the base item have to be

updated or recomputed as well� The system load due to view recomputations can be even higher

than that is required to install updates� While an update involves a simple write operation	

recomputing a view may require reading a large number of base data items �high fan�in�	� and

complex operations�� Also	 an update can trigger multiple recomputations if the updated base

item is used to derive a number of views �high fan�out��

One way to reduce the load due to updates and recomputations is to avoid useless work�

An update is useful only if the value it writes is read by a transaction� So if updates are done

in�place	 an update to a base item b needs not be executed if no transactions request b before

another update on b arrives� Similarly	 a recomputation on a view needs not be executed if no

transactions read the view before the view is recomputed again� This savings	 however	 can

only be realized if successive updates or recomputations on the same data or view occur closely

in time� We call this property update locality ���

Fortunately	 many applications that deal with derived data exhibit such a property� Locality

occurs in two forms� time and space� Updates exhibit time locality if updates on the same item

occur in bursts� Space locality refers to the phenomenon that when a base item b	 which

a�ects a derived item d	 is updated	 it is very likely that a related set of base items	 a�ecting

d	 will be updated soon� For example	 changes in a bank�s stock price may indicate that a

certain event �such as an interest rate hike� a�ecting bank stocks has occurred� It is thus likely

that other banks� stock prices will change too� Each of these updates could trigger the same

recomputation	 say for the �nance sectoral index� An example of update locality found in real

�nancial data is reported in ���

Update locality implies that recomputations for derived data occur in bursts� Recomputing

the a�ected derived data on every single update is probably very wasteful because the same

derived data will be recomputed very soon	 often before any application transaction has a

chance to read the derived data for any useful work� Instead of recomputing immediately	

a better strategy is to defer recomputations by a certain amount of time and to batch or

coalesce the same recomputation requests into a single computation� We call this technique

recomputation batching�

Application transactions may read both base data and derived views� One very important

design issue in the RTDB system is whether to guarantee consistency between base data and

the views� To achieve consistency	 recomputations for derived data are folded into the triggering

updates� Unfortunately	 running updates and recomputations as coupled transactions is not

desirable in a high performance	 real�time environment� It makes updates run longer	 blocking

other transactions that need to access the same data� Indeed	 �� shows that transaction response

time is much improved when events and actions �in our case updates and recomputations� are

�For example� the S�P �		 index is derived from a set of �		 stocks
 a summary of a stock�s price in an
one�hour interval could involve hundreds of data points�

�For example� computing the theoretical value of a nancial option price requires computing some cumulative
distributions�

�

decoupled into separate transactions� Thus	 we assume that recomputations are decoupled from

updates� We will discuss how consistency can be maintained in Section ��

Besides consistency constraints	 application transactions are associated with deadlines� We

assume a �rm real�time system� That is	 missing a transaction�s deadline makes the transaction

useless	 but it is not detrimental to the system� In arbitrage trading	 for example	 it is better not

to commit a tardy transaction	 since the short�lived price discrepancies which trigger trading

actions disappear quickly in today�s e�cient markets� Occasional losses of opportunity are not

catastrophic to the system� The most important performance metric is thus the fraction of

deadlines the RTDBS meets� In Section � we will study a number of scheduling policies and in

Section � we evaluate their performance on meeting deadlines�

� Temporal Correctness

One of the requirements in an RTDB system is that transactions read fresh and consistent

data� Temporal Consistency refers to how well the data maintained by the RTDB models the

actual state of the environment ���	 ��	 �	 �	 �	 ��� Temporal consistency consists of two

components� absolute consistency �or external consistency� and relative consistency� A data

item is absolutely consistent if it timely re�ects the state of an external object that the data

item models� A set of data items are relatively consistent if their values re�ect the states of the

external objects at the same time instant�

One option to de�ne absolute consistency �opp staleness� is to compare the current time

with an update�s arrival time �a timestamp� which is an indication of which snapshot of the

external object the update is representing� A data item is considered stale if the di�erence of

its last update�s timestamp and the current time is larger than some prede�ned maximum age

T � �The value T is also called the absolute validity interval�� We call this de�nition Maximum

Age �MA� ��� Notice that with MA	 even if a data object does not change value	 it must still be

periodically updated	 or else it will become stale� Thus	 MA makes more sense in applications

where data items are continuously changing in time�

Another option is to be optimistic and assume that a data object is always fresh unless

an update has been received by the system but not yet applied to the data� We will refer to

this de�nition as Unapplied Update �UU�� UU is more suitable for discrete data objects which

change at discrete point in time and not continuously ���� For example	 in program trading	

stock prices are updated when trades are made	 not periodically� In such a context	 age has

less meaning since a price quote could be old but still be correct� UU is more general than MA	

since the arrival times of updates are not assumed known in advance� Figure � illustrates the

two staleness models�

If a base data item is updated but its associated views are not recomputed yet	 the database

is not relatively consistent� It is clear that an absolutely consistent database must also be rel�

�

UU:
Update

Item becomes stale

Committed

Item becomes stale

New Update Request
Received

New Update
Committed

Item is fresh again

MA:

Update
Committed

Maximum Age
Reached

Time

Time

Item is fresh

Item is fresh

Figure �� Maximum Age �MA� and Unapplied Update �UU�

atively consistent� However	 the converse is not true� For example	 a relatively consistent

database that never installs updates remains relatively consistent even though its data are

all stale� An ideal system that performs updates and recomputations instantaneously would

guarantee both absolute and relative consistency� However	 as we have argued	 to improve per�

formance	 updates and recomputations are decoupled	 and recomputations are batched� Hence	

a real system is often in a relatively inconsistent state� Fortunately	 inconsistent data do no

harm if no transactions read them� Hence	 we need to extend the concept of temporal consis�

tency from the perspective of transactions� Here	 we formally de�ne our notion of transaction

temporal consistency� We start with the de�nition of an ideal system �rst	 based on which

correctness and consistency of real systems are measured�

De�nition �� instantaneous system �IS� An instantaneous system applies base data

updates and performs all necessary recomputations as soon as an update arrives� taking zero

time to do it�

De�nition �� absolute consistent system �ACS� In an absolute consistent system� an

application transaction� with a commit time t and a readset R� is given the values of all the

objects o � R such that this set of values can be found in an instantaneous system at time t�

The last de�nition does not state that in an absolute consistent system data can never be

stale or inconsistent� It only states that no transactions can read stale or inconsistent data�

It is clear that transactions are given a lower execution priority comparing with updates and

recomputations� For example	 if an update �or the recomputations it triggers� con�icts with a

transaction on certain data item	 the transaction has to be aborted� Maintaining an absolute

consistent system may thus compromise transaction timeliness� To have a better chance of

meeting transactions� deadlines	 we need to upgrade their priorities� A transaction�s priority

can be upgraded in two ways	 with respect to its accessibility to data and CPU� For the former	

transactions are not aborted by updates due to data con�icts	 while for the latter	 transactions

are not always scheduled to execute after updates and recomputations�

�

12

o22

start

o1

o2

T

time

time

time

commit

oo11

o21

t 0

Figure �� This �gure illustrates the di�erences between ACS� weak ACS and RCS� Suppose a transaction
T reads objects o� and o� during its execution� with maximum staleness 	� Let oij denote the j

th version
of object oi� In an ACS� the set of objects read by T must be �o��� o��� because only this set of values
can be found in an IS at the commit time of T � In a weak ACS� the object versions read can be �o���
o��� and �o��� o��� as they can be found in an IS at a time not earlier than the start time of T � In an
RCS� the object versions available to T are �o��� o���� �o��� o��� or �o��� o��� as they can be found in an
IS at a time not earlier than t��

De�nition �� weak absolute consistent system �weak ACS� In a weak absolute consis�

tent system� an application transaction� with a start time t and a readset R� is given the values

of all the objects o � R such that this set of values can be found in an instantaneous system at

time t�� and t� � t�

A weak ACS is very similar to an ACS in that transactions in both systems read relative

consistent data� The major di�erence is that in a weak ACS	 the data that a transaction reads

need only be fresh to the point when the transaction reads them	 not when the transaction

commits �as is in an ACS�� The implication is that once a transaction successfully read�locks a

set of relatively consistent data	 it needs not be aborted by later updates due to data con�icts�

The transaction thus has a better chance of �nishing before its deadline�

We can further relax the requirement of data freshness by allowing transactions to read

slightly stale data� Although this is not desirable in respect to the usefulness of the information

read by a transaction	 this can improve the probability of meeting transaction deadlines�

De�nition 	� relative consistent system �RCS� In a relative consistent system with a

maximum staleness �� an application transaction with a start time t and a readset R is given

the values of all the objects o � R such that this set of values can be found in an instantaneous

system at time t�� and t� � t ���

Essentially	 an RCS allows some updates and recomputations to be withheld for the bene�t

of expediting transaction execution� Data absolute consistency is compromised but relative

consistency is maintained� Note that we can consider weak ACS as a special case of RCS with

a zero �� Figure � illustrates the three correctness criteria	 namely	 ACS	 weak ACS	 and RCS�

�

� Transaction Scheduling and Consistency Enforcement

In this section we discuss di�erent policies to schedule updates	 recomputations	 and application

transactions to meet the di�erent levels of temporal consistency requirements� As we have

argued	 data timeliness can best be maintained if updates and recomputations are given higher

priorities than application transactions� We call this scheduling policy URT �for update �rst	

recomputation second	 transaction last�� On the other hand	 the On�Demand �OD� strategy ��	

with which updates and recomputations are executed upon transactions� requests	 can better

protect transaction timeliness� We will therefore focus on these two scheduling policies and

compare their performance under the di�erent temporal consistency requirements� Later on	

we will discuss how URT and OD can be combined into the OD�H policy� In simple terms	 OD�

H switches between URT and OD depending on whether application transactions are running

in the system� We will show that OD�H performs better than URT and OD in Section �� In

these policies	 we assume that the relative priorities among application transactions are set

using the traditional earliest�deadline��rst priority assignment� We start with a brief reminder

of the characteristics of the three types of activities�

Updates� We assume that updates arrive as a single stream� Under the URT policy	 there

is only one update process in the system executing the updates in a FCFS manner� For OD	

there could be multiple update activities running concurrently� one from the arrival of a new

update	 and others triggered by application transactions� We distinguish the latters from the

formers by labeling them �On�demand updates� �or OD�updates for short��

Recomputations� When an update arrives	 it spawns recomputations� Under URT	 we as�

sume that recomputation batching is employed to reduce the system�s workload ��� With

batching	 a triggered recomputation goes to sleep for a short while during which other newly

triggered instances of the same recomputation are ignored� Under OD	 recomputations are

only executed upon transactions� requests	 and hence batching is not applied� To ensure tem�

poral consistency	 however	 a recomputation induced by an update may have to perform some

book�keeping processing	 even though the real recomputation process is not executed immedi�

ately� We distinguish the recomputations that are triggered on�demand by transactions from

those book�keeping recomputation activities by labeling them �On�demand recomputations�

�or OD�recoms for short��

Application Transactions� Finally	 we assume that application transactions are associated

with �rm deadlines� A tardy transaction is useless and thus should be aborted by the system�

Scheduling involves �prioritizing� the three activities with respect to their accesses to the

CPU and data� We assume that data accesses are controlled by a lock manager employing

the HP��PL protocol �High Priority Two Phase Locking� ��� Under HP��PL	 a lock holder is

aborted if it con�icts with a lock requester that has a higher priority than the holder� CPU

scheduling is more complicated due to the various batching�on�demand policies employed� We

now discuss the scheduling procedure for each activity under four scenarios� These scenarios

�

correspond to the use of the URT�OD policy in an ACS�RCS� �We consider a WACS as a

special case of an RCS and hence do not explicitly discuss it in this section��

��� Policies for ensuring absolute consistency

As de�ned in last section	 an AC system requires that all items read by a transaction be fresh

and relatively consistent up to the transaction�s commit time� It is the toughest consistency

requirement for data timeliness�

����� URT

Ensuring absolute consistency under URT represents the simpliest case among the four sce�

narios� Since the update process and recomputations have higher priorities than application

transactions	 in general	 no transactions can be executed unless all outstanding updates and re�

computations are done� The only exception occurs when a recomputation is forced�delayed �for

batching�� In this case the view to be updated by the recomputation is temporarily outdated�

To ensure that no transactions read the outdated view	 the recomputation should issue a write

lock on the view once it is spawned	 before it goes to sleep� Since transactions are given the

lowest priorities	 an HP��PL lock manager is su�cient to ensure that a transaction is restarted

�and thus cannot commit� if any data item �base data or view� in the transaction�s read set is

invalidated by the arrival of a new update or recomputation�

����� OD

The idea of On�Demand is to defer most of the work on updates and recomputations so that

application transactions get a bigger share of the CPU cycles� To implement OD	 the system

needs an On�Demand Manager �ODM� to keep track of the unapplied updates and recom�

putations� Conceptually	 the ODM maintains a set of data items x �base or view� for which

unapplied updates or recomputations exist �we call this set the unapplied set�� For each such

x	 the ODM associates with it the unapplied update�recomputation	 and an OD bit signifying

whether an OD�update�OD�recom on x is currently executing� There are �ve types of activities

in an OD system	 namely	 update arrival	 recomputation arrival	 OD�update	 OD�recom	 and

application transaction� We list the procedure for handling each type of event as follows�

� On an update or recomputation arrival� Newly arrived updates and recomputations have

the highest priorities in the system�� An update�recomputation P on a base�view item

x is �rst sent to the OD Manager� The ODM checks if x is in the unapplied set� If

not	 x is added to the set with P associated with it	 and a write lock on x is requested��

�Newly arrived updates and recomputations are handled in a FCFS manner�
�The write lock is set to ensure AC� since any running transaction that has read �an outdated� x will be

restarted due to lock con�ict�

��

Otherwise	 the OD bit is checked� If the OD bit is �o��	 the ODM simply associates P

with x �essentially replacing the old unapplied update�recomputation by P �� If the OD

bit is �on�	 it means that an OD�update�OD�recom on x is currently executing� The

OD Manager aborts the running OD�update�OD�recom and releases P for execution� In

the case of an update arrival	 any view that is based on x will have its corresponding

recomputation spawned as a new arrival�

� On an application transaction read request� Before a transaction reads a data item x	 the

read request is �rst sent to the OD Manager� The ODM checks if x is in the unapplied

set� If so	 and if the OD bit is �on� �i�e�	 there is an OD�update�OD�recom being run�	

the transaction waits� otherwise	 the ODM sets the OD bit �on� and releases the OD�

update�OD�recom associated with x� The OD�update�OD�recom inherits the priority of

the reading transaction�

� On the release of an OD�update�OD�recom� An OD�update�OD�recom executes as a

usual update or recomputation transaction� When it �nishes	 however	 the OD Manager

is noti�ed to remove the updated item from the unapplied set�

��� Policies for ensuring relative consistency

The major di�culty in an ACS is that an application transaction is easily restarted if some

update�recomputation con�icts with the transaction� An RCS ameliorates this di�culty by

allowing transactions read slightly outdated �but relatively consistent� data� An RCS is thus

meaningful only if it can maintain multiple versions of a data item� each version records the

data value that is valid within a window of time �its validity interval��

For notational convenience	 we use a numeric subscript to enumerate the versions of a data

item� For example	 xi represents the ith version of the data item x� We de�ne the validity

interval of an item version xi by VI �xi� �LTB�xi��UTB�xi�	 where LTB and UTB stand for

the lower time bound and the upper time bound of the validity interval respectively� Given a

set of item versions D	 we de�ne the validity interval of D as VI �D�
T
fVI �xi�jxi � Dg� That

is	 the set of values in D is valid throughout the entire interval VI �D�� Also	 we denote the

arrival time of an update u by ts�u�� Finally	 for a recomputation or an application transaction

T 	 we de�ne its validity interval VI �T � as the time interval such that all values read by T must

be valid within VI �T ��

Our RCS needs a Version Manager �VM� to handle the multiple versions of data items� The

function of the Version Manager is twofold� First	 it retrieves	 given an item x and a validity

interval I 	 a value of a version of x that is valid within I � Note that if there are multiple updates

on x during the interval I 	 the Version Manager would have a choice of a valid version� We

defer our discussion on this version selection issue later� Second	 the VM keeps track of the

validity intervals of transactions and the data versions they read� The VM is responsible for

changing a transaction�s validity interval if the validity interval of a data version read by the

��

transaction changes� We will discuss the VI management shortly� Finally	 we note that since

every write on a base item or a view generates a new version	 no locks need to be set on item

accesses� We will discuss how the �very�old� versions are pruned away to keep the multi�version

database small at the end of this section�

����� URT

Similar to an ACS	 there are three types of activities under URT in an RCS�

� On an update arrival� As mentioned	 each version of a data item in an RCS is associated

with a validity interval� When an update u on a data item version xi arrives	 the validity

interval VI �xi� is set to �ts�u���� Also	 the UTB of the previous version xi�� is set to

ts�u�	 signifying that the previous version is only valid till the arrival time of the new

update� The Version Manager checks and sees if there is any running transaction T that

has read the version xi��� If so	 it sets UTB�VI �T �� minfUTB�VI �T ��� ts�u�g�

� On a recomputation arrival� If an update u spawns a recomputation r on a view item

v whose latest version is vj 	 the system �rst sets the UTB of vj to ts�u�� That is	 the

version vj is no longer valid from ts�u� onward� Similar to the case of an update arrival	

the VM updates the validity interval of any running transaction that has read vj � With

batching	 the recomputation r is put to sleep	 during which all other recomputations on

v are ignored� A new version vj�� is not computed until r wakes up� During execution	 r

will use the newest versions of the data in its read set� The validity interval of r �VI �r��

and that of the new view version �VI �vj�� �� are both equal to the intersection of all the

validity intervals of the data items read by r�

� Running an application transaction� Given a transaction T whose start time is ts�T �	 we

�rst set its validity interval to �ts�T ��
���� If T reads a data item x	 it consults the

Version Manager� The VM would select a version xi for T such that VI �xi��VI �T � � ��

That is	 the version xi is relatively consistent with the other data already read by T �

VI �T � is then updated to VI �xi� � VI �T �� If the VM cannot �nd a consistent version

�i�e�	 VI �xi� � VI �T � � 	xi�	 T is aborted� Note that the wider VI �T � is	 the more

likely that the VM is able to �nd a version of x that is consistent with what T has already

read� Hence	 in our study	 we always pick the version xi whose validity interval has the

biggest overlapping with that of T �

����� OD

Applying on�demand in an RCS requires both an OD Manager and a Version Manager� The

ODM and the VM serve similar purposes as described previously	 with the following modi�ca�

tions�
�Recall that � is the maximum staleness tolerable with reference to a transaction�s start time�

��

� Since multiple versions of data are maintained	 the OD Manager keeps	 for each base item

x in the unapplied set	 a list of unapplied updates of x�

� In an ACS �single version database�	 an unapplied recomputation to a view item v is

recorded in the ODM so that a transaction that reads v knows that the current database

version of v is invalid� However	 in an RCS �multi�version database�	 the validity intervals

of data items already serve the purpose of identifying the right version� If no such version

can be found in the database	 the system knows that an OD�recom has to be triggered�

Therefore	 the ODM in an RCS does not maintain unapplied recomputations�

� In an ACS	 an OD bit of a data item x is set if there is an OD�update�OD�recom currently

executing to update x� The OD bit is used so that a new update�recomputation arrival

will immediately abort the �useless� OD�update�OD�recom� In an RCS	 since multiple

versions of data are kept	 it is not necessary to abort the �old but useful� OD�update�OD�

recom� Hence	 the OD bits are not used�

� Since di�erent versions of a data item can appear in the database as well as in the

unapplied list	 the Version Manager needs to communicate with the OD Manager to

retrieve a right version either from the database or by triggering an appropriate OD�

update from the unapplied lists�

Here	 we summarize the key procedures for handling the various activities in an OD�RCS

system�

� On an update arrival� Newly arrived updates have the highest priorities in the system

and are handled FCFS� An update u on a base item x is sent to the OD Manager� Each

unapplied update is associated with a validity interval� The validity interval of u is set

to �ts�u���� If there is a previous unapplied update u� on x in the ODM	 the UTB of

VI �u�� is set to ts�u�� otherwise the latest version of x in the database will have its UTB

set to ts�u�� Similarly	 for any view item v that depends on x	 if its latest version in the

database has an open UTB �i�e�	��	 The UTB will be updated to ts�u�� The changes to

the data items� UTBs may induce changes to some transactions� validity intervals� The

Version Manger is again responsible for updating the transactions� VIs�

� Running an application transaction� A transaction T with a start time ts�T � has its

validity interval initialized to �ts�T ��
��� If T reads a base item x	 The VM would

select a version xi for T that is valid within VI �T �� If such a version is unapplied	 an

OD�update is triggered by the OD Manager� The OD�update inherits the priority of T � If

T reads a view item v	 The VM would select a version vj for T that is valid within VI �T ��

If no such version in the database is found	 an OD�recom r to compute v is triggered�

This OD�recom inherits the priority and the validity interval of T 	 and is processed by

the system in the same way as for an application transaction�

��

����� Pruning the multi�version database

Our RC system requires a multi�version database and an OD Manager that keeps multiple

versions of updates in the unapplied lists� We remark that it is not necessary that the system

keeps the full history on�line� One way to prune away old versions is to maintain a Virtual

Clock �VC� of the system� We de�ne VC to be the minimum of the start times of all running

transactions minus �� Any versions �be they in the database or in the unapplied lists� whose

UTBs are smaller than the virtual clock can be pruned� This is because these versions are not

valid with respect to any transaction�s validity interval and thus will never be chosen by the

