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ABSTRACT
An Open Information Extraction (OIE) system processes textual

data to extract assertions, which are structured data typically rep-

resented in the form of ∐︀subject; relation; object̃︀ triples. An Open

Knowledge Base (OKB) is a collection of such assertions. We study

the problem of canonicalizing an OKB, which is defined as the prob-

lem of mapping each name (a textual term such as “the rockies”,

“colorado rockies”) to a canonical form (such as “rockies”). Galár-

raga et al. [18] proposed a hierarchical agglomerative clustering

algorithm using canopy clustering to tackle the canonicalization

problem. The algorithm was shown to be very effective. However,

it is not efficient enough to practically handle large OKBs due to

the large number of similarity score computations. We propose

the FAC algorithm for solving the canonicalization problem. FAC

employs pruning techniques to avoid unnecessary similarity com-

putations, and bounding techniques to efficiently approximate and

identify small similarities. In our experiments, FAC registers orders-

of-magnitude speedups over other approaches.
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1 INTRODUCTION
A knowledge base (KB) stores factual information about the world

on which inference engines are applied to perform logical deduc-

tion to answer user questions. The Web, with its wide information

coverage, is an important source for KB construction. In recent

years, development in open information extraction (OIE) techniques

has allowed tremendous amounts of web documents to be effi-

ciently and effectively processed to build open knowledge bases

(OKBs, [12, 15]). Specifically, an OIE system, such as TextRunner [9],

ReVerb [14], OLLIE [8] and ClausIE [2], parses sentences in web

documents to extract relational tuples, typically in the form of

∐︀subject; relation; object̃︀ triples. We call such triples assertions. For
example, ClueWeb09

1
is a collection of 500 million English web

pages. When ReVerb is applied to ClueWeb09, around 6 billion as-

sertions are extracted, among which

A1 ∶ ∐︀Barack Hussein Obama; grew up in; Honolulũ︀
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A2 ∶ ∐︀Barack Obama; is the president-elect of; the United States̃︀

are two examples. Each field of an assertion is given by a phrase

called a surface name (or just name for short), which is composed of

one or more words. For example, the subject field of the assertionA1

above is the three-word name “Barack Hussein Obama”. An OKB is

a collection of assertions.

To effectively use an OKB as a repository of information for

logical reasoning, one needs to identify the physical entity to which

a name refers. To this end, entity resolution (ER) is an important

step that aims at determining if names (possibly expressed with

different words) given in different assertions are referring to the

same entity [1, 11]. For example, an entity resolver may determine

that the subject names of assertions A1 and A2, even though they

are different strings, refer to the same entity (president Obama).

Such a resolution would allow one to deduce, for example, the fact:

“the president-elect of the United States grew up in Honolulu.”

One approach to solving the ER problem is entity linking (EL) [5,
10, 17, 20, 23, 24], which is assisted by a curated KB. A curated KB

is a high-precision KB that is manually created. Examples include

Freebase [6], DBpedia [13] and YAGO [25]. Given a name, the idea

is to identify an entity in a curated KB to which the name should

be linked to. Different names are considered to refer to the same

entity if they share the same link target. A big disadvantage of

the EL approach is that curated KBs generally have limited scopes.

Hence, entity linking often fails for tail or emerging entities whose

information is not covered by a curated KB. In fact, it is reported

in [20] that names from one-third of the assertions extracted by

ReVerb from ClueWeb09 cannot be linked to Wikipedia entities.

In [7, 18], Galárraga et al. propose a canonicalization approach

to solve the ER problem. They propose an algorithm (which we will

call GHMS to name it after the authors) that applies canopy clus-

tering and hierarchical agglomerative clustering (HAC) to cluster

assertions. Subject names of assertions that are grouped into the

same cluster are given a canonical form and are considered to refer

to the same entity. It is shown that GHMS is highly effective.

A major drawback of GHMS is its high computational cost. Since

it is based on HAC, a similarity matrix, which is quadratic in size

with respect to the number of assertions, has to be computed. In [18],

the effectiveness of GHMS was demonstrated by applying it to

canonicalize a collection of 35,630 assertions (let us call this the 36K
set). We installed GHMS and repeated their experiment on the 36K

set. The algorithm took 41 minutes to finish. Note that the 36K set

is a very small set. In practice, an OKB would be much larger. For

example, 6 billion assertions are derived from the 500M web pages

in the ClueWeb09 collection. Even with a very aggressive scheme to

filter the 6B assertions to obtain the highest-quality assertions, 2.6M

assertions remain [18]. We applied GHMS to canonicalize these

2.6M ReVerb-extracted assertions. The program did not finish after

10 days on a machine with an Intel i7-6850K CPU and 128GB RAM.

https://doi.org/10.1145/3269206.3271707
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We found that only about 36% of assertions had been processed by

GHMS during that period. With less aggressive filtering of the 6B

assertions, a set of 15M assertions are collected in [14]. This set

is about 6 times as large as the 2.6M-assertion set and thus would

have a bigger coverage of knowledge. Canonicalizing the 15M set,

however, would be even more expensive; A very rough projection

indicates that GHMS would probably take more than 100 days to

complete, which is impractical.

The objective of this paper is to carry out an in-depth analysis of

GHMS and to propose optimization strategies. The goal is to achieve

canonicalization on practically-large OKBs within a reasonable

amount of time. We put forward the FAC algorithm, which is a

highly optimized version of GHMS. In our experiment, FAC took

only 4.4 minutes to canonicalize the 15M-assertion set. This is

orders-of-magnitude faster compared with GHMS.

We remark that an efficient solution to OKB canonicalization

is highly desirable. It enables effective entity resolution, which in

turn, leads to effective logical deduction using an OKB. Moreover,

canonicalization helps identify and remove redundant assertions,

which reduces storage requirement and speeds up query processing.

As web pages are collected in mass and new names are created,

timely canonicalization is essential to keep an OKB up-to-date.

Our major contributions are:

●We evaluate GHMS to identify its computation bottlenecks.

●We apply an inverted index and propose highly effective pruning

techniques to avoid unnecessary similarity score computation.

●We propose bounding techniques to efficiently compute bounds

of similarity scores. These bounds allow small similarities to be

quickly filtered without computing their values exactly.

●We conduct extensive experiments to evaluate our algorithm FAC

over a number of real datasets. Our results show that FAC is highly

scalable and can be used to canonicalize practically-large OKBs.

The rest of the paper is organized as follows. Section 2 sum-

marizes some related works. In Section 3 we formally define the

canonicalization problem and describe the GHMS algorithm. In

Section 4 we present our optimization techniques and the FAC al-

gorithm. In Section 5 we present our experiment results. Finally,

Section 6 concludes the paper.

2 RELATEDWORKS
In this section we briefly describe some representative works on

entity linking, assertion canonicalization and canopy clustering that
are related to our problem and solution.

[Entity Linking] The entity linking (EL) approach to solving the

entity resolution (ER) problem is to link each name (in an assertion)

to an entity of a curated KB. For a survey on EL, see [5, 24]. Some

representative works include [10, 20, 23].

The methods proposed in [10, 23] use Wikipedia as a reference

curated KB and attempt to link each name to a Wikipedia entity

(a wiki-page). Both methods share a select-and-rank framework —

Given a name, candidate wiki-pages are first selected. Then, the can-

didates are ranked based on their relevancies to the name. Finally,

the name is linked to the highest-ranked candidate. The methods

differ in their selection criteria and ranking strategies. Specifically,

in [10], candidate selection is based on string similarity (e.g., be-

tween the name and a wiki-page’s title) with considerations of

acronyms and aliases. Candidate ranking is based of a set of candi-

date wiki-page features, such as an authority score (the number of

hyperlinks that point to the page), and a popularity score (the rank
of the page in a google search), etc.

In [23], candidate selection is based on the anchor text of hyper-
links, which is the clickable, displayed text of a link. Specifically,

a page p is selected as a candidate for a given name n if n occurs

frequently in the anchor text of the hyperlinks that point to page

p. Candidate pages are then ranked based on a set of local features
and a set of global features. Local features are those that measure

the relatedness of the page to the name and the document from

which the name is extracted. Global features, on the other hand,

concern the relatedness among the candidate pages.

[Canonicalization by Clustering] Another approach to solving

the ER problem is by canonicalization, which can be done by cluster-

ing names in assertions. Example systems include ConceptResolver

[19], Resolver [26], and GHMS [18].

ConceptResolver processes names extracted by the NELL sys-

tem [3]. NELL is an OIE system that extracts knowledge by reading

the Web. Each name extracted by NELL is assigned a category, such

as it being a “city” or a “company”. HAC clustering is then applied

to cluster names under each category. Names of the same cluster

are considered to refer to the same entity.

Resolver clusters names given in the assertions extracted by the

OIE system TextRunner. Given two subject names s1 and s2, if they
are contained in two assertions that share the same relation and ob-

ject, the two names are said to have a shared property. The similarity

between s1 and s2 is measured by the number of shared properties

and their string similarity. Resolver applies HAC to cluster subject

names using the above similarity measure. Pruning techniques are

applied to improve the efficiency of HAC clustering.

Our work is based on [18], in which canopy-based HAC is per-

formed to cluster assertions and to canonicalize names. We use

GHMS to refer to the algorithm given in [18]. Details of GHMS will

be given in Section 3.

[Canopy Clustering]HAC is computationally expensive for large

datasets because it requires a large number of similarity compu-

tations. To improve efficiency, McCallum, et al. propose canopy

clustering [4]. The idea is to employ a loose distant threshold and a

fast approximate distant metric to quickly group objects in a dataset

into canopies. Each object can be a member of multiple canopies.

After canopies are created, a more expensive clustering algorithm,

such as HAC is applied to each canopy. Since a canopy is typically

much smaller than the original dataset, clustering within a canopy

is much faster than clustering the whole dataset in one shot. To-

ken blocking, proposed by Papadakis, et al. [22], applies the idea

of canopy clustering to text processing and entity resolution. To

cluster a set of string objects, each string s is tokenized into the

words that are contained in s . A canopy (called a block in [22]) Cw
is created for each word w such that all strings containing w are

collected into Cw . In [16], Fisher et al. propose to control the block

size to improve clustering efficiency — blocks of small sizes are

merged, while large blocks are shrunk.



3 OPEN KB CANONICALIZATION
In this sectionwe formally define theOKB canonicalization problem.

We also describe the GHMS algorithm given in [18].

3.1 Problem Definition
An assertion is a triple of the form ∐︀subject; relation; object̃︀, where
each field is represented by a phrase, called a name. A name that

appears in the subject field is called a subject name. We assume that

each assertion is extracted from an identifiable document. To sim-

plify our discussion, we assume that documents are obtained from

the web and each is associated with a url (serving as a document

id). Given an assertion a = ∐︀s; r ;õ︀ and the url u of the document

from which a is extracted, we extend a by u to obtain a quadruple

∐︀s ; r ;o;ũ︀. We call such a quadruple an assertion occurrence of a. As-
sertion occurrences that share the same subject name and the same

url are collected into a structure called amention. A mention has the

form ⎷subject;url; argument⌄, where argument is a list of (relation;
object) pairs. For example, the two occurrences ∐︀s; r1;o1;ũ︀ and
∐︀s; r2;o2;ũ︀ share the same subject s and url u. They are grouped

into the mention ⎷s;u;Arg⌄ where Arg is a list containing (r1;o1)
and (r2;o2). Figure 1(a) shows some example assertion occurrences

and Figure 1(b) shows the mentions constructed from them. We

write x ∈m iff an assertion occurrence x is grouped into a mention

m. Following [18], we assume that all occurrences of a subject name

in the same document (url) refer to the same physical entity. Hence,

all assertion occurrences that are collected into the same mention

are assumed to refer to the same subject entity.

Definition 1 (OKB Canonicalization). Given an OKB 𝒳 of
assertion occurrences, the problem of OKB canonicalization is to derive
a mapping f such that given any two assertion occurrences x1,x2 ∈ 𝒳
whose subject names are s1 and s2, respectively, we have f (x1) =
f (x2) if and only if s1 and s2 represent the same entity.

One can interpret f (x1) and f (x2) as canonical forms of the

subject names s1 and s2, respectively. We consider two subject

names the same entity if and only if they share the same canonical

form. The problem is to find a function f () that returns such a

canonical form.

Since we assume that all assertion occurrences that are grouped

into the same mention have the same subject entity, the subject

names of these occurrences should be given the same canoni-

cal form. In other words, given a mention m, we have f (x1) =
f (x2) ∀x1,x2 ∈m. As a result, we only need to assign a canonical

form to one assertion occurrence per mention; other occurrences

in the same mention would adopt the same form.

Note that in our definition we only canonicalize subject names.

This is done to simplify our discussion and to follow the approach

given in [18]. This simplification also makes our algorithm FAC

consistent with GHMS in terms of their output. The techniques can

be extended to canonicalize object names as well.

3.2 GHMS
GHMS canonicalizes an OKB by clustering. The idea is to group

assertion occurrences into clusters. Occurrences that share the same

cluster are assumed to refer to the same subject entity. As we have

discussed, assertion occurrences of the same mention are given the

same canonical form. GHMS, therefore, clusters mentions instead

of assertion occurrences so as to reduce the number of objects to

be clustered to improve efficiency. Figure 1 illustrates the various

steps of GHMS.

GHMS starts with a pre-precessing step (➀) that performs two

tasks: First, it transforms a collection of assertion occurrences into

mentions. Second, for any word w that appears in some subject

names, the number of times thatw appears in the OKB is computed.

This frequency is denoted df (w). The next step is to apply token

blocking (➁) [22] to form canopies of mentions. Specifically, for

each wordw , a canopy labeledw , denoted by Cw , is created. Con-

sider an assertion occurrence a = ∐︀s ; r ;o;ũ︀ in a mentionm. Let t(s)
be the set of non-stop-words contained in the subject name s . The
mentionm is assigned to a canopyCw ifw ∈ t(s). For example, the

subject name of the mention ⎷Charles Dickens; http://. . ./; (wrote;

A Tale of Two Cities)⌄ is “Charles Dickens”. The mention is thus

assigned to two canopies: canopy Charles and canopyDickens. After
that, clustering (➂) is performed on each canopy. GHMS employs

HAC in this step: We start with each mention forming a cluster by

itself. In each iteration of HAC, the pair of most similar clusters are

merged as long as their similarity exceeds a predefined similarity

threshold. To perform HAC, we need to define object (i.e., men-

tion) similarity as well as cluster similarity. In [18], a number of

mention-similarity functions are evaluated. It is shown that the IDF
token overlap function results in the most accurate canonicalization.

