
DSANLS: Accelerating Distributed Nonnegative Matrix

Factorization via Sketching

Technical Report

Yuqiu Qian∗1, Conghui Tan†2, Nikos Mamoulis‡3, and David W. Cheung�1

1Department of Computer Science, The University of Hong Kong
2Department of SEEM, The Chinese University of Hong Kong

3Department of Computer Science & Engineering, University of Ioannina

Abstract

Nonnegative matrix factorization (NMF) has been successfully applied in di�erent �elds,
such as text mining, image processing, and video analysis. NMF is the problem of determining
two nonnegative low rank matrices U and V , for a given input matrix M , such that M ≈
UV >. There is an increasing interest in parallel and distributed NMF algorithms, due to
the high cost of centralized NMF on large matrices. In this paper, we propose a distributed

sketched alternating nonnegative least squares (DSANLS) framework for NMF, which utilizes
a matrix sketching technique to reduce the size of nonnegative least squares subproblems in
each iteration for U and V . We design and analyze two di�erent random matrix generation
techniques and two subproblem solvers. Our theoretical analysis shows that DSANLS converges
to the stationary point of the original NMF problem and it greatly reduces the computational
cost in each subproblem as well as the communication cost within the cluster. DSANLS is
implemented using MPI for communication, and tested on both dense and sparse real datasets.
The results demonstrate the e�ciency and scalability of our framework, compared to the state-of-
art distributed NMF MPI implementation. Its implementation is available at https://github.
com/qianyuqiu79/DSANLS.

1 Introduction

Nonnegative matrix factorization (NMF) is a technique for discovering nonnegative latent factors
and/or performing dimensionality reduction. NMF �nds applications in text mining [34], im-
age/video processing [21], and analysis of social networks [38]. Unlike general matrix factorization
(MF), NMF restricts the two output matrix factors to be nonnegative. Nonnegativity is inherent in
the feature space of many real-world applications, therefore the resulting factors can have a natural
interpretation. Speci�cally, the goal of NMF is to decompose a huge matrix M ∈ Rm×n

+ into the

∗yqqian@cs.hku.hk
†chtan@se.cuhk.edu.hk
‡nikos@cs.uoi.gr
�dcheung@cs.hku.hk

1

https://github.com/qianyuqiu79/DSANLS
https://github.com/qianyuqiu79/DSANLS
Administrator
 HKU CS Tech Report TR-2017-05

product of two matrices U ∈ Rm×k
+ and V ∈ Rn×k

+ such that M ≈ UV >. Rm×n
+ denotes the set

of m × n matrices with nonnegative real values, and k is a user-speci�ed dimensionality, where
typically k � m,n.

Generally, NMF can be de�ned as an optimization problem [23] as follows:

min
U∈Rm×k

+ ,V ∈Rn×k
+

∥∥∥M − UV >∥∥∥
F
, (1)

where ‖X‖F =
(∑

ij x
2
ij

)1/2
is the Frobenius norm of X. However, Problem (1) is hard to solve

directly because it is non-convex. Therefore, almost all NMF algorithms leverage two-block coordi-
nate descent schemes. That is, they optimize just over one of the two factors, U or V , while keeping
the other �xed [8]. By �xing V , we can optimize U by solving a nonnegative least squares (NLS)
subproblem:

min
U∈Rm×k

+

∥∥∥M − UV >∥∥∥
F
. (2)

Modern data analysis tasks apply on big matrix data with increasing scale and dimensionality.
Examples include community detection in a billion-node social network, background separation on
a 4K video in which every frame has approximately 27 million rows [17], text mining on a bag-
of-words matrix with millions of words. The volume of data is anticipated to increase in the `big
data' era, making it impossible to store the whole matrix in the main memory throughout NMF.
Therefore, there is a need for high-performance and scalable distributed NMF algorithms.

In this paper, we propose a distributed framework for NMF. We choose MPI1/C for our dis-
tributed implementation for e�ciency, generality and privacy reasons. MPI/C does not require
reading/writing data to/from disk or global shu�es of data matrix entries, as Spark or MapReduce
do. Nodes can collaborate without sharing their local input data, which is important for applications
that involve sensitive data and have privacy considerations. Besides, high performance numerical
computing routines like MKL2 can be leveraged. The state-of-art implementation of distributed
NMF is MPI-FAUN [17], a general framework that iteratively solves nonnegative least squares
(NLS) subproblems for U and V . The main idea behind MPI-FAUN is to exploit the independence
of local updates for rows of U and V , in order to minimize the communication requirements of
matrix multiplication operations within the NMF algorithms.

Our idea is to speed up distributed NMF in a new, orthogonal direction: by reducing the problem
size of each NLS subproblem within NMF, which in turn decreases the overall computation cost. In
a nutshell, we reduce the size of each NLS subproblem, by employing a matrix sketching technique:
the involved matrices in the subproblem are multiplied by a specially designed random matrix at
each iteration, which greatly reduces their dimensionality. As a result, the computational cost of
each subproblem drops.

However, applying matrix sketching comes with several issues. First, although the size of each
subproblem is signi�cantly reduced, sketching involves matrix multiplication which brings compu-
tational overhead. Second, unlike in a single machine setting, the data are distributed to di�erent
nodes, which may have to communicate extensively in a poorly designed solution. In particular, each
node only retains part of both the input matrix and the generated approximate matrices, causing
di�culties due to data dependencies in the computation process. Besides, the generated random

1Message Passing Interface
2Intelr Math Kernel Library

2

matrices should be the same for all nodes in every iteration, while broadcasting the random matrix
to all nodes brings severe communication overhead and can become the bottleneck of distributed
NMF. Furthermore, after reducing each original subproblem to a sketched random new subproblem,
it is not clear whether the algorithm still converges and whether it converges to stationary points
of the original NMF problem.

Our distributed sketched alternating nonnegative least squares (DSANLS) overcomes these prob-
lems. First, the extra computation cost due to sketching is reduced with a proper choice of the
random matrices. Second, the same random matrices used for sketching are generated indepen-
dently at each node, thus there is no need for communication of random matrices between nodes
during distributed NMF. Having the complete random matrix at each node, an NMF iteration can
be done locally with the help of a matrix multiplication rule with proper data partitioning. There-
fore, our matrix sketching approach reduces not only the computational, but also the communication
cost. Moreover, due to the fact that sketching also shifts the optimal solution of each original NMF
subproblem, we propose subproblem solvers paired with theoretical guarantees of their convergence
to a stationary point of the original subproblems.

Our contributions can be summarized as follows:

• We propose DSANLS, a novel high-performance distributed NMF algorithm. DSANLS is the
�rst distributed NMF algorithm that leverages matrix sketching to reduce the problem size
of each NLS subproblem and can be applied to both dense and sparse input matrices with a
convergence guarantee.

• We propose a novel and specially designed subproblem solver (proximal coordinate descent),
which helps DSANLS to converge faster. We also discuss the use of projected gradient descent

as subproblem solver, showing that it is equivalent to stochastic gradient descent (SGD) on
the original (non-sketched) NLS subproblem.

• We present a detailed theoretical analysis of DSANLS, and prove that DSANLS converges to a
stationary point of the original NMF problem. This convergence proof is novel and non-trivial
because of the involvement of matrix sketching at each iteration.

• We conduct an experimental evaluation using several (dense and sparse) real datasets, which
demonstrates the e�ciency and scalability of DSANLS.

The remainder of the paper is organized as follows. Section 2 brie�y discusses the properties
of NMF, reviews NMF algorithms and distributed NMF techniques, and introduces the matrix
sketching technique. Our DSANLS algorithm is presented in Section 3. Detailed theoretical analysis
of DSANLS algorithm is discussed in Section 4. Section 5 evaluates DSANLS. Finally, Section 6
concludes the paper.

2 Background and Related Work

2.1 Properties of NMF

In this paper, we focus on solving problem (1), which has several properties. First, general NMF
is NP-hard [41], so typical methods aim at �nding an approximate solution (i.e., a local optimum).
The second property is that the search space of NMF has numerous local minimums, so the results of
di�erent algorithms may vary signi�cantly [14]. Third, choosing the best value for the factorization

3

rank k is quite hard. Widely-used approaches are: trial and error, estimation using SVD, and the
use of experts' insights [43].

2.2 NMF Algorithms

Almost all NMF algorithms leverage a two-block coordinate descent scheme (exact or inexact). That
is, they optimize just over one of the two factors, U or V , while keeping the other �xed [8]. The
reason is that the original problem (1) is non-convex, so it is hard to solve it directly. However, by
�xing V , we can solve a convex subproblem:

min
U∈Rm×k

+

∥∥∥M − UV >∥∥∥
F
, (3)

More precisely, (3) is a nonnegative least squares (NLS) problem. Similarly, if we �x U , the problem
becomes:

min
V ∈Rn×k

+

∥∥∥M> − V U>∥∥∥
F
. (4)

Algorithm 1: Two-Block Coordinate Descent: Framework of Most NMF Algorithms

initialize U0 ≥ 0, V0 ≥ 0;
for t = 0 to T − 1 do

Ut+1 ← update(M , Ut, Vt);
Vt+1 ← update(M , Ut+1, Vt);

end

return UT and VT

The �rst widely used update rule is Multiplicative Updates (MU), which was �rst applied for
solving NLS problems in [6]. Later, MU was rediscovered and used for NMF in [23]. MU is based
on the majorization-minimization framework. Its application guarantees that the objective function
monotonically decreases [6, 23].

