
The 5th International Congress on Computational and Applied Mathematics (ICCAM ’92),

Leuven, Belgium (1992)

To wards a 3-dimensional Net-based

Object-Oriented DeveLopment Environment

(NOODLE)1

T.H. Tse2 and C.P. Cheng

Department of Computer Science

The University of Hong Kong

Pokfulam Road

Hong Kong

(Email addresses: thtse@cs.hku.hk)

ABSTRACT

Object-oriented analysis and design methodologies are considered as the most popular software

development methods for the 1990s. Numerous graphic notations have already been designed for this

purpose. A common drawback, however, is that they have been developed informally. There is no

theoretical framework enabling us to define precisely the object-oriented concepts involved, to solve

concurrency problems and to verify the correctness of the implementation. Although a number of

formal object-oriented specification languages have been proposed by academics, they are not linked

with the popular methodologies. Practitioners are reluctant to use these unfamiliar formal tools.

We propose a 3-dimensional net structure behind object-oriented analysis and design. The

concepts of classes, objects, inheritance, overloading and message passing can be modelled within the

framework. Some of the concepts can be visualized as a projection of the general model into

2-dimensional space. The model can be implemented in terms of existing object-oriented graphic

notations. A development environment using these notations as front-end user-interface can be

developed so that the formal framework is transparent to users.

1. This project is supported in part by a grant of the Research Grants Council and a CRCG grant of

the University of Hong Kong.

2. On leave at the Programming Research Group, University of Oxford.

1

Administrator
 HKU CS Tech Report TR-92-05

1. INTRODUCTION

A good development methodology is the key tow ards successful computer systems. It should be

user-friendly so that users may feel comfortable in using it and, at the same time, vigorous in its

definition so that validation and verification of systems can be carried out easily [13, 19].

Object-oriented analysis and design have emerged quickly with quite a number of graphic

notations and methodologies being proposed [5, 7, 8, 18, 20, 4]. User-friendliness is the main target

and focal point. One common drawback is that they hav e been developed informally. Systems cannot

be defined precisely and systems implementation cannot be validated and verified without a formal

background. On the other hand, a number of formal object-oriented specification languages have been

developed, independently of software development methodologies [1, 11, 17]. Practitioners are,

however, rather reluctant to use these formal tools since unfamiliar languages are involved [3].

To bridge the gap between object-oriented graphic notations and formal languages, a 3-dimensional

Net-based Object-Oriented DeveLopment Environment (NOODLE) is proposed. One of the

advantages of net theory is that it has both graphic and algebraic representations. Hence, models

defined by net theory can cater for both visualization and formalism. General object-oriented

concepts including classes, objects, inheritance, overloading and message passing are modelled so that

any object-oriented notations can be mapped into this formal framework.

In Section 2, we will briefly describe object-oriented features. The justification of using net theory

as our modelling language will be described in Section 3, followed by an outline of net theory, the

framework behind the model. In Section 5, we will describe with examples details of the NOODLE

model. Both the graphic and algebraic representations of the model will be given.

2. OBJECT-ORIENTEDNESS

We would like to introduce the important concepts which are generally accepted as the features of

object-oriented development.

(i) Classes

A class refers to a group of objects which share similar properties. Such properties include a

set of attributes and a set of methods. Attributes represent the states of the object and methods

are operations or services provided by the class. Hence, methods are the only interfaces through

which the corresponding objects can be accessed while values of attributes can only be accessed

and transformed by methods of the class. For example, we can have a class car which has

attributes like speed and cylinderCapacity, and methods like start, accelerate and brake.

(ii) Objects

An object is an instance of a class. Objects of the same class differ from one another by their

own identities and states. Objects like FordEscort, HondaCivic and AustinRover are all instances

of the class car.

(iii) Inheritance

Inheritance refers to the relationship between two classes whereby one specific class acquires

the structure of another. Classes which acquire the structures of others are called subclasses and

classes whose structures are being acquired are called superclasses. For example, we can have a

2

class fourWheelDriveCar as a subclass of the class car since a fourWheelDriveCar is a

specialization of a car.

(iv) Overloading

It refers to the ability to use the same name to refer to different methods defined in classes

which have a superclass-subclass relationship. Thus, a method likes accelerate in the class

fourWheelDriveCar can have the same name as that in the class car but different meaning since

four wheels are involved instead of two.