Specifically, given two mentionsm1,m2 with subject names s1 and
s2, respectively, the similarity function is defined as:

sim(m1,m2) =
∑w∈t(s1)∩t(s2)(log(1 + df (w)))

−1

∑w∈t(s1)∪t(s2)(log(1 + df (w)))
−1
. (1)

Cluster similarity is defined based on single-link clustering, which

is shown in [18] to achieve the best canonicalization accuracy com-

pared with other variants, such as complete-link and average-link.

Since a mentionm is assigned to multiple canopies in Step ➁ if its

subject names contain multiple words,m could involve in multiple

clusters. The next step is to merge (➃) clusters that share a com-

mon mention. For example, in Figure 1(d), mentionms belongs to

clusters 2 and 4. The two clusters are thus merged into cluster 5,

as illustrated in Figure 1(e). Finally, the subject names of mentions

that are grouped into the same cluster are given a single canonical

form (➄).

4 FAC
GHMS is designed with a focus on accurate canonicalization. In par-

ticular, experiments are done to evaluate the various HAC variants

and various mention-similarity functions in terms of their impacts

on canonicalization accuracy. In this paper we focus on how GHMS

can be made efficient so that we can canonicalize practically-large

OKBs. In this section we discuss various optimization strategies

and present our algorithm FAC (Fast Assertion Canonicalization),
which employs those strategies.

We executed GHMS on a number of datasets. The executions

were quite slow. For example, it took 41 minutes to canonicalize

the small 36K set we mentioned in the introduction. Recall that the

36K set consists of about 36 thousand assertions and is used in [18]

to study the canonicalization problem. We also ran GHMS on a



Assertion Subject Relation Object URL

𝑎1 Barack Hussein Obama grew up in Honolulu 𝑢1

𝑎2 Barack Obama is the new president-elect of the United States 𝑢2, 𝑢3

𝑎3 Barack Obama was born in 1961 𝑢2

… … … … …

Mention Subject URL Arguments

𝑚1 Barack Hussein Obama 𝑢1 (grew up in; Honolulu)

𝑚2 Barack Obama 𝑢2 (is the new president-elect of; the 

United States), (was born in, 1961)

𝑚3 Barack Obama 𝑢3 (is the new president-elect of; the 

United States)

… … … …

𝑚3

𝑚2 𝑚1
𝑚3

𝑚2

𝑚1

𝑚1Cluster 1 Cluster 2

(a) (b)

(c)(d)(e)

Assertion occurrences

① Preprocessing

Mentions

Canopy “Obama” Canopy “Barack”

Canopy “Hussein”

𝑚1

Canopy “Hussein”

Another Canopy

𝑚𝑠

Cluster 3 Cluster 4

Cluster 1

𝑚1

Cluster 5

Merging Cluster 2 & 4

𝑚𝑠

𝑚𝑠

Cluster 3

(f)
Mentions Entities

𝑚1

𝑚2 𝑒5

… 𝑒3

𝑚𝑠 𝑒1

𝑚𝑡 …

…

𝑚𝑡

𝑚𝑡

② Token Blocking

③ Clustering

④Merging⑤ Output Mappings

Document frequency

𝑤 𝑑𝑓(𝑤)

Barack 89963

Obama 144356

… ...

+

Figure 1: The GHMS procedure

dataset with 1.3 million assertions, which took 34 hours. For other

larger datasets, GHMS did not finish after 10 days of execution. In

particular, GHMS finished clustering a number of canopies that

account for only 36% of assertions in a 2.6 million assertions set

with 10 days of computation. The reason why GHMS does not

scale well to large datasets is that for large sets, canopies are bigger.

Clustering mentions in a canopy using HAC is at least quadratic

w.r.t. canopy size. In fact, HAC (see Figure 1, step ➂) dominates the

execution time of GHMS. We conducted profiling to analyze GHMS.

We found that even for the very small 36K set, HAC accounted for

99.78% of the total execution time. (Preprocessing ➀ is a distant

second at 0.20%, followed by token blocking ➁ at 0.008%). Our

approach to speed up GHMS thus focuses on making clustering

faster.

4.1 Efficient Clustering
To cluster mentions in a canopy using HAC, each mention first

forms a cluster by itself. Then, iteratively, the two most similar

clusters are merged. The process is repeated until the similarity

of the two to-be-merged clusters falls below a similarity thresh-

old ρ. As mentioned, cluster similarity is based on the single-link

definition (which is shown in [18] to be the most effective HAC

variant for canonicalization). Our first step is to transform single-

link clustering to the problem of finding connected components in

a graph.

Definition 2 (ρ-Graph). Given a similarity threshold ρ and
a canopy C of mentions, the ρ-Graph of C is an undirected graph
Gρ(C) = (C,Eρ) where the edge set Eρ = {(mi ,mj)⋃︀mi ,mj ∈ C ∧
sim(mi ,mj) ≥ ρ}. The weight of an edge (mi ,mj) equals sim(mi ,mj).

Given two mentionsmi andmj , if their similarity sim(mi ,mj) ≥

ρ, we call the edge (mi , mj ) a strong edge; otherwise, we call it

a weak edge. The ρ-graph of a canopy is therefore composed of

all mentions in the canopy as vertices and all and only strong

edges between mentions. It can be shown that single-link clustering

with a similarity threshold ρ is equivalent to finding connected

components in the corresponding ρ-graph [21]. In particular, each

connected component corresponds to a cluster.

The implementation of GHMS given in [18] follows the iterative

merging process. Our optimization techniques, however, apply to

the graph-based solution. To distinguish the two realizations of

single-link clustering, we use GHMS-g to denote our graph-based

connected-component implementation of GHMS.

Given a canopy of n mentions, clustering it with GHMS-g takes

two steps: (1) construct the ρ-graph and (2) run a breadth-first-

search (BFS) algorithm on the ρ-graph. Both take O(n2) time. In

fact, the similarities of all (
n
2
) mention pairs have to be computed

to determine the strong edges in order to construct the ρ-graph. In
the rest of this section, we present four optimization techniques,

namely, on-demand edge computation, inverted index, bound by set
cardinality, and subject name signature. The first two are pruning
techniques that prune away unnecessary edges and avoid computing

them in the construction of the ρ-graph. The last two are bounding
techniques that provide a very fast estimate of whether an edge is

weak without computing the corresponding similarity.

4.1.1 On Demand Edge Computation (OD). The general idea of
our first technique is to perform BFS to find connected components

of a canopy without first constructing the ρ-graph in full. Essen-

tially, edges of the ρ-graph are discovered incrementally and their

weights (i.e., similarities) are evaluated on-demand. We use OD to

denote this technique. Let us outline how BFS is conducted if edge

weights are computed under OD.