Another extensively studied method is alternating nonnegative least squares (ANLS), which
represents a class of methods where the subproblems for U and V are solved exactly following the
framework described in Algorithm 1. ANLS is guaranteed to converge to a stationary point [11]
and has been shown to perform very well in practice with active set [18, 20], projected gradient [26],
quasi-Newton [46], or accelerated gradient [13] methods as the subproblem solver.

Hierarchical alternating least squares (HALS) [4] solves each NLS subproblem using an exact
coordinate descent method that updates one individual column of U at a time. The optimal solutions
of the corresponding subproblems can be written in a closed form.

2.3 Distributed NMF

Parallel NMF algorithms are well studied in the literature [15, 39]. However, di�erent from a
parallel, single machine setting, in a distributed setting, data sharing and communication have
considerable cost. Therefore, we need specialized NMF algorithms for massive scale data handling
in a distributed environment. The �rst method in this direction [27] is based on the MU algorithm. It
mainly focuses on sparse matrices and applies a careful partitioning of the data in order to maximize
data locality and parallelism. Later, CloudNMF [25], a MapReduce-based NMF algorithm similar

4

to [27], was implemented and tested on large-scale biological datasets. Another distributed NMF
algorithm [45] leverages block-wise updates for local aggregation and parallelism. It also performs
frequent updates using whenever possible the most recently updated data, which is more e�cient
than traditional concurrent counterparts. Apart from MapReduce implementations, Spark is also
attracting attention for its advantage in iterative algorithms, e.g., using MLlib [31]. Finally, there
are implementations using X10 [12] and on GPU [30].

The most recent and related work in this direction is MPI-FAUN [16, 17], which is the �rst
implementation of NMF using MPI for interprocessor communication. MPI-FAUN is �exible and
can be utilized for a broad class of NMF algorithms that iteratively solve NLS subproblems including
MU, HALS, and ANLS/BPP. MPI-FAUN exploits the independence of local update computation
for rows of U and V to apply communication-optimal matrix multiplication. In a nutshell, the
full matrix M is split across a two-dimensional grid of processors and multiple copies of both U
and V are kept at di�erent nodes, in order to reduce the communication between nodes during the
iterations of NMF algorithms.

2.4 Matrix Sketching

Matrix sketching is a technique that has been previously used in numerical linear algebra [10],
statistics [36] and optimization [37]. Its basic idea is described as follows. Suppose we need to �nd
a solution x to the equation:

Ax = b, (A ∈ Rm×n, b ∈ Rm). (5)

Instead of solving this equation directly, in each iteration of matrix sketching, a random matrix
S ∈ Rd×m (d� m) is generated, and we instead solve the following problem:

(SA)x = Sb. (6)

Obviously, the solution of (5) is also a solution to (6), but not vice versa. However, the problem
size has now decreased from m × n to d × n. With a properly generated random matrix S and
an appropriate method to solve subproblem (6), it can be guaranteed that we will progressively
approach the solution to (5) by iteratively applying this sketching technique.

To the best of our knowledge, there is only one piece of previous work [42] which incorporates
dual random projection into the NMF problem, in a centralized environment, sharing similar ideas
as SANLS, the centralized version of our DSANLS algorithm. However, Wang et al. [42] did
not provide an e�cient subproblem solver, and their method was less e�ective than non-sketched
methods in practical experiments. Besides, data sparsity was not taken into consideration in their
work. Furthermore, no theoretical guarantee was provided for NMF with dual random projection.
In short, SANLS is not same as [42] and DSANLS is much more than a distributed version of [42].
The methods that we propose in this paper are e�cient in practice and have strong theoretical
guarantees.

3 DSANLS: Distributed Sketched ANLS

As opposed to ANLS-based methods, which compute an optimal solution for each NLS subproblem
(as mentioned in Section 2.1), our Distributed Sketched ANLS approach reduces the size of each
NLS subproblem using matrix sketching and solves it approximately. We now present the details of
our method.

5

3.1 Notations

For a matrix A, we use Ai:j to denote the entry at the i-th row and j-th column of A. Besides,
either i or j can be omitted to denote a column or a row, i.e., Ai: is the i-th row of A, and A:j

is its j-th column. Furthermore, i or j can be replaced by a subset of indices. For example, if
I ⊂ {1, 2, . . . ,m}, AI: denotes the sub-matrix of A formed by all rows in I, whereas A:J is the
sub-matrix of A formed by all columns in a subset J ⊂ {1, 2, . . . , n}.

3.2 Data Partitioning

Assume there are N computing nodes in the cluster. We partition the row indices {1, 2, . . . ,m} of
the input matrixM into N disjoint sets I1, I2, . . . , IN , where Ir ⊂ {1, 2, . . . ,m} is the subset of rows
assigned to node r, as in [27]. Similarly, we partition the column indices {1, 2, . . . , n} into disjoint
sets J1, J2, . . . , JN and assign column set Jr to node r. The number of rows and columns in each
node are near the same in order to achieve load balancing, i.e., |Ir| ≈ m/N and |Jr| ≈ n/N for each
node r. The factor matrices U and V are also assigned to nodes accordingly, i.e., node r stores and
updates UIr: and VJr: as shown in Figure 1.

m

n

k

k

|Jr| n/N

|Ir| m/N

M UVTVT

UM

Figure 1: Data partitioning to N nodes

Data partitioning in distributed NMF di�ers from that in parallel NMF. Previous works on
parallel NMF [15, 39] choose to partition U and V along the long dimension, but we adopt the
row-partitioning of U and V as in [27]. To see why, take the U -subproblem (3) as an example and
observe that it is row-independent in nature, i.e., the r-th row block of its solution UIr: is given by

UIr: = arg min
UIr :∈R

|Ir |×k
+

∥∥∥MIr: − UIr:V
>
∥∥∥2
F

(7)

and thus can be solved independently without referring to any other row blocks of U . The same
holds for the V -subproblem. In addition, no communication is needed concerning M when solving
(7) because MIr: is already present in node r.

6

On the other hand, solving (7) requires the entire V of size n×k, meaning that every node needs
to gather V from all other nodes. This process can easily be the bottleneck of a naive distributed
ANLS implementation. As we will explain shortly, our DSALNS algorithm alleviates this problem,
since we use a sketched matrix of reduced size instead of the original complete matrix V .

3.3 SANLS: Sketched ANLS

To better understand DSANLS, we �rst introduce the Sketched ANLS (SANLS), i.e., a centralized
version of our algorithm. Recall that, at each step of ANLS, either U or V is �xed and we solve a
nonnegative least square problem (3) over the other variable. Intuitively, it is unnecessary to solve
this subproblem with high accuracy, because we may not have reached the optimal solution for the
�xed variable so far. Hence, when the �xed variable changes in the next step, its accurate solution
from the previous step will not be optimal anymore and will have to be re-computed. Our idea is
to apply matrix sketching for each subproblem, in order to obtain an approximate solution for it at
a much lower computational and communication cost.

Speci�cally, suppose we are at the t-th iteration of ANLS, and our current estimations for U
and V are U t and V t respectively. We must solve subproblem (3) in order to update U t to a new
matrix U t+1. We apply matrix sketching to the residual term of subproblem (3). The subproblem
now becomes:

min
U∈Rm×k

+

∥∥∥MSt − U
(
V t>St

)∥∥∥2
F
, (8)

where St ∈ Rn×d is a randomly-generated matrix. Hence, the problem size decreases from n × k
to d × k. d is chosen to be much smaller than n, in order to su�ciently reduce the computational
cost3. Similarly, we transform the V -subproblem into

min
V ∈Rn×k

+

∥∥∥M>S′t − V (U t>S′t
)∥∥∥2

F
, (9)

where S′t ∈ Rm×d′ is also a random matrix with d′ � m.

3.4 DSANLS: Distributed SANLS

Now, we come to our proposal: the distributed version of SANLS called DSANLS. Since the U -
subproblem (8) is the same as the V -subproblem (9) in nature, here we restrict our attention to the
U -subproblem. The �rst observation about subproblem (8) is that it is still row-independent, thus
node r only needs to solve

min
UIr :∈R

|Ir |×k
+

∥∥∥(MSt
)
Ir:
− UIr:

(
V t>St

)∥∥∥2
F
.

For simplicity, we denote
At

r ,
(
MSt

)
Ir:

and Bt , V t>St, (10)

3However, we should not choose an extremely small d, otherwise the the size of sketched subproblem would become
so small that it can hardly represent the original subproblem, preventing NMF from converging to a good result. In
practice, we can set d = 0.1n for medium-sized matrices and d = 0.01n for large matrices if m ≈ n. When m and
n di�er a lot, e.g., m � n without loss of generality, we should not apply sketching technique to the V subproblem
(since solving the U subproblem is much more expensive) and simply choose d = m � n.