(v) Message Passing

Communication between objects is achieved through message passing. A message is a

request from object A to object B to perform one of B’s operations. A and B may also be called

an actor and a server respectively. Details of operations performed by B are not known to A. For

example, when accelerating, a message increaseRevolutionRate, which is responsible for

increasing the rate of revolution of the wheels, may have to be passed from an object of the class

car to another object of the class accelerator. Messages can also be passed within an object such

that requests of operations are sent from and received by methods belonging to the same object.

3. JUSTIFICATIONS OF USING NET THEORY

A model captures important characteristics of a real world system which can then be understood

through the manipulation and study of various components, features and activities of the relatively

simpler model. Thus, important characteristics, which at least include the structural and dynamic

properties, of systems should be modelled as closely and as precisely as possible. In NOODLE, we

have chosen predicate/transition nets, a type of high level Petri nets, to model features in object-

oriented system development. Net theory based on such nets is a powerful formal modelling

language. It is especially good in modelling systems featuring parallelism, concurrency and dynamic

properties. The following are the reasons for choosing net theory as our modelling language.

(i) Theoretically speaking, an object-oriented system consists of a number of distinct objects, which

run independently at the same time unless interacted on by other objects. Net theory is

especially good in modelling systems which involve distributed components.

(ii) Nets have a formal syntax and semantics by which both the structural and dynamic properties of

systems can be modelled. At the same time, nets have a graphic representation which preserves

the pictorial aspect of popular object-oriented development notations and makes the language

more user-friendly.

(iii) One deficiency of structured analysis and design techniques [9, 14] is that different graphic

notations are required in different system development stages. For instance, a number of tools

such as data flow diagrams, data dictionaries and mini-specifications are being used in the

analysis phase, and structured charts are used in the design phase. As a result, a tool need to be

converted into another during systems development. Consistency problems often arise. This

deficiency is mainly due to the fact that one single tool or notation is not powerful enough to

describe both structural and dynamic properties of systems. Since nets can model both structural

and dynamic properties, there is no need for a second modelling tool.

3

(iv) Object-oriented development emphasizes both data and operations. But most of the graphic

tools can only model one aspect. For example, data flow diagrams show the transitions between

processes, and state-transition diagrams show the transitions between states of data. Nets, on the

other hand, model data with circles and processes with bars on the same level of importance.

(v) Unlike structured development methods, which emphasize only top-down design, object-

oriented development favour also bottom-up techniques. In net theory, the concepts of net

refinement and abstraction can support both top-down and bottom-up techniques.

(vi) Class reuse is one of the features of object-oriented development. Embedding of nets can

support this concept by connecting reusable parts to newly defined parts.

(vii) The instantiation of objects requires a specific class definition to be extracted from the class

hierarchy. This can be supported by the concept of sectioning in net theory.

A few other projects [12, 2, 6] similarly adopt a net approach to model object-oriented systems.

Unlike our comprehensive approach, however, these project either do not model inheritance, or do so

only at a syntactic level.

4. NET THEORY

4.1 Basic Definition of Petri Nets

The definition of a Petri net [15, 16] can be divided into two parts, structural and dynamic:

(a) The structure of a Petri net is composed of three types of components: a set of places P, a set of

transitions E and a set of flow relations F between elements of the sets P and E. Thus, C =

(P, E; F) is a Petri net if and only if

(i) P ∩ E = ∅ and P ∪ E ≠ ∅

(ii) F ⊆ (P × E) ∪ (E × P)

Graphically, we represent places by circles, transitions by bars, and flow relations by arcs

between circles and bars. Figure 1(a) shows an example of a simple Petri net.

(b) Dynamically, tokens can be put into places to denote that the corresponding condition has been

satisfied. Firing of transitions move tokens from places to places. For e ∈ E, let

(i) •e denote the pre-condition {a ∈ P | <a, e> ∈ F}

(ii) e• denote the post-condition {a ∈ P | <e, a> ∈ F}

(iii) c be a subset of P, called a case

Then e ∈ E is said to be c-enabled if and only if •e ⊆ c and e• ∩ c = ∅. e can be fired if it is c-

enabled. c′ = (c \ •e) ∪ e• is called the follower case of c under e. In Figure 2(a), for example, t1

is { p1, p3}-enabled and hence fired. { p2, p4} is the follower case, as shown in Figure 1(b).

Refinement of places and transitions is also allowed. A net C′ = (P′, E′; F′) is a refinement of C if

and only if

4

(i) P ⊆ P′

(ii) E ⊆ E′

(iii) F = F′ ∩ ((P ∪ E) × (P ∪ E))

(iv) There exists an abstraction function g: (P′ ∪ E′) → (P ∪ E) which maps places or transitions of

the refinement C′ to places or transitions of the net C.

4.2 Definition of Predicate/Transition Nets

Predicate/transition nets [16, 10] are high-level Petri nets in which the movement of tokens is

replaced by the valuation of predicates. In order to define this kind of nets, we need the concepts of

algebras and terms.

(i) Let D be an arbitrary set and let Φ be a set of partial operations σ: Dn → D. Then D = (D, Φ) is

called an algebra. In particular, Φ may contain constant operations d: D0 → D, which may be

identified with the elements of D.

(ii) Let X be a set of variables. The set ΣD(X) of terms of D over X is the smallest set of expressions

such that

(a) X ⊆ ΣD(X)

(b) For any terms t1, ..., tn ∈ ΣD(X) and for any operation σ: Dn → D ∈ Φ, the term σ(t1, ..., tn)

∈ ΣD(X). In particular, an element d ∈ D, which can be considered as a constant operation

d: D0 → D, is a term.

(iii) A mapping β: X → D is called a valuation of X. It induces, canonically, a mapping

β: ΣD(X) → D by β(σ(t1, ..., tn)) = σ(β(t1), ..., β(tn)).

Using these notions, we are now able to define the structure of predicate/transition nets.

C = (P, E; F, D, λ, c) is called a predicate/transition net if and only if

(i) (P, E; F) is a net. The elements of P and E are called predicates and events, respectively.

(ii) D is an algebra.

(iii) λ: F → 2ΣD(X) \ {∅} is a mapping.

(iv) There exists a mapping c: P → 2D, known as the initial case of C.

The dynamic part of predicate/transition nets is defined as follows:

(i) Let e ∈ E and let β be a valuation such that, for all f ∈ F ∩ ((P × {e}) ∪ ({e} × P)), if t1, t2 ∈ λ(f)

and t1 ≠ t2, then β(t1) ≠ β(t2). For a given mapping c: P → 2D, known as a case, e is called c-

enabled with β if and only if

(a) β(λ(<p, e>)) ⊆ c(p) for all p ∈ •e

(b) β(λ(<e, p>)) ∩ c(p) = ∅ for all p ∈ e•

5

(ii) An ev ent e which is c-enabled with β yields a follower case c′ of c under β by

c′(p) =

c(p) \ β (λ(< p, e >))

c(p) ∪ β (λ(< e, p >))

c(p) \ β (λ(< p, e >)) ∪ β (λ(< e, p >))

c(p)

iff p ∈ •e \ e•

iff p ∈ e• \ •e

iff p ∈ •e ∩ e•

otherwise

5. THE NOODLE MODEL

In this section, we are going to present the way how each of the object-oriented ingredients is

modelled.

5.1 Classes

We can define the concept of classes using algebras and terms. Let A be a set of attributes, B be a

set of messages and E be a set of methods. C = (P, E; F, D, λ) is a class if and only if

(i) (P, E; F) is a net such that

(a) P = A ∪ B

(b) F = G ∪ H, where G ⊆ (A × E) ∪ (E × A) is a binary relation showing the information flows

between attributes and methods of the class, and H ⊆ (B × E) ∪ (E × B) is a binary

relationship showing the messages passing to and from methods.

(ii) D = (D, Φ) is an algebra, where D is the set of possible message parameter values and Φ is the

set of partial operations on D.

(iii) λ: F → 2ΣD(X) \ {∅}, where X is a set of variables to which message parameters are applied.

Methods can be refined using the concept of net refinement. Thus, e = (MP, ME; MF, MD, µ) ∈ E

is the refinement of a method if and only if the following conditions are satisfied:

(i) (MP, ME; MF) is a net such that

(a) MP is the set of local states and ME is the set of local processes of the method.