First, some notations. Given a vertex (a mention) v , let𝒩+(v) =
{u⋃︀sim(u,v) ≥ ρ} be the set of vertices whose similarities tov equal

or exceed the threshold ρ. We call𝒩
+
(v) the strong neighbors of

v . Similarly, we use 𝒩
−
(v) = {u⋃︀sim(u,v) < ρ} to denote the

set of weak neighbors of v . We use cc(v) to denote the connected
component that contains v . Given a canopy C of mentions, BFS

under OD starts with a mention (as a vertex)vo and explore a hidden
graph to find cc(vo). During the process, vertices are explored one
at a time, starting with vo . Let cc∗ ⊆ cc(vo) be a set of cc(vo)’s
members that BFS has collected so far. Initially, cc∗ = {vo}. To
explore a vertexv ∈ cc∗, we take 2 steps: (1) Determine𝒩

+
(v)−cc∗

and add those vertices to cc∗. These vertices are the newly found

members of the connected component. (2) Add the new members

to a queue Q . Vertices in Q are explored in subsequent iterations.

After the 2 steps, another vertex v is removed from Q and the
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Figure 2: BFS under OD on a dense ρ-graph (a) vs. on a sparse
ρ-graph (c).

steps are repeated with the new v . When Q becomes empty, cc∗
is the desired cc(vo). If not all vertices in the canopy C have been

explored, an unexplored vertex v′ from C is picked. The above

process is repeated to find another connected component cc(v′),
and so on.

Note that certain similarities are computed in determining the

set𝒩
+
(v) − cc∗. Since the graph is hidden (i.e., strong edges are

not pre-found), we need to compute the similarities of v to all

other vertices in the canopy that are not already collected in cc∗ to
determine if they are strong or weak. We observe that the number

of similarity computations is fewer when the connected component

is denser. To see this, let us consider a simple scenario in which

there is only one connected component in the canopy. Figure 2(a)

shows a ρ-graph with five vertices. The graph is dense (9 out of 10

possible edges are strong). Suppose we start exploring the graph

from v1, i.e., cc∗ = {v1} initially. We compute the similarities of

v1 to all other 4 vertices and find that 𝒩
+
(v1) = {v2,v3,v4,v5}.

This is illustrated in Figure 2(b), where a line represents a similarity

computation. We use a solid (dotted) line to represent a strong

(weak) edge computed. In Figure 2(b), all 4 edges computed are

strong. Hence, {v2,v3,v4,v5} are all added to cc∗. We note that no

more similarity computations are needed because cc∗ is already

the whole canopy. In this example, 4 similarities are computed.

Now consider a sparse graph illustrated in Figure 2(c), where the ρ-
graph forms a ring. Again, we start exploring atv1, 4 similarities are

computed as illustrated in Figure 2(d). Two of the computed edges

are strong while two are weak. At this point, cc∗ = {v1,v2,v5} and
v2, v5 are queued. Suppose v2 is explored next. Its similarities to

v3, v4 are computed because v3 and v4 are not in cc∗. These two
computations are shown in Figure 2(e). Finally, BFS explores vertex

v5, which requires computing the similarity between v5 and v4
(Figure 2(f)). In total, for the ring graph, 7 similarities are computed

versus only 4 for the dense graph shown in Figure 2(a). Further

note that if the ρ-graph is materialized first before BFS is executed,

all (
5

2
) = 10 similarities are computed, regardless of the density of

the graph.

In general, consider a canopy that consists of only one connected

component of n mentions. If the ρ-graph is a complete graph (i.e.,

very dense), the number of similarity computations is n − 1. The

fraction of similarity computations under OD (as compared with

materializing the ρ-graph in full) is (n − 1)⇑(
n
2
) = 2⇑n, a very

small fraction. On the other hand, if the ρ-graph is a ring (i.e., very

sparse), we can show that the number of similarity computations is

(
n
2
) − (n − 2). The fraction of similarities computed is thus (︀(

n
2
) −

(n − 2)⌋︀⇑(n
2
) ≈ 1 − 2⇑n, a very large fraction. This illustrates that

OD is very effective in pruning similarity computations for dense

clusters.

We analyzed different assertion datasets and found that clusters

are indeed very dense. For example, we inspected the 10 largest

canopies derived from a 2.6M-assertion set. For each such canopy,

we inspected its largest cluster. These 10 largest clusters are the

most time-consuming clusters to obtain in the canonicalization

process. The densities of these clusters range from 46.1% to 99.1%

with an average of 76.7%.

In the above analysis, we assume that there is only one connected

component (cluster) in a canopy. In practice, a canopy can have

multiple connected components. In such a case, each connected

component could be just a fraction of the whole canopy. Recall that

when we are exploring a vertex v , we need to find 𝒩
+
(v) − cc∗.

Under OD, all similarities that involve v except to those vertices in

cc∗ have to be computed. When a connected component is small

compared with the whole canopy, cc∗ will be relatively small. This

reduces the savings in similarity computations obtained via OD.

To get an idea of the effect of having multiple clusters in a canopy

on OD, let us do a back-of-the-envelop calculation. Consider a

canopy of n vertices (mentions) that consists of k clusters, each

being a complete graph withn⇑k vertices. Let F(n,k) be the number

of similarities OD computes during BFS exploration. From our

previous discussion, we know that F(n, 1) = n − 1. For k > 1, let
vo be the first vertex BFS explores. All similarities from vo to all

other vertices in the canopy are computed, which totaled n − 1
computations. Among them, n⇑k − 1 (those from vo to vertices in

cc(vo)) are strong, others (from vo to vertices in other clusters)

are weak. These n⇑k − 1 strong neighbors of vo will be added to

cc∗ and to the queue Q . When each such strong neighbor u is

subsequently removed from Q and explored, the similarities from

u to all vertices of other clusters are computed. There are n − n⇑k
such vertices. Since these vertices are from other clusters, their

similarities to u are all weak and so they will not be added to Q .
When Q becomes empty, cc(vo) is found. Processing all the strong

neighbors requires (n⇑k − 1) × (n − n⇑k) similarity computations.

Now, there are n −n⇑k unexplored vertices in the graph distributed

across k − 1 clusters. The number of similarity computations to

complete the BFS is F(n − n⇑k,k − 1). We thus have the following

recurrence,

F (n, k) = {
n − 1, k = 1

(n − 1) + (n⇑k − 1) ⋅ (n − n⇑k) + F (n − n⇑k , k − 1) k > 1
(2)

When n ≫ k , Equation 2 is simplified to

F(n,k) ≈

)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

n k = 1

n + (k − 1)(n⇑k)2 + F(n − n⇑k,k − 1) k > 1
(3)



Canopy 1 2 3 4 5 6 7 8 9 10

# of Clusters 1 1 1 1 1 2 1 2 2 1

Canopy 11 12 13 14 15 16 17 18 19 20

# of Clusters 12 1 5 2 2 1 1 1 4 1

Table 1: Number of clusters in each of the top 20 canopies of
2.6M-assertion set (80% coverage)

Solving the recurrence, we get,

F(n,k) = (
k + 1

2

)n + (
k − 1

2k
)n2.

The fraction of similarities OD computes compared to that for

constructing the ρ-graph in full is,

F (n, k)
(
n
2
)

≈ ]︀(
k + 1
2

)n + (
k − 1
2k
)n2
{︀/(

n2

2

) =
k + 1
n
+
k − 1
k
≈
k − 1
k

.

(4)

For example, if a canopy has two equal-sized clusters (i.e., k =
2), then, we expect OD compute (2-1)/2 = 1/2 of similarities that

constructing the complete ρ-graph would have done. If there are 3

equal-sized clusters, the fraction goes up to (3-1)/3 = 2/3. Although

in practice clusters of a canopy vary in size, and so the assumption

we made for the back-of-the-envelop calculation is not valid, the

discussion does illustrate that fewer clusters in a canopy implies

more OD similarity pruning. We inspected the 20 biggest canopies

derived from the 2.6M-assertion set. Table 1 shows the number

of clusters that cover 80% of the mentions in each such canopy.

We see that except for canopy 11, most mentions of a canopy are

concentrated in just one or two clusters. OD should therefore be

an effective pruning strategy.

4.1.2 Inverted Index (INV). Given twomentionsm1 = ⎷s1;u1;Arg1⌄
andm2 = ⎷s2;u2;Arg2⌄, their similarity sim(m1,m2) is given by the

IDF token overlap measure (see Equation 1). Recall that given a sub-

ject name s , t(s) is the set of non-stop-words in s . From Equation 1,

we see that if t(s1) = t(s2), then t(s1)∩t(s2) = t(s1)∪t(s2) = t(s1),
and hence sim(m1,m2) = 1, the strongest similarity. In this case,

the similarity given in Equation 1 needs not be explicitly computed.

Our next optimization strategy is to build an inverted index, INV .
The index maps a set of words S to a set of mentionsM such that

the subject name (excluding stop words) of each mention inM is

S . Formally, INV(S) = {m = ⎷s;u;Arg⌄⋃︀t(s) = S}. We call INV(S)
the inverted list of S . One can easily verify the following properties

of INV(S).

Property 1. ∀mi ,mj ∈ INV(S), sim(mi ,mj) = 1.

Property 2. ∀mi ,mj ∈ INV(S), sim(mi ,m) = sim(mj ,m) for
any mentionm. Hence,m is a strong neighbor ofmi iffm is a strong
neighbor ofmj .

Proof.

sim(mi ,m) =
∑w∈t(si)∩t(s)(log(1 + df (w)))

−1

∑w∈t(si)∪t(s)(log(1 + df (w)))
−1

=
∑w∈t(sj)∩t(s)(log(1 + df (w)))

−1

∑w∈t(sj)∪t(s)(log(1 + df (w)))
−1

(∵t(si) = t(sj))

= sim(mj ,m)

�

Property 1 implies that mentions in an inverted list form a clique

in a ρ-graph. Property 2 states that the weight of the edge from a

mentionm to any mention in the inverted list is the same. Moreover,

recall that a canopy Cw is derived for each non-stop-wordw , and

that a mentionm = ⎷s ;u;Arg⌄ is assigned to canopyCw ifw ∈ t(s).
Since mentions in an inverted list share the same set of non-stop-

words, we have:

Property 3. If a mentionm = ⎷s ;u;Arg⌄ is in a canopyCw , then
all mentions in INV(t(s)) are also in Cw .

We modify the preprocessing step (Figure 1, step ➀) to include

the construction of the inverted index. The index can be used to

facilitate clustering a canopy. Specifically, when a vertex v that

represents a mentionm = ⎷s ;u;Arg⌄ in a canopyC is to be explored

during the BFS process, we first consult the index and retrieve

the inverted list INV(t(s)). By Property 3, all mentions in the list

must be in the same canopy C . Moreover, by Property 1, these

mentions are all strong neighbors of v . We therefore immediately

add the mentions in INV(t(s)) to cc∗ without having to compute

their similarities to v . Under OD, these strong neighbors, say, v′,
should be added to the queue Q (so that they will be explored

later). However, we argue that these neighbors, which come from

INV(t(s)), need not be explored. The reason is that by Property 2,

any strong neighbors of, say, v′, must be strong neighbors of v too.

Hence, all strong neighbors ofv′ should have already been obtained
and included in the connected component when we explored v .
Therefore, no extra expansion of the connected componet is possible

by exploring v′. As a result, we do not add mentions in INV(t(s))
to the queue for future explorations. This saves much processing

costs.

4.1.3 Bound by Set Cardinality (CARD). While OD and INV aim

at doing fewer similarity computations, our next technique, denoted

CARD, attempts to make some similarity computations faster. From
Equation 1, we see that to compute sim(m1,m2), we need to look

up df (w) for each w ∈ t(s1) ∪ t(s2). We can avoid these lookups

by computing a simple bound. Let df max and df min be the largest

and the smallest df (w) over all non-stop-wordsw in the dataset.

From Equation 1, we have,

sim(m1,m2) =
∑w∈t(s1)∩t(s2)(log(1 + df (w)))

−1

∑w∈t(s1)∪t(s2)(log(1 + df (w)))
−1

≤
∑w∈t(s1)∩t(s2)(log(1 + df min))

−1

∑w∈t(s1)∪t(s2)(log(1 + df max))
−1

= J(t(s1), t(s2)) × (Γ)
−1
,

(5)



where J(t(s1), t(s2)) =
⋃︀t(s1)∩t(s2)⋃︀
⋃︀t(s1)∪t(s2)⋃︀

is the Jaccard coefficient of

t(s1) and t(s2); and Γ = log(1+df min)⇑ log(1+df max) is a constant.

So,

(J(t(s1), t(s2)) < ρ ⋅ Γ)⇒ (sim(m1,m2) < ρ) . (6)

In other words, we only need to compute the Jaccard coefficient and

compare it against the constant ρ ⋅Γ. If the coefficient is smaller than

ρ ⋅Γ, we deduce that mentionsm1 andm2 have a weak similarity. In

this case, the similarity function is not computed. If the coefficient

is not smaller than ρ ⋅ Γ, we compute sim(m1,m2) in full.

4.1.4 Subject Name Signature (SIG). With CARD, the Jaccard

coefficient is computed to test if a similarity is weak. This involves

some string matching and subset testing. Our next technique, called

SIG, uses signature files to compute a fast upper bound of the Jaccard

coefficient to speed up the test. We preprocess each subject name

s to obtain an r -bit signature sig(s). Specifically, we use a hash

function h(w) that maps a word into an integer in the range [0 ..

r -1]. Let us represent the word w as a sequence of m characters

[cm−1, cm−2, .. , c0]. The hash function is given as follows:

h(w) =
m−1
∑
k=0

127
kASC(ck) (7)

The signature is set as follows:

∀0 ≤ i ≤ r − 1, sig(s)(︀i⌋︀ =
)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

1, ∃w ∈ t(s) s.t. h(w) = i .

0, otherwise.

, where ASC(c) is the ASCII of character c . In our experiments, we

set the length of a signature (r ) to 32.

Given two signatures sig(s1) and sig(s2), let sig∧(s1, s2) and

sig
∨
(s1, s2) be the bitwise-AND and bitwise-OR of the two signa-

tures, respectively. We define the Jaccard coefficient of two signa-

tures as

Jsig(s1, s2) =
⋃︀sig
∧
(s1, s2)⋃︀

⋃︀sig
∨
(s1, s2)⋃︀

, (8)

where ⋃︀ ⋅ ⋃︀ denotes the number of ‘1’ bits in a signature. One can

prove the following properties.

Property 4. ⋃︀sig
∨
(s1, s2)⋃︀ ≤ ⋃︀t(s1) ∪ t(s2)⋃︀.

Proof. To prove property 4, we need to show that for a word in

t(s1)∪t(s2), it would only cause one bit in sig∨(s1, s2) to be 1. Since
the hash function maps each word to one value only, a word can

only set a fixed position in a signature to be 1. Thus, ⋃︀t(s1) ∪ t(s2)⋃︀
will be no less than ⋃︀sig

∨
(s1, s2)⋃︀. If collision occurs, multiple words

in t(s1) ∪ t(s2) are hashed to the same bit in sig
∨
(s1, s2). In this

case, ⋃︀sig
∨
(s1, s2)⋃︀ < ⋃︀t(s1) ∪ t(s2)⋃︀. �

Property 5. If words in t(s1) ∩ t(s2) do not collide, (i.e., (wi ≠

w j)⇒ (h(wi) ≠ h(w j)) ∀wi ,w j ∈ t(s1)∩t(s2)), then ⋃︀sig∧(s1, s2)⋃︀ ≥
⋃︀t(s1) ∩ t(s2)⋃︀.

Proof. To prove property 5, we show that if sig
∧
(s1, s2)(︀i⌋︀ = x ,

then at most one word in t(s1) ∩ t(s2) is hashed to bit x . From the

assumption, there is no collision of words in t(s1)∩t(s2). Therefore,
if bit x is 1 and there exists a wordwi in t(s1)∩ t(s2) s.t. h(wi) = x ,
then h(w j) ≠ 1∀w j ∈ t(s1)∩t(s2)∖{wi}. Note that if bit x is 1 and

none of the wordswi in t(s1)∩t(s2) is hashed to x , that implies the

collision occurs in the words that are not common to both subjects.

In this case, ⋃︀sig
∧
(s1, s2)⋃︀ > ⋃︀t(s1) ∩ t(s2)⋃︀. �

From the properties, we have,

Jsig(s1, s2) =
⋃︀sig
∧
(s1, s2)⋃︀

⋃︀sig
∨
(s1, s2)⋃︀

≥
⋃︀t(s1) ∩ t(s2)⋃︀

⋃︀t(s1) ∪ t(s2)⋃︀
= J(t(s1), t(s2)),

if words in t(s1) ∩ t(s2) do not collide. So, Jsig(s1, s2) is an upper

bound of J(t(s1), t(s2)). If Jsig(s1, s2) < ρ ⋅ Γ, so is J(t(s1), t(s2)),
and hence sim(s1, s2) is weak. Under SIG, we use Jsig(s1, s2) in place
of J(t(s1), t(s2)) in the test (Equation 6) to identify weak similari-

ties. Since Jsig(s1, s2) can be computed using bit-wise operations,

computing it is much faster than computing J(t(s1), t(s2)).
Note that using Jsig(s1, s2) in the test is correct if words in the

intersection t(s1) ∩ t(s2) do not collide. In practice, subject names

are not very long and t(s1) ∩ t(s2) is usually very small. In our

datasets, most of these intersections contain 3 or fewer words. Col-

lisions, therefore, rarely occur. If collisions occur, a strong edge may

be labeled weak, which could disconnect the connected component

and decrease the recall. In our experiments, we obtain the same

canonicalization results on a 2.6M assertion set with or without

using SIG. Algorithm 1 summarizes the clustering procedure em-

ployed by FAC. Line 1 initializes an array to record if a vertex is

visted. Line 2 initialize a queue to support BFS and an integer i to
label the connected components. Line 3-4 iterates all vertices to

ensure that every vertex is labeled with a connnected component.

Line 5-15 is the BFS algorithm. In line 8-9, we use INV to find all

mentions that have exact subject names asm2, the mention which

is being explored. These mentions need not be explored according

to Property 2 and therefore are removed from Q. In line 12, SIG is

applied to compute the upper bound of the similarity betweenm2

and its neighborm4. If the upper bound of a mention pair is less

than the threshold, we ignore such mention pair. Otherwise, the

exact similarity score (line 13) needs to be computed to determine

whetherm4 is similar tom2.

5 EXPERIMENTS
In this sectionwe present experimental results evaluating the canon-

icalization algorithms’ performances. First, a quick review of the

algorithms: GHMS performs canopy-based single-link HAC, which

is achieved using an iterative cluster-merging approach. In our

experiment, we use the implementation of GHMS kindly provided

by the authors of [18]. GHMS-g is our modification of GHMS, in

which HAC is done by finding connected components in a ρ-graph
(see Section 4.1). Finally, FAC is based on GHMS-g with the four

optimization techniques OD, INV, CARD and SIG employed. All

algorithms are implemented in Java 7. Experiments are conducted

on a machine with an Intel i7-6850K CPU and 128GB RAM running

Ubuntu 16.04.3. We follow [18] and set ρ = 0.5.

5.1 Datasets
We evaluated the algorithms on 15 assertion datasets, all of which

are extracted from the ClueWeb09 corpus using ReVerb. Table 2 lists

these datasets and their corresponding statistics. Here, we briefly

describe the datasets. The 15M set is a dataset provided by the

ReVerb project [14]. It consists of 15 million assertions. In [18],

several filtering schemes are applied to the 15M set. (For example,



Algorithm 1: Cluster a canopy
Input: A set of mentionsM ; Signatures siд(⋅)’s; Inverted

index INV(⋅); Similarity threshold ρ; Constant Γ.
Output: Cluster id for each mention in the canopy.

Explored(︀ ⌋︀ = {0, 0,. . . , 0} ; // Explored(︀i⌋︀ = mention i’s cluster id

Queue Q ; i = 0;

for Every mentionm1 inM do
if Explored(︀m1⌋︀ ≠ 0 then
Q .enqueue(m1); i++;

while Q is not empty do
m2 = Q .dequeue; Explored(︀m2⌋︀ = i;

for Every mentionm3 in INV(m2) do
Explored(︀m3⌋︀ = i; Q .remove(m3);

for Every mentionm4 inM do
if Explored(︀m4⌋︀ ≠ 0 then
if Jsig(m2.subject,m4.subject) ≥ ρ × Γ then
if sim(m2,m4) ≥ ρ then
Q .enqueue(m4); Explored(︀m4⌋︀ = i;

return Explored;

assertions whose subjects do not contain any proper nouns are

removed.) This filtered set contains 2.6 million assertions. We call

this set the 2.6M set. In [18], the 2.6M set is further filtered and

sampled using information from Freebase to obtain 36 thousand

assertions (see [18] for details). We call this set the 36K set2. Both
the 2.6M and the 36K sets are provided by [18].

Based on the 2.6M set, we further create 12 sets, which are divided

into two groups of 6 sets each. The first group, called the F-group,
are denoted by FxK, where “x” ranges from 100 to 1,300. The group

is obtained as follows: We sort the assertions in the 2.6M set in

alphabetical order of their subject names. The first x thousand

assertions in the sorted list are collected into the set FxK. The
second group, called the S-group, are denoted by SxK. To create the

S-group, we first randomly select 1,300 thousand assertions from

the 2.6M set to form the S1300K set. This set is then downsampled

to 500K assertions, which is then further downsampled to 400K

assertions, and so on. Note that a smaller F-group set is a proper

subset of a larger F-group set; likewise for the S-group.
Each row in Table 2 shows the statistics of a dataset. In particular,

it shows the size of the largest canopy expressed in number of

mentions (column e); the average density of a cluster, measured by

the number of strong edges in a cluster as a fraction of the total

number of possible edges of the cluster (column g); and the number

of canonicalized forms (i.e., entities) identified (column i).

