HKU CS Tech Report TR-2018-02

DCN: Detector-Corrector Network Against Evasion Attacks on
Deep Neural Networks

Jing Wen Lucas C.K. Hui
Dept. of Computer Science Hong Kong Applied

Siu-Ming Yiu Ruoqging Zhang
Dept. of Computer Science Dept. of Computer Science

The University of Hong Kong Science and Technology The University of Hong Kong The University of Hong Kong

Email: jwen@cs.hku.hk Research Institute (ASTRI)
Email: lucashui@astri.org

Abstract—Deep neural networks are extensively used in image
recognition. However, its integrity is compromised by evasion
attacks. Attackers can easily craft adversarial examples that
make DNNs unknowingly output the labels they want rather
than the right labels. In a recent study, it was shown that
existing detection methods are not effective in identifying these
adversarial examples, i.e., it is a realistic threat to existing
systems. Unlike the previous detection methods, we observe
that the classification probability distributions of adversarial
examples and those of untampered examples exhibit a big
difference, which can be easily identified based on the output
of a DNN without getting into the complicated DNN internal
structure. Based on this new insight, we propose a new light-
weight detection method by transforming the detection of
adversarial examples into a binary classification problem. The
detector we train achieves almost 100% accuracy on adver-
sarial examples. Moreover, we propose a detector-corrector
network that effectively reduces successful rate of existing
state-of-the-art evasion attacks under three commonly used
distance metrics. In particular, for the common L. attack,
DCN mitigates 99% adversarial examples on MNIST and
95% on CIFAR-10. Our evaluation demonstrates that DCN is
significantly more effective and efficient against various evasion
attacks than existing methods.

1. Introduction

Deep Neural Networks (DNNs) have become a popular
methodology for handling various challenging AI problems
such as speech recognition [1], playing games [2], [3],
natural language processing [4] and image recognition [5].
Specifically, some models using DNNs in image recognition
achieve near-human performance [5], [6].

However, recent work in machine learning, computer
vision and security has revealed the vulnerability of DNNs
to evasion attacks at the inference stage. Attackers can add
noises onto an image then transform it into an adversarial
example [T], which is incorrectly classified by a DNN. Of-
ten, the change on original image (called an benign example)
is too small to be noticed by human. Therefore, attackers can

Email: smyiu@ cs.hku.hk Email: rqgzhang2 @cs.hku.hk

take control of DNN model so that it unknowingly outputs
what attackers want instead of the right label [8].

Evasion attacks limit the deployment of DNNSs, espe-
cially in safety-critical applications such as self-driving sys-
tems. For instance, a stop sign is slightly modified such that
it is still recognized as a stop sign by human but classified
as a yield sign by an autonomous car. As a result, the self-
driving car may not stop at the adversarial stop sign.

To defend against these attacks, adversarial training [9]
and distillation network [10] that reinforce robustness of
DNN model, were proposed. Meanwhile, Carlini et al. pro-
posed a set of attacks [11] that achieved 100% success rate
on DNNs even with defensive distillation. On the other hand,
some research focused on detection of adversarial examples
by examining the convolution layers [12] and PCA of image
[13]. But [14] demonstrated that previous detection methods
failed to detect their new adversarial examples.

Our work. In this paper, we propose a new detection
method by transforming the detection of adversarial exam-
ples into a binary classification problem. In other words,
we train a binary classifier to distinguish adversarial ex-
amples. Intuitively, the classifier learns the differences in
classification probability distribution, which is the output
of DNN. Especially for adversarial examples, the detection
accuracy exceeds 99%. This indicates that the classification
probability distributions of adversarial examples and benign
examples have different characteristics and can be exploited
to train a classifier. Based on the measurement result, we
implement the defector using a two-layer neural network.

Besides, we adopt the idea of Region-based classifier
(RC) [15] proposed by Can and Gong. Since this method is
very cumbersome, we improve it by setting new parameters
and transform it into the corrector to recover the right labels
of those adversarial examples found by detector.