(b) MF ⊆ (MP × ME) ∪ (ME × MP) is a binary relation which shows the information flows

between local states and processes within the method.

(ii) MD = (MD, Γ) is an algebra, where MD is the set of possible message parameters and states for

the method and Γ is the set of partial operations on MD.

(iii) µ: MF → 2ΣMD(MX) \ {∅}, where MX is a set of variables to which actual parameters and states

are applied.

According to this concept of method refinement, a refined class can now be defined. Let C =

(P, E; F, D, λ) be a class, and let ei = (MPi , MEi; MFi , MDi, µ i) ∈ E for i = 1, ... n, where n is the

number of methods in C. Then C′ = (P′, E′; F′, D′, λ′) is the refined class of C if and only if

6

(i) P′ = P ∪ MP1 ∪ ... ∪ MPn

(ii) E′ = ME1 ∪ ... ∪ MEn

(iii) F′ = F ∪ MF1 ∪ ... ∪ MFn

(iv) D′ = ((D ∪ MD1 ∪ ... ∪ MDn), (Φ ∪ Γ1 ∪ ... ∪ Γn)), where MD1, ..., MDn are the sets of

possible message parameters and states for the corresponding methods, and each Γi is the set of

partial operation on MDi .

(v) λ′: F′ → 2Σ
D′(X′) \ {∅}, where X′ = X ∪ MX1 ∪ ... ∪ MXn and the MXi’s are set variables.

Moreover, the refined class C′ can be mapped to the class C under the abstraction function

g: (P′ ∪ E′) → (P ∪ E).

For example, Figure 2 shows the graphic representation of the class list. The components of the

class are encapsulated by a box within which methods and attributes are defined. Methods are

represented by transitions and attributes are represented by predicates. Flow relationships between

transitions and predicates represent the flow of messages and parameters. We can see that three

methods, namely initialize, get and put, and one attribute, namely items, are defined for list.

Moreover, messages, together with parameters, are defined through predicates. Thus, each of the

methods initialize and put have one input message predicate, namely initializeList and putList

respectively, through which messages and parameters are sent to the class. In addition, an output

message predicate returnedItem is defined for the method get to return results to the message

originator.

This graphic representation can be transformed into the following algebraic representation: list =

(P, E; F, D, λ), where

(i) P = A ∪ B for A = {items} and

B = {initializeList, putList, getList, returnedItem}

(ii) E = {initialize, put, get}

(iii) F = {<initializeList, initialize>, <initialize, items>, <putList, put>, <itmes, put>, <put, items>,

<getList, get>, <items, get>, <get, items>, <get, returnedItems>}

(iv) D = (D, Φ) is an algebra, where D = A ∪ B ∪ N for A = the set of possible list items, B = the set

of possible list values, N = the set of natural numbers and Φ = {put, get, item, Λ}.

(v) λ is a mapping which maps each arc to one or more operations such that

λ(<initializeList, initialize>) = {empty}

λ(<initialize, items>) = {l}

λ(<putList, put>) = {i, p}

λ(<items, put>) = {l}

λ(<put, items>) = {put(i, l, p)}

λ(<getList, get>) = {p}

λ(<items, get>) = {l}

λ(<get, items>) = {get(l, p)}

λ(<get, returnedItem>) = {item(l, p)}

7

After defining the class list using both graphic and algebraic representations of NOODLE, methods

in the class can now be defined through net refinement. Figure 3 shows the graphic representation of

the refined method put of the class list. Like a class, a method is also encapsulated by a box within

which local processes are represented by transitions and states by predicates. Within the method put,

we define three local processes readItem, readPosition and putItem, and two local states position and

item. The methods initialize and get can be refined in a similar way.