7

and the above subproblem can be written as:

min
UIr :∈R

|Ir |×k
+

∥∥At
r − UIr:B

t
∥∥2
F
. (11)

Thus, node r needs to know matrices At
r and B

t in order to solve the subproblem.
For At

r, by applying matrix multiplication rules, we get

At
r =

(
MSt

)
Ir:

= MIr:S
t

Therefore, if St is stored at node r, At
r can be computed without any communication.

On the other hand, computing Bt =
(
V t>St

)
requires communication across the whole cluster,

since the rows of V t are distributed across di�erent nodes. Fortunately, if we assume that St is
stored at all nodes again, we can compute Bt in a much cheaper way. Following block matrix
multiplication rules, we can rewrite Bt as:

Bt = V t>St

=
[(
V t
J1:

)> · · · (V t
JN :

)>] St
J1:
...

St
JN :


=

N∑
r=1

(
V t
Jr:

)>
St
Jr:.

Note that the summand B̄t
r ,

(
V t
Jr:

)>
St
Jr:

is a matrix of size k × d and can be computed locally.
As a result, communication is only needed for summing up the matrices B̄t

r of size k × d by using
MPI all-reduce operation, which is much cheaper than transmitting the whole Vt of size n× k.

Now, the only remaining problem is the transmission of St. Since St can be dense, even larger
than V t, broadcasting it across the whole cluster can be quite expensive. However, it turns out that
we can avoid this. Recall that St is a randomly-generated matrix; each node can generate exactly
the same matrix, if we use the same pseudo-random generator and the same seed. Therefore, we
only need to broadcast the random seed, which is just an integer, at the beginning of the whole
program. This ensures that each node generates exactly the same random number sequence and
hence the same random matrices St at each iteration.

In short, the communication cost of each node is reduced from O(nk) to O(dk) by adopting our
sketching technique for the U -subproblem. Likewise, the communication cost of each V -subproblem
is decreased from O (mk) to O (d′k). The general framework of our DSANLS algorithm is listed in
Algorithm 2.

3.5 Generation of Random Matrices

A key problem in Algorithm 2 is how to generate random matrices St ∈ Rn×d and S′t ∈ Rm×d′ . Here
we focus on generating a random St ∈ Rd×n satisfying Assumption 1. The reason for choosing such
a random matrix is that the corresponding sketched problem would be equivalent to the original
problem on expectation; we will prove this in Section 3.6.

8

Algorithm 2: Distributed SANLS on Node r

Initialize U0
Ir:
, V 0

Jr:

Broadcast the random seed
for t = 0 to T − 1 do

Generate random matrix St ∈ Rn×d

Compute At
r ←MIr:S

t

Compute B̄t
r ←

(
V t
Jr:

)>
St
Jr:

All-Reduce: Bt ←
∑N

i=1 B̄
t
i

Update U t+1
Ir:

by solving minUIr :
‖At

r − UIr:B
t‖

Generate random matrix S′t ∈ Rm×d′

Compute A′tr ← (M:Jr
)
>
S′t

Compute B̄′tr ←
(
U t
Ir:

)>
S′tIr:

All-Reduce: B′t ←
∑N

i=1 B̄
′t
i

Update V t+1
Jr:

by solving minVJr :
‖A′tr − VJr:B

′t‖
end

return UT
Ir:

and V T
Jr:

Assumption 1. Assume the random matrices are normalized and have bounded variance, i.e., there

exists a constant σ2 such that

E
[
StSt>

]
= I and V

[
StSt>

]
≤ σ2

for all t, where I is the identity matrix.

Di�erent options exist for such matrices, which have di�erent computation costs in forming

sketched matrices At
r = MIr:S

t and B̄t
r =

(
V t
Jr:

)>
St
Jr:
. SinceMIr: is much larger than V t

Jr:
and thus

computing At
r is more expensive, we only consider the cost of constructing At

r here.
The most classical choice for a random matrix is one with i.i.d. Gaussian entries having mean

0 and variance 1/d. We can show that:

E
[(
StSt>

)
i:j

]
= E

[
d∑

l=1

Si:lSj:l

]
=

d∑
l=1

E [Si:lSj:l] =

{
d× 1

d = 1, if i = j,
d× 0 = 0, otherwise

which means that E
[
StSt>] = I. Besides, Gaussian random matrix has bounded variance because

Gaussian distribution has �nite fourth-order moment. However, since each entry of such a matrix is
totally random and thus no special structure exists in St, matrix multiplication will be expensive.
That is, when given MIr: of size |Ir| × n, computing its sketched matrix At

r = MIr:S
t requires

O(|Ir|nd) basic operations.
A seemingly better choice for St would be a subsampling random matrix. Each column of such

random matrix is uniformly sampled from {e1, e2, . . . , en} without replacement, where ei ∈ Rn is the
i-th canonical basis vector (i.e., a vector having its i-th element 1 and all others 0). We can easily
show that such an St also satis�es E

[
StSt>] = I and the variance V

[
StSt>] is bounded, but this

time constructing the sketched matrix At
r = MIr:S

t only requires O (|Ir|d). Hence, a subsampling
random matrix would be favored over a Gaussian random matrix by most applications, especially
for very large-scale problems. On the other hand, we observed in our experiments that a Gaussian

9

random matrix can result in a faster per-iteration convergence rate, because each column of the
sketched matrix At

r contains entries from multiple columns of the original matrix and thus is more
informative. Hence, it would be better to use a Gaussian matrix when the sketch size d is small and
thus a O(|Ir|nd) complexity is acceptable, or when the network speed of the cluster is poor, hence
we should trade more local computation cost for less communication cost.

Although we only test two representative types of random matrices (i.e., Gaussian and subsam-
pling random matrices), our framework is readily applicable for other choices, such as subsampled
randomized Hadamard transform (SRHT) [1, 28] and count sketch [3, 5, 35]. The choice of random
matrices is not the focus of this paper and left for future investigation.

3.6 Solving Subproblems

Before describing how to solve subproblem (11), let us make an important observation. As discussed
in Section 2.4, the sketching technique has been applied in solving linear systems before. For a linear
system, it is usually assumed that there exists a solution x∗ such that Ax∗ = b exactly holds. Hence,
x∗ is also the solution to the sketched problem, namely, (SA)x∗ = Sb. However, the situation is
di�erent in matrix factorization. Note that for the distributed matrix factorization problem we
usually have

min
UIr :∈R

|Ir |×k
+

∥∥∥MIr: − UIr:V
t>
∥∥∥2
F
6= 0.

So, for the sketched subproblem (11), which can be equivalently written as

min
UIr :∈R

|Ir |×k
+

∥∥∥(MIr: − UIr:V
t>
)
St
∥∥∥2
F
,

the non-zero entries of the residual matrix
(
MIr: − UIr:V

t>) will be scaled by the matrix St at
di�erent levels. As a consequence, the optimal solution will be shifted because of sketching. This
fact alerts us that for SANLS, we need to update U t+1 by exploiting the sketched subproblem (11)
to step towards the true optimal solution and avoid convergence to the solution of the sketched
subproblem.

3.6.1 Projected Gradient Descent

A natural method is to use one step of projected gradient descent for the sketched subproblem:

U t+1
Ir:

= max

{
U t
Ir: − ηt ∇UIr :

∥∥At
r − UIr:B

t
∥∥2
F

∣∣∣
UIr :=Ut

Ir :

, 0

}
= max

{
U t
Ir: − 2ηt

[
U t
Ir:B

tBt> −At
rB

t>
]
, 0
}
, (12)

where ηt > 0 is the step size and max{·, ·} denotes the entry-wise maximum operation.
To exploit the nature of this algorithm, we further expand the gradient:

∇UIr :

∥∥At
r − UIr:B

t
∥∥2
F

= 2
[
UIr:B

tBt> −At
rB

t>
]

(10)
= 2

[
UIr:

(
V t>St

)(
V t>St

)>
−
(
MIr:S

t
) (
V t>St

)>]
=2
[
UIr:V

t>
(
StSt>

)
V t −MIr:

(
StSt>

)
V t
]
.

10

By taking the expectation of the above equation, and using the fact E
[
StSt>] = I, we have:

E
[
∇UIr :

∥∥At
r − UIr:B

t
∥∥2
F

]
= 2

[
UIr:V

t>V t −MIr:V
t
]

= ∇UIr :

∥∥∥MIr: − UIr:V
t>
∥∥∥2
F
,

which means that the gradient of the sketched subproblem is equivalent to the gradient of the
original problem on expectation4. Therefore, such a step of gradient descent can be interpreted as
a (generalized) stochastic gradient descent (SGD) [32] method on the original subproblem. Thus,
according to the theory of SGD, we naturally require the step sizes {ηt} to be diminishing, i.e.,
ηt → 0 as t increases.

In the gradient descent step (12), the computational cost mainly comes from two matrix mul-
tiplications: BtBt> and At,rB

t>. Note that At
r and B

t are of sizes |Ir| × d and k × d respectively,
thus the gradient descent step takes O (kd(|Ir|+ k)) in total.