Finally, we propose a detector-corrector network (DCN)
which not only accurately captures adversarial examples,
but also efficiently recovers their right labels. We evaluate
it against six types of the state-of-the-art evasion attacks and
compare it with other defensive methods such as distillation
and RC. Evaluation results in Sec. 5 shows our method is
significantly more effective and efficient.

Administrator
 HKU CS Tech Report TR-2018-02

Contributions. In summary, this paper makes following
contributions:

e We perform a measurement study and provide new
insights into characterizing adversarial examples.

e We propose a new efficient and accurate detection
method to distinguish adversarial examples with ex-
tremely high accuracy and low false negative.

« We propose a detector-corrector network that can re-
cover the right label of adversarial examples to mit-
igate evasion attacks. The evaluation results demon-
strate that our DCN: 1) achieves the same accuracy
on benign examples with standard DNN, 2) is more
robust to the state-of-the-art evasion attacks than
existing methods, 3) is significantly more efficient
than existing effective defensive methods.

2. Background and related work

2.1. Deep neural networks

A deep neural network can be simply regarded as a
function C(x) = L that accepts * € R™ as input and
predicts the label L € N, that refers to the classifica-
tion. For example, MNIST and CIFAR-10 are both 10-
class problems. Therefore label L is an integer from O
to 9. Furthermore, a DNN consists of an input layer,
several hidden layers, and an output layer. For a k-class
classification problem, after the input layer and hidden
layers, DNN computes a k-dimensional vector denoted as
y = H(zx),y € R*, called logits. Since output layer is
often a softmax layer, which normalizes y into another
k-dimensional vector p = softmax(y) of values ranging
from O to 1 that add up to 1. We donate the ith value in
p as p;, which satisfies 0 < p, < 1,22‘;1 p; = L. p,;
represents the probability that a belongs to the <th class.
The label L of x is supposed to be the one that has largest
probability: L = argmaz;(softmax(H(x));). Therefore,
p can be regarded as the probability distribution of input x
over k classes. Since softmax is a monotonically increasing
normalized function, the largest value in p has the same
index with the largest value in logits y. We can regard logits
also as probability distributions without normalization.

In this paper, we treat logit y and softmax p as the
output of DNN since they both are k-dimensional vectors
and convey the classification probability distribution.

2.2. Evasion attacks

Evasion attacks transform inputs into adversarial exam-
ples by adding small amount of noises so that it will be
misclassified by DNN. Szegedy et al. [7] first noticed the
existence of adversarial examples in DNN: given a benign
input @, whose right label is [= C(x), a similar input x’
such that C'(2’) = t,t # [can be easily found. Given the
specific © and ¢, x’ is called targeted adversarial example.

There exists another less powerful attack named un-
targeted attack. Instead of targeting at ¢, it only searches

for an example such that C(x’) # [and x, a’ are very
close. Carlini et al. [11] proposed a more efficient but less
accurate strategy to conduct untargeted attacks: choosing
the closest one among adversarial examples generated by
targeted attacks.

Theoretically, targeted evasion attacks can be trans-
formed into the following optimization problem [7]:

minimize : D(x,2’)
subject to: C(x') =t (1
z' €[0,1]™

where t is the targeted label and D is the distance metric
defining the distance between a pair of inputs.

Distance metrics. There are 3 widely-used distance metrics:
1) Ly distance reflects the number of pixels that have been
changed in an image. It counts the number of ¢ with

x; # x; no matter how much these values differ.

2) Lo distance is the standard Euclidean distance between
x and x’. It sums up root-mean-square of each pixel
pair. Unlike Lj, L, distance can remain small even
many pixels are changed.

3) L distance measures the maximum change among the
changed pixels. Its value is maz{|zy — 2|, - ,|Tm —
)|} no matter how many pixels change.

We summarize some popular evasion attacks in Tab.1
according to the distance matrix they use:

TABLE 1. EXISTING EVASION ATTACKS UNDER 3 DISTANCE METRICS.