Apart from a graphic representation, methods can also be defined in an algebraic form. For

example, put ∈ E is refined into (MP put , ME put ; MF put , MDput, µ put), where

(i) MP put = {item, position}

(ii) ME put = {readItem, readPosition, putItem}

(iii) MF put = {<readItem, item>, <readPosition, position>,

<item, putItem>, <position, putItem>}

(iv) MDput = (MD put , Γput) is an algebra such that MD put = A ∪ N for A = the set of list items, N =

the set of natural numbers and Γput = ∅

(v) µ put is a mapping which maps each arc to one or more operations such that

µ put (<getItem, item>) = {i}

µ put (<getItem, position>) = {p}

µ put (<item, putItem>) = {i}

µ put (<position, putItem>) = {p}

After all the methods of the class list have been refined, a refined class list′ can be defined by

combining the original list definitions with the definitions of the refined methods. The algebraic

representation of the refined class list′ is (P′, E′; F′, D′, λ′), where

(i) P′ = P ∪ MP put ∪ MPget ∪ MPinit

(ii) E′ = ME put ∪ MEget ∪ MEinit

(iii) F′ = F ∪ F put ∪ Fget ∪ Finit

(iv) D′ = ((D ∪ MD put ∪ MDget ∪ MDinit), (Φ ∪ Γput ∪ Γget ∪ Γinit))

(v) λ′ = F′ → 2Σ
D′(X′) \ {∅}, where X′ = X ∪ MX put ∪ MXget ∪ MXinit

Moreover, the refined class list′ can be mapped to the class list under the abstraction function

g: P′ ∪ E′ → P ∪ E such that g(x) = put, g(y) = get and g(z) = initialize, where x ∈ MP put ∪ ME put ,

y ∈ MPget ∪ MEget and z ∈ MPinit ∪ MEinit .

5.2 Objects

Objects are instances of classes. They are the running entities of their corresponding class

definitions. Their structures are the same as their corresponding classes with the difference that initial

cases are provided for objects. Each initial case for a class is the state with which the object starts in

the first place. Thus, objects can be defined as initial cases in addition to their corresponding class

definitions. O = (C, c) is an object if and only if

8

(i) C is a class

(ii) c: P → 2D is an initial case of the object O, where D is the underlying set for the algebra D in the

class C.

For example, an object l, which is an instance of the class list, can be instantiated from the class list

by first making a copy of the class list and then providing an initial case for the particular instance.

Algebraically speaking, the object l can be initially defined as (list, c), where

(i) list = (P, E; F, D, λ)

(ii) c = Λ .

5.3 Inheritance and Overloading

Inheritance is a relationship between two classes C and CC such that CC acquires the structure of

C. Thus, class CC makes use of the methods and attributes of class C and provides services inherited

from C. C is known as the superclass of CC and CC is called the subclass of C. On the other hand,

inheritance supports overloading in the sense that some methods and attributes of class C can be

redefined in class CC and thus provide services which have the same name but perform differently.

Let us first define the relationship between superclasses and subclasses. Let C = (P, E; F, D, λ) and

CC = (PP, EE; FF, DD, λλ) be two different classes such that

(i) P = A ∪ B, PP = AA ∪ BB

(ii) F = G ∪ H, FF = GG ∪ HH

(iii) D = (D, Φ), DD = (DD, ΦΦ)

(iv) λ: F → 2ΣD(X) \ {∅}, λλ: FF → 2ΣDD(XX) \ {∅}

If CC is inherited from C, i.e., if CC is a subclass of C, then

(i) A ⊆ AA

(ii) E \ {ei ∈ E | ei is an overloaded method} ⊆ EE,

(iii) G ⊆ GG

(iv) D ⊆ DD and Φ ⊆ ΦΦ

(v) X ⊆ XX

Further conditions are required for the inheritance and overloading of methods. Suppose eCC ∈ E

is a method in class CC inherited from e ∈ E in class C.

(i) If e only accepts input messages through the predicate mi without returning messages to the

originators, we add the following predicates and flow relations to subclass CC (see Figure 4):

mi
CC ∈ PP and <mi

CC , eCC> ∈ FF

ei ∈ PP and <eCC , ei> and <ei , e> ∈ FF

9

(ii) If e accepts input messages through the predicate mi and returns messages to the originators

through the predicate mo, we add the following predicates and flow relations to subclass CC (see

Figure 5):

mi
CC ∈ PP and <mi

CC , eCC> ∈ FF

ei ∈ PP and <eCC , ei> and <ei , e> ∈ FF

eo ∈ PP and <e, eo> and <eo, eCC> ∈ FF

mo
CC ∈ PP and <eCC , mo

CC> ∈ FF

and the refinement of eCC is (MP, ME; MF, MD, µ), where MP = ∅, MF = ∅ and ME =

{e′
CC , e′′

CC} for e′
CC being a process accepting input messages and e′′

CC being a process returning

messages.