3.6.2 Regularized Coordinate Descent

However, it is well known that the gradient descent method converges slowly when solving NMF
subproblems, while the coordinate descent method, namely the HALS method for NMF, is quite
e�cient [8]. Still, because of its very fast convergence, HALS should not be applied to the sketched
subproblem, since it converges to the optimal solution of the subproblem after just a few iterations.
As we have discussed in the beginning of Section 3.6, this is undesirable because it shifts the solution
away from the true optimal solution. Therefore, we need to develop a method which resembles HALS
but will not converge towards the solutions of the sketched subproblems.

To achieve this, we add a regularization term to the sketched subproblem (11). The new sub-
problem is:

min
UIr :∈R

|Ir |×k
+

∥∥At
r − UIr:B

t
∥∥2
F

+ µt
∥∥UIr: − U t

Ir:

∥∥2
F
, (13)

where µt > 0 is a parameter. This regularization is reminiscent to the proximal point method [40]
in optimization. Although the objective function is changed, the real e�ect of the regularization
term is to control the step size, and thus it does not change the solution to which the algorithm
ultimately converges. Therefore, parameter µt plays a role similar to 1/ηt in projected gradient
descent; we require µt → +∞ to enforce the convergence of the whole algorithm, e.g., µt = t.

To solve (13) e�ciently, we apply coordinate descent. At each step, only one column of UIr:,
say UIr,j where j ∈ {1, 2, . . . , k}, is updated:

min
UIr :j∈R

|Ir |
+

∥∥∥∥At
r − UIr:jB

t
j: −

∑
l 6=j

UIr:lB
t
l:

∥∥∥∥2
F

+ µt
∥∥UIr:j − U t

Ir:j

∥∥2
2
.

It is not hard to see that the above problem is still row-independent, which means that each entry
of the row vector UIr:j can be solved independently. For example, for any i ∈ Ir, the solution of
U t+1
i:j is given by:

4We generalize such property as Lemma 2, shown in Appendix B.1.

11

U t+1
i:j = arg min

Ui:j≥0

∥∥∥∥ (At
r

)
i:
− Ui:jB

t
j: −

∑
l 6=j

Ui:lB
t
l:

∥∥∥∥2
2

+ µt
∥∥Ui:j − U t

i:j

∥∥2
2

= max

{
µtU

t
i:j +

(
At

r

)
i:
Bt>

j: −
∑

l 6=j Ui:lB
t
l:B

t>
j:

Bt
j:B

t>
j: + µt

, 0

}
. (14)

At each step of coordinate descent, we choose the column j from {1, 2, . . . , k} successively.
When updating column j at iteration t, the columns l < j have already been updated and thus
UIr:l = U t+1

Ir:l
, while the columns l > j are old so UIr:l = U t

Ir:l
. Based on this, (14) can be equivalently

written in vector form as:

U t+1
Ir:j

= max

{
µtU

t
Ir:j

+At
rB

t>
j: −

∑j−1
l=1 B

t
l:B

t>
j: U

t+1
Ir:l
−
∑k

l=j+1B
t
l:B

t>
j: U

t
Ir:l

Bt
j:B

t>
j: + µt

, 0

}
.

The complete coordinate descent algorithm for the U -subproblem is summarized in Algorithm 3.
When updating column j, computing the matrix-vector multiplication At

rB
t>
j: takes O(d|Ir|). The

whole inner loop takes O (k (d+ |Ir|)) because one vector dot product of length d is required for
computing each summand and the summation itself needs O (k|Ir|). Considering that there are k
columns in total, the overall complexity of coordinate descent is O (k((k + d) |Ir|+ kd)). Typically,
we choose d > k, so the complexity can be simpli�ed to O (kd (|Ir|+ k)), which is the same as that
of gradient descent.

Since we �nd that the regularized coordinate descent is much more e�cient than projected
gradient descent, we adopt it as the default subproblem solver within DSANLS.

Algorithm 3: Regularized Coordinate Descent for Local Subproblem (11) on Node r

Parameter: µt > 0

for j = 1 to k do
T ← µtU

t
Ir:j

+At
rB

t>
j:

for l = 1 to j − 1 do

T ← T −
(
Bt

l:B
t>
j:

)
U t+1
Ir:l

end

for l = j + 1 to k do

T ← T −
(
Bt

l:B
t>
j:

)
U t
Ir:l

end

U t+1
Ir:j
← max

{
T/
(
Bt

j:B
t>
j: + µt

)
, 0
}

end

return U t+1
Ir:

4 Theoretical Analysis

Both complexity and convergence analyses of DSANLS are provided in this section.

12

4.1 Complexity Analysis

We now analyze the computational and communication costs of our DSANLS algorithm, when using
subsampling random sketch matrices. The computational complexity at each node is:

O
(generating St︷︸︸︷

d +

constructing At
r and Bt︷︸︸︷

|Ir|d +

solving subproblem︷ ︸︸ ︷
kd(|Ir|+ k)

)
= O (kd(|Ir|+ k)) ≈ O

(
kd
(m
N

+ k
))

(15)

Moreover, as we have shown in Section 3.4, the communication cost of DSANLS is O (kd).
On the other hand, for a classical implementation of distributed HALS [7], the computational

cost is

O (kn (|Ir|+ k)) ≈ O
(
kn
(m
N

+ k
))

(16)

and the communication cost is O (kn) due to the all-gathering of V t's.
Comparing the above quantities, we observe an n/d� 1 speedup of our DSANLS algorithm over

HALS in both computation and communication. However, we empirically observed that DSANLS
has a slower per-iteration convergence rate (i.e., it needs more iterations to converge). Still, as
we will show in the next section, in practice, DSANLS is superior to alternative distributed NMF
algorithms, after taking all factors into account.

4.2 Convergence Analysis

Here we provide theoretical convergence guarantees for the proposed SANLS and DSANLS algo-
rithms. We show that SANLS and DSANLS converge to a stationary point.

4.2.1 Assumptions

To establish convergence result, Assumption 2 is needed �rst.

Assumption 2. Assume all the iterates U t and V t have uniformly bounded norms, which means

that there exists a constant R such that

‖U t‖F ≤ R and ‖V t‖F ≤ R

for all t.

We experimentally observed that this assumption holds in practice, as long as the step sizes used
are not too large. Besides, Assumption 2 can also be enforced by imposing additional constraints,
e.g.:

Ui:l ≤
√

2‖M‖F and Vj:l ≤
√

2‖M‖F ∀i, j, l, (17)

with which we have R = max{m,n}k
√

2‖M‖F . Such constraints can be very easily handled by
both of our projected gradient descent and regularized coordinate descent solvers. Lemma 1 shows
that imposing such extra constraints does not prevent us from �nding the global optimal solution.
The lemma is proved in Appendix A.

Lemma 1. If the optimal solution to the original problem (1) exists, there is at least one global

optimal solution in the domain (17).

13

4.2.2 Convergence Theorem

Based on Assumptions 1 (see Section 3.5) and 2, we now can formally show our main convergence
result:

Theorem 1. Under Assumptions 1 and 2, if the step sizes satisfy

∞∑
t=1

ηt =∞ and

∞∑
t=1

η2t <∞,

for projected gradient descent, or

∞∑
t=1

1/µt =∞ and

∞∑
t=1

1/µ2t <∞,

for regularized coordinate descent, then SANLS and DSANLS with either sub-problem solver will

converge to a stationary point of problem (1) with probability 1.

Here stationary point means a point whose projected gradient is zero. In convex optimization
problems, stationary points must be globally optimal solutions. Although our problem is non-convex
and hence its stationary points do not necessarily correspond to global optima, considering that it
is NP-hard to �nd a global optimal solution for a general non-convex problems, convergence to a
stationary point is already the best theoretical result that one can hope for. The proof of Theorem
1 can be found in Appendix B.

5 Experimental Evaluation

This section includes an experimental evaluation of our algorithm on both dense and sparse real
data matrices.

5.1 Datasets

We use real public datasets corresponding to di�erent NMF tasks in our evaluation. Their statistics
are summarized in Table 1.

Table 1: Statistics of Datasets
Task Dataset # rows # columns Non-zero values sparsity

Video analysis BOATS 216,000 300 64,800,000 0%

Image processing
MIT CBCL FACE 2,429 361 876,869 0%

MNIST 70,000 784 10,505,375 80.86%
GISETTE 13,500 5,000 8,770,559 87.01%

Text mining Reuters(RCV1) 804,414 47,236 60,915,113 99.84%

Community detection DBLP Collaboration Network 317,080 317,080 2,416,812 99.9976%

Video Analysis. NMF can be used on video data for background subtraction (i.e., to detect
moving objects) [19]. We here use BOATS5 video dataset [2], which includes boats moving through

5http://visal.cs.cityu.edu.hk/downloads/

14

http://visal.cs.cityu.edu.hk/downloads/

water. The video has 15 fps and it is saved as a sequence of png �les, whose format is RGB with a
frame size of 360×200. We use `Boats2' which contains one boat close to the camera for 300 frames
and reshape the matrix such that every RGB frame is a column of our matrix; the �nal matrix is
dense with size 216, 000× 300.