L-BFGS FGSM IGSM JSMA Deepfool CW
Lo v v
Lo v v v
Lo v v v

L-BFGS [7] uses box-constrained L-BFGS to solve the
problem in Eq.1 with an extra loss function. Deepfool [16] is
an untargeted attack under Lo distance metric. Fast Gradient
Sign method (FGSM) [9] calculates the gradient of the
loss function to determine the direction towards targeted
adversarial label in every step. Similarly, Iterative gradient
sign method (IGSM) [17] improved FGSM by taking an
iteration of smaller step size and clipping the current result.
Papernot et al. proposed the Jacobian-based Saliency Map
Attack (JSMA) [18] under L, distance metric. JSMA is
a greedy algorithm that makes use of saliency map to
pick pixels to alter. They use both gradients of H(x); and
softmax(H (x)); under different configurations [10].

CW attacks. Carlini et al. [11] proposed a set of attacks
under the three distance metrics:

Ly: They first set the adversarial example =’ =
(tanh(w) + 1). Since —1 < tanh(w;) < 1, ' is au-
tomatically set in range [0,1]™. Given input x and tar-
get label ¢, it minimizes ||z — 2'||> + ¢ - f(x'), where
f(@") = max(max{H(x'); : i #t} — H(x'), —k), and K
controls the confidence that «’ is classified as label ¢.

Ly: They also adopted the idea of iterative algorithms. In
each iteration, they make use of their Lo attack and compute

the gradient of f(2’) to determine the less important pixels
for the classification ¢ then cut them until obtaining a small
subset of pixels that can be altered to produce an adversarial
example classified as label ¢.

Loo: They donate @ = x + §, where § is noises to
be minimized. Then transform Eq. 1 into: ¢ - f(x + §) +
>, max{(d; — 7),0} and search for proper ¢ and 7.

2.3. Defensive methods

Defensive distillation. Papernot et al. [10] proposed the
defensive distillation to train another DNN with the soft
labels. They first train standard DNN but replace the softmax
by 7 H (), which is smoother than softmax so-called soft
labels. To distill this DNN, they using the same training
data and soft labels, train the second network which behaves
like the first model. Actually, Carlini et al. [11] found that
distillation cannot remove adversarial examples. The attacks
still achieve 100% success rates in their datasets.

Feature squeezing. Xu et al. [19] proposed a detection
method by comparing a DNN model’s prediction on the
original images with the squeezed image by reducing the
color bit depth or spatial smoothing. Single detective method
can not recover the right label of adversarial examples. We
suppose that it requires human to recognize the adversarial
examples thus the whole system would be inefficient.

MagNet. Meng and Chen [20] proposed a framework
against adversarial examples by training separate detector
networks and reformer networks. The detector learns the
difference between benign and adversarial examples by
approximating the manifold of benign examples. While re-
former moves the adversarial examples towards the manifold
of benign examples to correctly classify them.

Region-based classifier. Cao and Gong [15] proposed a
method called Region-based Classification (RC), which en-
sembles information in a hypercube centered at the exam-
ple. Specifically, RC regards input space as a hyper space
and classifier divides the space into different regions. RC
samples some points in the hypercube centered at testing
example and re-uses DNN to predict the label for each
sampled data point. Afterward, it takes a majority vote
among all labels as the label for the testing example.

3. Our detection method

First, we characterize benign and adversarial examples
by exploring the reason why a classifier makes different
decisions on these similar images.

Characteristics of adversarial examples. Different from
the previous detection approaches such as using the content
of image itself [13] and looking the inner convolution layers
[12] of the network, our detection method focuses on logits
from last hidden layer. Actually, it is the maximum value in
logit that determines the classification.

Fig.1 shows the great difference in logits between benign
7 referring the first row, and adversarial examples generated
from 7 in the last nine rows. The first column contains
their labels DNN model predicted. An attack succeeds when
DNN model predicts wrong label rather than 7 even though
human recognizes all the 10 images as 7 displayed in
the second column. The maximum in each vector, which
determines the classification, is marked in red.