Now, let e ∈ E be a method defined in class C and overloaded by a method eCC ∈ EE defined in

class CC. Like defining a new method in any class, a transition eCC and corresponding messages

paths must be added in subclass CC. Moreover, instead of accessing attributes through methods of

superclasses, like inherited methods, the method eCC of the subclass accesses the corresponding

attributes directly. That is, direct connections between the transition eCC and the corresponding

predicates are added. Like inherited methods, two categories of overloaded methods must be

considered:

(i) If e only accepts input messages through the predicate mi without returning messages to the

originators, and if a ∈ P is the attribute accessed by e, we add the following predicate, transition

and flow relations to subclass CC (see Figure 6):

mi
CC ∈ PP and <mi

CC , eCC> ∈ FF

<eCC , a> ∈ FF if <e, a> ∈ F

<a, eCC> ∈ FF if <a, e> ∈ F

(ii) If e accepts input messages through the predicate mi and returns messages to the originators

through the predicate mo, and if a ∈ P is the attribute accessed by e, we add the following

predicates, transition and flow relations to subclass CC (see Figure 7):

mi
CC ∈ PP and <mi

CC , eCC> ∈ FF

<eCC , a> ∈ FF if <e, a> ∈ F

<a, eCC> ∈ FF if <a, e> ∈ F

mo
CC ∈ PP and <eCC , mo

CC> ∈ FF

In addition, the set of functions for the algebra DD is transformed by augmenting the set of operations

and possibly the set of possible message parameters for the algebra D with operations for the

additional flow relations defined above and possible message parameters.

Let us look at an example. The class list is a general list in which items of any kind can be put into

the list. On the other hand, the class nameList is a special case of list such that elements are restricted

to names only. Figure 8 shows how nameList and list are represented graphically in a 3-dimensional

fashion. The definition of the superclass list lies on the top platform while the subclass nameList lies

on the bottom platform of the cube. Figure 9(a) illustrates the fact that the method initialize of the

class list is inherited by the subclass name list since the initialization process for both classes are the

same. A transition initializenameList is thus added to the bottom platform, together with an input

messages path towards it and a connection path towards the transition initialize. In Figures 9(b) and

10

9(c), the methods put and get of list are overloaded by nameList since put and get of list cater for all

kinds of list elements while the put and get methods of the class nameList cater for records of names

only. Transitions putnameList and getnameList are thus added to the bottom platform, together with

input and output messages paths and access paths which directly link the transitions and the

corresponding attributes. These constructions are in fact part of an overall NOODLE model of

classes. They show the contents of classes as well as the class hierarchy. Visualization is made

simple by showing only the components on selected 2-dimensional planes. This can be achieved

using the proposed development environment.

The corresponding algebraic representation of the class nameList is (P, E; F, D, λ), where

(i) P = {items, initializeListnameList , putListnameList , getListnameList ,

returnedItemnameList}

(ii) E = {initializenameList , putnameList , getnameList}

(iii) F = {<initializeListnameList , initializenameList>,

<putListnameList , putnameList>, <items, putnameList>,

<putnameList , items>, <getListnameList , getnameList>,

<items, getnameList>, <getnameList , getItemnameList>,

<getnameList , items>}

(iv) D = (D, Φ) is an algebra, where D = A ∪ B ∪ N for A = the set of possible list items, B = the set

of possible list values, N = the set of positive integers and Φ = {put, get, item, Λ}

(v) λ is a function which maps each arc to one or more operations such that

λ(<initializeListnameList , initializenameList>) = {Λ}

λ(<initializenameList , initializei>) = {Λ}

λ(<initializei , initialize>) = {Λ}

λ(<initialize, items>) = {l}

λ(< putListnameList , putnameList>) = {i, p}

λ(<items, putnameList>) = {l}

λ(< putnameList , items>) = { put(i, l, p)}

λ(<getListnameList , getnameList>) = {p}

λ(<items, getnameList>) = {l}

λ(<getnameList , getItemnameList>) = {item(l, p)}

λ(<getnameList , items>) = {get(l, p)}

5.4 Message Passing

Communication between objects is achieved through message passing. The NOODLE definition

of message passing can be partitioned into two parts. The static part is the definition of all possible

message paths. The dynamic part shows when and what messages are passed.

11

For the static part, each message path is modelled by connecting the corresponding transitions by a

predicate. Messages can be classified into two categories:

(i) For Messages sent from one Object to Another

Let O = (C, c) and OO = (CC, cc) be two different objects where C = (P, E; F, D, λ) and CC =

(PP, EE; FF, DD, λλ) are classes. The possible messages paths between the two objects consist

of the following:

(a) A set of predicates B ∩ BB, where B is the set of messages in P and BB is the set of messages

in PP

(b) A set of arcs {<•x, x> | x ∈ B ∩ BB} ∪ {<x, x•> | x ∈ B ∩ BB}

(ii) For Messages within an Object

Let e = (MP, ME; MF, MD, µ) and ee = (MPP, MEE; MFF, MDD, µµ) be two methods in an

object. The possible messages paths between them consist of the following:

(a) A set of predicates MP ∩ MPP which represents the possible messages

(b) A set of arcs {<•x, x> | x ∈ B ∩ BB} ∪ {<x, x•> | x ∈ B ∩ BB}, where B is the set of

messages for e and BB is the set of messages for ee

Dynamically, the passing of messages can simply be defined by the standard firing rules of

predicate/transition nets. A message can only be passed to the destination if the method of the

destination is enabled.

In Figure 10, for example, a teacher wants to get a student name from a name list. Thus two

methods, getName and get are involved and they belong to the objects teacher and nameList,

respectively. The object teacher collects a name by performing the method getName which requires a

service that releases a name from the object nameList. Thus, the method getName of the object

teacher initiates and sends a message requestName to the object nameList and requests for the service

get, which releases a student name from the list of names and sends it back to the object teacher

through the message predicate returnName.

Algebraically speaking, we can define the possible message paths between the two objects teacher

= (P, E; F, D, λ, c) and nameList = (PP, EE; FF, DD, λλ, cc), thus:

(i) The set of predicates P ∩ PP = {requestName, returnName}

(ii) The set of arcs {<getName, requestName>, <requestName, get>, <get, returnName>,

<returnName, getName>}

After defining the message paths between the two methods getName and get, we hav e to consider

the conditions before and after sending the message. For example, in order to pass a message from

getName to get, since the pre-condition of get is •get = {requestName, item}, the following two

conditions must be satisfied:

(i) β(λ(<requestName, get>)) ⊆ c(requestName)

(ii) β(λ(<items, get>)) ⊆ c(items)

After a message has been successfully sent, the follower case c′(p) will become {returnName, items}.

12

6. CONCLUSION

We hav e defined a 3-dimensional net-based model for object-oriented systems. It maps object-

oriented concepts such as messages and inheritance to predicates and methods to transitions and net

refinements. In particular, the representations for inheritance and messages are unified. In other

words, they are modelled by the same notion in net theory. In terms of graphic outlook, NOODLE is

different from other models in that it is a 3-dimensional model. A CASE tool can be built so that the

model can be manipulated and visualized easily by showing only components on selected

2-dimensional planes.

We propose to further our research by implementing the proposal in a development environment

which incorporates NOODLE into popular object-oriented analysis and design methodologies and

helps to solve problems which arise during the system development process.

REFERENCES

[1] A.J. Alencar and J.A. Goguen, ‘‘OOZE: an object-oriented Z environment’’, in Object-Oriented

Programming: Proceedings of the 5th European Conference (ECOOP 1991), P. America (ed.),

Lecture Notes in Computer Science, vol. 512, Springer, Berlin, Germany, pp. 180−199 (1991).

[2] M. Baldassari and G. Bruno, ‘‘An environment for object-oriented conceptual programming

based on PROT nets’’, in Advances in Petri Nets 1988: Proceedings of the 8th European

Conference on Applications and Theory of Petri Nets, R. Rozenberg (ed.), Lecture Notes in

Computer Science, vol. 340, Springer, Berlin, Germany, pp. 1−19 (1988).

[3] D. Bjorner and L. Druffel, ‘‘Position statement’’, Workshop on Industrial Experience Using

Formal Methods, Nice, France (1990). Also in Proceedings of the 12th IEEE International

Conference on Software Engineering, IEEE Computer Society, Los Alamitos, CA, pp. 264−266

(1990).

[4] M. Blaha and W. Premerlani, Object-Oriented Modeling and Design for Database Applications,

Prentice Hall, Englewood Cliffs, NJ (1998).

[5] G. Booch, Object-Oriented Analysis and Design with Applications, Benjamin / Cummings,

Redwood City, CA (1994).

[6] G. Bruno and A. Balsamo, ‘‘Petri net-based object-oriented modeling of distributed systems’’, in

Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and

Applications (OOPSLA 1986), ACM SIGPLAN Notices 21 (11): 284−293 (1986).

[7] P. Coad and E. Yourdon, Object-Oriented Analysis, Yourdon Press Computing Series, Prentice

Hall, Englewood Cliffs, NJ (1991).

[8] P. Coad and E. Yourdon, Object-Oriented Design, Yourdon Press Computing Series, Prentice

Hall, Englewood Cliffs, NJ (1991).

[9] T. DeMarco, Structured Analysis and System Specification, Yourdon Press Computing Series,

Prentice Hall, Englewood Cliffs, NJ (1979).

[10] H.J. Genrich, ‘‘Predicate / transition nets’’, in Advances in Petri Nets 1986, Part 1: Petri Nets,

Central Models, and their Properties, Lecture Notes in Computer Science and W. Brauer, W.

Reisig, and R. Rozenberg (eds.), vol. 254, Springer, Berlin, Germany, pp. 207−247 (1987).

[11] J.A. Goguen and J. Meseguer, ‘‘Unifying functional, object-oriented, and relational

programming with logical semantics’’, in Research Directions in Object-Oriented Programming,

B. Shriver and P. Wegner (eds.), MIT Press, Cambridge, MA, pp. 417−477 (1987).

13

[12] C.A. Lakos and C.D. Keen, ‘‘LOOPN++: a new language for object-oriented Petri nets’’, in

Proceedings of the 1994 European Simulation Multiconference, Elsevier, Amsterdam, The

Netherlands (1994).

[13] J. Martin, An Information Systems Manifesto, Prentice Hall, Englewood Cliffs, NJ (1984).

[14] M. Page-Jones, The Practical Guide to Structured Systems Design, Yourdon Press Computing

Series, Prentice Hall, Englewood Cliffs, NJ (1988).

[15] J.L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice Hall, Englewood Cliffs,

NJ (1981).

[16] W. Reisig, Petri Nets: an Introduction, EATCS Monographs on Theoretical Computer Science,

vol. 4, Springer, Berlin, Germany (1985).

[17] S.A. Schumann, D.H. Pitt, and P.J. Byers, ‘‘Object-oriented process specification’’, in

Specification and Verification of Concurrent Systems, C. Rattray (ed.), Workshops in Computing,

Springer, Berlin, Germany, pp. 21−70 (1990).

[18] E.V. Seidewitz, ‘‘General object-oriented software development: background and experience’’,

Journal of Systems and Software 9 (2): 95−108 (1989).

[19] T.H. Tse, A Unifying Framework for Structured Analysis and Design Models: an Approach

Using Initial Algebra Semantics and Category Theory, Cambridge Tracts in Theoretical

Computer Science, vol. 11, Cambridge University Press, Cambridge. Hardback edition (1991).

Paperback edition (2009).

[20] A.I. Wasserman, P.A. Pircher, and R.J. Muller, ‘‘The object-oriented structured design notation

for software design representation’’, IEEE Computer 23 (3): 50−63 (1990).

14

Figure 1 An example of the firing of a Petri net

Figure 2 Graphic representation of the class list

Figure 3 Graphic representation of the refinement
of the method put of the class list

Figure 4 An inherited method which only accepts input messages

Figure 5 An inherited method which accepts input messages and returns messages

Figure 6 An overloaded method which only accepts input messages

Figure 7 An overloaded method which accepts input messages and returns messages

Figure 8 Graphical representation of the classes list and namelist

Figure 9 Graphic representations of the methods of the class list

Figure 10 Graphic representation of message passing