Image Processing. The �rst dataset we use for this application is MIT CBCL FACE DATABASE6

as in [22]. To form the vectorized matrix, whose size is 2429 × 361, we use all 2,429 face images
(each with 19 × 19 pixels) in the original training set. The second dataset is MINST7, which is a
widely used handwritten digits dataset. We use all 70,000 samples including both training and test
set, and form the vectorized matrix. The third dataset is GISETTE8, from another handwritten
digit recognition problem. This dataset is one of the �ve datasets used in the NIPS 2003 feature
selection challenge. We use all pictures in the training, validation, and test datasets and form the
vectorized matrix, whose size is 5, 000× 13, 500.

Text Mining. We use the Reuters document corpora9 as in [44]. Reuters Corpus Volume I
(RCV1) [24] is an archive of over 800,000 manually categorized newswire stories made available by
Reuters, Ltd. for research purposes. It has 804,414 samples and 47,236 features. Non-zero values
contain cosine-normalized, log TF-IDF vectors. A nearly chronological split is also utilized, which
follows the o�cial LYRL2004 chronological split.

Community Detection. We use the DBLP collaboration network10. It is a co-authorship
graph where two authors are connected if they have published at least one paper together. We
convert it to an adjacency matrix, which has 2,416,812 non-zero values, taking 0.0024% of the
whole matrix.

5.2 Setup

We conduct our experiments on the Linux cluster of our institute with a total of 96 nodes. Each
node contains 8-core Intel(R) Core(TM) i7-3770 CPU @ 1.60GHz cores and 16 GB of memory. Our
algorithm is implemented in C using the Intel Math Kernel Library (MKL) and Message Passing
Interface (MPI). We use 10 nodes by default. Since tuning the factorization rank k is outside the
scope of this paper, we use 100 as default value of k. Because of the large sizes of RCV1 and DBLP,
we only use subsampling random matrices for them, as the use of Gaussian random matrices is too
slow.

We evaluate DSANLS with subsampling and Gaussian random matrices, denoted by DSANLS/S
and DSANLS/G, respectively, using regularized coordinate descent as the default subproblem solver.
As mentioned in [16, 17], it is unfair to compare with a Hadoop implementation, as Hadoop is not
designed for high performance computing of iterative numerical algorithms. Although Spark is more
appropriate than Hadoop for iterative algorithms, [9] further shows that Spark implementations
incur signi�cant overheads due to task scheduling, task start delays, and idle time caused by Spark
stragglers, and it is usually around 4x slower compared to MPI implementations. Therefore, we only
compare DSANLS with MPI-FAUN11 (all MPI-FAUN-MU, MPI-FAUN-HALS, and MPI-FAUN-

6http://cbcl.mit.edu/software-datasets/FaceData2.html
7http://yann.lecun.com/exdb/mnist/
8http://clopinet.com/isabelle/Projects/NIPS2003/#challenge
9we use the second version RCV1-v2, which can be found in http://jmlr.csail.mit.edu/papers/volume5/

lewis04a/
10http://snap.stanford.edu/data/com-DBLP.html
11public code available at https://github.com/ramkikannan/nmflibrary

15

http://cbcl.mit.edu/software-datasets/FaceData2.html
http://yann.lecun.com/exdb/mnist/
http://clopinet.com/isabelle/Projects/NIPS2003/#challenge
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/
http://snap.stanford.edu/data/com-DBLP.html
https://github.com/ramkikannan/nmflibrary

0 10 20 30 40
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0
Re

la
tiv

e
Er

ro
r

DSANLS/S
DSANLS/G
MU
HALS
ANLS/BPP

(a) BOATS

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Er
ro

r

DSANLS/S
DSANLS/G
MU
HALS
ANLS/BPP

(b) FACE

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Er
ro

r

DSANLS/S
DSANLS/G
MU
HALS
ANLS/BPP

(c) MNIST

0 1 2 3 4 5 6 7 8
Time (s)

0.5

0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e

Er
ro

r

DSANLS/S
DSANLS/G
MU
HALS
ANLS/BPP

(d) GISETTE

0 100 200 300 400 500
Time (s)

0.80

0.85

0.90

0.95

1.00

1.05

Re
la

tiv
e

Er
ro

r

SANLS/S
MU
HALS
ANLS/BPP

(e) RCV1

0 10 20 30 40 50 60 70 80
Time (s)

0.94

0.96

0.98

1.00

1.02

1.04

Re
la

tiv
e

Er
ro

r

SANLS/S
MU
HALS
ANLS/BPP

(f) DBLP

Figure 2: Relative error over time

ABPP implementations), which is the �rst and the state-of-the-art C++/MPI implementation with
MKL and Armadillo. For parameters pc and pr in MPI-FAUN, we use the optimal values for each
dataset, according to the recommendations in [16, 17].

16

5 10 15
Node number

50

100

150

200
1/

tim
e

(s
1)

DSANLS/S
DSANLS/G
MU
HALS
ANLS/BPP

(a) FACE

5 10 15
Node number

0

5

10

15

20

1/
tim

e
(s

1)

DSANLS/S
DSANLS/G
MU
HALS
ANLS/BPP

(b) MNIST

5 10 15
Node number

0.00

0.05

0.10

0.15

0.20

0.25

1/
tim

e
(s

1)

DSANLS/S
MU
HALS
ANLS/BPP

(c) RCV1

5 10 15
Node number

0.0

0.2

0.4

0.6

0.8

1.0

1/
tim

e
(s

1) DSANLS/S
MU
HALS
ANLS/BPP

(d) DBLP

Figure 3: Reciprocal of per-iteration time as a function of cluster size

5.3 Results

5.3.1 Performance Comparison

We use the relative error of the low rank approximation compared to the original matrix to measure
the e�ectiveness of NMF by DSANLS with MPI-FAUN. This error measure was been widely used
in previous work [16, 17, 19] and is formally de�ned as∥∥∥M − UV >∥∥∥

F
/ ‖M‖F .

Since the time for each iteration is signi�cantly reduced by our proposed DSANLS compared to
MPI-FAUN, in Figure 2, we show the relative error over time for DSANLS and MPI-FAUN imple-
mentations of MU, HALS, and ANLS/BPP on the 6 real public datasets. Observe that DSANLS/S
performs best in all 6 datasets, although DSANLS/G has faster per-iteration convergence rate. MU
converges relatively slowly and usually has a bad convergence result; on the other hand HALS may
oscillate in the early rounds12, but converges quite fast and to a good solution. Surprisingly, al-

12HALS does not guarantee the objective function to decrease monotonically.

17

0 20 40 60 80 100
Time (s)

0.90

0.92

0.94

0.96

0.98

1.00
Re

la
tiv

e
Er

ro
r

DSANLS/S
MU
HALS
ANLS/BPP

(a) k=20

0 50 100 150 200 250
Time (s)

0.875

0.900

0.925

0.950

0.975

1.000

Re
la

tiv
e

Er
ro

r

DSANLS/S
MU
HALS
ANLS/BPP

(b) k=50

0 250 500 750 1000 1250 1500
Time (s)

0.75

0.80

0.85

0.90

0.95

1.00

Re
la

tiv
e

Er
ro

r

DSANLS/S
MU
HALS
ANLS/BPP

(c) k=200

0 1000 2000 3000 4000
Time (s)

0.7

0.8

0.9

1.0

Re
la

tiv
e

Er
ro

r

DSANLS/S
MU
HALS
ANLS/BPP

(d) k=500

Figure 4: Relative error over time, varying k value

though ANLS/BPP is considered to be the state-of-art NMF algorithm, it does not perform well in
all 6 datasets. As we will see, this is due to its high per-iteration cost.

5.3.2 Scalability Comparison

We vary the number of nodes used in the cluster from 2 to 16 and record the average time for 100
iterations of each algorithm. Figure 3 shows the reciprocal of per-iteration time as a function of
the number of nodes used. All algorithms exhibit good scalability for all datasets (nearly a straight
line), except for FACE (i.e., Figure 3(a)). FACE is the smallest dataset, whose number of columns is
300, while k is set to 100 by default. When n/N is smaller than k, the complexity is dominated by k,
hence, increasing the number of nodes does not reduce the computational cost, but may increase the
communication overhead. In general, we can observe that DSANLS/Subsampling has the lowest
per-iteration cost compared to all other algorithms, and DSANLS/Gaussian has similar cost to
MU and HALS. ANLS/BPP has the highest per-iteration cost, explaining the bad performance of
ANLS/BPP in Figure 2.