-7.771 0485 1720 3.543 1.609 -3.061 -14.77 29.17 -5.72 5.019
1.603 -1.699 1580 1.454 -1.907 -1.742 -1.334 1601 1501 -3.106
7| -5.737 5.074 5.070 2716 -0.263 -4.035 -4.098 5.067 -2.278 -3.615
- -2.756 -0.146 11.67 1155 -2.381 -6.354 -7.830 11.66 -3.838 -2.927
-11.32 -4.095 -5.638 17.47 -1.079 4.020 -14.76 17.46 -2.408 11.05
-4.557 -0.793 -4.342 2639 5.521 -0.165 -4780 5.517 -0.472 5.473
-8.449 -3.305 -8.148 10.70 -0.951 10.71 -10.30 10.70 -1.403 7.981
0.835 -1.637 0.678 0.843 -2.107 -1.735 0.861 0.838 0.577 -1.759
-3.741 -4.118 -0.712 4756 -1.902 -0.280 -6.591 4.731 4.781 4.777
- -11.57 -6.348 -7.836 12.89 3.571 3.996 -15.15 17.70 -3.334 17.71

:

1N

NS]

© LA W N R O
]

Figure 1. Label, image, noises, logit of benign and adversarial examples
using CW-Lo attacks with confidence parameter x = 0.

The advantages of using logits are threefold: 1) logits
is the direct output from the last hidden layer. There is no
need to know the complex internal structure of the DNN
itself; 2) the dataset of logits is rather small, which improves
the efficiency of training detector and prediction; 3) logits
provide detector with enough information to distinguish
adversarial examples from benign examples. Logits convey
the probability distribution on 10 classes. The index of the
maximum value in logit directly determines the classifica-
tion of this image and also reflects the confidence.

In Fig.1, for example, the adversarial 0 has a totally
different probability distribution from original data labeled
with 7. Although two images both look like 7. Furthermore,
for the logit of benign 7, the index of maximum is 7 with
confidence more than 20, assuming that the index of first
value is 0. In contrast for the adversarial example labeled
with 0, the index of maximum is 0 with confidence only 1,
and index 7 with less confidence but very close to the the
confidence of adversarial index.

Detector. Our detector is an extremely light-weight neural
network containing 2 fully connected layers. For training
and testing detector, we randomly choose benign examples
and generated adversarial example for each of them. More
details refers to Sec. 5.

4. Detector-Corrector Network

We propose Detector-Corrector network (DCN), consist-
ing of two independent parts: 1) a detector to distinguish
adversarial examples from benign examples, 2) a corrector
to correct the wrong label of adversarial example. There is
no modification of the original DNN even if it is vulnera-
ble to evasion attack. Together with our Detector-Corrector
network, DNN is able to maintain its accuracy of benign
examples and mitigate adversarial examples with a little
overhead.

Corrector. Our corrector makes use of RC [15] to recover
the right label of an example classified as adversarial by
detector. Comparing with the DNN model that makes a
prediction based on only one input, corrector makes a pre-
diction based on the area around the input data in order to
avoid bias. Simply speaking, corrector makes m times pre-
diction Ly, Lo, ..., L,, about points P;, P, ..., P,, located
within a hypercube HC'(r,z) of radius r centered at input
data x. Among the m labels, corrector chooses the mode
that appears most repeatedly as the label. Based on the
DNN classifier L = C(x), correct calculates: Label =
Mode(Ly, Lo, ..., L), {L; = C(x;)|z; € HC(r,z),i =
1,2,...,m}.

In Fig.3, once a successful adversarial example was
generated, it must have been moved to another region but as
close as possible to the original region so as to add smaller
distortion. A proper hypercube centered at adversarial exam-
ple could intersect the most with the region of original label.
By uniformly sampling points inside the hypercube with
proper radius, corrector approximates the region intersecting
the most with the hypercube to recover the original label.

Image Boundary

Deep neural
network model U

ogit: -7.771, 0.485, 1.720, 3.543.. Benign
» Detector
Classification 7

Classification /

Figure 2. Workflow of processing benign 7.

Image Boundary

“
I3 .
.
¢ I onaama

m samples

Classification 7

Deep neural
network model

m classifications

(7.7.0,7.7,7... IAdversary

Logit: 1.603, -1.699, 1.580, 1.454...

> Detector

Classification 0 Benign

Figure 3. Workflow of processing adversarial O with original label 7.

DCN workflow. Fig.2 shows the workflow of DCN if
detector reports a benign input. First of all, DNN model
predicts label 7 and outputs logit as usual. Then the well-
trained detector makes a benign judgment according to this
logit. Immediately we get the right label only through two
predictions without corrector participation. Since detector
itself is very light-weighted, almost no overheads are added.

Workflow of processing adversarial example is more
complicated due to the activation of corrector. In Fig.3,
human recognize the image as 7 while DNN model produces
the wrong label 0. Based on the unusual probability distri-

bution in logit, detector immediately notices this adversarial
example and passes it to corrector. Then corrector randomly
samples a bunch of images located within the hypercube
and obtains their predicted labels from DNN model. Finally
corrector decides on the mode 7 as the classification.

All in all, for both benign and adversarial examples, our
detector-corrector network predicts the right label.

5. Evaluation

In this section, we evaluate the accuracy and efficiency
on two datasets. Moreover, we compared our approach with
previous defensive methods against six types of state-of-
art evasion attacks. We used open-source CW attacks from
authors and implemented our DCN and RC by ourselves
in Python 3.6.2 using Keras [21] and Tensorflow [22]. All
the running times below are in seconds and measured on a
Windows computer with a 3.4GHz Intel Core i5 processor
and 8GB RAM without GPU acceleration.

5.1. Experimental setup

Datasets. We use: MNIST [23] and CIFAR-10 [24] as
benchmark. MNIST is a dataset of handwritten digits for-
matted as 28 x 28 gray images. CIAFR-10 collected 10
kinds of colored images formatted as 32 x 32 x 3. For our
convenience, data was normalized into real number between
-0.5 and 0.5. Carlini and Wagner [11] also used the same
normalization to conduct their attacks.

Evasion attacks. We use a set of targeted CW attacks [11]
since they include three distance metrics. In addition, we
transform the targeted attacks into corresponding untargeted
attacks by means of the strategy proposed in Sec 2.

Other defensive methods. We compare our DCN with the
following classifier and defensive methods:

Standard DNN. We train DNN model according to the
network architectures and parameters presented in [11]. Our
models achieved 99.3% accuracy on MNIST and 78.7%
on CIFAR-10, both comparable to the accuracy in [11].
Standard DNN is used as a baseline.

Distillation. We use distillation [10] to re-train standard
DNN by setting temperature 7' = 100, which was found to
be most effective in [10]. Afterwards, when using distilled
network to do classification, we use temperature 7' = 1.

Region-based classifier. According to [15], we transform
standard DNN classifier into region-based DNN classifier
with set » = 0.3 for MNIST,» = 0.02 for CIFAR-10 and
m = 1,000, which are reported most effective [15].

5.2. DCN setup

Detector. For training detector, we randomly select 1,000
benign examples from MNIST that standard DNN correctly
classifies and generate adversarial examples for them. Noted
that we only use adversarial examples generated by CW-
Lo attack to train our detector but test it with other CW

attacks. Specifically, for each benign example, we generate
9 adversarial examples since MNIST and CIFAR-10 both
are 10-class problems. Finally, we obtain datasets composed
10,000 examples in total. For CIFAR-10 we reduce the
dataset size to half, which contains 5,000 examples in all.

For testing, we randomly select 1,000 benign data except
those using for training and generate 9, 000 adversarial
examples since CW-attacks do have 100% successful rate
on standard DNN. We report the accuracy in Tab.2.

TABLE 2. FALSE RATE OF DETECTOR

False negative
MNIST 3.7%
CIFAR-10 21.5%

False positive
0.31%
0.91%

False negatives imply that benign examples are classified
to be adversarial and activate corrector. Although activations
of corrector bring extra workload. False negative is accept-
able because corrector can recover not only adversarial ex-
amples but also benign examples with minimum overheads.

False positives mean that adversarial examples are clas-
sified as benign examples then fail to activate corrector
thus we get wrong label. False positive should be as low
as possible so that all adversarial examples could activate
corrector to recover right labels.

Corrector. In Sec.4, we mention that there are two param-
eters to be set: hypercube radius r and quantity of samples
m. We adopt the parameter r [15] but set a smaller m = 50,
since in Fig.4 we find m has little effect on accuracy but is
roughly proportional to the running time. Setting smaller m
could improve efficiency without compromising accuracy.

MNIST CIFAR
45000

—— Accu of benigns L1000
— -Accu of adversrials . 1
----- Time ‘.."

4000

o
©
®

3000

Running time
.
S
S
3

Accuracy
Accuracy
Running time

1000

- 0 : 0
50 200 500 1000 50 200 500 1000
m m

Figure 4. Accuracies and running time of corrector for different m.

5.3. Comparisons

We analyze robustness and efficiency of DCN compared
with distillation and RC, against the state-of-the-art targeted
and untargeted evasion attacks under Lo, L2 and L, norms.

Performance with benign examples. We randomly sample
1,000 benign examples from MNIST and 500 from CIFAR-
10. Since RC is too inefficient to run enormous examples.
Tab.3 shows the accuracies and overall running times. First,
DCN achieves the same accuracy with the baseline. As
described in Sec.4, detector acts as a filter that allows benign
examples to pass through it with label DNN predicts. Even a
benign example activates the corrector, we still get the right

label. In contrast, distillation achieves lower accuracy than
DCN and RC performs unstably. Its accuracy for MNIST is
the lowest while for CIFAR is highest. As for efficiency,
DCN consumes only 3 seconds and 55 seconds respec-
tively on MNIST and CIFAR comparable with baseline and
distillation, while RC takes thousands of seconds. This is
because, for every input, RC wastes massive resource and
time for meaningless sampling and predictions.

Although the differences between accuracies are smaller,
DCN does not sacrifice accuracy on benign examples. While
others sacrifice accuracy or efficiency.

TABLE 3. CLASSIFICATION ACCURACY ON BENIGN EXAMPLES

Standard Distillation RC Our DCN

MNIST 99.4% 99.3% 99.1% 99.4%
Overall time 0.783 0.735 1017.07 3.356
CIFAR-10 78.2% 77.0% 78.6% 78.4%
Overall time 1.507 1.483 5002.75 55.317

Robustness to adversarial examples. Tab.4 and 5 show the
successful rates of six types of evasion attacks. For standard
DNN and distillation network, we report that the attack
succeeds if the attack produces an adversarial example that
is misclassified. For RC and our DCN, we report an attack
failure if the right label of adversarial example is recovered.
Lower successful rate indicates that the defensive method is
more effective and robust.

TABLE 4. SUCCESSFUL RATE OF EVASION ATTACKS ON MNIST

Targeted Untargeted
Lo Lo Lo Lo Lo Lo
DNN 100% 100% 100% | 100% | 100% | 100%
Distillation 100% 100% 100% | 100% | 100% | 100%
RC | 57.11% | 9.22% | 9.67% | 49% 8% 9%
Our DCN | 56.11% | 1.89% | 0.89% | 44% 0% 0%

TABLE 5. SUCCESSFUL RATE OF EVASION ATTACKS ON CIFAR-10

Targeted Untargeted
Lo Lo L Lo Lo L
DNN 100% 100% 100% 100% | 100% | 100%
Distillation 100% 100% 100% 100% | 100% | 100%
RC | 33.89% | 533% | 18.67% | 63% 5% 34%
Our DCN | 3522% | 5.33% | 18.22% | 36% 5% 32%

Since CW attacks are inefficient, we randomly sample
100 benign examples that standard DNN correctly classifies
and generate adversarial examples for each of them using
different attacks. Specifically, for each benign examples,
we generate 9 adversarial examples using targeted evasion
attack, and choose only one adversarial example with lowest
distortion as untargeted adversarial examples.

Our evaluation indicates the following: first, successful
rate is the lowest with DCN than other defensive methods.
This is because DCN is able to detect adversarial examples
accurately and recover the right labels of them. Second,
DNN performs better against Lo and L., attack than Ly,
which also happens on RC. Actually, detector detects almost
all adversarial examples but corrector fails to recover some
of them. The reason is that adversarial examples generated

under Lo metrics may be further away from the boundary
thus the hypercube intersects less with the space of right
label. But Ly distance only counts how many pixels that
have been changed no matter how much each pixel changes.
As a result, Ly attacks often add spots on images, which
human may perceive easily. Third, our DCN reduces the
successful rate of all sorts of evasion attacks. Comparing
with RC, our DCN is more effective since we improve the
parameters of corrector, which contributes not only efficacy
but also efficiency.

Efficiency. Tab.6 lists the running time of our DCN for 100
random examples containing different percentages of adver-
sarial examples and the running time of RC for the same
100 examples. Since distillation is no longer effective to
reduce successful rate of evasion attacks. We only compare
our DCN with less effective RC.

TABLE 6. THE RUNNING TIME FOR 100 DATA WITH DIFFERENT
ADVERSARIAL EXAMPLES PERCENTAGE.

MNIST CIFAR-10
Our DCN RC Our DCN RC

0% 0.46 143.49 5.13 557.12
1% 0.47 148.60 5.23 555.78
10% 1.08 147.42 7.17 574.45
20% 1.81 148.89 9.13 565.56
50% 3.97 147.44 15.15 557.54
75% 5.64 146.25 20.13 571.12
100% 7.51 146.11 25.79 545.57

Our result shows that: 1) the running time of our DCN
increases with the percentage of adversarial examples since
adversarial examples activate the corrector, which consumes
more time than detection. 2) our DCN is significantly more
efficient than RC, which samples and predicts 1,000 times
for every input even when there is no adversarial example
at all. If an attacker just mix several adversarial examples
into dataset, for the overall robustness, RC has to sample
and predict repeatedly for each input. Therefore, RC spends
almost the same amount of time in each test. We average the
running time of RC and draw Fig. 5 with logarithmic axis
for the running time to highlight the efficiency difference
between our DCN and RC.

Running time for MNIST
1000 100 10 1 0.1
N 0
I 1
B 10% I
L
I
B

Running time for CIFAR
10 100 1000

-

M Benign
Adversarial

. 20%
N 50%
N 75%
100%

Figure 5. The running time for 100 data with different adversarial examples
percentage using our DCN and RC.
6. Discussions

Other correctors. Our work demonstrates the high accuracy
of detector. An accurate corrector is of great importance to

improve the robustness of whole network if it could accu-
rately recover more right labels, especially for L adversarial
examples.

Adaptive CW attack against our DCN. Another inter-
esting work is to explore new adaptive evasion attack to
fool our DCN. Increasing the attack confidence parameter
k will generate more confident adversarial examples with
the expense of adding more noises. Those examples are
more likely to be noticed by human. On the other hand,
adaptive method can attempt to construct new loss function
to bypass the detection network, as CW attacks only accepts
one network.

DCN against other evasion attacks. Our preliminary ex-
periment demonstrates that DNC is a promising method to
mitigate adversarial examples generating by CW attacks. We
start to evaluate it with other evasion attacks such as FGSM,
JSMA and DeepFool implemented by CleverHans [25].

7. Conclusions

In this paper, we propose a new detection method and
detector-corrector network to mitigate adversarial examples
efficiently. First of all, we characterize adversarial examples
according to the differences in logits. Second, based on the
characteristics, we train detector to distinguish adversarial
examples, which achieves almost 100% accuracy on adver-
sarial examples with low false negative. Third, we propose
DCN based on DNN that effectively reduce successful rate
of the existing state-of-the-art evasion attacks under different
distance metrics. Our evaluation demonstrates the efficacy
and efficiency of DCN agianst various evasion attacks.

Future work includes new correcting method and adap-
tive evasion attacks. We encourage researchers who develop
new evasion attacks to evaluate their attacks against DCN.
To enable other researchers to test with our work in an
easy manner, all of our implementation are available at:
https://github.com/joy8023/DCN

Acknowledgement

We would like to thank the anonymous reviewers for
their valuable feedback and comments. This project is par-
tially supported by the NSFC/RGC Joint Research Scheme
(N_HKU729/13) and the RGC CRF grant (CityU C1008-
16G).

References

[1] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural
networks for acoustic modeling in speech recognition: The shared
views of four research groups,” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 82-97, 2012.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, pp. 484489,
2016.

(3]

[4]

(3]

(6]

(71

(8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

(21]

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforce-
ment learning,” arXiv preprint arXiv:1312.5602, 2013.

D. Andor, C. Alberti, D. Weiss, A. Severyn, A. Presta, K. Ganchev,
S. Petrov, and M. Collins, “Globally normalized transition-based
neural networks,” arXiv preprint arXiv:1603.06042, 2016.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097-1105.

D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in Computer vision and pattern
recognition (CVPR), 2012 IEEE conference on. 1EEE, 2012, pp.
3642-3649.

C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus, “Intriguing properties of neural networks,” arXiv
preprint arXiv:1312.6199, 2013.

I. Stoica, D. Song, R. A. Popa, D. Patterson, M. W. Mahoney,
R. Katz, A. D. Joseph, M. Jordan, J. M. Hellerstein, J. E. Gonzalez
et al., “A berkeley view of systems challenges for ai,” arXiv preprint
arXiv:1712.05855, 2017.

I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harness-
ing adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distil-
lation as a defense to adversarial perturbations against deep neural
networks,” in Security and Privacy (SP), 2016 IEEE Symposium on.
IEEE, 2016, pp. 582-597.

N. Carlini and D. Wagner, “Towards evaluating the robustness of neu-
ral networks,” in Security and Privacy (SP), 2017 IEEE Symposium
on. IEEE, 2017, pp. 39-57.

J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting
adversarial perturbations,” arXiv preprint arXiv:1702.04267, 2017.

D. Hendrycks and K. Gimpel, “Early methods for detecting adver-
sarial images,” 2017.

N. Carlini and D. Wagner, “Adversarial examples are not easily
detected: Bypassing ten detection methods,” in Proceedings of the
10th ACM Workshop on Artificial Intelligence and Security. ACM,
2017, pp. 3-14.

X. Cao and N. Z. Gong, “Mitigating evasion attacks to deep neural
networks via region-based classification,” in Proceedings of the 33rd
Annual Computer Security Applications Conference. ACM, 2017,
pp. 278-287.

S. M. Moosavi Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a
simple and accurate method to fool deep neural networks,” in Pro-
ceedings of 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), no. EPFL-CONF-218057, 2016.

A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” arXiv preprint arXiv:1607.02533, 2016.

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in Security and Privacy (EuroS&P), 2016 IEEE European Symposium
on. IEEE, 2016, pp. 372-387.

W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial
examples in deep neural networks,” arXiv preprint arXiv:1704.01155,
2017.

D. Meng and H. Chen, “Magnet: a two-pronged defense against
adversarial examples,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM,
2017, pp. 135-147.

F. Chollet et al., “Keras,” https://keras.io, 2015.

[22]

[23]

[24]

[25]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, 1. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online].
Available: https://www.tensorflow.org/

Y. LeCun, “The mnist database of handwritten digits,” http://yann.
lecun. com/exdb/mnist/, 1998.

A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” 2009.

N. Papernot, N. Carlini, I. Goodfellow, R. Feinman, F. Faghri,
A. Matyasko, K. Hambardzumyan, Y.-L. Juang, A. Kurakin, R. Sheat-
sley et al., “cleverhans v2. 0.0: an adversarial machine learning
library,” arXiv preprint arXiv:1610.00768, 2016.