We remark that an F-group set is obtained from the subject-name-

sorted 2.6M set. Assertions in an F-group set are therefore more
focused on a smaller number of entities compared with those of an

S-group set. This is reflected by the fewer and larger canopies for

F-group sets compared with S-group sets (see columns e and f).

2

The set is called Ambiguous in [18].
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Figure 3: Execution times (F-group, 2.6M, and 15M sets)
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Figure 4: Execution times (S-group, 2.6M, and 15M sets)

5.2 Results
We start with running the algorithms on the small 36K set, which is

used in [18] to illustrate canonicalization. It takes GHMS 2,477 sec-

onds (∼41 minutes) to complete, while FAC takes only 0.2 seconds.

We will focus on the larger datasets for the rest of this section.

5.2.1 Algorithms Comparison. Figure 3 shows the execution

times of GHMS, GHMS-g and FAC when they are applied to canon-

icalize the F-group, 2.6M, and 15M sets. The datasets are labeled on

the x-axis according to their sizes. The labels “1000” and “10000”

refer to sizes of 1000K and 10000K assertions, respectively. They are

shown as size references on the x-axis. Note that both x and y axes

are in log scale. Figure 4 is a similar figure showing the algorithms’

performance on the S-group sets. From the figures, we make a few

observations:

● FAC is orders-of-magnitude faster than GHMS and GHMS-
g. In particular, for the 2.6M and 15M sets, GHMS does not terminate

after 10 days of execution. The long execution times is due to

time-consuming HAC, which is applied to cluster each canopy. On

closer inspection, we found that, for GHMS, this clustering time

is cubic w.r.t. the number of mentions in a canopy; For GHMS-

g, which reduces HAC to finding connected components in a ρ-
graph, the clustering time is quadratic because the similarities of

all possible edges in the ρ-graph have to be computed to construct

the graph. Tables 3(a) and (b) show the speedups of FAC against

GHMS and GHMS-g, respectively. We see that FAC registers up to

4-orders-of-magnitude speedups against GHMS and up to 2-orders-

of-magnitude speedups against GHMS-g. FAC is very efficient. In

particular, for our largest 15M set, FAC takes only about 4.4 minutes

to complete.



Dataset (a) # assertions (b) occurrences (c) # mentions (d) # canopies (e) largest (f) avg # cluster (g) avg density (h) avg length of (i) # of canonicalized

canopy size per canopy of clusters inverted list forms (entities)

15M 14,728,268 25,414,939 24,429,156 393,972 134,596 3.06 56.1% 18.18 520,060

2.6M 2,602,621 4,431,106 4,291,251 131,598 16,738 4.51 62.4% 9.41 190,713

36K 35,630 36,853 34,209 460 3,469 1.36 98.9% 64.40 349

F100K 100,000 191,047 181,161 17,279 4,030 2.99 81.4% 6.21 18,934

F200K 200,000 365,668 349,800 26,430 7,900 3.46 83.3% 6.77 32,675

F-Group

F300K 300,000 534,475 510,687 33,832 7,900 3.84 77.5% 6.99 45,681

F400K 400,000 702,536 672,621 40,426 7,903 4.17 72.4% 7.02 58,198

F500K 500,000 862,668 825,541 46,500 7,903 4.24 70.2% 7.14 69,917

F1300K 1,300,000 2,193,970 2,104,238 85,111 10,169 4.86 54.7% 7.72 141,049

S100K 100,000 173,450 171,329 32,739 2,003 4.33 67.6% 2.74 41,934

S200K 200,000 344,685 339,914 47,383 2,204 4.69 60.7% 3.19 63,819

S-Group

S300K 300,000 512,838 504,753 57,882 2,816 4.82 55.4% 3.54 79,916

S400K 400,000 682,546 671,239 66,188 3,421 4.90 54.2% 3.88 91,887

S500K 500,000 850,631 835,468 73,003 3,966 4.93 54.7% 4.18 101,759

S1300K 1,300,000 2,213,163 2,153,310 105,897 8,707 4.82 58.6% 6.36 149,209

Table 2: Dataset Statistics

F100K F200K F300K F400K F500K F1300K 2.6M 15M

1,234 5,485 2,515 1,997 2,524 1,661

-- --

S100K S200K S300K S400K S500K S1300K

131 172 279 317 483 2,383

(a) FAC speedups against GHMS

F100K F200K F300K F400K F500K F1300K 2.6M 15M

31.0 29.0 27.7 26.8 35.4 37.4

60.0 --

S100K S200K S300K S400K S500K S1300K

11.4 15.5 16.8 17.2 20.8 34.0

(b) FAC speedups against GHMS-g

Table 3: FAC speedups against (a) GHMS and (b) GHMS-g

●GHMS shows very different performances over the F-group
sets and the S-group sets. We observe that the performance

curves of GHMS are very different in Figures 3 and 4. For example,

GHMS’s execution time stays high and flat from the F200K set to

the F500K set, while it increases gradually from the S200K set to

the S500K set. To understand this difference, we mark the largest

canopy size (i.e., Table 2 column e) for each dataset with ● in the

figures. (Values are shown on the right y-axes.) As we have dis-
cussed, GHMS applies cubic HAC to cluster mentions in a canopy.

Its total execution time is thus dominated by the clustering time of

the largest canopy in a dataset. For the F-group, it happens that a
large canopy with 7,900 mentions is created in the F200K set and

no significantly larger canopies are created as we move to F500K.
GHMS’s execution time through these sets therefore stays high and

flat. From Figures 3 and 4, we observe a close relation between the

largest canopy size and GHMS’s execution time, due to the time

being dominated by the largest canopy.

● FAC gives larger speedups for the F-group sets than for
the S-group sets. From Tables 3(a) and (b), we see that FAC’s

speedups are generally much larger for the F-group. For example,

FAC’s speedups over GHMS are 1,234x for F100K and 131x for S100K.
The reasons for this big difference are threefold. Firstly, as explained

0 1,000 2,000 3,000 4,000 5,000

FAC

(OD,SIG)

(SIG)

(OD,INV,CARD)

(OD,INV)

GHMS-g

79.9

887.6

2,561.8

181.6

324.1

4,786.5

Execution time (second)

Figure 5: Ablation analysis (2.6M set)

in our previous observation, GHMS’s execution is much dominated

by the biggest canopy. From Table 2, column (e), we see that the

biggest canopies in the F-group sets are generally much bigger than

those of the S-group sets. GHMS is therefore much slower executing

on the F-group. Secondly, OD is most effective when there are few

but dense clusters in a canopy (Section 4.1.1) From Table 2, columns

(f) and (g), we see that in general, canopies in an F-group set contain
fewer but denser clusters than those in an S-group. Hence, OD is

more effective for the F-group. Thirdly, From Table 2, column (h),

we see that inverted lists in the F-group are generally longer than

those in the S-group. This makes INV more effective (Section 4.1.2)

for the F-group. These result in much higher speedups when FAC

is applied to F-group sets.
● FAC is scalable. By applying a graph-based solution to perform

HAC, we reduce the clustering time from cubic to quadratic. More-

over, by applying all the pruning and bounding strategies, FAC

avoids much of the similarity computation. For example, from our

discussion in Section 4.1.1, by applying the OD technique alone, if

a canopy consists of only one dense cluster, then only a linear num-

ber of similarities are computed. In Figures 3 and 4, if we consider

FAC’s curves as straight lines, the slopes of the lines are 0.92 and

0.83, respectively. Since the figures are log-log plots, this indicates

that FAC’s execution time is sub-linear (or close to linear) in data

size. FAC can thus scale well to very large datasets.

5.2.2 Ablation Analysis. Next, we perform an ablation analysis

on FAC to evaluate the pruning and bounding techniques. Note

that while OD and INV are orthogonal pruning techniques, which



can be applied at the same time, we can choose only either CARD

or SIG as the bounding test. We use the 2.6M set in this experiment.

Figure 5 shows the execution time of FAC as well as those when

some techniques are removed. Specifically, we have

FAC: OD, INV as pruning, SIG as bounding;

(OD, SIG): OD as pruning, SIG as bounding, i.e., INV is turned off;

(SIG): SIG as bounding, no pruning is done;

(OD, INV, CARD): OD and INV as pruning, CARD as bounding;

(OD, INV): OD and INV as pruning, no bounding is done;

GHMS-g: No pruning or bounding.

From Figure 5, we make the following observations:

● Comparing FAC and (SIG), we see that the execution time in-

creases by a factor of 32 (from 79.9s to 2561.8s). This shows that

the pruning techniques OD and INV are highly effective and are

essential for efficient canonicalization.

● Comparing FAC and (OD, SIG), the execution time increases by

∼11x (from 79.9s to 887.6s). This shows that out of the 32x speedup

brought about by pruning, a factor of 11x is contributed by the

inverted index INV.

● Comparing FAC and (OD, INV), the execution time increases

by ∼4x (from 79.9s to 324.1s). This shows that SIG contributes a

significant 4x speedup as a bounding technique. If we use CARD for

bounding instead (i.e, we compare (OD, INV, CARD) vs. (OD, INV)),

the execution time increases by ∼ 1.8x only (from 181.6s to 324.1s).

This shows the advantage of SIG over CARD, as SIG’s bounding

test can be evaluated quickly with bitwise operations.

● Comparing (SIG) and GHMS-g, the execution time increases by

∼1.8x (from 2561.8s to 4786.5s). This shows that if no pruning is

done, then the bounding technique SIG can only achieve a 1.8x

speedup. This observation, compared with the previous one (in

which SIG achieves a 4x speedup when pruning with OD and INV is

applied), is interesting — it shows that there is synergy between our

pruning and bounding techniques. For example, given a mention

m, we use the inverted index to find all other mentions whose

similarities tom are 1 (see Section 4.1.2, Property 1). All similarities

among these mentions, which are all strong ones, are “vacuously”

determined (and thus these similarity computations are pruned).

Recall that the objective of bounding is to apply a fast test to find

out weak similarities. Because many of the strong similarities are

found and filtered by INV, those that are left for the bounding test

are more likely to be weak. This makes saving by bounding more

effective.

5.2.3 Pruning and Bounding Effectiveness. Table 4 (a) shows the
pruning effectiveness of OD and INV when they are applied to

canonicalize the 2.6M set. There are about 4.57 billion mention simi-

larities that are needed to construct all the ρ-graphs of the canopies.
(Those are the similarities GHMS-g would need to compute.) With

OD pruning, about 2.24B of the similarities are computed. OD’s

pruning effectiveness is (4.57-2.24)/4.57 = 42.6%. By employing an in-

verted index, the number of similarities is further reduced to about

0.22B — about 95.3% of the similarities are pruned. Our pruning

strategies are therefore highly effective.

Table 4(b) shows the effectiveness of CARD and SIG. Recall

that the objective of a bounding method is to quickly evaluate a

bounding test to identify weak mention similarity. We thus define a

bounding technique’s effectiveness as the fraction of weak similari-

ties that satisfy the condition of the bounding test (e.g., Equation 6

for CARD). We consider two cases: with pruning on (Table 4(b),

column (a)) and with pruning off (column (b)). From the table, we

see that the bounding techniques are highly effective. In particu-

lar, with pruning, 98.5% of the weak similarities are “captured” by

CARD’s bounding test without computing the similarities exactly.

Although SIG is slightly less effective than CARD, it leads to a bet-

ter FAC efficiency (see Section 5.2.2) because the signature-based

tests are evaluated more efficiently. Moreover, we observe that

pruning improves bounding effectiveness. This again shows the

synergy between pruning and bounding. We observe similar prun-

ing and bounding effectiveness for other datasets experimented in

our study.

5.2.4 Case Study. In this section we briefly mention an exam-

ple to illustrate an application of canonicalization. We apply FAC

on the 2.6M set and retrieve a cluster whose subject’s canonical

form is “UPS and FedEx”. There are 97 assertions in this cluster.

We manually inspect all these assertions and find that 50 of them

are redundant in the sense that they carry the same information as

other assertions in the set. For example,

∐︀UPS and FedEx; cannot deliver to; P .O. Boxes̃︀
is a redundant assertion because it semantically replicates

∐︀FedEx and UPS; can not ship to; Post Office Boxes̃︀.
The redundancy in this cluster is more than 50%. An interesting

question is how redundant assertions can be effectively found.

We attempt to answer this question by canonicalizing the object
names of assertions as well. Now, we consider two assertions a1 =
∐︀s1; r1;o1̃︀ and a2 = ∐︀s2; r2;o2̃︀ to be the same if f (s1) = f (s2),
r1 = r2 and f (o1) = f (o2) (i.e., their subjects/objects share the

same canonical forms and they have the same relation name). By

this means, we are able to find 24 of the 50 redundant assertions.

Note that the two real assertions shown above are not detected as du-

plicates by the simple method because they have different relation

names. Potentially, we could achieve even more effective duplicate

detection if we canonicalize relation name as well. Nonetheless, this

case study gives us some interesting insights. (1) Assertions could

be highly redundant in an OKB. This unnecessarily increases the

storage and processing requirements in knowledge management

and processing. (2) Entities in assertions could be composite virtual
entities. In this case study, “UPS and FedEx” is not a single physical

entity; it is more of a concept of “representative delivery services”.

It may not be easy to link such virtual entities to those in a curated

KB. (3) Canonicalization can help us detect redundancy and identify

virtual entities. This has the potential of significantly improving

the performance of an OKB system in answering queries.

6 CONCLUSIONS
In this paper we studied the problem of efficient canonicalization of

large OKBs. We put forward the FAC algorithm, which applies var-

ious pruning and bounding techniques to avoid mention similarity

computations. We provided in-depth analysis on our techniques.

In particular, we show that the pruning strategies OD and INV are

particularly effective for datasets whose canopies contain few but

dense clusters, and whose inverted indices contain long inverted

lists. Through extensive experiments, we evaluated FAC over a



Total w/ OD w/ (OD + INV)

Similarities computed: 4,572.8M 2,241.3M 215.0M

Pruning effectiveness: 42.6% 95.3%

(a) Pruning effectiveness

Pruning (OD + INV)

(a) Enabled (b) Disabled

Total # of weak similarities: 212M 3,081M

CARD

Weak similarities computed: 3.2M 529M

Bounding effectiveness: 98.5% 82.5%

SIG

Weak similarities computed: 21.3M 751M

Bounding effectiveness: 90.0% 75.6%

(b) Bounding effectiveness

Table 4: Pruning and bounding effectiveness (2.6M set)

number of large datasets. Our results show that our strategies are

highly effective and FAC is scalable. FAC is thus a feasible solution

to canonicalize practically-large OKBs.
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