18

0 20 40 60 80 100
Iteration

0.0

0.1

0.2

0.3

0.4

0.5
Re

la
tiv

e
Er

ro
r

DSANLS-RCD/S
DSANLS-RCD/G
DSANLS-PGD/S
DSANLS-PGD/G

(a) BOATS

0 20 40 60 80 100
Iteration

0.00

0.02

0.04

0.06

0.08

0.10

Re
la

tiv
e

Er
ro

r

DSANLS-RCD/S
DSANLS-RCD/G
DSANLS-PGD/S
DSANLS-PGD/G

(b) FACE

0 20 40 60 80 100
Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e

Er
ro

r

DSANLS-RCD/S
DSANLS-RCD/G
DSANLS-PGD/S
DSANLS-PGD/G

(c) GISETTE

0 20 40 60 80 100
Iteration

0.80

0.85

0.90

0.95

1.00

1.05

Re
la

tiv
e

Er
ro

r

DSANLS-RCD/S
DSANLS-PGD/S

(d) RCV1

Figure 5: Relative error per-iteration of di�erent subproblem solvers

5.3.3 Performance Varying the Value of k

Although tuning the factorization rank k is outside the scope of this paper, we compare the per-
formance of DSANLS with MPI-FAUN varying the value of k from 20 to 500 on RCV1. Observe
from Figures 4 and 2(e) that DSANLS outperforms the state-of-art algorithms for all values of k.
Naturally, the relative error of all algorithms decreases with the increase of k, but they also take
longer to converge.

5.3.4 Comparison with Projected Gradient Descent

In Section 3.6, we claimed that our regularized coordinate descent approach (denoted as DSANLS-
RCD) is faster than projected gradient descent (also presented in the same section, denoted as
DSANLS-PGD). Figure 5 con�rms the di�erence in the convergence rate of the two approaches
regardless the choice of the random matrix generation approach.

19

6 Conclusion

In this paper, we presented a novel distributed NMF algorithm that can be used for scalable analytics
of high dimensional matrix data. Our approach follows the general framework of ANLS, but utilizes
matrix sketching to reduce the problem size of each NLS subproblem. We discussed and compared
two di�erent approaches for generating random matrices (i.e. Gaussian and subsampling random
matrices). Then, we presented two subproblem solvers for our general framework, and theoretically
proved their convergence. We analyzed the per-iteration computational and communication cost of
our approach and its convergence, showing its superiority compared to the previous state-of-the-
art. Our experiments on several real datasets show that our method converges fast to an accurate
solution and scales well with the number of cluster nodes used. In the future, we plan to study the
application of DSANLS to dense or sparse tensors.

References

[1] N. Ailon and B. Chazelle. Approximate nearest neighbors and the fast johnson-lindenstrauss
transform. In STOC, pages 557�563. ACM, 2006.

[2] A. B. Chan, V. Mahadevan, and N. Vasconcelos. Generalized stau�er�grimson background
subtraction for dynamic scenes. Machine Vision and Applications, 22(5):751�766, 2011.

[3] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams. Theo-
retical Computer Science, 312(1):3�15, 2004.

[4] A. Cichocki and P. Anh-Huy. Fast local algorithms for large scale nonnegative matrix and
tensor factorizations. IEICE transactions on fundamentals of electronics, communications and

computer sciences, 92(3):708�721, 2009.

[5] K. L. Clarkson and D. P. Woodru�. Low rank approximation and regression in input sparsity
time. In STOC, pages 81�90. ACM, 2013.

[6] M. E. Daube-Witherspoon and G. Muehllehner. An iterative image space reconstruction algo-
rthm suitable for volume ect. IEEE transactions on medical imaging, 5(2):61�66, 1986.

[7] J. P. Fairbanks, R. Kannan, H. Park, and D. A. Bader. Behavioral clusters in dynamic graphs.
Parallel Computing, 47:38�50, 2015.

[8] N. Gillis. The why and how of nonnegative matrix factorization. Regularization, Optimization,
Kernels, and Support Vector Machines, 12(257), 2014.

[9] A. Gittens, A. Devarakonda, E. Racah, M. Ringenburg, L. Gerhardt, J. Kottalam, J. Liu,
K. Maschho�, S. Canon, J. Chhugani, et al. Matrix factorization at scale: a comparison
of scienti�c data analytics in spark and c+ mpi using three case studies. arXiv preprint

arXiv:1607.01335, 2016.

[10] R. M. Gower and P. Richtárik. Randomized iterative methods for linear systems. SIAM Journal

on Matrix Analysis and Applications, 36(4):1660�1690, 2015.

20

[11] L. Grippo and M. Sciandrone. On the convergence of the block nonlinear gauss�seidel method
under convex constraints. Operations research letters, 26(3):127�136, 2000.

[12] D. Grove, J. Milthorpe, and O. Tardieu. Supporting array programming in x10. In ARRAY,
page 38. ACM, 2014.

[13] N. Guan, D. Tao, Z. Luo, and B. Yuan. Nenmf: an optimal gradient method for nonnegative
matrix factorization. IEEE Transactions on Signal Processing, 60(6):2882�2898, 2012.

[14] K. Huang, N. D. Sidiropoulos, and A. Swami. Non-negative matrix factorization revisited:
Uniqueness and algorithm for symmetric decomposition. IEEE Transactions on Signal Pro-

cessing, 62(1):211�224, 2014.

[15] K. Kanjani. Parallel non negative matrix factorization for document clustering. CPSC-659

(Parallel and Distributed Numerical Algorithms) course. Texas A&M University, Tech. Rep,
2007.

[16] R. Kannan, G. Ballard, and H. Park. A high-performance parallel algorithm for nonnegative
matrix factorization. In PPoPP, page 9. ACM, 2016.

[17] R. Kannan, G. Ballard, and H. Park. Mpi-faun: An mpi-based framework for alternating-
updating nonnegative matrix factorization. arXiv preprint arXiv:1609.09154, 2016.

[18] H. Kim and H. Park. Nonnegative matrix factorization based on alternating nonnegativity con-
strained least squares and active set method. SIAM journal on matrix analysis and applications,
30(2):713�730, 2008.

[19] J. Kim, Y. He, and H. Park. Algorithms for nonnegative matrix and tensor factorizations: A
uni�ed view based on block coordinate descent framework. Journal of Global Optimization,
58(2):285�319, 2014.

[20] J. Kim and H. Park. Fast nonnegative matrix factorization: An active-set-like method and
comparisons. SIAM Journal on Scienti�c Computing, 33(6):3261�3281, 2011.

[21] I. Kotsia, S. Zafeiriou, and I. Pitas. A novel discriminant non-negative matrix factorization
algorithm with applications to facial image characterization problems. IEEE Transactions on

Information Forensics and Security, 2(3):588�595, 2007.

[22] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization.
Nature, 401(6755):788�791, 1999.

[23] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In NIPS, pages
556�562, 2001.

[24] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new benchmark collection for text
categorization research. JMLR, 5(Apr):361�397, 2004.

[25] R. Liao, Y. Zhang, J. Guan, and S. Zhou. Cloudnmf: a mapreduce implementation of nonneg-
ative matrix factorization for large-scale biological datasets. Genomics, proteomics & bioinfor-

matics, 12(1):48�51, 2014.

21

[26] C.-J. Lin. Projected gradient methods for nonnegative matrix factorization. Neural computa-
tion, 19(10):2756�2779, 2007.

[27] C. Liu, H.-c. Yang, J. Fan, L.-W. He, and Y.-M. Wang. Distributed nonnegative matrix
factorization for web-scale dyadic data analysis on mapreduce. In WWW, pages 681�690.
ACM, 2010.

[28] Y. Lu, P. Dhillon, D. P. Foster, and L. Ungar. Faster ridge regression via the subsampled
randomized hadamard transform. In NIPS, pages 369�377, 2013.

[29] J. Mairal. Stochastic majorization-minimization algorithms for large-scale optimization. In
NIPS, pages 2283�2291, 2013.

[30] E. Mejía-Roa, D. Tabas-Madrid, J. Setoain, C. García, F. Tirado, and A. Pascual-Montano.
Nmf-mgpu: non-negative matrix factorization on multi-gpu systems. BMC bioinformatics,
16(1):1, 2015.

[31] X. Meng, J. Bradley, B. Yuvaz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai,
M. Amde, S. Owen, et al. Mllib: Machine learning in apache spark. JMLR, 17(34):1�7, 2016.

[32] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach
to stochastic programming. SIAM Journal on optimization, 19(4):1574�1609, 2009.

[33] J. Neveu. Discrete-parameter martingales, volume 10. Elsevier, 1975.

[34] V. P. Pauca, F. Shahnaz, M. W. Berry, and R. J. Plemmons. Text mining using non-negative
matrix factorizations. In SDM, pages 452�456. SIAM, 2004.

[35] N. Pham and R. Pagh. Fast and scalable polynomial kernels via explicit feature maps. In ACM

SIGKDD, pages 239�247. ACM, 2013.

[36] M. Pilanci and M. J. Wainwright. Iterative hessian sketch: Fast and accurate solution approx-
imation for constrained least-squares. JMLR, pages 1�33, 2015.

[37] M. Pilanci and M. J. Wainwright. Newton sketch: A linear-time optimization algorithm with
linear-quadratic convergence. arXiv preprint arXiv:1505.02250, 2015.

[38] I. Psorakis, S. Roberts, M. Ebden, and B. Sheldon. Overlapping community detection using
bayesian non-negative matrix factorization. Physical Review E, 83(6):066114, 2011.

[39] S. A. Robila and L. G. Maciak. A parallel unmixing algorithm for hyperspectral images. In
Optics East, pages 63840F�63840F. International Society for Optics and Photonics, 2006.

[40] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal on

control and optimization, 14(5):877�898, 1976.

