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Abstract

On�line analytical processing �OLAP� requires e�cient processing of complex decision

support queries over very large databases� It is well accepted that pre�computed data

cubes can help reduce the response time of such queries dramatically� A very important

design issue of an e�cient OLAP system is therefore the choice of the right data cubes to

materialize� We call this problem the data cube schema design problem� In this paper we

show that the problem of �nding an optimal data cube schema for an OLAP system with

limited memory is NP�hard� As a more computationally e�cient alternative� we propose

a greedy approximation algorithm cMP and its variants� Algorithm cMP consists of two

phases� In the �rst phase� an initial schema consisting of all the cubes required to e�ciently

answer the user queries is formed� In the second phase� cubes in the initial schema are

selectively merged to satisfy the memory constraint� We show that cMP is very e�ective in

prunning the search space for an optimal schema� This leads to a highly e�cient algorithm�

We report the e�ciency and the e�ectiveness of cMP via an empirical study using the TPC�

D benchmark� Our results show that the data cube schemas generated by cMP enable very

e�cient OLAP query processing�

Keywords� Data cubes� Data cube schema design� OLAP� DSS�

� Introduction

With wide acceptance of the data warehousing technology� corporations are building their

decision support systems �DSS� on large data warehouses� Many of these DSS�s have on�

line characteristics and are termed On�line Analytical Processing �OLAP� systems� Di�erent

from the conventional database applications� a DSS usually needs to analyze accumulative

information� e�g�� the total sales in a particular region within a given period of time� Very

often� the system needs to scan almost the entire database to compute query answers� resulting

in a very poor response time� Conventional database techniques are simply not fast enough for

today�s corporate decision process�

The data cube technology has been becoming a core component of many OLAP systems�

Data cubes are pre�computed multi�dimensional views of the data in a data warehouse �	
� The

�
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advantage of a data cube system is that once the data cubes are built� answers to decision

support queries can be retrieved from the cubes in real�time�

An OLAP system can be modeled by a three�level architecture that consists of� ��� a

query client
 ��� a data cube engine
 and ��� a data warehouse server� Figure � shows such an

architecture�

Data Warehouse

Query Client

Data Cubes

level 1

level 2

level3

Figure �� Three�level architecture of an OLAP system

The bottom level of an OLAP system is a data warehouse built on top of a DBMS� Data

in the warehouse comes from source operational databases� �In the simplest case� the data

warehouse could be the DBMS itself�� The warehouse needs to support fast aggregations� for

example� by means of di�erent indexing techniques such as bit�map indices and join indices

���� ��
�

The middle level of an OLAP system is a set of data cubes� generated from the data

warehouse� These cubes are called base data cubes� Each base cube is de�ned by a set of

attributes taken from the warehouse schema� It contains the aggregates over the selected set of

attributes� Other aggregates can be computed from the base cubes� For example� if a base cube

is de�ned on the attributes �part� customer� date�� then the aggregates grouped by part

and year can be derived� The set of base data cubes together de�ne a data cube schema for

the OLAP system�

The top level of an OLAP system is a query client� The client� besides supporting DSS

queries� allows users to browse through the data it caches from the data cubes� Therefore� a

query could be a very complicated DSS query or a simple slicing and dicing request� A query

submitted to the query client� after being checked against the data cube schema� will be directed

to the cube level if it can be answered by the data cubes there
 otherwise� the query is passed

on to the warehouse where the result is computed� Since data cubes store pre�computed results�

servicing queries with the cubes is much faster than with the warehouse�

Various developments and research studies have been made on the design of the three levels

in an OLAP system� Many commercial products are also now available� Some example query

clients include Seagate Info Worksheet ���
 and Microsoft PivotTable Services ���
� Currently�

these query client products mainly provide browsing and report generation services on cached
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data� In general� unless the answer is already cached� complex DSS queries submitted to the

client module will have to be compiled into accesses to the data cubes or to the warehouse� For

the warehouse and the data cube levels� there are products like Microsoft SQL OLAP Services

���
� Hyperion Essbase OLAP Server� and IBM DB� OLAP Server ��
� At the warehouse level�

many vendors have been enhancing their DBMS products to improve the performance on data

aggregation ��� �
� As for the data cube level� most of the research studies focus on two issues�

��� how to compute aggregates from a base cube e�ciently� and ��� what data structures should

be used to represent the cubes� For the �rst issue� studies have been done comparing sorting�

based techniques with hashing�based techniques ��

 For the second issue� there is the debate on

choosing between a relational OLAP �ROLAP� representation or a multi�dimensional OLAP

�MOLAP� representation ��� �	
�

As we have mentioned� the OLAP system would be able to support real�time responses if

the cube level can intercept �or answer� all the queries� Unfortunately� materializing all possible

cubes so that all possible queries can be answered by the cubes is clearly impractical due to the

high storage and maintenance costs� Instead� one should carefully choose the right combination

of cubes so that query response time is optimized subject to the constraints of the system�s

capacity �such as storage space�� We call the set of materialized base cubes the data cube

schema of the OLAP system� We also call the problem of selecting a data cube schema the

data cube schema design problem�

The key to the design of a query�e�cient OLAP system thus lies on the design of a good

data cube schema� In particular� two very important questions one needs to address are� on

what basis shall we design such a schema� And where should the schema be derived from� We

claim that the data cube schema should not be based solely on the database schema in the

warehouse� Instead� a practical approach to the cube design problem should be based on the

users� query requirements� For example� in the TPC�D benchmark ���
� the requirement is to

answer the �� DSS queries that are speci�ed in the benchmark e�ciently� This is because these

queries presumably are driven from the applications that use the data warehouse most often�

Given the user query requirements �i�e�� a set of frequently asked queries� and a set of system

capacity constraints �e�g�� storage limitation�� our goal is to derive a data cube schema that

optimizes query response time without violating the system capacity constraints�

As we will see in Section ���� we prove that the optimization problem is NP�hard� Finding

the optimal data cube schema is thus computationally very expensive� As an alternative� we

propose an e�cient greedy approximation algorithm cMP for the requirement�based data cube

schema design problem� Our algorithm consists of two phases�

��� De�ne an initial schema

The �rst phase is to derive an initial set of data cubes from the application requirements�

In this study� we assume that the requirements are captured by a set of frequently�asked queries

or FAQs� The initial set of data cubes are selected such that all the FAQs can be answered

directly and e�ciently� In the TPC�D example� we can de�ne a cube to answer each one of the

�� DSS queries� For example� the �th query of the TPC�D benchmark involve three attributes�

supp nation� cust nation� and shipdate yr� The query can be answered e�ciently by mate�

rialing the base cube that consists of those three attributes� We call the schema that consists

of the set of cubes derived from the FAQs the initial schema�
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��� Schema Optimization

The second phase is to modify the initial schema so that query response time is optimized

subject to the system�s capacity constraints� the data cubes derived in an initial schema may

have lots of redundancy caused by overlapping attributes� The total size of the cubes may

exceed the storage or memory limitation of the system� Too many cubes would always induce a

large maintenance cost when the data in the underlying warehouse changes� Therefore� it may

be more cost�e�ective to merge some of cubes� Cube merging may result in fewer but perhaps

larger cubes� In terms of query response time� query processed using the merged cubes will

in general be slower than using the original cubes� Hence� there is a trade�o� between query

performance and cube maintenance� Schema optimization is to determine a set of data cubes

that replace some of the cubes in the initial schema such that the query performance on the

resulted cubes is optimal under the constraint that the total size of the resulted cubes is within

an acceptable system limit�� The set of data cubes obtained from the optimization process is

called the optimal schema for the OLAP system�

Note that the cubes in the initial schema produce the best query performance� However�

since these cubes are derived from the FAQs� they are numerous� causing a high maintenance

cost� In the TPC�D example� we would have to manage �� data cubes� We believe that reducing

the number and hence the total size of the cubes in the schema will have a signi�cant impact

on the applicability and the cost of an OLAP system�

The rest of the paper is organized as follows� In Section � we present a formal de�nition of

the schema optimization problem� Section � introduces the greedy algorithm cMP for schema

optimization� A performance study of cMP is presented in Section �� We use data from the

TPC�D benchmark in the study� Finally� we conclude our paper in Section ��

� Schema Optimization

In our framework� data cube schema design is a two�phase process� It involves the design of

an initial data cube schema followed by an optimization exercise� Again� one possible way to

capture the requirements in a DSS is to de�ne a set of frequent queries� The initial schema

can then be derived from these queries� In this section� we demonstrate this design process by

an example of deriving a data cube from a TPC�D query� Also� we de�ne formally the schema

optimization problem�

��� Deriving a data cube from a DSS query

A data cube which provides an answer e�ciently to a query can be derived by analyzing the

syntax and semantic of the query� As an example� the �th query of the TPC�D benchmark is

shown in Figure ��

The query �nds� for two given nations� nation� and nation�� the gross discounted rev�

enues derived from lineitems in which parts were shipped from a supplier in either na�

tion to a customer in the other nation during ���� and ���	� To answer this query� one

�It is reasonable to correlate the maintenance cost with the total size of the cubes in the schema�
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select supp nation� cust nation� year� sum�volume� as revenue

from �

select n��n name as supp nation�

n��n name as cust nation�

extract�year from l shipdate� as year�

l extendedprice � ���l discount� as volume

from supplier� lineitem� order� customer� nation n�� nation n�

where s suppkey � l suppkey

and o orderkey � l orderkey

and c custkey � o custkey

and s nationkey � n��nationkey

and c nationkey � n��nationkey

and � �n��n name�	
nation��	 and n��n name�	
nation��	�

or �n��n name�	
nation��	 and n��n name�	
nation��	��

and l shipdate between date 	���
����	 and 	����������	

� as shipping

group by supp nation� cust nation� year

order by supp nation� cust nation� year�

Figure �� The �th query of TPC�D

needs to join 	 tables and has to go through almost the entire lineitem table� The long

response time makes it impossible to process the query on�line at the data warehouse level�

To answer the query at the data cube level� one can build the ��dimensional data cube�

�supp nation�cust nation�shipdate yr
�� Using the data cube� the query can be answered

easily� only � data points need to be retrieved from the cube� i�e�� the � combinations of two

nations and two shipdate yr�s�

��� Search space of an optimal schema

In this paper we assume that the requirements of the OLAP system is captured in a set of

frequent queries� We use Q to denote the initial schema of the data cubes derived from the

queries� The second phase of our cube design process is to re�ne the set Q so that the main�

tenance cost �such as storage� of the cube set is within the capacity of the system� We can

consider the re�nement as an optimization problem with the set of all possible cube sets as the

search space�

To simplify the problem� we assume that the database in the data warehouse is represented

by a star schema ��
� Attributes in the queries come from the �elds of the dimensions and fact

tables� Usually� the number of dimensions and fact tables is not large� e�g�� there are only �

fact tables and 	 dimension tables in the TPC�D database� However� there may be many at�

tributes in one table� For example� the table part includes the attributes p partkey� p brand�

p type� p size� p container� etc� The dimension is in fact a multi�hierarchical dimension

�We use �d�� d�� � � � � dn� to represent a data cube� where the di�s are the dimensions of the cube�
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as shown in Figure �� In addition� in the star schema� some attributes are stored directly in

p_brand p_container

All

p_partkey

p_sizep_type

Figure �� The multi�hierarchical structure of the part dimension in TPC�D

the fact table� For example� the attributes l shipdate� l commitdate� l receiptdate in

the fact table lineitem are such attributes� As a result� the number of attributes �dimensions�

needs to be considered in a data cube design is much more than the number of dimension tables�

In TPC�D� �� attributes need to be considered�

In ��
� the notion of a composite lattice is used to integrate multi�hierarchical dimensions

with the lattice of aggregates in a data cube� Assume that A � fa�� a�� � � � � ang is the set of

all attributes on which query can be posted� Any subset of A can be used as the dimension

attributes to construct a data cube� The composite lattice L � �P�A�� �� is the lattice of data

cubes constructed from all the subsets of A� �P�A� is the power set of A�� The cube associated

with the set A is the root of the lattice L� For two di�erent cubes c�� c� � L� the derived

from relationship� c� � c�� holds if c� can be derived from c� by aggregation� For example the

cube c� � �part� year
 can be derived from c� � �part� customer� date
� The lattice L is

the search space of the optimization problem� As has been mentioned� n is large in general�

For example� in the TPC�D benchmark� n � ��� Thus� the search space L of the optimization

problem is enormous�

��� Schema optimization

Given an initial data cube schema Q� a search space L� and a maintenance cost bound LIM�

the schema optimization problem is de�ned in Table ��

Objective� Find C � L such that Cost�Q �C � is minimal

Constraint� �q � Q� �c � C� such that q � c and MC �C � � LIM

Table �� Schema Optimization Problem

The objective is to �nd a cube set C such that the cost of answering the frequent queries�

Cost�Q �C � is the smallest� The constraint states that any frequent query q can be answered

by some cube c in C and that the total maintenance cost MC �C � of the cube set is smaller

than the system limit LIM� We will discuss various measures of Cost and MC shortly�

	



For simplicity� we assume that the frequent queries are equally probable� Since each cube

in the initial schema Q is derived from one distinct frequent query� we use the same symbol

q to denote both a cube in the initial schema and its associated frequent query� Since we do

not want to make any assumption on the implementation of the cubes and the structure of

the queries� a good measure of Cost�Q �C � is the linear cost model suggested in ��
� In that

model� if q � c� then the cost of computing the answer for a query q using a cube c is linearly

proportional to the number of data points in c� We use S�c� to denote the number of data

points in c� For each query q � Q� we use FC�q� to denote the smallest cube in C that answers

q� Formally�

FC�q� is a cube in C such that q � FC�q� and �x � C� if q � x� then S�FC�q�� � S�x�� �����

We now de�ne Cost�Q �C � by�

Cost�Q�C� �
X

q�Q

�S�FC�q���� �����

Maintaining a data cube requires disk storage and CPU computation� Without assum�

ing any implementation method� two measures can be used to estimate the maintenance cost

MC �C � of a cube set�

	 MC��C� � jCj� i�e�� the number of cubes in C� With this cost function� the bound LIM

is expressed as the maximum number of cubes the OLAP system can materialized�

	 MC��C� �
P

c�C S�c�� i�e�� the total number of data points in the cubes� This is an

estimate of the total disk storage required� The bound LIM is the maximum storage

needed to maintain the cubes�

��� Related works

To the best of our knowledge� this paper is the �rst to explore the data cube schema design

problem� Several papers have been published on data cube implementation� Cube selection

algorithms have been proposed in ��� ��
� These cube selection algorithms assume that there

is one root base cube c� which encompasses all the attributes in the queries� They also assume

that some queries are associated with this root base cube c�
 therefore c� � Q� Very di�erent

from the schema optimization problem� their selections always include c� in the answer� i�e��

c� � C� However� in a general DSS such as TPC�D� we do not anticipate many frequent queries

that involve all the attributes
 hence� our cube schema design problem is more general�

Cube selection algorithms start from a base cube and determine what cubes deducible from

it should be implemented so that queries on the aggregates in the base cube can be answered

e�ciently� Tackling a very di�erent problem� cube schema design tries to merge the cubes

in an initial schema bottom�up to generate a set of cubes which provide an optimal query

performance� while system capacity constraints are satis�ed� The search space of the design

problem is in general much larger because of the large numbers of attributes present in the

initial schema� In short� cube selection algorithms are for cube implementation but not for

cube schema design�
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An interesting question is whether it is possible to modify the selection algorithm ��
 to solve

the schema design problem� One solution is to apply the selection algorithm on the maximal

cubes of Q� i�e�� those that cannot be deduced from any other cube in Q� In general� there

are more than one maximal cubes in Q� In order to adopt the selection algorithm� we can

include all the maximal cubes in the answer set C as the initial members� and then expand C

by applying the selection algorithms on them� The expansion stops when the total size exceeds

the storage bound LIM�

However� the above solution has a few undesirable problems� First� if the maximal cubes

alone have already exceeded the maintenance bound� then the cube selection algorithm fails�

Second� if some of the maximal cubes are highly correlated� e�g�� with many overlapping at�

tributes� then merging some of them could be bene�cial and is sometimes even necessary� Selec�

tion algorithms� however� never merge cubes� For example� given a lattice L � �fA�B�C� � � �g��

�� suppose both cubes ABCD and BCDE are maximal� and S�ABCD� � S�BCDE� �

S�ABCDE�� then using a selection algorithm� both ABCD and BCDE are selected� However�

replacing them by the cube ABCDE decreases the maintenance cost without increasing the

query cost� Hence� the selection algorithm is not always applicable to the cube schema design

probelm�

��� Complexity of the optimization problem

The schema optimization problem is computationally di�cult� Here� we summarize its com�

plexity in the following theorem�

Theorem � ��� Given an initial schema Q� a search space L� and a bound LIM� the problem

of 	nding a subset C � L� such that C does not contain the root of L� every q � Q can be

derived from some c � C and jCj � LIM is NP�complete�

�
� Given a performance ratio r� r � �� to 	nd an algorithm A for the Schema Optimization

Problem de	ned in Table � whose performance is bounded by r times the optimal performance

is NP�hard�

Version �

Proof� We �rst prove ���� Obviously� the problem is in NP� To show that the problem is

NP�complete� we reduce the well�known NP�complete problem �SAT to it�

Consider any instance of �SAT� which is a boolean formula � in conjunctive normal form�

Suppose � has n variables x�� x�� � � � � xn and m clauses c�� c�� � � � � cm� �Each clauses has exactly

three distinct literals� where a literal is either a variable or its negation�� We construct the

following searching space L� which comprises the cubes r� b� and two sets of cubes V and W �

The cubes r and b are the universal upper bound �i�e� the root� and the universal lower bound�

respectively� For each variable xi� there are cubes vi and v
�
i in V � and a cube wi in W � For each

clause cj � there is a corresponding cube zj in W � Note that V has �n cubes and W has n�m

cubes� The partial ordering for L is de�ned as follows� For every v � V � v � r� and for every

w � W � b � w� Also� for each of the three literals � in some clause cj � if � is a variable xi� then

zj � vi
 if � is its negation� then zj � v�i� For example� if � � �x�
x�
x��� ��x�
�x�
�x���
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the corresponding search space L is given in Figure �� Q comprises all cubes in W and LIM is

r

v� v
�
� v� v

�
� v� v

�
�

w� w� w� z� z�

b

Figure �� The search space L

n� It can be veri�ed that � is satis�able if and only if there exists a subset C of L� r 
� C� such

that every q � Q can be derived from some c � C and jCj � LIM � It follows that the problem

formulated in ��� is NP�complete�

To prove ���� it can be shown that if we have an e�cient algorithm A for the Schema

Optimization Problem whose performance is bounded by some ratio r� then we can use A to

design an e�cient algorithm for solving the set�covering problem ��
� which is NP�complete� It

follows that �nding such an approximation algorithm is NP�hard� Details will be given in the

full paper� �

Theorem � tells us that the optimization problem is a very di�cult one� In theory� it

is impossible to �nd even an e�cient approximation algorithm that can give a performance

guarantee� In the next section� we will discuss a greedy approximation algorithm and discuss

the heuristics it uses to prune the vast search space looking for a �good� solution� The e�ciency

and the e�ectiveness of the algorithm are studied in Section ��

� The Algorithm cMP

We have developed a greedy algorithm called cMP �cube Merging and Pruning�� The outline

of cMP is shown in Figure ��

During each iteration of the loop �lines � to 	� of algorithm cMP� we select two cube sets D

and A� The cubes in D are removed from C� and the cubes in A are added into C� The cube

sets D and A are selected such that the cubes in Q can still be answered by the new C� In

order to reduce the maintenance cost� the number �or size� of the cubes added is smaller than

that of the removed ones� The new cube set C however might have a larger query cost� The

algorithm terminates when the maintenance cost of the cube set no longer exceeds the limit

LIM�

The selection of the cube sets D and A is governed by the evaluation function �� The
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�� input� L�Q� LIM � output� C ��

�� C � Q�

�� while MC�C� � LIM do f

�� SelectCubes�D � C�A � L � C� such that ��C�D�A� is maximum�

�� �� � is an evaluation function ��


� C � C � A�D�

�� g

�� return C�

Figure �� The algorithm cMP

evaluation function is de�ned such that the reduction in the maintenance cost is large while the

increment in the query cost is small� In our algorithm� we use the following � function�

��C�D�A� �
SavingInMC�C �

IncreaseInQueryCost
�

P
t�D S�t��

P
t�A S�t�P

t�D n�t�� �S�FC��t��� S�t�

�����

where C� � C�A�D is the new C� The numerator of formula ��� is the saving in maintenance

cost� �We have used MC� in this formula� The results in the rest of the paper� unless stated

explicitly� are also valid for MC��� The denominator is the increment in the query cost� FC��t�

is the smallest ancestor of t in C�� Since t � D is removed� the queries which were answered by

t before C is changed to C� now have to be answered by FC��t�� The number of such queries

in Q is denoted by n�t�� Hence� the increment in the query cost is n�t�� �S�FC��t��� S�t�
�

��� Properties of the evaluation function �

In cMP� the search space for D and A is enormous� In this subsection� we show some properties

of the evaluation function which can be used to prune the search space e�ectively�

Theorem � Suppose L and � are de	ned as above� and C is the set of cubes when cMP enters

an iteration� Suppose that Ds and As are selected based on C which maximizes the value of

� over all D � C and A � L � C� �If there are more than one combinations that give the

maximum value� Ds is the combination with the fewest cubes�� Then Ds and As must have the

following properties�

�� If jDsj � �� then As � ��


� If Ds � fb�� b�� � � � � bkg� k � �� then the following is true�

�a� As � fag� and a � FL�fb�� b�� � � � � bkg�� which is the smallest common ancestor of

b�� b�� � � � � bk in L


�b� �bi� i � �� �� � � � � k� S�FC�bi�� � S�a��

Proof� See Appendix A� �

��



According to the above theorem� A is determined by D in case � attains its maximum value�

Also� A contains only the smallest common ancestor of the removed cubes � this signi�cantly

reduces the search space� Furthermore� item ��b of Theorem � makes the evaluation of many

combinations of D unnecessary�

Corollary � If Ds � fb�� b�� � � � � bkg� k � �� then �i� j � k� i 
� j� bi � bj is not true�

Proof�

Proof by contradiction�

Assume there exists i� j � k� and bi � bj � From the de�nition of FC�bi�� we have S�FC�bi�� �

S�bj�� If a � FL�fb�� b�� � � � � bkg� is the smallest common ancestor� we have bj � a� and

S�bj� � S�a�� Therefore� S�FC�bi�� � S�a�� A contradiction with ���b� of Theorem �� �

Corollary � tells us that we do not need to consider a D which contains a cube that can be

derived from another cube in D� For such D� the corollary implies that the � value is not the

maximum� We develop the procedure SelectCubes which uses this result to prune candidates

in the search space of cMP�

�� Build a directed acyclic graph �DAG� of all the cubes in C in which the edges are the

derived from relationship � among the cubes in C�

�� Partition the graph into disjoint paths� We partition the DAG by traversing the graph from

a maximal node which has no ancestor towards a bottom node which has no descendant�

The visited nodes �and their associated edges� are removed� We repeat the same procedure

on the remaining nodes until all nodes are removed� Figure 	 shows an example� The �rst

path starts from node � to node � and then to node �� Removing this path reduces the

graph to one that contains nodes �� � and 	� from which two more paths are constructed�

�� The nodes on the same path have a derived�from relationship� According to Corollary ��

no two nodes from the same path should be picked together for D� Hence� we pick at

most one node from each path� In practice� the number of paths should not be large�

This pruning signi�cantly reduces the number of possible candidates of D and hence A

from all possible combinations�

3
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4
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3

C path 1 path 2 path 3

Figure 	� An example of partitioning a DAG into disjoint paths

Following Theorem � and the path�based processing� we derive another pruning technique for

further reduction of the search space�

��



Corollary � Assume C is partitioned into p paths� P�� P�� � � � � Pp� �p � ��� where �i �

�� �� � � � � p� Pi �� bi��� bi��� � � � � bi�ni �� and bi�s � bi�s��� s � �� � � � � ni � ��

Let ak��k������km � FL�fb��k�� b��k�� � � � � bm�kmg�� m � p� If �t � m� such that S�ak��k������km� �

S�FC�bt�kt��� then for any set of cubes D � fb��x�� b��x�� � � � � bt�kt� � � � � bn�xng� where m � n � p�

and xi � ki� i � m and i 
� t� � cannot attain the maximum value using D�

Proof� See Appendix C� �

The corollary suggests that we can organize the SelectCubes procedure starting from the

bottom of each path to compose candidates D from the nodes� When the select procedure

reaches a candidate �combination� that satis�es the condition of Corollary �� then those yet�to�

be�evaluated candidates of D �above� the current combination in the lattice hierarchy can be

ignored� We illustrate the pruning process with an example shown in Figure �� The cube set C

is partitioned into � paths containing �� �� and � nodes respectively� We select the combination

for D from the bottom nodes of the paths� b���� b���� b���� Suppose that when we evaluate

the combination D � fb���� b���g� S�a���� � S�FC�b����� is true� According to Corollary ��

all the remaining combinations for D which include b��� do not need to be evaluated� These

pruned combinations are� fb���� b���g� fb���� b���g� and all the � combinations of � cubes�

fb���� b��x� b��yg� where x � �� �� �� y � �� �� �� Eleven combinations are pruned in this case�
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Figure �� An example of pruning in cMP

��� The rMP algorithm

In this section we present the details of the procedure SelectCubes in cMP� Even though

many combinations can be pruned while cMP is searching for the optimal � value� it may still

need to consider a large number of combinations involving nodes on multiple paths� To reduce

the complexity� one option is to restrict the number of nodes in a candidate combination� We

remark that Theorem � still holds even with the size restriction� We call the search algorithm

rMP when only candidates of size not larger than a certain constant r �r � �� are considered� In

practice� when a user is solving the schema design problem manually� the value of r would likely

be very small� Therefore� it is useful to include r as a control parameter� Our performance

studies show that rMP could be a good approximation of the unrestricted cMP� Obviously� the

goodness depends on the value of r� When r � p� where p is the number of paths in C� rMP

becomes cMP� When we try our algorithm on some real data sets� the results obtained by �MP

is very close to rMP� even for some large values of r� The restricted but more e�cient rMP

��



algorithm �with a small r� is thus a viable choice in many occasions� We list the procedure

SelectCubes for rMP in Figure �� �The main procedure of rMP is the same as that of cMP

shown in Figure ���

In the �rst step of the procedure SelectCubes� C is partitioned into a number of paths�

The loop from line � to line 	 evaluates all the possible combinations of D by traversing all

the paths via a recursive procedure iterate proc� The set of cubes to be removed �Ds� and the

cube to be added �a� which attain the maximum value of � are returned at line ��

The sequence of node traversal is constructed by the following two iterative loops�

	 Combinations of paths� It is constructed by the loop from line � to line 	 and the

loop from line �� to line �	 inside the recursive procedure� Figure � shows an example�

Suppose the size restriction r is set to �� The sequence of path combinations considered

by SelectCubes is fP�g� fP�� P�g� fP�� P�� P�g� fP�� P�g� fP�g� fP�� P�g� fP�g�

	 Traverse the nodes on a path� This is performed at line �	 when the procedure

iterate proc is called� and at line �� in each iteration of the loop between line �� and line

��� In Figure �� the �rst few combinations in the traversal sequence are fb���g� fb���� b���g�

fb���� b���� b���g� fb���� b���� b���g� � � �� During the traversal� the result in Corollary � is

used to prune combinations that cannot attain the maximum value�

In line �� of the procedure iterate proc� the current combination is evaluated to check its �

value� If one of the following two conditions occur� then the procedure can skip some iterations�

	 If the condition speci�ed at line �� holds� then all the remaining yet�to�be�tested com�

binations which include the current node of each path in rbuf�Paths � fcurPathg will

not be included in the �nal selection� Therefore� we can terminate the loop and exit the

procedure�

	 If the condition S�rbuf�a� � S�FC�curPath�curNode�� is true� there is no need to add

more paths to the combination in rbuf � because all such combinations will not be selected

according to Corollary �� Therefore� we can skip the loop between line �� and line �	�

and proceed to the next cube of curPath at line ��� The other condition in line ��

rbuf�noPaths � r is the size restriction on the combinations�

Let us consider the example in Figure � again to illustrate the above procedure� Assume

the current state of rbuf is� rbuf�Paths � fP�� P�g� rbuf�curPath � P�� P��curNode �

b���� P��curNode � b���� Therefore� the current combination in rbuf is fb���� b���g� Let

a��� � FL�b���� b����� and assume r � ��

	 If S�a���� � S�FC�b������ then the loop of path P� is terminated� and the state of rbuf is

transferred to rbuf�Paths � fP�g� rbuf�curPath � P�� P��curNode � b���� At line ���

the path P� will go to the next node b���
 therefore� the next combination to be evaluated

is fb���g


	 If S�a���� � S�FC�b������ then there is no need to add new path to the current state� The

procedure will skip the loop between lines �� and �	� At line ��� P��curNode takes the

next node b��� on the path
 therefore� the next combination to be evaluated is fb���� b���g
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�� Input� L� search space
 C� a set of cubes
 r� candidate combination size restriction


Output� D� cubes to be removed
 a� a new cube to be added ��

procedure SelectCubes�input� L�C� r
 output� D� a�

�� partition C into paths� path��
� path��
� � � � � path�p total



�� for i � � to p total do f

�� add path�i
 to rbuf 


�� call procedure iterate proc�rbuf� res� r� i� ��


�� remove path�i
 from rbuf 


�� combinations involving all paths from path�i
 to path�p total
 have been considered ��

	� g

�� return result res


��

�� procedure iterate proc�rbuf� res� r� start�

��� rbuf � recursion bu�er
 �� all selected paths are stored in rbuf�Paths
 on each selected

path path�i
� path�i
�curNode is the selected cube
 the set of selected cubes is the

current candidate combination
 if the combination has more than one cubes�

then rbuf�a is its smallest common ancestor� else it is null
 ��

��� res� �� content� the selected cube sets D and a which maximize ��s value over

all candidate combinations generated up to this point ��

��� r� �� control parameter on candidate size ��

��� start� �� the �rst path not having been selected yet� i�e� the starting

point of the recursive procedure ��

��� f

��� curPath � rbuf�LastAddPath
 �� LastAddPath is added at line � or line �� ��

�	� curPath�curNode � curPath�firstNode


��� do f

��� evalCurrSelection�rbuf� res�


�� evaluate the � value of the current combination in rbuf � compare it with the

current maximum result in res ��

��� if��p � rbuf�Paths � fcurPathg� such that S�rbuf�a� �� S�FC�p�curNode���

��� exit procedure


��� if�S�rbuf�a� � S�FC�curPath�curNode�� and rbuf�noPaths � r�

��� for i � start to p total do f

��� add path�i
 to rbuf 


��� call procedure iterate proc�rbuf� res� i� ��


��� remove path�i
 from rbuf 


�	� g

��� curPath�curNode � curPath�nextNode


��� g until �curPath�End�� �� true�


��� g

Figure �� The procedure SelectCubes of rMP
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	 Otherwise� the procedure will go into the loop between lines �� and �	� add a new path P�

to rbuf � and the state of rbuf is transferred to� rbuf�Paths � fP�� P�� P�g� rbuf�curPath �

P�� P��curNode � b���� P��curNode � b���� P��curNode � P��firstNode � b���
 there�

fore� the next combination to be evaluated is fb���� b���� b���g�

For illustration purpose� a complete run of SelectCubes on the example in Figure � is pre�

sented in Appendix D�

��� The relationship between rMP and �MP

Although the pruning methods introduced above is very e�ective for rMP� its complexity is

still high when r is large� It is thus interesting to see how �MP performs comparing with

the more general rMP� In particular� we want to �nd out the condition under which �MP can

obtain the same result as with rMP� Another important reason to study �MP is that it may

be the practitioners� choice � one practical way to solve the problem is to try all or some

��combinations in an ad�hoc way to build up a solution�

Theorem � Suppose C is in a state when rMP�r � �� is entering an iteration to identify new

sets D and A� Assume that the maintenance cost function is MC�� If� for all possible D�s

which cannot be pruned away by either Corollaries � or 
� D satis	es the following condition�

Sa �
�

��k� ��

kX

i��

kX

j���j ��i

Si�j �����

where D � fb�� b�� � � � � bkg� �� � k � r�� Sa � S�FL�D��� and �i� j � �� �� � � � � k� i 
� j�

Si�j � S�FL�fbi� bjg��� then the �D�A� pair selected by rMP�r � ��� and 
MP are identical�

Proof� See Appendix B� �

Theorem � shows a su�cient condition that rMP�r � �� and �MP are equivalent� However�

the condition requires the checking of an intermediate state of the algorithm� To apply the

theorem to the initial state of the problem to guarantee the equivalence of the algorithms� we

can use the following corollary� Its correctness is obvious�

Corollary � Given L as de	ned in rMP and r � �� and assume that the maintenance cost

function is MC�� If for all D � L such that D � fb�� b�� � � � � bkg� �� � k � r�� and �i� j �

�� �� � � � � k� i 
� j� not bi � bj� D satis	es the following condition�

Sa �
�

��k� ��

kX

i��

kX

j���j ��i

Si�j

where Sa � S�FL�D��� and �i� j � �� �� � � � � k� i 
� j� Si�j � S�FL�fbi� bjg��� then the results

found by rMP�r � �� and 
MP are identical� �
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� Performance study

We have carried out a performance study of the algorithms on a Sun Enterprise ���� running

Solaris ��	� Our �rst goal is to study the �goodness� of the schemas generated by cMP and �MP�

The second goal is to study the e�ciency of the two algorithms� and their pruning e�ectiveness�

We use the TPC�D benchmark data for the study� The database is generated with a scale

factor of ��� ���
� The size of the database is about ��� GB� All the �� DSS queries in the

benchmark are frequent queries in our model� and we convert them into �� cubes� using the

approach described in Section ���� Hence the initial schema Q has �� members�

��� Goodness of the schema generated

In the �rst experiment� we compare Cost�Q�C� of the outputs� C� from both cMP and �MP�

We use MC��C�� the number of cubes in C� to compute the maintenance cost for simplicity�
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Figure �� Query cost of the schemas generated

Figure � shows the result� The graph on the left shows the total response times of Q with

respect to the schemas generated by cMP and �MP� �The �gure actually shows three curves

with the ones from cMP and �MP overlapping
 the curve labeled �Rand will be explained later��

The x�axis is the size �maintenance cost� limit de�ned in the problem� It varies from �� down

to �� When the limit is set to ��� all the cubes in Q can be accommodated� i�e� C � Q� and

Cost�Q�C� has the minimum value� As the limit decreases� the total response time increases

towards its maximum value at which the schema contains only one cube�

In our experiment� the query costs of cMP and �MP are the same except that the curve for

cMP has a gap at LIM � �� �� When LIM � ��� cMP at one point has reduced the schema

to �� cubes� In the next reduction� � cubes are selected to be replaced by one cube
 hence� the

size of C becomes �� In contrast� in each step� �MP replaces no more than � cubes by another�

The number of cubes is thus decremented by at most one cube at a time� Therefore� �MP

has a query cost at LIM � �� but not so for cMP� Furthermore� if LIM � �� � Cost�Q�C� of

�The closeness of the two curves from cMP and �MP is due to the extremely low correlations between the

queries 	cubes
 in TPC�D�

�	



�MP is smaller than that of cMP� However� this does not imply that �MP has a larger � value�

This behavior can also be explained because cMP does not try to �nd a solution which �ts as

close as possible into the maintenance cost limit� Instead� it tries to �nd a good trade�o� by

maximizing the decrement in the saving of the maintenance cost over the increment in query

response time�

In order to obtain an insight on how good the solutions obtained by cMP are� we compared

it with the algorithm that randomly merges pairs of cubes iteratively until the maintenance

cost limit is not exceeded� The left graph in Figure � shows the result of this random selection

algorithm �labeled �Rand�� It con�rms that cMP is signi�cantly better than random selection�

in particular� when the cost limit is not too small so that there are more combinations for D

for the algorithm to make a wise pick� We believe that an ad�hoc manual approach would be

very close to the random selection if the number of cubes in the initial Q is large� Therefore�

techniques such as cMP are very useful since it can produce solutions far better than what

a general practitioner can do in an ad�hoc manner� In our experiment� we do not compute

the optimal solutions because it is extremely time consuming due to the very large size of the

TPC�D database�

Another interesting observation from the experiment is the increment rate of the query

cost Cost�Q�C� with respect to the reducing maintenance cost limit� It is not linear but

close to a step function� To study this behavior� we plot the rate of query cost increment

in the right graph of Figure �� The rate on the y�axis is de�ned by d�Cost�Q�C�� m� �

Cost�Q�Cm��Cost�Q�Cm���� where m is the maintenance�cost limit on the x�axis� The graph

shows that the maintenance�cost limit range can be roughly divided into several regions� ����

���� ���� ��� ��� ��� ���� The query cost increment rate inside each region is almost the same�

and there are signi�cant gaps on the rates between the regions�

The above behavior can be explained by the correlations� between the cubes� According

to the amount of correlation� the cubes in Q and the intermediate cubes resulted from cube�

merging in cMP together form a hierarchy of clusters� Cubes in the bottom clusters of the

hierarchy have high correlation �more likely to be merged�
 and cubes in the higher level clusters

have lower correlation� Cubes that are highly correlated are merged �rst in cMP� The resulting

query cost increment is also small� As the algorithm proceeds� however� cMP is forced to merge

lesser correlated cubes� The query cost increment is thus higher in this case� Hence� the rate of

query cost increases like a step function moving from levels to levels until the limit is satis�ed�

The stepwise query cost rate increment can be used to select the maintenance cost limit in

the data cube design� For example� a good choice of the limit in Figure � is ��� �a boundary point

of the �rst region�� While the response time remains small in this choice� the maintenance cost

is the best �t � a further reduction on the limit would increase the response time signi�cantly


on the other hand� increasing the limit to �� does not help improve the query response time

by much� and is thus unnecessary� If the system cannot maintain more than �� cubes� then we

have to move to the second region� ���� ��� The same selection method can be used on every

region to determine a good selection�

�The notion of correlation here is only intuitively de�ned� It refers to the likelihood that a group of cubes are

merged� Factors a
ecting the correlation may be the number of overlapping attributes or the size of the resulted

cubes�
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��� E�ciency of cMP

Our second goal is to study the e�ciency of cMP� In particular� we are interested in studying

their e�ectiveness in pruning the search space of the optimization problem�

The e�ect of the �rst pruning method that the newly added cubes A can be determined

from the combination D is evident� Therefore� we only consider the other two pruning methods

which are based on Corollaries � and �� We measure the e�ectiveness by the average pruning

rate� de�ned as the percentage of the pruned combinations of D over the number of all possible

combinations� The results are shown in Figure �� From the �gure� we see that the average

pruning rate is higher than ��� in all the cases� The pruning rate becomes smaller while the

maintenance cost limit decreases� This is because� with a small limit� cMP is forced to merge

cubes that are at a higher level of the lattice hierarchy �Figure ��� Hence� the chance of pruning

becomes smaller� In fact� due to the design purpose of the benchmark� the correlations among

the initial set of cubes in TPC�D is quite low� The high pruning rate in our experiment shows

that cMP is e�ective even in such a not�so�favorable situation� In many general applications�

we expect that the frequently asked DSS queries will have high correlation
 and the pruning

rate of cMP will even be better than what is shown in our experiment�
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Figure ��� Response time of

cMP and �MP

Finally� we compared the e�ciency of cMP and �MP by measuring their response times�

Figure �� shows that �MP is at least two order of magnitude faster than cMP� Considering

also the e�ectiveness of �MP �Figure ��� our results show that �MP is an e�ective and e�cient

approximation solution to the data cube schema design problem�

� Discussion and Conclusion

The basis of our ��phase schema design approach is a set of cubes extracted from the query

requirements� How valid is this approach We have observed that some vendors have already

been doing something similar� For example� Microsoft SQL OLAP server allows the users to

optionally log queries submitted to it to �ne tune the set of cubes ���
� From these logs� frequent

queries can be identi�ed and grouped into similar types� It is thus feasible to identify the cubes

��



in the initial schema from the frequent queries� Currently� general practitioners design cube

schema in an ad�hoc way� which is very likely far from optimal� This problem will become

very serious when data cubes are required to be built on large data warehouses such as those

from retail giants or Internet e�commerce shops� as their databases contain large numbers of

attributes�

We have formulated the second phase of the design problem as an optimization problem� and

have developed an e�cient greedy algorithm to solve it� We believe that there could be other

approaches for this problem� Di�erent constraints can be set up to achieve di�erent purposes�

For example� the optimal response time achieved under a bounded maintenance cost may still

be too large
 instead� we can bound the response time by removing some queries �cubes� from

the initial schema� The removed queries would not be answered by the data cubes but instead

by the data warehouse� How to choose the queries to be removed Can we minimize the number

�size� of the queries �cubes� to be removed These problems require further works and studies

exploring di�erent approaches�

Once a data cube schema is de�ned� the most imminent problem that follows is query

processing� Given a DSS query submitted to the query client� the query client module needs to

determine whether the query should be processed at the data cube level or at the warehouse

level� If a query can be answered by the cubes� one needs to determine which cube should be

used� If multiple solutions exist� one needs to determine the best choice of a cube�

We have proposed a two�phase approach to deal with the design problem in a data cube

system� ��� an initial schema is derived from the user�s query requirements
 ��� the �nal schema

is derived from the initial schema through an optimization process� The greedy algorithm cMP

proposed for the optimization is very e�ective in pruning the search space of the optimal

solution� Variants of cMP have been studied to reduce the search cost� Experiments on real

data �TPC�D� have been performed to investigate the behavior of cMP� Results observed from

the performance study con�rm that cMP is an e�cient algorithm� Possible future research

directions also have been discussed�
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APPENDIX

A Proof of Theorem �

Proof�

Let C� � C �As �Ds� �m � ��C�Ds� As� �

P
d�Ds

S�d	�
P

a�As
S�a	P

d�Ds
n�d	�
S�FC� �d		�S�d	�

�

�� Proof by contradiction�

Since jDsj � �� let Ds � fbg� and As � fa�� � � � � amg� m � �� If � attains its maximum

value �m with this pair of Ds and As� we have�

�m �
S�b��

P
ai�As

S�ai�

n�b�� �S�FC��b��� S�b�

�A���

If FC��b� �� As� then FC� �b� � C
 also

�m �
S�b�

n�b�� �S�FC��b��� S�b�

�

Because FC��b� � C� the right side of above inequality equal to ��C� fbg� ��� i�e�� the �

value of removing cube b from C and adding nothing� Hence� the inequality contradicts with

the assumption that Ds and As gains the maximum � value �m�

For the other case� if FC��b� � As� from A��� we have�

�m �
S�b�� S�FC��b��

n�b�� �S�FC��b��� S�b�

�

��

n�b�
� �A���

In this case� since � is evaluated to a negative value� Ds and As would not be chosen in the

optimization�

Hence� if jDsj � �� As is empty�

�� We prove the second part of the theorem by proving the followings�

I� �b � Ds� FC��b� � As


II� �a � As� �b � Ds� such that FC��b� � a


III� As � fag� and a � FL�Ds�

IV� �b � Ds� S�FC�bi�� � S�a�


I� Proof by contradiction�

Suppose �b � Ds such that FC� �b� �� As� then FC��b� � C� Note that

�m �
S�b� �

P
d�Ds�fbg S�d��

P
a�As S�a�

n�b�� �S�FC��b��� S�b�
 �
P

d�Ds�fbg n�d�� �S�FC��d��� S�d�


��



hence� one of the following two inequalities must be true� �

�m �
S�b�

n�b�� �S�FC��b��� S�b�

�A���

�m �

P
d�Ds�fbg S�d��

P
a�As S�a�P

d�Ds�fbg n�d�� �S�FC��d��� S�d�

�A���

If inequality A�� is true� �m is no larger than the � value of a combination in which only

cube b is removed from C� If inequality A�� is true� then �m is again no larger than the �

value of a combination in which b is not removed from C� All the two cases contradict with the

assumption of �m�

II� Proof by contradiction�

Suppose �a � As� such that� �b � Ds� FC��b� 
� a� then�

�m �

P
b�Ds

S�b��
P

t�As S�t�P
b�Ds

n�b�� �S�FC��b��� S�b�

�

P
b�Ds

S�b��
P

t�As�fag S�t�P
b�Ds

n�b�� �S�FC��b��� S�b�


That is� if the cube a is not added to C�� the corresponding � value will be larger than �m�

which is a contradiction�

III� Proof by contradiction�

Suppose jAsj � �� let As � fa�� a�� � � � � amg� De�ne B� � fbjb � Ds� and FC� �b� � a�g�

According to the conclusion above in II and the assumption� both B� and Ds�B� are nonempty�

Hence �m is equal to�

�m �
�
P

b�B�
S�b�� S�a��
 � �

P
b�Ds�B�

S�b��
Pm

i�� S�ai�


�
P

b�B�
n�b�� �S�a��� S�b�

 � �

P
b�Ds�B�

n�b�� �S�FC��b��� S�b�



Therefore� one of the following two inequalities must be true�

�m �

P
b�B�

S�b�� S�a��P
b�B�

n�b�� �S�a��� S�b�

�A���

�m �

P
b�Ds�B�

S�b��
Pm

i�� S�ai�P
b�Ds�B�

n�b�� �S�FC��b��� S�b�

�A�	�

The right sides of the above two inequality are equal to ��C�B�� fa�g� and ��C�Ds�B�� As �

fa�g�� respectively� Both of the cases contradict with the assumption of Ds and As� Therefore�

the assumption that jAsj � � is not true� According to the conclusion above in I� there must

exist an element in As� so jAsj � � Let As � fag� then �m becomes�

�m �

P
b�Ds

S�b�� S�a�
P

b�Ds
n�b�� �S�a�� S�b�


The right side of above equation is monotonously decreasing with S�a�
 therefore� to reach the

maximum value �m� S�a� should be at its minimum value� In addition� a must satisfy the

condition� �b � Ds� a � FC��b�� i�e�� a is the common ancestor of the cubes in Ds� To reach

the minimum value of S�a�� a� FL�Ds��

�If b � �� d � � than a�c
b�d

is between a
b
and c

d
�

��



IV� Proof by contradiction�

Let C� � C �As �Ds� According to the conclusion above in III and its proof� if jDsj � ��

then As � fag� a � FL�Ds�� and �b � Ds� FC� �b� � a� Therefore� the � value is�

�m �

P
b�Ds

S�b�� S�a�
P

b�Ds
n�b�� �S�a�� S�b�


�A���

Suppose �b � Ds� such that S�a� � FC�b�� Let a� � FL�Ds � fbg�� According to the

de�nition of FL�D�� we have S�a�� � S�a�� The equation A�� thus becomes�

�m �
s�b	�
P

d�Ds�fbg
S�d	�S�a	

n�b	�
S�a	�S�b	��
P

d�Ds�fbg
n�d	�
S�a	�S�d	�

�
s�b	�
P

d�Ds�fbg
S�d	�S�a�	

n�b	�
S�FC�b		�S�b	��
P

d�Ds�fbg
n�d	�
S�a�	�S�d	�

Denote the right side of the above inequality by �x� we have one of the following two inequalities

be true�

�x �
s�b�

n�b�� �S�FC�b��� S�b�
�A���

�x �

P
d�Ds�fbg S�d�� S�a��

P
d�Ds�fbg n�d�� �S�a��� S�d�


�A���

The right sides of the above two inequalities are equal to ��C� fbg� �� and ��C�Ds�fbg� fa
�g��

respectively� Therefore either �m � ��C� fbg� �� or �m � ��C�Ds�fbg� fa
�g�� Both of the cases

contradict with the assumption of �m�

�

B Proof of Theorem �

Proof by contradiction�

Suppose the result found by rMP is D � fb�� b�� � � � � bkg� then k � � �otherwise� the combi�

nation D must be evaluated by algorithm 
MP and can be selected as result��� Let Si � S�bi��

ni � n�bi�� According to the assumption of D� its � value is�

� �

Pk
i�� Si � SaPk

i�� ni�Sa � Si�
�B����

Let �i�j � ��C� fbi� bjg� FL�fbi� bjg��� �i 
� j� i� j � �� � � � � k� then�

�i�j �
Si � Sj � Si�j

ni�Si�j � Si� � nj�Si�j � Sj�

Because D is selected by rMP� so it � value must be larger than any �i�j � that is�

� � �i�j � �i� j

Multiply the two side of the above inequality with ni�Si�j � Si� � nj�Si�j � Sj�� we have�

��ni�Si�j � Si� � nj�Si�j � Sj�
 � Si � Sj � Si�j � �i� j �B����

��



Add all the inequalities of B��� for any i� j together� we can conclude� �note� Si�j � Sj�i�

��
Pk

i��

Pk
j���j ��i�ni�Si�j � Si� � nj�Si�j � Sj��
 �

Pk
i��

Pk
j���j ��i�Si � Sj � Si�j�

��
Pk

i���ni�
Pk

j���j ��i Si�j � �k� ��Si�
 � ��k � ��
Pk

i�� Si �
Pk

i��

Pk
j���j ��i Si�j

�
Pk

i�� Si � Sa�

Pk

i��

ni�

�

k��

Pk

j���j ��i
Si�j�Si	�Pk

i��
ni�Sa�Si	

�
Pk

i�� Si �
�

��k��	

Pk
i��

Pk
j���j ��i Si�j

�B����

�Si�j � Sa� therefore� �i � �� � � � � k� �
k��

Pk
j���j ��i Si�j � Sa� then�

Pk
i���ni�

�
k��

Pk
j���j ��i Si�j � Si�


Pk
i�� ni�Sa � Si�

� � �B����

Combine the two inequalities B��� and B���� we have�

Pk
i�� Si � Sa �

Pk
i�� Si �

�
��k��	

Pk
i��

Pk
j���j ��i Si�j

Sa � �
��k��	

Pk
i��

Pk
j���j ��i Si�j

�B����

The inequality B��� contradicts with the assumption of the theorem�

�

C Proof of Corollary �

Let ax������kt�����xn � FL�fb��x�� � � � � bt�kt� � � � � bn�xng�� Then �i � m� i 
� t� bi�xi � ax������kt�����xn �

Since xi � ki� so bi�ki � bi�xi� Therefore� �i � m� bi�ki � ax������kt�����xn � From the de��

nition of FL�fb��k�� b��k�� � � � � bm�kmg�� we can conclude that S�FL�fb��k�� b��k�� � � � � bm�kmg�� �

S�ax������kt�����xn�� or S�ak��k������km� � S�ax������kt�����xn�� Due to the assumption� S�ak��k������km� �

S�FC�bt�kt��� we have �t � n� such that S�x�� � � � � kt� � � � � xn� � S�FC�bt�kt��� According to ���b�

of Theorem �� D � fb��x�� b��x�� � � � � bt�kt� � � � � bn�xng cannot attain the maximum value of ��

�

D An example run of the SelectCubes procedure

We use an example here to illustrate the SelectCubes procedure� Suppose that the initial C is

the one shown in Figure �� Also assume that the smallest ancestor of each node bi�j is on the

same path� i�e FC�bi�j� � bi�j��� and r � �� In the �rst step� C is partitioned into � paths� In

the loop from line � to line 	� the algorithm evaluates all the possible combinations of D� At

the same time� the pruning from Corollary � is used to remove most of combinations� We show

the procedure step by step �we only present several steps here� the complete run can be found

in Appendix E� and the size of related cubes are also listed there��

�� The �rst path P� is added into the recursion bu�er rbuf at line �� then the procedure

iterate proc is called to evaluate all the combinations that contain cubes on P�� At line

��� since P� is the last added path in rbuf � it is set to curPath� and its curNode is set

to P��s �rst node b���� We then go into the loop between line �� and line ��� At line ���

��



the current combination in rbuf is evaluated� The current combination consists of the

curNode of all the paths in rbuf � At this point� the current combination is D�fb���g� Its

� value is ������ The combination is selected as the result with the maximum � value

over all the selections up to this point� and is stored in res�

�� After the checking of the node b���� a new path P� is added into rbuf at line ��� Then

the algorithm calls the recursive procedure iterate proc at line ��� and the combination

D � fb��� � b���g is evaluated� Its � value is ������ larger than the current value �����

stored in res� so the combination is selected as the result� Up to this point� the pruning

condition of Corollary � is not satis�ed� therefore� the procedure goes into the loop

between line �� and line �	� and recursively calls the procedure iterate proc again�

�� When the combination D � fb���� b���� b���g is being evaluated� the size of its smallest

common ancestor a����� is larger than b���� the smallest ancestor of b��� in C� Hence�

the condition in line �� becomes true� Therefore� the current calling of the procedure is

exited� and at line ��� the path P� is removed from rbuf �

�� Up to this point� there are two paths P� and P� in rbuf � and the curPath is P�� At

line ��� the curNode of P� moves to the next node� i�e� b���
 therefore� the combination

D � fb���� b���g is evaluated� Since S�a���� � S�b����� the procedure exits at line �� again

to prune away all combinations which contain b���� and the cubes that can derive b����

The path P� is then removed from rbuf �

�� At line ��� path P� is added to rbuf � and rbuf�Paths now becomes fP�� P�g� The

combination fb���� b���g is checked in a new call to the procedure� The pruning condition

at line �� is satis�ed� The path P� is removed�

	� Now the next node b��� on P� is checked� After the evaluation� path P� is added to rbuf

again to check the combinations containing b����

�� The � value of D � fb��� � b���g is ������ which is larger than the current maximum� so

it is selected as the result� This is the �nal D selected�

E Example of a complete run of SelectCubes

The following table �Table �� is a complete run of SelectCubes on the example presented in

Appendix D� The size of the cubes involved in the example is listed in Table ��

��



step D A � value action

	 b��� 	
	�� Selected


 b��� b��� a��� 	
		� Selected

� b��� b��� b��� a����� Use pruning method 
�


� b��� b��� a��� Use pruning method 
�


� b��� b��� a����� Use pruning method 
�


� b��� 	
���

� b��� b��� a��� 	
	�� Selected

� b��� b��� b��� a����� Use pruning method 
�


� b��� b��� a��� 	

��

	� b��� b��� b��� a����� Use pruning method 
�	

		 b��� b��� b��� a����� Use pruning method 
�


	
 b��� b��� a��� Use pruning method 


	� b��� b��� a�����

	� b��� b��� a����� Use pruning method 
�


	� b��� �
	

	� b��� b��� a��� Use pruning method 
�	

	� b��� b��� a���

	� b��� b��� b��� a����� Use pruning method 
�	

	� b��� b��� b��� a����� Use pruning method 
�



� b��� b��� a��� 	
	���


	 b��� b��� b��� a����� Use pruning method 
�	



 b��� b��� b��� a����� Use pruning method 
�	


� b��� b��� b��� a����� 

����


� b��� b��� a����� Use pruning method 
�	


� b��� b��� a����� Use pruning method 
�	


� b��� b��� a�����


� b��� 	
	��


� b��� b��� a����� 	
		�


� b��� b��� a����� Use pruning method 
�


�� b��� 	
���

�	 b��� b��� a�����

�
 b��� b��� a����� Use pruning method 
�	

�� b��� b��� a�����

�� b��� �
	

�� b��� b��� a����� Use pruning method 
�	

�� b��� b��� a����� Use pruning method 
�	

�� b��� b��� a����� 	

���

�� b��� 	

��

�� b��� 	
���

�� b��� �
	

Result b��� b��� a��� 	
	��

The average pruning rate� ������

Table �� Complete step of SelectCubes

�	



The size of the related cubes for the example�

cube size

b��� 
�

b��� 	��

b��� ���

b��� ��

b��� 
��

b��� 	���

b��� ��

b��� ���

b��� ���

a��� ��

a��� 
��

a��� 	��

a��� ���

a��� 	
��

a��� 	���

a����� 	��

a����� ���

a����� 	��

a����� ���

a����� ���

a����� 	���

a����� 
��

a����� 
���

a����� 
���

Table �� Size of the cubes

��




