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ABSTRACT

Because of the growing importance of object-oriented programming, a number of testing

approaches have been proposed. Frankl et al. propose the application of the functional approach,

using algebraic specifications for the generation of test cases and the validation of methods. Given a

specification, Frankl et al. propose that equivalent terms should give observably equivalent objects,

and offer general heuristics on the selection of equivalent terms for testing. Their guidelines,

however, are only supported by limited empirical results, do not have a theoretical basis, and provide

no guarantee of effectiveness.

In this paper, we define the concept of a fundamental pair as a pair of equivalent terms which are

formed by replacing all the variables on both sides of an axiom by normal forms. We prove that an

implementation is consistent with respect to all equivalent terms if and only if it is consistent with

respect to all fundamental pairs. In other words, the testing coverage of fundamental pairs is identical

to that of all equivalent terms, and hence we need only concentrate on the testing of fundamental

pairs. Our strategy is mathematically based, simple, and much more efficient. Furthermore, it

underscores the usefulness of axiom-based specifications.

Ke yword Codes: D.2.1; D.2.5; D.1.5

Ke ywords: algebraic specifications, functional testing, object-oriented

1. INTRODUCTION

Object-oriented programming is considered as an increasingly popular software development

method for the 1990s. Since testing is one of the most quality critical and time-consuming phases of

the software development process, it is important to investigate into the testing of object-oriented
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programs. As indicated in [1] , the important change from the testing of conventional programs to the

testing of object-oriented programs is that the latter programs are not necessarily executed in a

predefined order. The sequence of invocation of methods in a class is not specified explicitly.

Operations are allowed to be called in any order once an object has been created. Methods across

different classes can be combined in various ways. Furthermore, many new testing problems related

to inheritance, polymorphism, overloading, encapsulation, aggregation, and state-dependent behaviour

have arisen [2]. It is generally accepted, therefore, that object-oriented program testing is quite

different from the conventional counterpart.

A number of papers on the testing of object-oriented programs have been published [3−14]. Most

of the papers discuss the nature of the problem and potential solutions, using approaches such as

functional testing, structural testing [5, 9], and state-based testing [13, 14]. In particular, Frankl et al.

[4, 7, 8] propose the application of the functional approach [15, 16] (or black-box testing) to object-

oriented programming. They propose the use of algebraic specifications both as a means of selecting

test cases for objects and for validating the results of testing. Different test cases are generated from

algebraic ‘‘terms’’ satisfying the axioms in the specification. A set of automatic tools have been

developed integrating test case generation with the execution and verification of test results.

Unfortunately, there is a fundamental problem in the theory behind the equivalence of terms, and the

proposed heuristics for the selection of terms is only formulated from limited empirical results.

In this paper, we propose an improved theoretical foundation for Frankl’s functional approach, and

a more efficient strategy for selecting equivalent terms as test cases. Our strategy reduces the domain

of test case selection from a polynomial function of the set of axioms to a linear function. On the

other hand, we formally prove that the testing coverage is as good as that proposed by Frankl et al.

2. A SUMMARY OF FRANKL’S FUNCTIONAL TESTING APPROACH

In their functional testing approach, Frankl et al. use algebraic specifications [17, 18, 19] of

abstract data types (ADTs) to specify classes in target programs. A series of operations on an ADT is

known as a term (or called a ‘‘word’’ in Frankl et al.) Let u
1

and u
2

be two terms of an ADT. Let s
1

and s
2

be the respective sequences of operations in a given implementation. According to Frankl et

al., one term is equivalent to another if and only if one can be transformed into the other using axioms

as rewriting rules. The test suite (s
1
, s

2
) rev eals an error of the implementation if u

1
is equivalent to

u
2

but the operation sequences s
1

and s
2

produce observationally different objects.

Based on the above idea, Frankl et al. constructed a set of testing tools called ASTOOT. First of

all, it accepts an algebraic specification and an implementation of the given class. It then accepts a

term u
1
, and generates an equivalent term u

2
. Test drivers are created automatically by a driver

generator to check and execute the operation sequences s
1

and s
2

corresponding to u
1

and u
2
,

respectively. Finally, the results of the executions of s
1

and s
2

are compared. If they do not give the

same observational result, an error is found.

In Frankl’s approach, test cases are generated by a compiler and a simplifier. The compiler

translates the two sides of each axiom of an algebraic specification into a pair of ADT trees as a

transformation rule. A conditional axiom in the specification will give rise to a branch in the ADT

tree. The simplifier inputs an original term u
1

provided by the user, translates it into an ADT tree, and

applies the transformation rules in the form of the pairs of ADT trees to obtain an equivalent term u
2
.

Tw o important problems are raised: How do we select an original term to be input to the simplifier,

and how do we select paths through the resulting ADT trees, in order to increase the likelihood of

exposing errors? To explore these problems, Frankl et al. performed two case studies, testing

erroneous implementations of priority queues and sorted lists. After running several thousand test

cases, they recommended the following tentative guidelines on the generation of test cases:
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(i) Select long original terms, with various ratios of different operations.

(ii) For the case of conditional axioms, choose a variety of parameters so that all possible paths in the

ADT tree would be traversed.

3. EVALUATION OF FRANKL’S APPROACH

There are a number of merits in Frankl’s functional approach and the associated tools:

(a) An integrated set of automatic tools are provided for test case generation, test driver generation,

test execution, and test checking.

(b) After running a program with a test case, we must examine the result of execution against the

specification of the program. This so called oracle problem is a major concern in program

testing. The use of algebraic specifications is an elegant solution.

(c) Frankl’s approach takes a suite of methods as a test case, instead of taking an individual method.

This concept is especially useful in object-oriented programming, where the sequence of events

does not depend on a predefined calling method but on a suite of messages passing among

objects.

There are, however, some problems in Frankl’s approach:

(i) The definition of the equivalence of terms has a fundamental problem. Consider, for example, the

two terms ‘‘([5] [1] [4] [2]).sorting’’ and ‘‘([4] [5] [2] [1]).sorting’’ in a

specification for bubble sort (see Example 1 in the next section). They are regarded by most

people as equivalent, and they also produce equivalent results when implemented correctly.

However, they cannot be transformed into one another by left-to-right rewriting rules.

Furthermore, transformation using axioms as rewriting rules is uni-directional. Thus a term u
1

being equivalent to u
2

would imply that u
2

is not equivalent to u
1
. Frankl’s papers are based on

this fallacious definition.

(ii) The guidelines on the selection of equivalent test cases are supported only by two empirical

studies, do not have any theoretical basis, and hence provide no guarantee of effectiveness.

4. AN AXIOM-BASED STRATEGY FOR SELECTING EQUIVALENT TEST CASES

In this paper, we propose a simple mathematically-based strategy for selecting equivalent test

cases.

An algebraic specification of ADTs consists of a syntax declaration and a semantic specification

[18, 19]. The syntax declaration lists the functions involved, plus their domains and co-domains,

corresponding to the input and output variables of methods. The semantic specification consists of

axioms which describe the behavioural properties of the functions. The following is an example of an

algebraic specification. Bubble sort is chosen because it is familiar to most readers.

Example 1

object BUBBLESORT is

importing NAT

sorts Bool List

operations

nil : → List

[ _ ] : Nat → List

sorted : List → Bool

sorting : List → List

_ _ : List List → List [associative identity: nil]
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variables

N N’ : Nat

L L’ : List

axioms

nil .sorted = true

[N].sorted = true ([N] [N’] L).sorted = ([N’] L).sorted and N <= N’

nil .sorting = nil

[N].sorting = [N]

L .sorting = L if L .sorted

(L [N] [N’] L’).sorting = (L [N’] [N] L’).sorting if N’ < N

end

A list of functions on an ADT is called a term if and only if it conforms to the standard syntax

requirements of term algebra [17, 18]. A term can be transformed into another using the axioms of

the specification as progressive left-to-right rewriting rules. A term is said to be in normal form if and

only if no further axiom is applicable. A system of axioms is said to be canonical if and only if every

sequence of rewriting on the same ground term (that is, a term without variables) eventually reaches a

unique normal form, independent of the choice and sequence of rewriting rules used. Thus, any

consistent specification should be canonical.

The following is an improved version of the concept of equivalence:

Definition 4.1. Tw o terms u
1

and u
2

are said to be equivalent (denoted by u
1

∼ u
2
) if and only if

both of them can be transformed by canonical axioms into the same normal form.

For instance, the terms ‘‘([5] [1] [4] [2]).sorting’’ and ‘‘([4] [5] [2] [1]).sorting’’

of Example 1 are equivalent because they can both be transformed into the same normal form

[1] [2] [4] [5].

Furthermore, we would like to introduce a new concept in our paper:

Definition 4.2. Given a canonical system of axioms, a pair of equivalent terms, formed by

replacing all the variables on both sides of an axiom by normal forms, is called a fundamental pair

induced from the axiom.

The following two definitions are adapted from Frankl for completeness:

Definition 4.3. Given a canonical system of axioms, the series of methods corresponding to the

functions in a term is called a sequence of operations corresponding to the term. Tw o such sequences

s
1

and s
2

are equivalent (denoted by s
1

≈ s
2
) if and only if their operations on the same object give

observationally equivalent results.

Definition 4.4. An implementation Ψ, which maps ADTs and functions of a canonical

specification to classes and methods in a programming language, is said to be consistent with respect

to the equivalent terms u
1

∼ u
2

if and only if the corresponding sequences of operations satisfy Ψ(u
1
)

≈ Ψ(u
2
).

Having defined the fundamental concepts, we recommend a strategy for test case selection: in order

to test whether an implementation is consistent with respect to equivalent terms, we need only test

fundamental pairs. The testing coverage of fundamental pairs is the same as that of equivalent terms.

In other words, any error revealable by equivalent terms can be revealed by some fundamental pair.

For instance, in Example 1, we need only test fundamental pairs such as

([5] [6] [3] [1] [7] [9]).sorting ∼ ([5] [6] [1] [3] [7] [9]).sorting

and

([1] [3] [5] [6] [7] [9]).sorting ∼ [1] [3] [5] [6] [7] [9].
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We need not test other equivalent pairs such as

([6] [5] [3] [1] [9] [7]).sorting ∼ [1] [3] [5] [6] [7] [9]

or

(( [6] [5]).sorting ([3] [1]).sorting ([9] [7]).sorting).sorting

∼ ([5] [6] [3] [1] [7] [9]).sorting .

Our strategy has a sound mathematical foundation, simple, and efficient. The testing coverage

claim is based on Theorem 4.6 below. The following lemma is required in proving the theorem.

Lemma 4.5. Given a canonical specification, any term u
1

which is not in normal form can be

transformed into a unique normal form u
0

via a series of axioms a
1
, a

2
, ..., a

k
:

a
1

a
2

a
3

a
k−1

a
k

u
1

→ u
2

→ u
3

→ ... → u
k

≈ u
0

such that all the binding variables involved with each step of the transformation are in normal forms.

For example, the term ‘‘([5] [1] [4] [2]).sorting’’ of BUBBLESORT in Example 1 can be

transformed into its normal form [1] [2] [4] [5] as follows:

([5] [1] [4] [2]).sorting

→ ([5] [1] [2] [4]).sorting {using the last axiom with L = [5] [1],

N = [4], N’ = [2], L’ = nil}

→ ([1] [5] [2] [4]).sorting

→ ([1] [2] [5] [4]).sorting

→ ([1] [2] [4] [5]).sorting

→ [1] [2] [4] [5] {using the second last axiom}

The proof of the general case is straightforward.

Theorem 4.6. For a giv en canonical specification, an implementation is consistent with respect to

all equivalent terms if and only if it is consistent with respect to all fundamental pairs.

Proof of Theorem 4.6. Obviously if an implementation is consistent with respect to all equivalent

terms, then it is consistent with respect to all fundamental pairs.

On the contrary, assume that an implementation is consistent with respect to all fundamental pairs.

Let u
1
˜u

2
be any two equivalent terms. Suppose the mapping Ψ denotes the implementation, and

suppose Ψ(u
1
) = s

1
and Ψ(u

2
) = s

2
. We would like to prove that s

1
≈ s

2
.

By Definition 4.1, u
1

and u
2

can be transformed into the same normal form u
0
. Then there exists a

series of axioms a
1
, a

2
, ..., a

k
:

a
1

a
2

a
3

a
k−1

a
k

u
1

→ u
12

→ u
13

→ ... → u
1k

≈ u
0

satisfying Lemma 4.5.

Let Ψ(u
1j

) = s
1j

for j = 2, ..., k, and Ψ(u
0
) = s

0
.

Suppose (without loss of generality) that*

(1) u
1

= f
0
(A

0
).f

1
(A

1
) ... f

i
(A

i
).f

i+1
(A

i+1
) ... f

t
(A

t
)

where A
j
is either null or a tuple of parameters, containing only ground terms,

* Consider, for example, the class of stacks. Suppose u
1

in (1) is new .push(4).pop .push(2). Then f
0
(A

0
) = new, f

1
(A

1
) =

push(4), f
2
(A

2
) = pop, f

3
(A

3
) = push(2). Suppose a

1
in (2) is O

x
.push(I).pop = O

x
. Then O

x
matches new, push(I)

matches push(4), and pop matches pop . Hence, u
12

= new .push(2).
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(2) a
1

is O
x
.f

1
(X

1
)...f

i
(X

i
) ... O

x
.g

1
(Y

1
) ... g

j
(Y

j
)

where O
x

is null or an object variable, X
2
, ... , X

i
, Y

1
, ... , Y

j
are either null or tuples of parameters

containing variables and/or ground terms.

Then

u
12

= f
0
(A

0
).g

1
(B

1
) ... g

j
(B

j
).f

i+1
(A

i+1
) ... f

t
(A

t
)

s
1

= Ψ(f
0
(A

0
)) .Ψ(f

1
(A

1
)) ... Ψ(f

i
(A

i
)) .Ψ(f

i+1
(A

i+1
)) ... Ψ(f

t
(A

t
))

s
12

= Ψ(f
0
(A

0
)) .Ψ(g

1
(B

1
)) ... Ψ(g

j
(B

j
)) .Ψ(f

i+1
(A

i+1
)) ... Ψ(f

t
(A

t
))

Since the series of axioms a
1
, ..., a

k
satisfy Lemma 4.5,

f
0
(A

0
).f

1
(A

1
)...f

i
(A

i
) ∼ f

0
(A

0
).g

1
(B

1
) ... g

j
(B

j
)

is a fundamental pair induced from a
1
. According to the assumption that the implementation is

correct with respect to all fundamental pairs, we have

Ψ(f
0
(A

0
)) .Ψ(f

1
(A

1
)) ... Ψ(f

i
(A

i
)) ≈ Ψ(f

0
(A

0
)) .Ψ(g

1
(B

1
)) ... Ψ(g

j
(B

j
)).

Thus,

Ψ(f
0
(A

0
)) .Ψ(f

1
(A

1
)) ... Ψ(f

i
(A

i
)) .Ψ(f

i+1
(A

i+1
)) ... Ψ(f

t
(A

t
))

≈ Ψ(f
0
(A

0
)) .Ψ(g

1
(B

1
)) ... Ψ(g

j
(B

j
)) .Ψ(f

i+1
(A

i+1
)) ... Ψ(f

t
(A

t
))

That is, s
1

≈ s
12

. By the same argument, s
12

≈ s
13

≈ ... ≈ s
1k

≈ s
0
. Therefore, s

1
≈ s

0
.

Similarly, we can prove that s
2

≈ s
0
. Hence s

1
≈ s

2
.

5. CONTRIBUTIONS OF OUR STRATEGY

Compared with Frankl’s guidelines for selecting equivalent test cases, our strategy has the

following advantages:

(a) Our strategy is based on a sound theoretical foundation and mathematical proof.

(b) The domain of test case selection in Frankl’s guidelines is the whole set of all pairs of equivalent

terms, but the domain of selection in our strategy is only the set of fundamental pairs induced

from the axioms. The original domain is a polynomial function of the set of axioms, whereas the

proposed domain is only a linear function of the set. Although our domain of selection is much

less than that of Frankl’s, our testing coverage is the same. Hence our strategy is more efficient.

Furthermore, our strategy is more precise than Frankl’s guidelines, and hence easier to be

performed.

(c) Our recommendation is very natural since experienced implementors would start their tests with

fundamental pairs even in the absence of formal theory. Our strategy simply says that when

implementors are satisfied with the test results with respect to fundamental pairs, they do not need

to test other equivalent terms.

(d) Given an original term u
1
, Frankl’s approach searches and reduces an ADT tree to generate a term

u
2

such that u
1

∼ u
2
. ‘‘The size of the tree may be exponential in the size of the initial sequence.

To deal with this complexity, the simplifier can operate either in batch mode, which builds the

entire tree, or in interactive mode, which allows the user to selectively guide the construction of a

subtree.’’ [7] The interactive method can only give partial solution, whereas the batch method

simply hides the complexity problem from the user. Our strategy avoids the complexity problem

entirely by generating equivalent test cases directly from the two sides of each axiom, rather than

searching and reducing the ADT trees.

(e) Using our strategy, two of Frankl’s tools, the compiler and simplifier, can be replaced by a simple

generator which induces equivalent test cases directly from the two sides of each axiom. This will
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greatly simplify the system.

6. CONCLUSION

In this paper, we take a fresh look at Frankl’s functional approach for the testing of object-oriented

programs. We find that, although the approach has many general merits, it is based on a fallacious

foundation, and the heuristics for the selection of equivalent test cases are supported only by two

empirical studies. Hence the correctness and effectiveness of the guidelines are not guaranteed. We

define the concept of a fundamental pair as a pair of equivalent terms which are formed by replacing

all the variables on both sides of an axiom by normal forms. We prove that an implementation is

consistent with respect to all equivalent terms if and only if it is consistent with respect to all

fundamental pairs. In other words, the testing coverage of fundamental pairs is identical to that of all

equivalent terms, and hence we need only concentrate on the testing of fundamental pairs. We hav e

reduced the domain of test cases from a polynomial function of the set of axioms to a linear function.

Our strategy is mathematically based, simple, and much more efficient. Furthermore, it underscores

the usefulness of axiom-based specifications.

We note that there may be infinitely many fundamental pairs induced from the same axiom by

assigning different normal forms to the variables. Exhaustive testing is of course impossible. How

should we select the fundamental pairs, and how does the selection affect the testing coverage? How

do we verify whether two resulting objects are observationally equivalent? We are investigating into

the application of regularity and uniformity hypotheses as proposed in [15, 16] to further enhance our

strategy.
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