[41] S. A. Vavasis. On the complexity of nonnegative matrix factorization. SIAM Journal on

Optimization, 20(3):1364�1377, 2009.

[42] F. Wang and P. Li. E�cient nonnegative matrix factorization with random projections. In
SDM, pages 281�292. SIAM, 2010.

22

[43] Y.-X. Wang and Y.-J. Zhang. Nonnegative matrix factorization: A comprehensive review.
TKDE, 25(6):1336�1353, 2013.

[44] W. Xu, X. Liu, and Y. Gong. Document clustering based on non-negative matrix factorization.
In SIGIR, pages 267�273. ACM, 2003.

[45] J. Yin, L. Gao, and Z. M. Zhang. Scalable nonnegative matrix factorization with block-wise
updates. In ECML-PKDD, pages 337�352. Springer, 2014.

[46] R. Zdunek and A. Cichocki. Non-negative matrix factorization with quasi-newton optimization.
In ICAISC, pages 870�879. Springer, 2006.

A Proof of Lemma 1

Proof of Lemma 1. Suppose (U∗, V ∗) is the global optimal solution but fails to satisfy (17). If there
exist indices i, j, l such that U∗i:l · V ∗j:l > 2‖M‖F , then∥∥∥M − U∗V ∗>∥∥∥2

F
≥
(
U∗i:l · V ∗j:l −Mi:j

)2
> (2‖M‖F − ‖M‖F)2 ≥ ‖M‖2F .

However, simply choosing U = 0 and V = 0 will yield a smaller error ‖M‖2F , which contradicts the
fact that (U∗, V ∗) is optimal. Therefore, if we de�ne αl = maxi U

∗
i:l and βl = maxj V

∗
j:l, we must

have αl · βl ≤ 2‖M‖F for each l. Now we construct a new solution (U, V) by:

U i:l = U∗i:l ·
√
βl/αl and V j:l = V ∗j:l ·

√
αl/βl.

Note that

U i:l ≤ αl ·
√
βl/αl =

√
αl · βl ≤

√
2‖M‖F ,

V j:l ≤ βl ·
√
αl/βl =

√
αl · βl ≤

√
2‖M‖F ,

so (U, V) satisfy (17). Besides,∥∥∥M − U V >∥∥∥2
F

=
∑
i,j

(
Mi:j −

∑
l

U i:lV j:l

)2
=
∑
i,j

(
Mi:j −

∑
l

U∗i:l ·
√
βl/αl · V ∗j:l ·

√
αl/βl

)2
=
∑
i,j

(
Mi:j −

∑
l

U∗i:l · V ∗j:l
)2

= ‖M − U∗V ∗>‖2F ,

which means that (U, V) is also an optimal solution. In short, for any optimal solution of (1) outside
the domain (17), there exists a corresponding global optimal solution satisfying (17), which further
means that there exists at least one optimal solution in the domain (17).

23

B Proof of the Main Theorem

For simplicity, we denote f(U, V) = ‖M − UV >‖2F , f̃S = ‖MS − U(V >S)‖2F , and f̃ ′S′ = ‖M>S′ −
V (U>S′)‖2F . Let Gt and G̃t denote the gradients of the above quantities, i.e.,

Gt , ∇U f(U, V t)
∣∣
U=Ut , G̃t , ∇U f̃St(U, V t)

∣∣∣
U=Ut

,

G′t , ∇V f(U t+1, V)
∣∣
V=V t , G̃′t , ∇V f̃ ′S′t(U

t+1, V)
∣∣∣
V=V t

.

Besides, let

∆t ,
1

ηt

(
U t − U t+1

)
and ∆′t ,

1

ηt

(
V t − V t+1

)
.

B.1 Preliminary Lemmas

To prove Theorem 1, we need following lemmas (which are proved in Appendix B.3):

Lemma 2. Under Assumption 1 and 2, conditioned on U t and V t, G̃t and G̃′t are unbiased esti-

mators of Gt and G′t respectively with uniformly bounded variance.

Lemma 3. Assume X is a nonnegative random variable with mean µ and variance σ2, and c ≥ 0
is a constant. Then we have

E [min{X, c}] ≥ min
{
c,
µ

2

}
·
(

1− 4σ2

4σ2 + µ2

)
. (18)

Lemma 4. De�ne the function

φ(x, y, z) = min
{
|xy|, y2/2

}
·
(

1− 4z2

4z2 + y2

)
≥ 0. (19)

Conditioned on U t and V t, there exists an uniform constant σ′2 > 0 such that

E[Gt
i:l ·∆t

i:l] ≥ φ
(
U t
i:l/ηt, G

t
i:l, σ

′2) (20)

and

E[G′tj:l ·∆′tj:l] ≥ φ
(
V t
j:l/ηt, G

′t
j:l, σ

′2)
for any i, j, l.

Lemma 5 (Supermartingale Convergence Theorem, [33]). Let Yt, Zt and Wt, t = 0, 1, . . . , be
three sequences of random variables and let Ft, t = 0, 1, . . . , be sets of random variables such that

Ft ⊂ Ft+1. Suppose that

1. The random variables Yt, Zt andWt are nonnegative, and are functions of the random variables

in Ft.

2. For each t, we have
E[Yt+1|Ft] ≤ Yt − Zt +Wt.

3. There holds, with probability 1,
∑∞

t=0Wt <∞.

24

Then we have
∑∞

t=0 Zt < ∞, and the sequence Yt converges to a nonnegative random variable Y ,
with probability 1.

Lemma 6 ([29]). For two nonnegative scalar sequences {at} and {bt}, if
∑∞

t=0 ak = ∞ and∑∞
t=0 atbt <∞, then

lim inf
t→∞

bt = 0.

Furthermore, if |bt+1 − bt| ≤ B · at for some constant B > 0, then

lim
t→∞

bt = 0.

B.2 Proof of Theorem 1

Proof of Theorem 1. Let us �rst focus on projected gradient descent. By conditioning on U t and
V t, we have

f(U t+1, V t) =
∥∥∥M − U t+1V t>

∥∥∥2
F

=
∥∥∥M − (U t − ηt∆t

)
V t>

∥∥∥2
F

=
∥∥∥(M − U tV t>

)
− ηt∆tV t>

∥∥∥2
F

=
∥∥∥M − U tV t>

∥∥∥2
F
− 2ηt

(
M − U tV t>

)
·
(

∆tV t>
)

+ η2t ‖∆tV t>‖2F

=f(U t, V t)− 2ηt

(
M − U tV t>

)
·
(

∆tV t>
)

+ η2t ‖∆tV t>‖2F . (21)

For the second term of (21), note that

2
(
M − U tV t>

)
·
(

∆tV t>
)

= 2tr
[(
M − U tV t>

)
V t∆t>

]
= tr

[
Gt∆t>

]
=
∑
i,l

Gt
i:l ·∆t

i:l

By taking expectation and using Lemma 4, we obtain:

E
[
2
(
M − U tV t>

)
·
(

∆tV t>
)]

=
∑
i,l

E
[
Gt

i:l ·∆t
i:l

]
≥
∑
i,l

φ
(
U t
i:l/ηt, G

t
i:l, σ

′2) .
For simplicity, we will use the notation

Φ(U t/ηt, G
t) ,

∑
i,l

φ
(
U t
i:l/ηt, G

t
i:l, σ

′2) .
For the third term of (21), we can bound it in the following way:

‖∆tV t>‖2F ≤‖∆t‖2F · ‖V t‖2F ≤ ‖G̃t‖2F · ‖V t‖2F

=
∥∥∥2(U tV t> −M)(StSt>)V t

∥∥∥2
F
· ‖V t‖2F

≤4‖M − U tV t>‖2F · ‖StSt>‖2F · ‖V t‖4F
≤8
(
‖M‖2F + ‖U t‖2F · ‖V t‖2F

)
· ‖StSt>‖2F · ‖V t‖4F

≤8
(
‖M‖2F +R4

)
R4 · ‖StSt>‖2F ,

25

where in the last inequality we have applied Assumption 2. If we take expectation, we have

E‖∆tV t>‖2F ≤8
(
‖M‖2F +R4

)
R4 · E‖StSt>‖2F

≤8
(
‖M‖2F +R4

)
R4 ·

(∥∥∥E[StSt>]
∥∥∥2 + V[StSt>]

)
≤8
(
‖M‖2F +R4

)
R4 ·

(
n+ σ2

)
,

where mean-variance decomposition have been applied in the second inequality, and Assumption 1
was used in the last line. For convenience, we will use

Γ , 8
(
‖M‖2F +R4

)
R4 ·

(
n+ σ2

)
≥ 0

to denote this constant later on.
By combining all results, we can rewrite (21) as

E
[
f(U t+1, V t)

]
≤ f(U t, V t)− ηtΦ

(
U t/ηt, G

t
)

+ η2t Γ.

Likewise, conditioned on U t+1 and V t, we can prove a similar inequality for V :

E
[
f(U t+1, V t+1)

]
≤ f(U t+1, V t)− ηtΦ

(
V t/ηt, G

′t)+ η2t Γ′,

where Γ′ ≥ 0 is also some uniform constant. From de�nition, it is easy to see both Φ
(
U t/ηt, G

t
)

and Φ
(
V t/ηt, G

′t) are nonnegative. Along with condition the condition
∑∞

t=0 η
2
t <∞, we can apply

the Supermartingale Convergence Theorem (Lemma 5) with

Y2t = f(U t, V t), Y2t+1 = f(U t+1, V t),

Z2t = Φ
(
U t/ηt, G

t
)
, Z2t+1 = Φ

(
V t/ηt, G

′t) ,
W2t = Γη2t , W2t+1 = Γ′η2t ,

and then conclude that both {f(U t+1, V t)} and {f(U t, V t)} will converge to a same value, and
besides:

∞∑
t=0

ηt
[
Φ
(
U t/ηt, G

t
)

+ Φ
(
V t/ηt, G

′t)] <∞,
with probability 1. In addition, it is not hard to verify that

∣∣Φ (U t+1/ηt+1, G
t+1
)
− Φ

(
U t/ηt, G

t
)∣∣ ≤

C ·ηt for some constant C because of the boundness of the gradients. Then, by Lemma 6, we obtain
that

lim
t→∞

Φ
(
U t/ηt, G

t
)

= lim
t→∞

∑
i:l

φ
(
U t
i:l/ηt, G

t
i:l, σ

′2)→ 0.

Since each summand in the above is nonnegative, this equation further implies

lim
t→∞

φ
(
U t
i:l/ηt, G

t
i:l, σ

′2)→ 0

for all i and l. By looking into the de�nition of φ in (19), it is not hard to see that φ
(
U t
i:l/ηt, G

t
i:l, σ

′2)→
0 if and only if min

{
U t
i:l/ηt,

∣∣Gt
i:l

∣∣}→ 0. Considering ηt > 0 and ηt → 0, we can conclude that

lim
t→∞

min
{
U t
i:l,
∣∣Gt

i:l

∣∣}→ 0

26

for all i, l, which means either the gradient Gt
i:l converges to 0, or U t

i:l converges to the boundary 0.
In other words, the projected gradient at (U t, V t) w.r.t U converges to 0 as t → ∞. Likewise, we
can prove

lim
t→∞

min
{
V t
j:l,
∣∣G′tj:l∣∣}→ 0,

in a similar way, which completes the proof of projected gradient descent.
The proof of regularized coordinate descent is similar to that of projected gradient descent, and

hence we only include a sketch proof here. The key here is to establish an inequality similar to
(21), but with the di�erence that just one column rather than whole U or V is changed every time.
Take U:1 as an example. An important observation is that when projection does not happen, we
can rewrite (14) as U t+1

:1 = U t
:1 − G̃:1/(τt + Bt

j:B
t>
j:), which means that the moving direction of

regularized coordinate descent is the same as that of projected gradient descent, but with step size
being 1/(τt + Bt

j:B
t>
j:). Since both the expectation and variance of Bt

j:B
t>
j: are bounded, we will

have 1/(τt + Bt
j:B

t>
j:) ≈ 1/τt when τt is large. Given these two reasons, we can out down a similar

inequality as (21). The remaining proof just follows the one for projected gradient descent.

B.3 Proof of Preliminary Lemmas

Proof of Lemma 2. Since the proof related to G̃′t is similar to G̃t, here we only focus on the latter
one.

First, let us write down the de�nition of Gt and G̃t:

Gt = 2(U tV t> −M)V t and G̃t = 2(U tV t> −M)(StSt>)V t.

Therefore,

E[G̃t] =E
[
2(U tV t> −M)(StSt>)V t

]
= 2(U tV t> −M)E[StSt>]V t

=2(U tV t> −M) I V t = 2(U tV t> −M)V t = Gt,

which means G̃t is an unbiased estimator of Gt. Besides, its variance is uniformly bounded because

V[G̃t] ≤V
[
2(U tV t> −M)i:(S

tSt>)V t
:l

]
≤4‖M − U tV t>‖2F · V[StSt>] · ‖V t‖2F
≤8
(
‖M‖2F + ‖U t‖2F ‖V t‖2F

)
· ‖V t‖2F · V[StSt>]

≤8
(
‖M‖2F +R4

)
R2 · σ2,

where both Assumption 1 and Assumption 2 are applied in the last line.

Proof of Lemma 3. In this proof, we will use Cantelli's inequality:

Pr(X ≥ µ+ λ) ≥ 1− σ2

σ2 + λ2
∀λ < 0.

When µ = 0, it is easy to see that the right-hand-side of (18) is 0. Considering that the left-
hand-side is the expectation of a nonnegative random variable, (18) obviously holds in this case.

When µ > 0 and µ ≥ 2c, by using the fact that X is nonnegative, we have

E [min{X, c}] ≥ c · Pr(X ≥ c).

27

Now we can apply Cantelli's inequality to bound Pr(X ≥ c) with λ = c − µ < c − µ/2 ≤ 0, and
obtain:

E [min{X, c}] ≥ c ·
(

1− σ2

σ2 + (µ− c)2

)
≥ c ·

(
1− σ2

σ2 + (µ− µ/2)2

)
= c ·

(
1− 4σ2

4σ2 + µ2

)
,

(22)

where in the second inequality we used the fact c ≤ µ/2 again.
When µ > 0 but µ < 2c, we have:

E [min{X, c}] ≥ E [min{X,µ/2}] .

Now we can apply inequality (22) from the previous part with c = µ/2, and thus

E [min{X, c}] ≥ E [min{X,µ/2}] ≥ µ

2
·
(

1− 4σ2

4σ2 + µ2

)
,

which completes the proof.

Proof of Lemma 4. We only focus on Gt and ∆t. We �rst show that

Gt
i:l · G̃t

i:l ≥ 0 (23)

for any random matrix St. Note that

Gt
i:l = 2(U tV t> −M)i:V

t
:l and G̃t

i:l = 2(U tV t> −M)i:(S
tSt>)V t

:l .

Hence it would be su�cient if we can show that there holds a>(StSt>)b · a>b ≥ 0 for any vectors a
and b:

a>(StSt>)b · a>b = tr
(
a>(StSt>)bb>a

)
= tr

(
aa>(StSt>)bb>

)
≥ 0,

where the �rst equality is because A ·B = tr(AB>), the second equality is due to cyclic permutation
invariant property of trace, and the last inequality is because all of aa>, bb> and StSt> are positive
semi-de�nite matrices.

Now, let us consider the relationship between ∆t and G̃t:

∆t =
1

ηt

(
U t − U t+1

)
=

1

ηt

(
U t −max

{
U t − ηtG̃t, 0

})
,

from which it can be shown that

∆t
i:l = min

{
U t
i:l/ηt, G̃

t
i:l

}
. (24)

When Gt
i:l = 0, it is easy to see that both sides of (20) become 0, and hence (20) holds.

When Gt
i:l > 0, from (23) we know that G̃t

i:l ≥ 0 regardless of the choice of St. From Lemma 2
we know that

E[G̃t
i:l] = Gt

i:l

and there exists a constant σ′2 ≥ 0 such that

V[G̃t
i:l] ≤ σ′2.

28

Since U t
i:l is a nonnegative constant here, we can apply Lemma 3 to (24) and conclude

E[∆t
i:l] ≥min

{
U t
i:l/ηt, G

t
i:l/2

}
·

(
1−

4V[G̃t
i:l]

4V[G̃t
i:l] +

(
Gt

i:l

)2
)

≥min
{
U t
i:l/ηt, G

t
i:l/2

}
·

(
1− 4σ′2

4σ′2 +
(
Gt

i:l

)2
)
,

from which (20) is obvious.
When Gt

i:l < 0, also from (23) we know that G̃t
i:l ≤ 0. Since U t

i:l is a nonnegative constant here,
we always have

∆t
i:l = min

{
U t
i:l/ηt, G̃

t
i:l

}
= G̃t

i:l.

Therefore, by taking expectation and using Lemma 2, we obtain

E[∆t
i:l] = E[G̃t

i:l] = Gt
i:l,

and thus

E
[
Gt

i:l ·∆t
i:l

]
=
(
Gt

i:l

)2
>

(
Gt

i:l

)2
2

·

(
1− 4σ′2

4σ′2 +
(
Gt

i:l

)2
)

for any constant σ′, which means that (20) holds.

29

	Introduction
	Background and Related Work
	Properties of NMF
	NMF Algorithms
	Distributed NMF
	Matrix Sketching

	DSANLS: Distributed Sketched ANLS
	Notations
	Data Partitioning
	SANLS: Sketched ANLS
	DSANLS: Distributed SANLS
	Generation of Random Matrices
	Solving Subproblems
	Projected Gradient Descent
	Regularized Coordinate Descent

	Theoretical Analysis
	Complexity Analysis
	Convergence Analysis
	Assumptions
	Convergence Theorem

	Experimental Evaluation
	Datasets
	Setup
	Results
	Performance Comparison
	Scalability Comparison
	Performance Varying the Value of k
	Comparison with Projected Gradient Descent

	Conclusion
	Proof of Lemma 1
	Proof of the Main Theorem
	Preliminary Lemmas
	Proof of Theorem 1
	Proof of Preliminary Lemmas