Version Manager� The virtual clock is updated only on the release or commit of an application

transaction�

����	 A Hybrid Approach

In OD	 updates and recomputations are performed only upon transactions� requests� If the

transaction load is low	 few OD�updates and OD�recoms are executed� Most of the database

is thus stale� Consequently	 an application transaction may have to materialize quite a num�

ber of items it intends to read on�demand� This may cause severe delay to the transaction�s

execution and thus a missed deadline� A simple modi�cation to OD is to execute updates and

recomputations while the system is idling	 in a way similar to URT	 and switch to OD when

transactions arrive� We call this hybrid strategy OD�H�

� Simulation

To study the performance of the scheduling policies	 we simulate an RTDB system with the

characteristics described in Sections �	 � and �� This section describes the speci�cs of our

simulation model�

Before we proceed to discuss the details of the model	 we would like to remark that the

purpose of the simulation experiments is not to study the performance of a speci�c RTDB

system when it uses URT or On�Demand� Instead	 they are aimed to identify the performance

characteristics of the scheduling policies in meeting the di�erent temporal consistency require�

ments� In practice	 an RTDB system can be very complex� Application transactions generated

from the users can be extremely varied	 ranging from ones with short computation to ones that

have thousands of operations� Recomputations can be simple aggregate functions or ones that

require complex computational analyses� If we model all this complexity	 our results will be

obscured by many intricate factors which impair our understanding of the basic tradeo�s of

the scheduling policies� Instead	 we chose a relatively simple model that captures the essential

features of the scheduling problem	 so that the observations made are more comprehensible�

In our simulation model	 we implemented all the necessary components as described in

��

Section �� These include a HP��PL lock manager	 an update installer	 a disk manager	 a

bu�er manager	 an OD manager �for the On�Demand policy�	 a version manager �for RCS�	

and a transaction manager �which handles priority assignment	 transaction aborts and restarts	

recomputation batching	 and transaction scheduling�� We simulate a disk�based database with

Nb base items and Nd derived items �views�� The number of views that a base item derives �i�e�	

fan�out� is uniformly distributed in the range �Fo min	Fo max� Each derived item is derived from

a random set of base items� If the average values of fan�out and fan�in are Fo and Fi respectively	

we have

Nb
 Fo Nd
 Fi�

We assume the system caches its database accesses with a cache hit rate pcache hit�

Updates are generated as a stream of update bursts� Burst arrivals are modeled as Poisson

processes with an arrival rate �u� Each burst consists of burst size updates� The value burst size

is picked uniformly from the range �BSmin	BSmax� To model locality	 each update would have

a probability of psim of triggering the same set of recomputations as those triggered by the

previous update� Under the URT policy	 recomputations are batched� A recomputation is

delayed tFD seconds before execution	 during which all instances of the same recomputation

are ignored� Application transactions are generated as another stream of Poisson processes

with an arrival rate �t� A transaction consists of a number of read�write operations� Each

database object has an equal probability of being accessed by an operation� Each transaction

performs Nop database operations� Each transaction T is associated with a deadline given by

the following formula�

dl�T � ex�T �� slack ! ar�T �

where ex�T � is the expected execution time of the transaction�	 ar�T � is the arrival time of

T 	 and slack is the slack factor� In the simulation	 slack is uniformly chosen from the range

�Smin	Smax�

The values of the simulation parameters were chosen as reasonable values for a typical

�nancial application� Where possible	 we have performed sensitivity analysis of key parameter

values� The simulator is written in CSIM �� ��� Each simulation run �generating one data

point� processed �
	

 update bursts� Table � shows the parameter settings of our baseline

experiment�	

�Calculated by multiplying the number of operations by the amount of I�O and CPU time taken by each
operation�

�We chose a relatively small database ���			 base items� to model �hot items�� That is� those data items
that are frequently updated and those that cause recomputations� In practice� the database would have many
other �cold items� as well� those that get updated occasionally and do not trigger recomputations� We have
done experiments modeling �cold items�� Since the results show similar conclusion as our simple model� we do
not explicitly model �cold items� in this paper�
We assume a high�end disk� such as Seagate ST���	�LC�
�CPU time per operation� includes the time to perform data locking� memory accesses� CPU computation�

We assume transactions perform complex data analysis such as those performed in a nancial expert system�

��

Description Parameter Value
Update burst arrival rate �
sec� �u ���
Burst size BSmin�BSmax� �����
Forced delay time �sec� tFD ���
Update similarity psim ���
Transaction arrival rate �
sec� �t ���
� of operations per transaction Nop ��
Slack factor Smin�Smax� ��������
Number of base items Nb ����
Number of derived items Nd ���
Fan�out Fo min�Fo max� ����
Disk access time �ms� tIO ���
CPU time per operation �ms� tCPU ���
I
O cache hit rate pcache hit ���
maximum staleness �sec� 	 ����

Table �� Baseline settings

� Results

In this section we present selected results obtained from our simulation experiments� We com�

pare the performance of the various scheduling policies in an ACS and an RCS based on how

well they can meet transaction deadlines�

To aid our discussion	 we use the notationMDB
A to represent the fraction of missed deadlines

�or miss rate� of scheduling policy A when applied to a B system� For example	 MDAC
OD �
�

means that �
� of the transactions miss their deadlines when OD is used in an ACS� Also	 in

the graphs presented below	 we consistently use solid lines for ACS and dotted lines for RCS�

The three scheduling policies �URT	 OD	 and OD�H� are associated with di�erent line�point

symbols�

��� Absolute Consistent System

E
ect of transaction arrival rate In our �rst experiment	 we vary the transaction arrival

rate ��t� from
�� to � and compare the performance of the three scheduling policies �URT	 OD	

and OD�H� in an absolute consistent system� Figure � shows the result� From the �gure	 we

see that	 for a large range of �t ��t � ��
�	 URT performs the worst among the three	 missing

��� to ��� of the deadlines� Three major factors account for URT�s high miss rate�

First	 since transactions have the lowest priorities	 their executions are often blocked by

updates and recomputations �in terms of both CPU and data accesses�� This causes severe

delays and thus high miss rates to transactions� We call this factor Low Priority� Second	

under URT with recomputation batching	 a recomputation is not immediately executed on

arrival� It is forced to sleep for a short while during which it holds a write lock on the derived

item �say	 v� it updates� If a transaction requests item v	 it will experience an extended delay

��

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

T
ra

ns
ac

tio
n

M
is

s
R

at
e

(%
)

Arrival Rate of Application Transactions

URT/ACS
OD/ACS

OD-H/ACS

Figure �� Miss rate vs �t �ACS�

0

5

10

15

20

25

30

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

T
ra

ns
ac

tio
n

M
is

s
R

at
e

(%
)

Arrival Rate of Update Bursts

URT/ACS
OD/ACS

OD-H/ACS

Figure �� Miss rate vs �u �ACS�

blocked by the sleeping recomputation� We call this factor Batching Wait� Third	 in an

ACS	 a transaction is restarted by an update or a recomputation whenever a data item that the

transaction has read gets a new value� A restarted transaction loses some of its slack and risks

missing its deadline� Similarly	 a recomputation can be restarted by an update if they engage

in a data con�ict� Restarting recomputations means adding extra high priority workload to the

system under URT� This intensi�es the Low Priority factor which causes missed deadlines� We

call this restart factor Transaction Restart�
 From our experiment result	 we observe that

the average restart rate of transactions due to lock con�icts is about �� to ��	 while that of

recomputations is about
���� We remark that even though the restart rate of recomputations

is not too high	 its e�ect could be signi�cant	 since recomputations are in general numerous

and long�

By using the On�Demand approach	 transactions are given its fair share of CPU cycles and

disk services� Hence	 OD e�ectively eliminates the Low Priority factor� Also	 recomputations

are executed on�demand	 hence Batching Wait does not exist� This results in a smaller miss

rate� In our baseline experiment �Figure ��	 we see that MDAC
OD is smaller than MDAC

URT for

�t � ��
� The improvement �about �� for large �t� is good but is lower than expected� After

all	 we just argued that OD removes two of the three adverse factors of URT� Moreover	 it is

interesting to see that when the transaction arrival rate is small ��t � ��
�	 reducing transaction

workload �i�e�	 reducing �t� actually increases MDAC
OD�

The reason for the anomaly and the lower�than�expected improvement is that under the

pure OD policy	 updates and recomputations are executed only on transaction requests� Hence	

when �t is small	 the total number of on�demand requests are small� Many database items

are therefore stale� When a transaction executes	 quite a few items that it reads are outdated

and thus OD�updates�OD�recoms are triggered� The transaction is blocked waiting for the

on�demand requests to �nish� This causes a long response time and thus a high miss rate� As

evidence	 Figures � and � show the numbers of OD�updates and OD�recoms per transaction

respectively� We see that as many as �� updates and ��� recomputations are triggered by �and

	�Transaction and Recomputation Restart� would be a more precise term� However� we use the shorter form
to save space�

��

0

2

4

6

8

10

12

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
o.

 o
f O

D
 U

pd
at

es
 p

er
 T

ra
ns

ac
tio

n

Arrival Rate of Application Transactions

OD/ACS
OD-H/ACS

Figure �� Number of OD�updates per trans�
action �ACS�

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
o.

 o
f O

D
 R

ec
om

pu
ta

tio
ns

 p
er

 T
ra

ns
ac

tio
n

Arrival Rate of Application Transactions

OD/ACS
OD-H/ACS

Figure �� Number of OD�recoms per transac�
tion �ACS�

blocking� an average transaction under the OD policy� We call this adverse factor OD Wait�

In order to improve OD�s performance	 the database should be kept fresh so that few on�

demand requests are issued� One simple approach is to apply updates and recomputations

�as in URT� when no transactions are present� When a transaction arrives	 however	 all up�

dates�recomputations are suspended	 and the system reverts to on�demand� We call this policy

OD�H� OD�H can thus be considered a hybrid of OD and URT� Figure � shows that OD�H

greatly improves the performance of OD� In particular	 the anomaly of a higher miss rate at

a lower transaction arrival rate exhibited in OD vanishes in OD�H� The improvement is at�

tributable to a very small number of on�demand requests �Figures � and ��� The e�ect of OD

Wait is thus relatively mild� The problem of Transaction Restart	 however	 still exists when

OD�H is applied to an ACS�

E
ect of update arrival rate In another experiment	 we vary the update arrival rate

��u�� Figure � shows the result� We see that a larger �u causes more missed deadlines under all

the scheduling policies� More updates implies a higher update load and more recomputations�

This directly intensi�es the e�ects of Low Priority	 Batching Wait	 and Transaction Restart�

Also	 a higher update rate causes data items to become stale faster� This worsen the e�ect of

OD Wait� Hence	 all policies su�er� Among the three	 MDAC
URT increases most rapidly with �u	

since it is a�ected by three factors� On the contrary	 OD�H su�ers the least	 since it is mainly

a�ected by Transaction Restart only�

E
ect of slack Our next experiment tests the sensitivity of the three policies against

transaction slack� Figure � shows the miss rates versus the maximum slack Smax� From the

�gure we see that when slack is tight �e�g�	 Smax � ��� �	MDAC
OD rises sharply as Smax decreases�

Recall that OD su�ers when a transaction runs into stale data	 in which case the transaction

has to wait for some OD requests to �nish �OD Wait�� It is thus important that a transaction

be given enough slack for it to live through the wait� In other words	 OD is very sensitive to

the amount of slack transactions have� In order to improve OD�s performance	 again	 the key

is to keep the database as fresh as possible �e�g�	 by OD�H�� From Figure � we see that OD�H

maintains a very small miss rate	 and is relatively unrattled even under a small slack situation�

��

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7

T
ra

ns
ac

tio
n

M
is

s
R

at
e

(%
)

Maximum Slack

URT/ACS
OD/ACS

OD-H/ACS

Figure �� Miss Rate vs Smax �ACS�

��� Relative Consistent System

Our previous discussion illustrates that in an ACS	 URT su�ers from three adverse factors	

namely Low Priority	 Batching Wait	 and Transaction Restart� These three factors lead to a

high MDAC
URT� By switching from URT to OD	 we eliminate Low Priority and Batching Wait	

but introduce OD Wait� We then show that the hybrid approach	 OD�H	 can greatly reduce

the e�ect of OD Wait �see Figures � and ��� Hence	 the only culprit left to tackle is Transaction

Restart�

As mentioned in Section ���	 an RCS uses a multi�version database� Each update or re�

computation creates a new data item version	 and thus does not cause any write�read con�icts

with transactions� A transaction therefore never gets restarted because of data con�ict with

updates�recomputations� The only cases of transaction abort due to data accesses occur under

URT	 when the version manager could not �nd a materialized data version that is consistent

with the VI of a transaction that is requesting an item� From our experiment	 we observe that

the chances of such aborts are very small	 e�g�	 only about
��� of transactions are aborted

in our baseline experiment under URT� The on�demand strategies would not perform such

aborts	 since any data version can be materialized on�demand� As a result	 an RCS e�ectively

eliminates the problem of Transaction Restart�

Figure � shows the miss rates of the three scheduling policies in an RCS �dotted lines�� For

comparison	 the miss rates in an ACS �solid lines� are also shown� Figure �
 magni�es the part

containing the curves for MDAC
OD�H and MDRC

OD�H for clarity�

From the �gures	 we see that fewer deadlines are missed in an RCS than in an ACS across

the board� This is because the problem of Transaction Restart is eliminated in an RCS� Among

the three policies	 URT registers the biggest improvement� This is because a transaction that

reads a derived item can choose an old	 but materialized version� It thus never has to wait for

any sleeping recomputation to wake up and to calculate a new version of the item� Batching

Wait therefore does not exist in an RCS� Hence	 two of the three detrimental factors that plague

URT are gone	 leading to a much smaller miss rate�

�

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

T
ra

ns
ac

tio
n

M
is

s
R

at
e

(%
)

Arrival Rate of Application Transactions

URT/ACS
OD/ACS

OD-H/ACS
URT/RCS
OD/RCS

OD-H/RCS

Figure �� Miss rate vs �t �ACS � RCS�

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

T
ra

ns
ac

tio
n

M
is

s
R

at
e

(%
)

Arrival Rate of Application Transactions

OD-H/ACS
OD-H/RCS

Figure �
� Miss rate vs �t �MDAC
OD�H and

MDRC
OD�H�

0

2

4

6

8

10

12

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
o.

 o
f O

D
 U

pd
at

es
 p

er
 T

ra
ns

ac
tio

n

Arrival Rate of Application Transactions

OD/RCS
OD-H/RCS

Figure ��� Number of OD�updates per trans�
action �RCS�

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
o.

 o
f O

D
 R

ec
om

pu
ta

tio
ns

 p
er

 T
ra

ns
ac

tio
n

Arrival Rate of Application Transactions

OD/RCS
OD-H/RCS

Figure ��� Number of OD�recoms per trans�
action �RCS�

For OD	 we see that the improvement achieved by an RCS is not as big as in the case of

URT� This is because	 although Transaction Restart is eliminated	 the problem of OD Wait is

not �xed� Figures �� and �� show the numbers of OD�updates and OD�recoms per transaction

respectively in an RCS� If we compare the curves in Figures �� and �� with those in Figures �

and �	 we see that	 under OD	 an average transaction triggers more or less the same number

of OD requests in the two systems� Recall that a transaction would issue an OD request if it

attempts to read a not�yet�materialized data item� In an ACS	 each item has only one �the

latest� version� A transaction is forced to issue an OD request if the latest version is not yet

updated� On the other hand	 in an RCS	 each item has multiple versions� A transaction can

avoid issuing an OD request if it can �nd a materialized version within the transaction�s validity

interval� So in theory	 fewer OD requests are issued in an RCS than in an ACS� Unfortunately	

the pure OD policy does not actively perform updates and recomputations� Hence	 few of the

data versions are materialized before transactions read them� The e�ect of OD Wait	 therefore	

does not get improved� As we have discussed	 the e�ect of OD Wait is the strongest when

transactions are scarce� From Figure �	 we see that MDRC
OD is much higher than MDRC

URT when

�t is small�

In last sub�section	 we explained how OD�H reduces transaction miss rate by avoiding three

��

of the four adverse factors faced by URT and OD� Figure �
 shows that the performance of

OD�H can be further improved in an RCS by eliminating Transaction Restart� Essentially	

by applying OD�H to an RCS	 the system is rid of any of the adverse factors we discussed�

MDRC
OD�H is close to
 except when �t is big� When the transaction arrival rate is high	 missed

deadlines are caused mainly by CPU and disk queueing delays� From Figure �
 we see that

the improvement of MDRC
OD�H over MDAC

OD�H is very signi�cant� For example	 when �t ��
	

about half of the deadlines missed in an ACS are salvaged in an RCS� The percentage of saved

deadlines by an RCS is even more marked when �t is small�

	 Conclusions

In this paper we de�ned temporal consistency from the perspective of transactions� In an

absolute consistent system	 a transaction cannot commit if some data it reads become stale at

the transaction�s commit time� We showed that this consistency constraint is very strict� It

often results in high transaction miss rate� If transactions are allowed to read slightly stale

data	 however	 the system�s performance can be greatly improved through the use of a multi�

version database� We de�ned a relative consistent system as one with which a transaction reads

relatively consistent data items and that those items are not more than a certain threshold ���

older than the transaction�s start time� We argued that a relative consistent system has a higher

potential of meeting transaction deadlines�

We studied three scheduling policies� URT	 OD	 and OD�H in a system where three types

of activities� updates	 recomputations	 and application transactions are present� We discussed

how the policies are implemented in a real�time database system to ensure absolute consistency

or relative consistency� We showed that an ACS using URT is the easiest to implement� An HP�

�PL lock manager and a simple static priority�driven scheduler su�ce� This system	 however	

could have a very high transaction miss rate� To improve performance	 two techniques were

considered� One is to perform updates and recomputations on�demand	 and the other is to relax

the temporal consistency constraint from absolute to relative� Implementing these techniques

add complexities to the implementation	 though� For example	 an on�demand manager is needed

for OD� a version manager is needed for an RCS� We showed the pure On�Demand strategy

does not perform well in a system where transactions arrive at a low rate and have very tight

deadlines� To improve the pure OD policy	 a third technique of combining the bene�t of URT

and OD was studied� The resulting scheduling policy	 OD�H	 is shown to perform much better

than the others�

We carried out an extensive simulation study on the performance of the three scheduling

policies	 under both an ACS and an RCS� We identi�ed four major factors that adversely a�ect

the performance of the policies� These factors are Low Priority	 Batching Wait	 Transaction

Restart	 and OD Wait� Di�erent policies coupled with di�erent consistency systems su�er from

di�erent combinations of the factors� Table � summarizes our result� From the performance

��

ACS RCS
URT OD OD�H URT OD OD�H

Low Priority � �

Batching Wait �

Transaction Restart � � �

OD Wait � �

Table �� Factors that cause missed deadlines

study	 we showed that OD�H when applied to an RCS results in the smallest miss rate�

References

�� R� Abbott and H� Garcia�Molina� Scheduling real�time transactions� a performance eval�
uation� In Proceedings of the �	th VLDB Conference	 August �����

�� B� Adelberg	 H� Garcia�Molina	 and B� Kao� Applying update streams in a soft real�time
database system� In Proceedings of the ���� ACM SIGMOD	 pages ���"���	 �����

�� B� Adelberg	 H� Garcia�Molina	 and B� Kao� Database support for e�ciently maintaining
derived data� In Advances in Database Technology EDBT ����	 pages ���"��
	 �����

�� M� Carey	 R� Jauhari	 and M� Livny� On transaction boundaries in active databases�
A performance perspective� IEEE Transactions on Knowledge and Data Engineering	
�������
"��	 �����

�� M� Cochinwala and J� Bradley� A multidatabase system for tracking and retrieval of
�nancial data� In Proceedings of the ��th VLDB Conference	 pages ���"���	 �����

�� B� Purimetla et al� Real�time databases� Issues and applications� In Advances in Real�Time
Systems� Prentice�Hall	 �����

�� Y��K� Kim and S� H� Son� Predictability and consistency in real�time database systems�
In Advances in Real�Time Systems� Prentice�Hall	 �����

�� T� W� Kuo and A� K� Mok� SSP� A semantics�based protocol for real�time data access� In
IEEE Real�Time Systems Symposium	 pages ��"��	 �����

�� Mesquite Software	 Inc� CSIM �� User Guide� URL� http���www�mesquite�com�

��
 G� Ozsoyoglu and R� Snodgrass� Temporal and real�time databases� A survey� IEEE
Transactions on Knowledge and Data Engineering	 ��������"���	 �����

��� K� Ramamritham� Real�time databases� Distributed and Parallel Databases	 ��������"���	
�����

��� A� Segev and A� Shoshani� Logical modeling of temporal data� In Proceedings of the ACM
SIGMOD Annual Conference on Management of Data	 pages ���"���	 �����

��� Xiaohui Song and Jane W�S� Liu� Maintaining temporal consistency� Pessimistic vs� op�
timistic concurrency control� IEEE Transactions on Knowledge and Data Engineering	
pages ���"���	 Oct� �����

��� M� Xiong	 R� Sivasankaran	 J�A� Stankovic	 K� Ramamritham	 and D� Towsley� Scheduling
transactions with temporal constraints� Exploiting data semantics� In Proceedings of ����
Real�Time Systems Symposium	 Washington	 Dec� �����

��� P�S� Yu	 K�L� Wu	 K�J� Lin	 and S�H� Son� On real�time databases� Concurrency control
and scheduling� Proceedings of the IEEE	 ��������
"���	 �����

��

