
LGen � A Lattice�Based Candidate Set Generation Algorithm

for I�O E�cient Association Rule Mining

Chi�Lap Yip K� K� Loo Ben Kao David Cheung C� K� Cheng

Department of Computer Science and Information Systems�

The University of Hong Kong� Hong Kong�

fclyip� kkloo� kao� dcheung� ckchengg�csis�hku�hk

Abstract

Most algorithms for association rule mining are variants of the basic Apriori algorithm
���� One characteristic of these Apriori�based algorithms is that candidate itemsets are
generated in rounds� with the size of the itemsets incremented by one per round� The
number of database scans required by Apriori�based algorithms thus depends on the size of
the largest large itemsets� In this paper we devise a more general candidate set generation
algorithm� LGen� which generates candidate itemsets of multiple sizes during each database
scan� We show that� given a reasonable set of suggested large itemsets� LGen can signi�cantly
reduce the number of I�O passes required� In the best cases� only two passes are su	cient
to discover all the large itemsets irrespective of the size of the largest ones�

Keywords
 Data mining� association rules� lattice� Apriori� LGen

� Introduction

Data mining has recently attracted considerable attention from database practitioners and

researchers because of its applicability in many areas� such as decision support� market strategy

and �nancial forecasts� Combining techniques from the �elds of machine learning� statistics

and databases� data mining enables us to �nd out useful and invaluable information from huge

databases�

Mining of association rules is a research topic that has received much attention among the

various data mining problems� Many interesting works have been published recently on this

problem and its variations ���� �� �� �� 	�
� �� �� ��
� The retail industry provides a classic

example application� Typically� a sales database of a supermarket stores� for each transaction�

all the items that are bought in that transaction� together with other information such as

the transaction time� customer�id� etc� The association rule mining problem is to �nd out all

inference rules such as� �A customer who buys item X and item Y is also likely to buy item

Z in the same transaction�� where X� Y and Z are not known beforehand� Such rules are

very useful for marketers to develop and to implement customized marketing programs and

strategies�

�

sin
HKU CSIS Tech Report TR-99-01

The problem of mining association rules was �rst introduced in ���
� In that paper it was

shown that the problem could be decomposed into two subproblems�

�� Find out all large itemsets and their support counts� A large itemset is a set of items

which are contained in a su�ciently large number of transactions� with respect to a

support threshold minimum support�

�� From the set of large itemsets found� �nd out all the association rules that have a con��

dence value exceeding a con�dence threshold minimum con�dence�

Since the solution to the second subproblem is straightforward ��
� major research e�orts

have been spent on the �rst subproblem� Most of the algorithms devised to �nd large itemsets

are based on the Apriori algorithm ��
� The Apriori algorithm �nds out the large itemsets

iteratively� In the ith iteration� Apriori generates a number of candidate itemsets of size i��

Apriori then scans the database to �nd the support count of each candidate itemset� Itemsets

whose support counts are smaller than the minimum support are discarded� Apriori terminates

when no more candidate set can be generated�

The key of the Apriori algorithm is the Apriori Gen function ��
 which wisely generates

only those candidate itemsets that have the potential of being large� However� at each database

scan� only candidate itemsets of the same size are generated� Consequently� the number of

database scans required by Apriori�based algorithms depends on the size of the largest large

itemsets� As an example� if a database contains a size��� large itemset� then at least �� passes

over the database are required� For large databases containing gigabytes of transactions� the

I�O cost is dauntingly big�

The goal of this paper is to analyze and to improve the I�O requirement of the Apriori al�

gorithm� In particular� we generalize Apriori Gen to a new candidate set generation algorithm�

LGen� based on Lattice Theory� The main idea is to relax Apriori�s restriction that candidate

itemsets generation must start from size one and that at each database scan� only candidate

itemsets of the same size are generated� Instead� LGen takes a �partial� set of multiple�sized

large itemsets as a hint to generate a set of multiple�sized candidate itemsets� This approach

allows us to take advantage of an educated guess� or a suggestion� of a set of large itemsets�

�Example �� As a simple example� suppose the itemset fa� b� c� dg and all its subsets are

large in a database� Apriori will require four passes over the data to generate the itemset

fa� b� c� dg �see Figure ��a��� However� if one already knew that the itemsets fa� b� cg� fa� b� dg�

and fc� dg were large� then we can use this piece of information to help us generate the itemset

fa� b� c� dg early� One simple strategy is to expand the lattices �rooted� at fa� b� cg� fa� b� dg�

and fc� dg to collect all of their subsets �see Figure ��b��� Note that these subsets are large as

well� We can then divide these large itemsets into groups according to their sizes� and apply

Apriori Gen to each group� This strategy will thus generate candidate itemsets of various sizes�

�The size of an itemset is the number of items the itemset contains�

�

ABCD

ABD ACDABC BCD

AB AC BC AD BD CD

A B C D

{}

ABCD

ABD ACDABC BCD

AB AC BC AD BD CD

A B C D

{}

ABCD

ABD ACDABC BCD

AB AC BC AD BD CD

A B C D

{}

ABCD

ABD ACDABC BCD

AB AC BC AD BD CD

A B C D

{}

(ii) All the subsets of the suggested
 itemsets are large.

(i) ABC, ABD and CD are known
 to be large.

ABCD

ABD ACDABC BCD

AB AC BC AD BD CD

A B C D

{}

(iii) Apply Apriori_Gen to (iv) Apply Apriori_Gen again
 get ACD and BCD. to get ABCD.

ABCD

ABD ACDABC BCD

AB AC BC AD BD CD

A B C D

{}

ABCD

ABD ACDABC BCD

AB AC BC AD BD CD

A B C D

{}

ABCD

ABD ACDABC BCD

AB AC BC AD BD CD

A B C D

{}

(ii) Large itemsets found by Apriori (iv) Large itemsets found by Apriori(i) Large itemsets found by Apriori
 (shaded) after step 1. after step 4.

(iii) Large itemsets found by Apriori
 after step 2. after step 3.

(a)

(b)

(c)

ABCD

ABD ACDABC BCD

AB AC BC AD BD CD

A B C D

{}

ABCD

ABD ACDABC BCD

AB AC BC AD BD CD

A B C D

{}

ABCD

ABD ACDABC BCD

AB AC BC AD BD CD

A B C D

{}

(i) ABC, ABD and CD are

ABCD

ABD ACDABC BCD

AB AC BC AD BD CD

A B C D

{}

 maximal large itemsets.
(ii) ACD, BCD are generated (iii) ABC, ABD, ACD and BCD
 by LGen. are maximal large itemsets

(iv) ABCD is generated by LGen.

Figure �� �a� Apriori Gen� �b� a simple strategy� and �c� LGen

In our simple example� the itemsets fa� c� dg and fb� c� dg will be generated in the �rst iteration�

among others� The database is then scanned to count the supports of the candidate itemsets�

The large ones will be added to the set of large itemsets� and the whole process repeats� Finally�

the itemset fa� b� c� dg is generated in the second iteration�

Although the simple strategy can generate large itemsets early� it may not be very e�cient�

The reason is that a fairly large number of large itemsets need to be considered when gener�

ating candidate itemsets �e�g�� all shaded nodes in Figure ��b ii��� Also� it will generate many

candidate itemsets that are already known to be large �e�g�� when we apply Apriori Gen to

those size�� large itemsets in the �rst iteration� the itemsets fa� b� cg and fa� b� dg are generated

again��

Our candidate set generation algorithm LGen adopts the strategy of generating large can�

�

didate itemsets as soon as possible� using a suggested set of large itemsets as a hint� However�

instead of using all large itemsets known so far to generate a batch of candidate itemsets�

LGen uses only the maximal large itemsets for candidate generation� An �already known� large

itemset is maximal if it is not a proper subset of another �already known� large itemset� �For

example� the itemsets fa� b� cg� fa� b� dg� and fc� dg are maximal in Figure ��b i��� The advan�

tages of LGen over the simple strategy are twofold� First� the set of maximal large itemsets is

much smaller than the set of all large itemsets� This makes the candidate generation procedure

much more e�cient� Second� it guarantees that no redundant candidate itemsets �i�e�� those

that are already known to be large� are generated� Figure ��c� illustrates the candidate gen�

eration procedure of LGen� Note that in Figure ��c�� the itemset fa� b� c� dg is generated in the

second iteration� once we are given that the suggested itemsets fa� b� cg� fa� b� dg� and fc� dg are

large�

In this paper we present the LGen candidate set generation function and the FindLarge

algorithm which uses LGen to discover large itemsets in a database� We prove their correctness

and show that replacing Apriori and Apriori Gen by FindLarge and LGen allows us to sig�

ni�cantly reduce the amount of I�O cost required for mining association rules� We study the

various properties of the algorithms and address the following questions�

� Will FindLarge generate more candidate itemsets than Apriori� A naive algorithm

which generates all possible itemsets as the candidate set can of course discover all large

itemsets in one single database scan� This algorithm� however� is clearly infeasible because

the candidate set would be way too large� We will prove that FindLarge does not generate

more candidate itemsets than Apriori does� It only generates them earlier and in fewer

passes�

� Where can I �nd the set of suggested large itemsets for FindLarge� To apply FindLarge

successfully� one needs to supply it with suggested large itemsets as a �hint�� Although

these suggested itemsets are not necessary� their presence will signi�cantly improve the

performance of FindLarge� These suggested itemsets can be obtained in di�erent ways�

For example� a supermarket may keep a database of transactions of the past twelve

months� At the end of every month� a new set of transactions are added to the database

and transactions that are more than a month old are removed �see Figure ��� To mine the

association rules of the updated database� we can use the set of large itemsets found from

the old database as the suggested set and apply FindLarge� Since the updated database

and the old one overlap by more than ��� �������� our performance study shows that

FindLarge uses signi�cantly fewer passes compared with Apriori� Alternatively� one can

take a sample of the database� apply Apriori on the sample to get a rough estimate of

the large itemsets� and use it as the suggested set for FindLarge� We will discuss how

sampling is used to assist FindLarge in Section ��

� How much performance gain can FindLarge achieve over Apriori� We performed an

extensive simulation study on the performance of FindLarge� We found that the number

�

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec new month
added

old month
discarded

Ja
n

Since the transactions of 11 months of the current database is the same as
those in the previous month, the large itemsets of the previous month’s
database can be used as the suggested large itemsets for current month’s database.

Each slot represents transactions in the database of that month.

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

last month
Database of

Database of
current month

transactions of

transactions of

Figure �� Obtaining suggested large itemsets from an old database�

of I�O passes saved by FindLarge over Apriori depended on the accuracy of the suggested

large itemsets� As an extreme case� if the suggested itemsets cover all the large itemsets in

the database� then FindLarge requires only � database scans� This number is independent

of the size of the largest large itemsets� The saving is thus signi�cant for a database

whose association rules contain a non�trivial number of items� In general� FindLarge

outperforms Apriori if the suggested set covers more than ��� of the set of large itemsets�

As we will see� this coverage �and much better ones� can be easily obtained by sampling

techniques�

� If I use sampling to obtain a set of suggested large itemsets� how many samples shall I

take� If we take a very small sample� then the large itemsets discovered from it would

not be a good estimate of the large itemsets of the whole database� FindLarge would

not perform much better than Apriori because the �hint� is not good enough� On the

other hand� if we take a vary large sample� then the I�O cost of applying Apriori on

the large sample to obtain the large itemsets estimate would be substantial� essentially

wiping out the bene�t achieved by FindLarge� We will show that taking a ��� sample

of the database is usually su�cient to get a good estimate� Sampling plus FindLarge is

thus a viable option for fast association rule mining�

The rest of this paper is organized as follows� In Section � we take a closer look of the

Apriori algorithm and the Apriori Gen function� In Section � we describe the LGen algorithm

for candidate generation and show how Apriori can be extended to FindLarge� We prove

the correctness of LGen and FindLarge and that FindLarge does not generate more candidate

itemsets than Apriori does� Section � describes our simulation study and presents the evalu�

ation results� In particular� we discuss how the accuracy of the set of suggested large itemsets

a�ects the performance of FindLarge� and how sampling is used to obtain a good estimate of

the large itemsets� Finally� we conclude the paper in Section ��

�

� The Apriori algorithm

Conceptually� �nding large itemsets from database transactions involves keeping a count for

every itemset� However� since the number of possible itemsets is exponential to the number

of items in the database� it is impractical to count every subset we encounter in the database

transactions� The Apriori algorithm tackles this combinatorial explosion problem by using an

iterative approach to count the itemsets� First� itemsets containing only one item ���itemsets

or singletons� are counted� and the set of large ��itemsets �L�� is found�� Then� a set of possibly

large ��itemsets is generated using the function Apriori Gen� Since for an itemset of size n to be

large� all its size n� � subsets must also be large� Apriori Gen only generates those ��itemsets

whose size one subsets are all in L�� This set is the candidate set of size�� itemsets� C��
� For

example� if L� � ffcg� feg� fgg� fjgg� C� would be ffc� eg� fc� gg� fc� jg� fe� gg� fe� jg� fg� jgg�

After C� is generated� the database is scanned once again to determine the support counts

of the itemsets in C�� Those with their support counts larger than the support threshold are

put into the set of size�� large itemsets� L�� L� is then used to generate C� in a similar manner�

all size�two subsets of every element in C� must be in L�� So� if L� in our previous example

turns out to be ffc� eg� fc� gg� fc� jg� fg� jgg� C� would be ffc� g� jgg� Note that the itemset

fc� e� jg is not generated because not all of its size�two subsets are in L�� Again� the database

is scanned once more to �nd L� from C�� This candidate set generation�veri�cation process is

continued until no more candidate itemsets can be generated� Finally� the set of large itemsets

is equal to the union of all the Li�s�

The iterative nature of the Apriori algorithm implies that at least n database passes are

needed to discover all the large itemsets if the biggest large itemsets are of size n� Since

database passes involve slow disk access� to increase e�ciency� we should minimize the number

of database passes during the mining process� One solution is to generate bigger�sized candidate

itemsets as soon as possible� so that their supports can be counted early� With Apriori Gen�

unfortunately� the only piece of information that is useful for generating new candidate itemsets

during the n�th iteration is the size��n � �� large itemsets� Ln��� Information from other Li�s

�i � n � �� and Ci�s �i � n � �� are not useful because it is already subsumed in Ln��� As a

result� we cannot generate candidate itemsets larger than n�

Now� suppose one is given a set of suggested large itemsets S� We can use this set as

additional information to generate large itemsets early� During the �rst iteration� besides

counting the supports of size�� itemsets� we can also count the supports of the elements in S

as well� After the �rst iteration� we thus have a �partial� set of large itemsets of various sizes�

L� These itemsets include all large singletons� as well as those itemsets in S that are veri�ed

large� We can now follow the principle of Apriori to generate candidate itemsets based on L�

The only problem remains is how to generalize Apriori Gen to compute a set of multiple�sized

candidate itemsets from a set of multiple�sized large itemsets �L� e�ciently�

�We use the notation Lk to denote the set of size�k large itemsets�
�We use the notation Ck to denote the set of size�k candidate itemsets�

	

� function FindLarge�SuggestedLarge�
� Set of large itemsets with associated counters� MaxLargeItemsets �� �
� Iteration �� �

� CandidateSet �� �all ��itemsets� �
�S

s�SuggestedLarge � s
�

� Scan database and count occurrence frequency of every set in CandidateSet

	 NewLargeItemsets �� large itemsets in CandidateSet

 while �NewLargeItemsets �� ��
� Iteration �� Iteration��
� MaxLargeItemsets �� Max�MaxLargeItemsets � NewLargeItemsets�
�� CandidateSet �� LGen�MaxLargeItemsets�Iteration�
�� Count occurrence frequency of every set in CandidateSet

�� NewLargeItemsets �� large itemsets in CandidateSet

�� end while
�� return all subsets of elements in MaxLargeItemsets

Figure �� Finding large itemsets

� LGen

We generalize Apriori Gen to a new candidate set generation function called LGen based on

Lattice Theory� The main idea of LGen is to generate candidate itemsets of bigger sizes early us�

ing information provided by a set of suggested large itemsets� Before we describe our algorithm

formally� let us �rst illustrate the idea with an example�

�Example �� Suppose we have a database whose large itemsets are fa� b� c� d� e� fg� fd� e� f� gg�

fe� f� g� hg� fh� i� jg and all their subsets� Assume that the sets fa� b� d� e� fg� fe� f� g� hg� and

fd� gg are suggested large� During the �rst iteration� we count the supports of the singletons as

well as those of the suggested itemsets� Assume that the suggested itemsets are veri�ed large in

the �rst iteration� In the second iteration� since fa� b� d� e� fg is large� we know that its subset

fd� eg is also large� Similarly� we can infer from fe� f� g� hg that fe� gg is also large� Since fd� gg

is also large� we can generate the candidate itemset fd� e� gg and start counting it� Similarly�

the candidate itemset fd� f� gg can also be generated this way� Therefore� we have generated

some size�� candidate itemsets before we �nd out all size�two large itemsets�

Our algorithm for �nding large itemsets� FindLarge is shown in Figure �� The method is

similar to Apriori except that�

� it takes a set of suggested itemsets� SuggestedLarge as input and counts their supports

during the �rst database scan� and

� it replaces the Apriori Gen function by the more general LGen function which takes the

set of maximal large itemsets �MaxLargeItemsets� as input�

The algorithm consists of two stages� The �rst stage consists of a single database scan �lines

��	�� Singletons� as well as the suggested large itemsets and their subsets �
S
s�SuggestedLarge � s��

are counted� Any itemsets found to be large at this �rst stage is put into the set of newly found

� function LGen�MaxLargeItemsets�n�
� CandidateSet�� �
� repeat
� NewCandidates�� LGFixedSize�MaxLargeItemsets�n�
� CandidateSet�� CandidateSet � NewCandidates

	 n �� n � �

 until �n � ��size of the biggest itemset in MaxLargeItemsets�
� return CandidateSet

Figure �� Generating candidate itemsets for a certain iteration

large itemsets �NewLargeItemsets��

The second stage of FindLarge is iterative� The iteration continues until no more new large

itemsets can be found� At each iteration� FindLarge generates a set of candidate itemsets based

on the large itemsets it has already discovered� As we have argued in Section �� we could apply

Apriori Gen on the whole set of large itemsets already found� However� the drawback is that

the set of large itemsets could be large� and that it would result in the generation of many

redundant candidate itemsets� Instead� FindLarge �rst canonicalizes the set of large itemsets

into a set of maximal large itemsets �MaxLargeItemsets�� and passes the maximal set to LGen

to generate candidate itemsets� The function Max�� �line �� performs the canonicalization�

We can consider canonicalization as a way of compressing the information contained in the

set of large itemsets� The idea is that suppose we know that a set s is large� we immediately

know that all of its subsets are also large� Considering the set of itemsets with the subset

operator as a lattice� we borrow notations from lattice theory ��
��
 and denote the set of all

subsets of s by its downset� � s � fx j x � sg� We can then represent the set of all large

itemsets L by a union of downsets� L �
S
s�max�L� � s� where max�L�� the set of maximal

elements of L� is de�ned as max�L� � fx 	 L j
y 	 L �x � y � y � x
g�

In Example � �page
� where fa� b� c� d� e� fg� fd� e� f� gg� fe� f� g� hg� fh� i� jg and all their

subsets are large� max�L� � ffa� b� c� d� e� fg� fd� e� f� gg� fe� f� g� hg� fh� i� jgg� Hence� only �

itemsets are needed to represent L� which contains �	 large itemsets�

The set of maximal large itemsets found is then passed to LGen to generate candidate

itemsets �line ���� The crux is how to do the generation based on the compressed maximals

only� We remark that the Apriori algorithm with Apriori Gen is in fact displaying a special

case of candidate generation with canonicalization� Recall that in Apriori� at the beginning of

the the n�th iteration� the set of large itemsets already discovered is
Sn��
k�� Lk� Canonicalizing

the set gives max�
Sn��
k�� Lk� � Ln��� Interestingly� Apriori Gen generates the candidate set Cn

based solely on Ln���

The function LGen is shown in Figure �� By simple induction� one can show that at the

beginning of the n�th iteration of FindLarge� all large itemsets whose sizes are smaller than n

are known� Hence� when LGen is called at the n�th iteration of FindLarge� it only generates

candidate itemsets that are of size n or larger� To generate �x�sized candidate itemsets� LGen

�

� function LGFixedSize�MaxLargeItemsets�n�
� CandidateSet �� �
� foreach i� j 	 MaxLargeItemsets� i �� j�
� if �j�i � j�j
 n� ��

� NewCandidates ��

���������
��������
fa�� a�� ���� ang

�������������

a�� a�� ���� an�� 	 i � j�
an�� 	 i� j� an 	 j � i�

i 	 ��� n
 �t 	 MaxLargeItemsets s�t�
fa�� a�� ���� ang � faig � t
� �u 	 MaxLargeItemsets s�t�
fa�� a�� ���� ang � u

��������	
�������

	 CandidateSet �� CandidateSet � NewCandidates

 end if
� end foreach
� return CandidateSet

Figure �� Generating candidate itemsets of a �xed size

calls the helper function� LGFixedSize �Figure ��� Essentially� given a target candidate itemset

size n� LGFixedSize examines every pair of maximal large itemsets i� j whose intersection is at

least n � � in size �lines ����� It then generates candidate itemsets of size n by picking n� �

items from the intersection between i and j� one item from the set di�erence i� j� and another

item from j� i� A candidate itemset so generated is then checked to see if all of its size��n� ��

subsets are already known to be large� �That is� if all of them are subsets of certain maximal

large itemsets�� If not� the candidate itemset is discarded� The candidate itemsets so generated

are collected in the set NewCandidates as shown in line � of Figure ��

�Example �� Let us consider the example shown in Figure ��c�� Suppose we are given

that the itemsets fa� b� cg� fa� b� dg� and fc� dg are maximal large itemsets �Figure ��c i��� To

generate size�� candidate itemsets� LGen needs to consider pairs whose intersections contain

at least � � � � � item �e�g�� fa� b� cg and fc� dg�� Let i � fa� b� cg and j � fc� dg� we have

i � j � fcg� i � j � fa� bg� and j � i � fdg� The itemsets generated based on this i� j pair are

fc� a� dg and fc� b� dg� Since all of their size�� subsets are subsets of some maximal itemsets�

they are included in the candidate set� Now� suppose that the support counts of fa� c� dg and

fb� c� dg are larger than the support threshold� then in the second iteration� the maximal large

itemsets are fa� b� cg� fa� b� dg� fa� c� dg� and fb� c� dg� One can check that if we take any two of

them to generate size�� candidate itemsets� the set fa� b� c� dg will be generated�

Indeed� LGen is a generalization of Apriori Gen� When it is known that two size��n � ��

subsets of a size�n itemset are large� Apriori Gen examines that size�n itemset to see whether

all its size n � � subsets are large� Since only large itemsets of size n � � are known when

Apriori Gen is called to generate itemsets of size n� size n candidate itemsets are� in practice�

found by taking the union of two itemsets i and j of size n� � before checking whether all its

size��n� �� subsets are large� Note that for the union of two size��n� �� itemsets to be of size

n� their intersection must be of size n� �� Hence� this is equivalent to taking n� � items from

the intersection of the two itemsets� one item from i� j� and another item from j � i�

�

LGen generalizes this idea� Given a maximal itemset of size k� k � n� �� we know that all

its kCn�� subsets of size n � � are large� With two such maximal itemsets p and q� we know

that all possible pairs� one from the jpjCn�� subsets of size n� �� and another from the jqjCn��

subsets of size n � �� will be examined if Apriori Gen is used� Yet� since all the size��n � ��

intersections of these pairs are subsets of the intersection of p and q� and the set di�erences

between the pairs are always subsets of p� q or q� p� to form an itemset of size n� we can take

n � � items from the intersection between p and q� one item from p � q� and one item from

q � p� The size�n itemsets so formed can then be checked to see whether they are eligible to

be a candidate itemset� that is� whether all their size��n � �� subsets are large� This way� all

possible size�n candidates Apriori examines that are not known to be large �i�e�� not already a

subset of p or q� can be examined without expanding the maximal itemsets to their size��n���

subsets�

��� Theorems

In this subsection we summarize a few properties of LGen in the following theorems� The proofs

are included in the Appendix of this paper� We use the symbol S to represent the set of

suggested large itemsets� � y to represent the downset of any itemset y �i�e�� � y � fx j x � yg��

so
S
s�S � s is the set of all itemsets suggested implicitly or explicitly by the suggested set

S� Also� we use CLGen to represent the set of all candidate itemsets generated by LGen in

FindLarge and CApriori to represent the set of all candidate itemsets generated by Apriori Gen

in the Apriori algorithm�

Theorem � Given a set of suggested large itemsets S� CApriori � CLGen � �
S
s�S � s��

Since FindLarge �which uses LGen� counts the supports of all itemsets in CLGen��
S
s�S � s��

Theorem � says that any candidate itemset that is generated by Apriori will have its sup�

port counted by FindLarge� Hence� if Apriori �nds out all large itemsets in the database�

FindLarge does too� In other words� FindLarge is correct�

Theorem � CLGen � CApriori�

Theorem � says that the set of candidate itemsets generated by LGen is a subset of that generated

by Apriori Gen� LGen thus does not generate any unnecessary candidate itemsets and waste

resources in counting bogus ones� However� recall that FindLarge counts the supports of the

suggested large itemsets in the �rst database scan for veri�cation� Therefore� if the suggested

set contains itemsets that are actually small� FindLarge will count their supports super�uously�

Fortunately� the number of large itemsets in a database is usually order�of�magnitude fewer than

the number of candidate itemsets� The extra support counting is thus insigni�cant compared

with the support counting of all the candidate itemsets� FindLarge using LGen thus requires

similar counting e�ort as Apriori does�

��

Theorem � If S � � then CLGen � CApriori�

Theorem � says that without suggested large itemsets� FindLarge reduces to Apriori� In

particular� they generate exactly the same set of candidate itemsets�

� Experiments

To evaluate the performance of FindLarge using LGen as the candidate set generation algorithm�

we performed extensive simulation experiments� Our goals are to study the amount of I�O

saving that can be achieved by FindLarge over Apriori� and how sampling can be used to

construct a good set of suggested large itemsets� In this section we present some representative

results from the experiments�

��� Synthetic Database Generation

In the experiments� we followed the approach of ��� �
 and used synthetic data as the test

databases� Here� let us brie�y describe the synthetic database generation procedure� Readers

are referred to ��
 for more details� To generate a transaction database D� we �rst generate

a pool W of potentially large itemsets� Each itemset in W is generated by �rst determining

the itemset size from a Poisson distribution with mean jIj� The jW j itemsets are divided into

groups of Sq � � itemsets� For each group� items in the �rst itemset are picked randomly from

the set of N items� Then in each of the following Sq itemsets� some fraction p of items from

the �rst itemset are duplicated� The fraction p is determined from a Poisson distribution with

mean equal to ���� The rest are picked randomly� After W is generated� it is used to generate

the database D� The size of each transaction in D is generated from a Poisson distribution with

mean jT j� Next� a random itemset from W is chosen and its items are added to the transaction

being generated� If the transaction has acquired the desired size� we move on to generate the

next transaction� If not� we pick another itemset from W and repeat the above procedure until

the transaction has got the desired number of items� Table � summarizes the parameter setting

of our baseline experiment�

Parameter Description Value

jDj database size in number of transactions �����
�

N number of items �����

jW j number of potentially large itemsets �����

jIj avg� size of potentially large itemsets �

jT j avg� size of transactions ��

Table �� Parameters of the database generation model

��

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

N
o.

 o
f p

as
se

s

Coverage

A

B

support=1%
support=0.75%

support=0.5%

Figure 	� Number of I�O passes vs� coverage under di�erent support threshold�

��� Coverages and I�O Savings

For each database instance generated� we �rst discovered the set of large itemsets� L� using

Apriori� Our �rst set of experiments studies how the �coverage� of the suggested large itemsets

a�ects the performance of FindLarge� By coverage� we mean the fraction of large itemsets in

L that are suggested�� To model coverage� we drew a random sample from L to form a set of

suggested large itemsets S� We de�ne the coverage of a suggested set S over the set of large

itemsets L by

coverage �
j
S
s��S�L� � sj

jLj
�

Since in our �rst set of experiments� S was drawn from L� we have S � L � S� After we had

constructed S� we ran FindLarge on the database using S as the suggested set� Finally� we

compared the number of I�O passes each algorithm had taken�

Note that with the way we generated the suggested set S� no element in S was small� In

practice� however� the suggested itemsets could contain small itemsets� Since small suggested

itemsets are discarded in the �rst database scan of FindLarge �see Figure ��� their presence

does not a�ect the number of I�O passes required by FindLarge and hence they were not

modeled in this set of experiments�

We generated a number of database instances according to the above�mentioned model�

�If an itemset is suggested� then all of its subsets are also implicitly suggested�

��

Figure
� A representative I�O vs� coverage curve�

For each database instance� we applied Apriori to discover the large itemsets under di�erent

support thresholds� Also� we generated a number of suggested sets of various coverages� We

then applied FindLarge to the di�erent database instances with di�erent suggested sets under

di�erent support threshold settings� The number of I�O passes that Apriori and FindLarge

had taken were subsequently compared� Figure 	 shows the result obtained from one typical

database instance� In the following we refer to this particular database as D�

In Figure 	 three sets of points � ��� ��� ��� are shown corresponding to the support

thresholds ��� ��
��� and ���� respectively� Each point shows the number of I�O passes

FindLarge took when applied to D with a particular suggested set of a certain coverage� For

example� the � point labeled A shows that when FindLarge was applied with a suggested set

whose coverage was ���	�� 	 passes were required� Note that the points shown in Figure 	 take

on discrete values� The lines connecting points of the same kind are there for legibility reason

only and should not be interpreted as interpolation�

For the database D� when the support threshold was set to either ���� or ��
��� the size

of the largest large itemsets was �� Apriori took � I�O passes� This is shown in Figure 	 by

the �� and �� points when coverage equals �� �Recall that FindLarge reduces to Apriori

when the suggested set is null�� When the support threshold was lowered to ����� the support

counts of certain size��� itemsets also exceeded the support threshold� In that case� the size of

the largest large itemsets was ��� Apriori thus took �� I�O passes�

One general observation from Figure 	 is that the higher the coverage of the suggested set

has with respect to the set of large itemsets� the smaller the number of I�O passes FindLarge

is required� In fact� all of the data points we obtained from our experiment exhibit a typical

curve as shown in Figure
�

In general� we can divide the curve into four stages�

At point a �coverage � ��� When the suggested set does not cover any large itemsets�

FindLarge with LGen degenerates to Apriori� The number of I�O passes required by the two

��

algorithms are thus the same�

Between points a and b� In this region� FindLarge takes the same number of passes as

Apriori does� With a very small coverage� there are only few large itemsets suggested� and

these itemsets usually consist of only a small number of items�	 In this case� LGen is unable

to provide the advantage of generating large�sized candidate itemsets early� Hence� no saving

in I�O is obtained� The length of the line ab� fortunately� is usually small� For example� in

our simulation experiments� the line ab in general spans only from coverage � � to coverage

� ���� As we will see later� getting a suggested set with a larger�than���� coverage is easily

obtainable by sampling techniques�

Between points b and c� The number of I�O passes required by FindLarge decreases

gradually as the coverage of the suggested set increases� This is because as more large�sized

itemsets are suggested� LGen is better able to generate large�sized candidate itemsets early� As

an example� when mining the database instance D with the support threshold set at �� using a

suggested set whose coverage is ��
�� �point labeled B in Figure 	�� LGen generated candidate

itemsets of sizes ranging from � to
 early in pass number �� Again� the larger the coverage�

the fewer I�O passes does FindLarge need�

We also observe that the amount of I�O saving increases more rapidly when the coverage

is approaching �� This is because with a very large coverage� the suggested set contains many

top�sized� or maximal large itemsets� This greatly facilitates the generation of other not�yet�

discovered maximal large itemsets as candidates early� Since FindLarge terminates once all the

maximals are found� only very few passes are required�

At point c �coverage � ������ FindLarge only needs two passes over the database when

the suggested set covers all large itemsets� The �rst pass is used to �nd out the support counts

of the suggested itemsets� Since these itemsets are the only large itemsets in the database� LGen

will generate the negative border
 ���
 as candidates� In the second pass� FindLarge counts the

supports of the candidate itemsets� Since none of the candidate is large� FindLarge terminates

after only two passes over the database�

��� Candidate Set Sizes

As we have discussed in Section �� FindLarge essentially checks the same number of candidate

itemsets as Apriori does� but in fewer passes� Therefore� under FindLarge� the average number

of support counts that need to be determined per pass is larger than that of Apriori� Since

support counts take space� an interesting question is� will FindLarge require more memory

than Apriori� Surprisingly� our simulation results show that FindLarge does not require more

memory� In fact� in some cases� it uses a little bit less�

�A size�k itemset suggested implicitly suggests �k � � non�empty itemsets� So if the suggested set contains

large�sized itemsets� it would possess a good coverage�
�The negative border is the set of itemsets which are small but all of their subsets are large�

��

Pass Apriori FindLarge with FindLarge with FindLarge with
support���� support���� support����
coverage��� coverage�
�� coverage����

� ����� ����� ���	� �����
� ����
�� ����	�
 ������� �����
�
� ��
 ��� �		 �	
�

�� ��� �
� ��� ��� �� �
	 ��� ��
 � �

 �� �� � �
� �� �� � �
� � � � �

Total ������
 ������
 ������
 ������

Table �� Candidate set size for each pass when database D is mined using Apriori and
FindLarge�

As an example� we mined the database D using Apriori and FindLargewith three suggested

sets of di�erent coverages ����
��� and ����� Table � shows the number of support counts

tallied during each pass of the mining algorithms� Note that the numbers shown in Table �

equal the candidate sets� sizes except for those listed under the �rst pass of FindLarge� This

is because FindLarge counts the supports of all subsets of the suggested itemsets in the �rst

pass� besides those of the singletons� These support counts are also included in the table� For

example� during the �rst pass when FindLarge mined the database D with a suggested set S

of coverage ��� it counted the supports of ����� singletons as well as ��� itemsets suggested

�explicitly or implicitly� by S�

From the table� we observe that the size of the candidate set generated in the second

pass dominates the others� It thus determines the memory requirement of the algorithm� A

characteristic of FindLarge is to redistribute the counting job so that more support counts are

processed in the �rst pass in order to save work in the later passes� Since it is very unlikely that

the number of singletons that exist in a database is larger than the number of size�� candidate

itemsets� in general� FindLarge does not require more memory than Apriori does�

��� Sampling

In a previous study ���
� it was shown that sampling was a cost�e�ective technique for �nding

an approximate solution to the mining problem� We can therefore use sampling to obtain a

good suggested set if one is not readily available�

We performed a set of simulation experiments to study how sampling should be done in

order to obtain a good suggested set� In the experiments� a number of databases were generated�

For each database� we extracted a fraction f of transactions as samples� We then mined the

samples using Apriori� The resulting large itemsets discovered were then used as the suggested

��

suggested large set obtained by mining
the sample with support � ��

f ���	 ��� ��� ���

avg� coverage ����� ����� ����� ���	�
avg� I�O cost 	�� ���
�� ����

Table �� I�O cost vs� sampling size�

suggested large set obtained by mining
the sample with support � ��
��

f ���	 ��� ��� ���

avg� coverage ���
� ����� ����
 �����
avg� I�O cost ��	 ��� ��� 	��

Table �� I�O cost vs� sampling size using a smaller support threshold for the samples�

set for FindLarge� We repeated the experiment a number of times� each with a di�erent set of

samples� For each experiment� we recorded the coverage of the suggested set derived from the

samples� and the total I�O cost spent� The I�O cost included scanning the samples by Apriori

and scanning the database by FindLarge� We express the I�O cost in terms of database

scans� As an example� suppose f � ��� and Apriori takes �� passes over the samples� then

the amount of I�O spent in Apriori applied over the samples is equivalent to ��� � �� � �

database scan� If FindLarge takes � passes over the database� then the total I�O cost would be

� � � � 	 database scans� For each value of f � the I�O costs spent in di�erent experiment runs

�corresponding to di�erent sets of samples taken� were averaged� Similarly� we also determined

the average coverages of the di�erent sets of samples� The average I�O cost is then compared

with the number of I�O passes taken by Apriori when it was applied to the database directly�

Table � shows the result of a typical experiment� In the experiment� the database was

generated according to our baseline setting �Table ��� The support threshold was set to ��

and the number of I�O passes that Apriori took was �� From Table �� we see that even with

a small set of samples �f � ���	�� the expected coverage of the suggested set derived from

it exceeded ���� Also� FindLarge saved �� � 	����� � ��� of I�O compared with Apriori�

This performance gain was even improved to �	� when the sample size was increased to ���

of the database� Further increment of the sample size� however� became counter�productive� as

is shown in the table when f � ��� and f � ���� This is because mining a large sample with

Apriori is too costly in I�O�

In ���
� it was shown that mining the samples with a slightly smaller support threshold than

that is required for the database improves the accuracy of the estimate� We therefore re�ran our

experiments following the idea� Table � shows the result for the same database used in Table

�� except that the samples were mined by Apriori with a support threshold of ��
��� From

the table� we see that lowering the samples� support threshold improved the I�O cost across

the board� For example� only ��� database scans on average was required when f � ����

�	

� Conclusion

This paper described a new algorithm FindLarge for discovering large itemsets in a transaction

database� FindLarge uses a new candidate set generation algorithm LGen which takes a set of

multiple�sized large itemsets to generate multiple�sized candidate itemsets� Given a reasonably

accurate suggested set of large itemsets� LGen allows big�sized candidate itemsets to be generated

and processed early� This results in signi�cant I�O saving compared with traditional Apriori�

based mining algorithms�

We proved a number of theorems about FindLarge and LGen� In particular� we showed that

FindLarge is correct and that LGen never generates redundant candidate itemsets� Hence the

CPU requirement of FindLarge is compatible with Apriori�

In order to evaluate the I�O performance of FindLarge� we conducted extensive experiments�

We showed that the better coverage the suggested set has� the fewer I�O passes FindLarge

requires� In the best case� when the suggested set covers all large itemsets� FindLarge takes

only two passes over the database�

To obtain a good suggested set� sampling techniques can be applied� We showed that a

small sample is usually su�cient to generate a suggested set of high coverage� FindLarge is

thus an e�cient and practical algorithm for mining association rules�

References

��
 R� Agrawal and R� Srikant� Fast algorithms for mining association rules in large databases�

In Proc� of the Twentieth International Conference on Very Large Databases� pages ��
�

���� Santiago� Chile� �����

��
 Garrett Birkho�� Lattice Theory� volume �� of AMS Colloquium Publications� AMS� �����

��
 David W� Cheung� Jiawei Han� Vincent T� Ng� Ada Fu� and Yongjian Fu� A fast dis�

tributed algorithm for mining association rules� In Proc� Fourth International Conference

on Parallel and Distributed Information Systems� Miami Beach� Florida� December ���	�

��
 David W� Cheung� Jiawei Han� Vincent T� Ng� and C� Y� Wong� Maintenance of discovered

association rules in large databases� An incremental updating technique� In Proceedings of

the Twelfth International Conference on Data Engineering� New Orleans� Louisiana� ���	�

IEEE computer Society�

��
 B� A� Davey and H� A� Priestley� Introduction to Lattices and Order� Cambridge University

Press� ����� ISBN � ��� �	��� ��

�	
 Jiawei Han and Yongjian Fu� Discovery of multiple�level association rules from large

databases� In Proceedings of the ��st VLDB Conference� pages �������� Zurich� Switzer�

land� �����

�

�

 Mika Klemettinen� Heikki Mannila� Pirjo Ronkainen� Hannu Toivonen� and A� Inkeri

Verkamo� Finding interesting rules from large sets of discovered association rules� In

nabil R� Adam� Bharat K� Bhargava� and Yelena Yesha� editors� Third International Con�

ference on Information and Knowledge Management �CIKM	
��� pages ������
� Seattle�

Washington� November ����� ACM Press�

��
 J� S� Park� M� S� Chen� and P� S� Yu� E�cient parallel data mining for association rules�

In Proc� �

 International Conference on Information and Knowledge Management� Bal�

timore� MD� November �����

��
 Jong Soo Park� Ming�Syan Chen� and Philip S� Yu� An e�ective hash�based algorithm for

mining association rules� In Proc� ACM SIGMOD international Conference on Manage�

ment of Data� San Jose� California� May �����

���
 T� Imielinski R� Agrawal and A� Swami� Mining association rules between sets of items

in large databases� In Proc� ACM SIGMOD International Conference on Management of

Data� page ��
� Washington� D�C�� May �����

���
 Ramakrishnan Srikant and Rakesh Agrawal� Mining quantitative association rules in large

relational tables� In H� V� Jagadish and Inderpal singh Mumick� editors� Proc� ACM

SIGMOD international Conference on Management of Data� Montreal� Canada� June ���	�

���
 Hannu Toivonen� Sampling large databases for association rules� In Proceedings of the

��th Conference on Very Large Data Bases �VLDB�� September ���	�

��

� Appendix

��� De�nitions and notations

The set of maximal elements of a set of sets L related by the subset relationship in a partial
order hL��i is�

max�L� �
n
x 	 L

���
y 	 L �x � y � y � x

o

The down set of x 	 L in a partial order hL��i is�

� x �
n
y
��� y � x

o
It is the complete lattice of sets induced by the maximal element x�

The set of sets in L whose size is n is de�ned as�

szeq�L� n� �
n
x 	 L

��� jxj � n
o

Similarly� the set of sets in L whose size is less than or equal to n is de�ned as�

szle�L� n� �
n
x 	 L

��� jxj � n
o

The set of subsets of X whose size is n is de�ned as�

subsetszeq�X�n� �
n
x � X

��� jxj � n
o

��� Algorithm showcase

Given the set of large itemsets L� the set of candidate itemsets of size n generated by Apriori Gen

is�

AG�L� n� �
�

i�j�szeq�L�n���
i �	j

�
i � j

����� ji � jj � n�
subsetszeq�i � j� n� �� � szeq�L� n� ��

���

Note that we do not need to know the complete set of large itemsets L when generating candi�
dates of size n� Only those elements in L that is of size n� � need be known�

Given a set of suggested large itemsets that have been veri�ed large� S� and the set of large
itemsets L� the set of candidate itemsets of size n generated by LGen when large itemsets of
size one less than k is known �k � n� is�

LG�S�L� n� k� �
�

i�j�max
S�szeq�L�k����
i�	j

�������
������
x � y � z

�����������

x � i� j� jxj � ��
y � i � j� jyj � n� ��
z � j � i� jzj � ��
subsetszeq�x � y � z� n� �� � S � szle�L� k � ��
x � y � z �	 S

������	
�����

���
Again� the complete set of large itemsets L need not be known when we invoke LG�S�L� n� k��
We only need to know S and all the large itemsets of size k�� �i�e�� szeq�L� k����! these should
be known by FindLarge at iteration k� Note also that S is a subset of L since its elements

��

has been veri�ed large� Also� in the �rst iteration of FindLarge� all the subsets of the maximal
elements of S have been veri�ed large� That is�

S �
�

s�max�S�

� s ���

��� Things to prove

In the following discussion� we assume that Apriori Gen is correct� that is� it can �nd all
possible large itemsets� �

��
n��

AG�L� n�

�
� szeq�L� �� � L ���

The upper limit of the union is taken to be in�nity for notational convenience� Since AG�L� n�
is empty when n is larger than one more than the size of the largest element in L� the upper

limit can be as small as � � maxfjxj
��� x 	 Lg�

We attempt to prove that�

� LGen will generate only a subset of candidate itemsets generated by Apriori Gen

S � L
n
 �
k � n �LG�S�L� n� k� � AG�L� n�� S
 ���

� When large itemsets of size less than n is known and LGen is called to generate candidate
itemsets of size n� it will generate those itemsets Apriori Gen generates except those
already veri�ed to be large�

S � L
n
 � �LG�S�L� n� n� � AG�L� n� � S
 �	�

� FindLarge examines the same candidate sets as Apriori does� except those itemsets
already veri�ed large�

S � L

�
��
k��

��
n�k

LG�S�L� n� k� �
��
n��

AG�L� n�� S

�
�
�

� FindLarge can �nd all possible large itemsets�

S � L

�
��
k��

��
n�k

LG�S�L� n� k� � S � szeq�L� �� � L

�
���

or

S � L

�
��
n��

LG�S�L� n� n� � S � szeq�L� �� � L

�
���

� When no suggested large itemset is veri�ed to be really large� LGen reduces to Apriori Gen�

n
 � �LG��� L� n� n� � AG�L� n�
 ����

��

��� Rewriting AG

We now rewrite AG to a form that facilitates our proof afterwards� From Equation �� we see
that jij � jjj � n� � since i� j 	 szeq�L� n� ��� Also� because

ji � jj � jij � jjj � ji � jj ����

� ji � jj � ji� jj � jj � ij ����

With the condition that ji � jj � n in Equation �� we have� substituting into Equation ���

n � �n� �� � �n� �� � ji � jj

and thus ji � jj � n� �� Noticing that i �� j� from Equation �� we have ji� jj � jj � ij � ��

Thus� we can rewrite Equation � as�

AG�L� n� �
�

i�j�szeq�L�n���
i�	j

�����
����
x � y � z

���������

x � i� j� jxj � ��
y � i � j� jyj � n� ��
z � j � i� jzj � ��
subsetszeq�x � y � z� n� �� � szeq�L� n� ��

����	
���

����

Note its similarity of this equation with Equation �� the equation for the LG algorithm�

��	 Proof

	
�
� LGenwill generate only a subset of candidate itemsets generated by Apriori Gen

�Equation ��

For all S � L� n
 �� and k � n� suppose w 	 LG�S�L� n� k�� By de�nition of LG� we know
that w �	 S� Also� we know that

�i� j 	 max �S � szeq�L� k � ��
 � i �� j�

such that

�x� y� z

�
������

w � x � y � z
x � i� j� jxj � ��
y � i � j� jyj � n� ��
z � j � i� jzj � ��
subsetszeq�w�n� �� � S � szle�L� k � ��

�
������

Now we have two cases� k � n and k � n� Note that k � n is not possible by de�nition of LG�

I� k � n

In this case� we have

subsetszeq�w�n� �� � �S � szle�L� k � ��

� szeq�S� n� ��

� szeq�L� n� ��

since k � n and every element in subsetszeq�w�n� �� is of size n� ��

We need to choose i�� j� 	 szeq�L� n��� for AG that correspond to i� j 	 max �S � szeq�L� k � ��

for LG� Indeed� for each x� y� z corresponding to each pair of i� j� we can choose i� � x�y
and j� � y � z and we will have w 	 AG�L� n� � S for k � n�

��

II� k � n

In this case� we have

subsetszeq�w� n� �� � �S � szle�L� n� ��

� szeq�L� n� ��

since all elements in subsetszeq�w�n� �� are of size n� � and S � L�

We just need to choose i�� j� 	 szeq�L� n��� for AG that correspond to i� j 	 max �S � szeq�L� n� ��

for LG� Similar to Case I� for each x� y� z corresponding to each pair of i� j� we choose
i� � x � y and j� � y � z and we will have w 	 AG�L� n� � S for k � n�

Combining the result for both cases� we have LG�S�L� n� k� � AG�L� n��S� and Equation �
follows�

	
�
� When large itemsets of size less than n is known and LGen is called to gener�

ate candidate itemsets of size n
 it will generate those itemsets Apriori Gen

generates except those already veri�ed to be large
 �Equation 	�

We can prove Equation 	 by proving that AG�L� n� � S � LG�S�L� n� n� for all S � L and
n
 �! the other side of inclusion� LG�S�L� n� n� � AG�L� n��S� has already been asserted by
Case II in Section 	�����

Now suppose v 	 AG�L� n� � S� It follows directly that v �	 S� Also� we know that

�i�� j� 	 szeq�L� n� ��� i� �� j��

such that

�x� y� z

�
������

v � x � y � z
x � i� � j�� jxj � ��
y � i� � j�� jyj � n� ��
z � j� � i�� jzj � ��
subsetszeq�v� n� �� � szeq�L� n� ��

�
������

To �nd i� j 	 max�S � szeq�L� k � ��
� i �� j in LG that corresponds to i�� j� in AG� we choose
i 	 max�S� such that i� � i and j 	 max�S� such that j� � j� We know that i �� j since
otherwise v � i� j � i	� i� S� which contradicts our assumption that v �	 S� Hence� we know
that v 	 LG�S�L� n� n�� Thus� AG�L� n� � S � LG�S�L� n� n� and Equation 	 follows�

	
�
� FindLarge examines the same candidate sets as Apriori does
 except those

itemsets already veri�ed large
 �Equation ��

From Equation �� we have� for all S � L� n
 �� and k � n�

LG�S�L� n� k� � AG�L� n� � S

Taking the union over all valid k and n� we have
��
k��

��
n�k

LG�S�L� n� k� �
��
n��

AG�L� n� � S

Since Equation 	 states that when n � k� the two sides of Equation � will be equal� that is�
LG�S�L� n� n� � AG�L� n�� S� we have

��
k��

��
n�k

LG�S�L� n� k� �
��
n��

AG�L� n� � S

and Equation
 follows�

��

	
�
� FindLarge can �nd all possible large itemsets
 �Equations � and ��

Taking the union of S � szeq�L� �� to both sides of Equation
� we have

S � L

�
��
k��

��
n�k

LG�S�L� n� k� � S � szeq�L� �� �
��
n��

AG�L� n� � szeq�L� ��

�

Substituting Equation �� we have

S � L

�
��
k��

��
n�k

LG�S�L� n� k� � S � szeq�L� �� � L

�

which is Equation ��

Similarly� by taking the union over all n and taking the union of S�szeq�L� �� to both sides
of Equation 	� we have

S � L

�
��
n��

LG�S�L� n� n� � S � szeq�L� �� �
��
n��

AG�L� n� � szeq�L� ��

�

Substituting Equation �� we have

S � L

�
��
n��

LG�S�L� n� n� � S � szeq�L� �� � L

�

which is Equation ��

	
�
� When no suggested large itemset is veri�ed to be really large
 LGen reduces

to Apriori Gen
 �Equation ���

When S � �� we have
max�� � szeq�L� n� ��
 � szeq�L� n� ��

Also� the condition x � y � z �	 S in Equation � is satis�ed vacuously� And since

subsetszeq�x � y � z� n� �� � S � szle�L� n� ��

� subsetszeq�x � y � z� n� �� � szeq�L� n� ��

when S � �� Equation �� follows�

��

