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Abstract

Smooth surfaces are approximated by discrete tri-
angle meshes for applications in computer graphics.
Various discrete operators have been proposed for
estimating differential quantities of triangle meshes,
such as curvatures, for geometric processing tasks.
Since a smooth surface can be approximated by
many different triangle meshes, we propose to investi-
gate which triangle mesh yields an estimation of dif-
ferential quantities with optimal accuracy and how
to compute such an optimal triangle mesh approx-
imating the given smooth surface. Specifically, we
study a special type of triangle meshes, called shape-
preserving meshes, that preserve the local shapes of
the smooth surface they represent, and character-
ize optimal shape-preserving meshes. We present an
efficient method for computing the so called opti-
mal shape-preserving meshes, and prove the conver-
gence of several discrete differential operators on opti-
mal shape-preserving meshes, an important property
that does not hold for general triangle meshes. We
also show that shape-preserving meshes lead to more
accurate estimation of surface differential quantities
as compared with other general triangle meshes ob-
tained by commonly used surface meshing methods
for the same smooth surface.

Keywords: Shape-preserving meshes, anisotropic
meshes, convergence, discrete differential operators

1 Introduction

Smooth surfaces are ubiquitous in computer graph-
ics, solid modeling and fluid dynamics. For better
computational efficiency, a smooth surface is often
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discretized as a triangle mesh for processing in geom-
etry computing, computer simulation, and rendering.
A high-quality triangle mesh that accurately approxi-
mates the underlying smooth surface is critical to the
numerical stability and fast convergence of computa-
tion. The quality measures of a triangle mesh nor-
mally include the approximation to the underlying
surface in terms of distance, normal or tangent plane
(first order derivatives), and curvature tensors (sec-
ond order derivatives). Faithful estimation of differ-
ential quantities is important to many applications,
ranging from mesh denoising [15], anisotropic remesh-
ing [2] to shape modeling [31, 39].

Since a smooth surfaces can be approximated by
many different triangle meshes, it is natural to ask
which gives the best approximation in terms of the
accuracy in computing differential quantities of the
surface. It is well known that a triangle mesh with
nearly regular triangles provides the best approxima-
tion of an isotropic region with positive Gaussian cur-
vature where the two principal curvatures are roughly
of the same magnitude. For anisotropic regions with
principal curvatures of different magnitudes, while an
anisotropic triangulation with triangle elements elon-
gated along some specific directions appears suitable
to capture such anisotropy accurately, it is not clear
exactly what kind of an anisotropic triangulation is
the most suitable for estimating surface differential
quantities. Indeed, we shall see that some instances of
anisotropic meshes in the literature do not lead to ac-
ceptable estimation of differential quantities, though
they may approximate the underlying smooth surface
quite well if measured by the distance errors.

Shape preservation On a smooth surface, a point
is elliptic if the Gaussian curvature at the point is
positive, and it is hyperbolic if the Gaussian curvature
is negative. The local shape of a smooth surface is
characterized accordingly. A surface region is called
an elliptic region if all of its points are elliptic; simi-
larly, a hyperbolic region can be defined. We propose
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Figure 1: Two meshes approximating the ellipsoid (x2 + y2 + z2/9 = 1). The top row shows the isotropic
mesh generated by Yan et al.’s algorithm [50], the bottom row is generated by our algorithm. In each row,
the first two figures show the mesh and highlight discrete edges and vertices that are not shape-preserving,
and the last three figures show the errors of the distance, the normal vector and the Gaussian curvature with
respect to the ellipsoid, respectively. In (b) and (g), those edges not on the convex hull are shown in black,
and those vertices incident to at least one such edges are not shape-preserving and are highlighted in red.
Clearly, our method produces shape-preserving meshes of better approximation in terms of the three error
measures.
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that the local surface shape of a smooth surface can
be preserved when using a triangle mesh to approxi-
mate the smooth surface.

For a triangle mesh we define elliptic and hyperbolic
vertices analogously. Roughly speaking, a vertex is
elliptic if its neighborhood on the triangle mesh is
locally convex; otherwise it is hyperbolic. (The rig-
orous definition will be given later in Section 3.) A
triangle mesh M approximating a smooth surface S
is said to be shape preserving if every vertex of M in
an elliptic (resp. hyperbolic) region of the surface S
is an elliptic (resp. hyperbolic) vertex.

We now use the ellipsoidal surface (x2+y2+z2/9 = 1)
in Figure 1 to illustrate the idea of shape-preserving
meshes. Two different triangle meshes both having
1,024 vertices and approximating the same ellipsoid
are shown in the two rows of Figure 1. Since the
ellipsoid is convex, we expect a good approximat-
ing mesh of it to be convex as well. Figure 1(a)
shows an isotropic mesh generated by the algorithm
by Yan et al. [50]. Although each triangle is nearly
regular, the mesh is, however, not convex. Those
edges not belonging to the convex hull of the mesh
are highlighted in black. Out of 1,024 vertices, there
are 723 vertices that are not shape-preserving (i.e.,
incident to at least one non-convex edge) and are
highlighted in red. The anisotropic mesh in the sec-
ond row is generated by our algorithm for computing
shape-preserving meshes. It is a convex polyhedral
surface and thus shape-preserving. This simple ex-
ample involves only a surface comprising entirely el-
liptic regions entirely, therefore simply computing the
convex hull of the sample gives the shape-preserving
mesh for the surface, However, in general, we shall see
that computing a shape-preserving triangle mesh for
a free-form surface with both elliptic and hyperbolic
regions is a non-trivial task. Furthermore, we point
out that an optimal shape preserving meshes entails
not only the optimal selection of the connectivity of
mesh edges but also optimal placement of mesh ver-
tices on a given smooth surface to be discretized.

Contributions This work for the first time charac-
terizes an optimal triangle mesh for approximating a
free-form smooth surface for shape preservation and
optimal estimation of differential quantities. We pro-
pose the notion of optimal shape-preserving meshes
and prove the convergence of the discrete normal,
curvature and Laplacian operators on these meshes.
We also devise an algorithm for effectively computing
optimal shape-preserving meshes.

2 Review

In this section, we will review the methods for es-
timating differential quantities on meshes and intro-
duce the centroidal Voronoi tessellation (CVT) mesh-
ing framework.

2.1 Estimation of Differential Quanti-
ties on Meshes

Differential operators are versatile tools in geometry
processing [43] and have been well studied for smooth
surfaces [40, 10]. Discrete differential operators play
a key role in many geometric processing tasks [48].
Various methods have been proposed for computing
differential quantities on mesh surfaces [34, 20, 7, 19,
41, 4].

The methods for estimating differential quantities on
meshes can be classified into two types: those based
on geometric fitting and those based on discrete dif-
ferential geometry. The methods based on geometric
fitting [7, 19] fit locally a low degree surface patch
around a mesh vertex and use the differential quan-
tities of the surface patch at the vertex as an estima-
tion. These geometric fitting methods generally do
not use the information of mesh connectivity; when
the sampling points are fixed, the estimated differen-
tial quantities are the same for different mesh edge
connections.

The methods based on discrete differential geome-
try utilize some identities involving the differential
quantities defined on smooth geometric shapes. To
estimate the differential quantities which are unde-
fined on C0 triangle meshes, these methods use some
quantities that are well defined on triangle meshes,
such as areas and angles, and combine these quan-
tities to produce the estimated differential quanti-
ties [34, 24, 41, 4]. For example, an approximation to
the Gaussian curvature at a point on a triangle mesh
is made by taking a weighted difference between 2π
and the sum of angles at the vertex, making use of
the Gauss-Bonnet theorem [34].

Next we will review several methods based on discrete
differential geometry. A complete review of these
methods is beyond the scope of the present paper,
so we will discuss some that are closely related to our
subsequent discussions on shape-preserving meshes.

Discrete Normal Vector A typical method for
approximating the normal vector at a vertex of a tri-

3



Figure 2: Two different meshes approximating a
cylinder. While the Gaussian curvature on a cylin-
der is zero everywhere, all mesh vertices on the left
are hyperbolic. In contrast, the mesh vertices on the
right maintain the local shape properties.

angle mesh is averaging the normals of the incident
faces of the vertex [19]. Morvan and Thibert propose
[35] a discrete scheme to compute the normals and
the area of a smooth surface with its approximated
triangle mesh and prove [36] that if the Hausdorff
distance of a sequence of meshes to a smooth surface
converges, the convergence of the normal curvature
guarantees the convergence of the area. Hildebrandt
et al. [23] further show that if the Hausdorff distance
converges, the convergences of normals, the area and
Laplace-Beltrami operators are equivalent.

However, we stress that the convergence of the Haus-
dorff distance does not imply the convergence of nor-
mals (or the area or the Laplace-Beltrami opera-
tors), as demonstrated by the classical example of
the Schwarz lantern [42] shown in Figure 2(left). The
mesh is an approximation of a cylinder, on which its
vertices lie. This mesh can be refined by increasing
the number of layers of vertices along the generat-
ing line of the cylinder and increasing the number
vertices in each layer. With more vertices added,
such refinement reduces the Hausdorff distance be-
tween the mesh and the cylinder to zero. However,
it can be shown that the normal error does not con-
verge. Hence, the convergence of the Hausdorff dis-
tance alone does not guarantee the convergence of the
derivatives on triangle meshes. Here the shapes of the
triangles in the mesh make a critical difference.

Discrete Curvatures Cohen-Steiner and Mor-
van [9] present an estimate of curvatures based on
normal cycle and restricted Delaunay triangulations.
Meyer et al. [34] estimate normals and curvatures us-
ing finite element method. Interestingly, Borrelli et
al. [6] show that the commonly used normalized angu-
lar defect in approximating the point-wise Gaussian
curvature converges only on very specific meshes.

Discrete Laplace Operators The cotan for-
mula [38] is widely used to compute the discrete
Laplace operator on a triangle mesh surface. Glick-
enstein [18] considers a triangle mesh as the limiting
case in the definition of the derivatives to compute
discrete Laplacians.

Apart from the various discrete differential operators
discussed above, the consistency of these operators is
also a concern [25, 47], especially when several dis-
crete operators are involved in one application at the
same time. The convergence of discrete differential
operators is considered in [23, 49]. Meek and Wal-
ton [33] give asymptotic analysis of several approxi-
mating methods of the normal and Gaussian curva-
tures. As we have seen, the quality of the estimated
differential quantities of a mesh surface depends not
only on the differential operators, but also on the
underlying mesh representation. We will show the
importance of a shape-preserving mesh to the con-
vergence of several common discrete differential op-
erators.

2.2 Centroidal Voronoi Tessellation

As an optimization-based method, the centroidal
Voronoi tessellation (CVT) framework is widely ap-
plied in generating both isotropic and anisotropic
meshes [12, 46, 37]. We give a brief introduction to
the CVT framework and review its generalization for
anisotropic mesh generation.

Isotropic CVT LetX = {xi}ni=1 be a set of points,
called seeds, in Ω. The Voronoi cell Ωi of a seed xi is

Ωi = {x ∈ Ω | d(x,xi) ≤ d(x,xj),∀j ̸= i, j = 1, 2, . . . , n},

where d(x,y) is the Euclidean distance between the
points x and y. The Voronoi cells of all the seeds
form a Voronoi tessellation of the domain Ω. If every
seed is also the centroid of its Voronoi cell, the special
Voronoi tessellation thus defined is called a centroidal
Voronoi tessellation (CVT) and the Voronoi cells are
called the CVT cells. A CVT is also a critical point
of the following isotropic CVT function ([11])

F (X) =

n∑
i=1

Fi(X) =

n∑
i=1

∫
Ωi

d2(x,xi) dσ (1)

where dσ is the differential area element of Ω. Fur-
thermore, a local minimizer of F (X), also known as
a stable CVT, is more desirable.

The state-of-the-art method for computing a CVT
is the L-BFGS method, which is a quasi-Newton
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method [30, 32]. Gersho’s conjecture [17], which
is proved for simple two-dimensional domains [22],
states that asymptotically the Voronoi cells {Ωi} of
an optimal CVT (i.e., the global optimizer of Eq. (1))
converge to congruent regular hexagons in 2D, as the
number of seeds approaches infinity. Therefore, the
energy values Fi(X) of all seeds are asymptotically
equal in an optimal CVT. The dual of such a hexago-
nal configuration of seeds is an isotropic triangle mesh
with nearly regular triangles and with most vertices
having valence six.

Anisotropic CVT Given a domain Ω equipped
with a Riemannian metric g, we have a Riemannian
manifold M = (Ω, g). An anisotropic CVT (ACVT)
function is defined as follows [12]:

FR(X) =

n∑
i=1

∫
ΩRi

d2R(x,xi) dσ, (2)

where ΩRi = {x ∈ Ω | dR(x,xi) ≤ dR(x,xj),∀j ̸=
i, j = 1, 2, . . . , n} is the anisotropic Voronoi cell on
M and dR measures the geodesic distance on M .

The metric tensor M = diag(κ2
1, κ

2
2) has been pro-

posed for advancing front anisotropic mesh gener-
ation [27] and has been adopted in [12], where κ1

and κ2 are the principal curvatures at a point. It
is clear that the shape and size of the triangle faces
are controlled by the metric in the ACVT function.
We will see that the anisotropy of a shape-preserving
mesh over a surface is governed by a tensor field
whose eigenvalues are proportional to the absolute
values of principal curvatures of the target surface,
that is, M = ρdiag(|κ1|, |κ2|), where ρ is some den-
sity function controlling the triangle size. Further-
more, we will show that this metric should be used
in the ACVT function in order to generate a shape-
preserving mesh.

The metric M is also used by Valette et al. [46] for
variational anisotropic remeshing, without revealing
its important connection with the shape preserving
properties. Their method first computes, in each
iteration, the anisotropic Voronoi cells of the seeds
on a surface equipped with the metric M and then
updates each seed to minimize the Quadratic Error
Metrics energy [16] of its Voronoi cell. A discrete
scheme clusters triangles in the input mesh to ap-
proximate the Voronoi cells, thus generating a re-
sult often far from a local minimizer, which can be
shown by our experiments later. Recently, Lévy and
Liu [29] generalize the CVT framework to adopt gen-
eral anisotropic metrics. However, to achieve compu-
tational efficiency, anisotropic Voronoi cells are ap-

proximated by Euclidean Voronoi cells. Our empiri-
cal results also show that such an approximation in
general does not generate shape-preserving meshes.

3 Shape-Preserving Meshes:
Definition

The following characterization of local shape of con-
tinuous surfaces is well known in classical differen-
tial geometry [10]. Let S be a surface in R3 and let
N : S → S2 be the Gauss map from S to the unit
sphere S2. An orientation defined at p ∈ S induces
an orientation at N(p) on S2. We have

dNp(v1)× dNp(v2) = K · v1 × v2,

where {v1,v2} is the basis in the tangent plane Tp at
p, dNp(v) is the derivative of the normal vector along
the direction v and K is the Gaussian curvature at
p.

Another observation is that the orientation of Tp in-
duces the orientation of a small closed curve C in
S around p. The image, N(C), of C on S2 has the
same orientation if K is positive (i.e., p is an elliptic
point) and has different orientation if K is negative
(i.e., p is a hyperbolic point). Six normal vectors
are shown around each of the elliptic and hyperbolic
points in Figure 3(a) and (c). As viewed from the
top, these six normals are traversed counterclockwise.
Figure 3(b) shows the Gaussian images of the small
closed curve of (a). We can see that at an elliptic
point, the orientation of the Gaussian image of the
normals around an elliptic point remains the same as
its preimage. Similarly, by comparing (c) and (d), it
can be seen that at a hyperbolic point, the orientation
on the Gaussian image is reversed.

The local shape of a triangle mesh M can be char-
acterized in a similar way. Define a ring R(v) =
{ti, i = 1, 2, . . . , k} as the set of the triangle faces of
M incident to an interior vertex v. Without loss of
generality, we assume that, after choosing the orien-
tation of M, the k triangles in R(v) are arranged in
counterclockwise order. Denote the normal of ti as
ni. On the Gaussian sphere, we get a spherical poly-
gon P with edges {nini+1, i = 1, 2, . . . , k − 1;nkn1},
where ninj is the minor arc of the great circle on the
Gaussian sphere passing through ni and nj .

If P is a star-shaped spherical polygon and the points
ni, i = 1, 2, . . . , k are traversed in the same (resp. re-
verse) orientation as is on M, then v is an elliptic
(resp. hyperbolic) vertex. These two types of mesh
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(a) (b)

(c) (d)

Figure 3: Two types of points and the orientation
of a closed curve around a point. In a local canon-
ical coordinate system, (a): an elliptic point and its
second order Monge’s form z = −(x2 + y2). The ori-
entation of the curve is counterclockwise. (b): the
Gaussian image of the curve in (a), having the same
counterclockwise orientation. (c): a hyperbolic point
and its second order Monge’s form z = x2 − y2. The
orientation of the curve is counterclockwise. (d): the
Gaussian image of the curve in (c) is, however, clock-
wise oriented.

(a) (b)

(c) (d)

Figure 4: Elliptic vertices and hyperbolic vertices on
a triangle mesh surface. (a): A counterclockwise or-
der of visit to the triangles at an elliptic point p. (b):
The Gaussian image of the normals of the adjacent
triangles at p. The order of traversal of the normals
on the mesh is retained on Gaussian sphere. (c): A
counterclockwise order of visit to the triangles at a
hyperbolic point p. (d): The Gaussian image of the
normals of the adjacent triangles at p. In this case,
the order of traversal of the normals on the mesh is
reversed on the Gaussian sphere.

vertices are also referred to as convex vertices and
saddle vertices, respectively, in [1]. See Figure 4 for
an illustration of the two types of mesh vertices. Sim-
ilar to the continuous case, the orientation at a point
p on the mesh is counterclockwise. If p is an elliptic
point, the Gaussian image of the normals is traversed
in counterclockwise order, as shown in Fig. 4(a) and
(b). If p is a hyperbolic point, the Gaussian image of
the normals is traversed in clockwise order, as illus-
trated in Fig. 4(c) and (d).

We now consider a smooth surface S and its interpo-
lating mesh M with all the vertices of M lying on S.
We will study the differential properties of a vertex
v on M as well as that of the corresponding point
where v is on S. For brevity, we will also refer to the
latter by saying “a certain property of v on S” when
the context is clear.

Definition 3.1 (Shape-Preserving Vertex)
Given a smooth surface S and an interpolating mesh
M of S, a vertex v of M is shape-preserving if
either one of the following cases holds:
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• v is an elliptic vertex and its adjacent vertices
and v itself lie in an elliptic region of S; or

• v is a hyperbolic vertex and its adjacent vertices
and v itself lie in a hyperbolic region of S.

Remark 3.2 There may exist two adjacent vertices
v and w on M, where v lies in an elliptic region and
w lies in a hyperbolic region of S. In this case, the
edge (v,w) passes through the parabolic curve sepa-
rating the elliptic and the hyperbolic regions. Since
the one-ring triangles of v encapsulate both elliptic
and hyperbolic regions, the orientation preservation
of a local curve around v is not guaranteed due to
the discretization. Therefore, in Definition 3.1, we
consider only the cases when both v and its one-ring
neighbor vertices lie in an elliptic (or hyperbolic) re-
gion.

(a) (b) (c)

Figure 5: (a) A shape-preserving vertex p at the
origin of the surface z = x2 + y2; (b) An optimal
shape-preserving vertex p at the origin of the sur-
face z = x2 + y2; all six vertices incident to p have
the same z-coordinate and form a regular hexagon;
(c) another optimal shape-preserving vertex p at the
origin of the surface z = x2/4 + y2. The six vertices
incident to p have the same z-coordinate and they
form an affinely regular hexagon.

Definition 3.3 (Shape-Preserving Mesh) Let
M be an interpolating mesh of a surface S. Define
a subset Q of the mesh M such that every vertex in
Q and its adjacent vertices are in the same elliptic
region or in the same hyperbolic region of S. Then
M is called a shape-preserving mesh of S if every
vertex in Q is a shape-preserving vertex.

The shape-preserving mesh of a given surface is not
unique, which is illustrated by the following example.
Let p be an umbilical point with equal principal cur-
vatures κ1 and κ2 on a surface S. Without loss of gen-
erality, we assume that the surface in the local coordi-
nate system around p takes the form z = x2+y2. We
now consider the one-ring triangles around a vertex at
p on a shape-preserving mesh of S. Figures 5(a) and
(b) show two typical shape-preserving vertices, both
with six adjacent vertices. The shape-preserving ver-
tex in (b) is special in that its six adjacent vertices all
have the same z-coordinate, denoted by z0, and they
are distributed evenly and form a regular hexagon on

the curve z0 = x2 + y2.

Figure 5(c) depicts a shape-preserving vertex at a
point p where the local surface is given by z =
x2/4 + y2. Both the local surface and the incident
triangles can be obtained by a scaling of factor 2
along the x-axis from that in (b), and the adjacent
vertices of p now form an affinely regular hexagon.
Indeed, on shape-preserving meshes with vertex con-
figurations as shown in (b) and (c), several discrete
differential operators enjoy better convergence, which
we will discuss in the next section.

To distinguish such special shape-preserving vertices
from the general ones, we define an optimal shape-
preserving vertex and an optimal shape-preserving
mesh as follows.

Definition 3.4 (Optimal Shape-Preserving Vertex)
A shape-preserving vertex p is optimal if

• the valence of p is 6;

• in the local Monge’s form z = 1
2 (κ1x

2 + κ2y
2)

defined at p, the six one-ring neighbor vertices
of p are represented by

( si√
|κ1|

,
ti√
|κ2|

,
1

2
(sign(κ1)s

2
i+sign(κ2)t

2
i )+O(h3)

)T
,

where si = cos(θ + iπ
3 )h, ti = sin(θ + iπ

3 )h, i =
1, . . . , 6, and h > 0.

Definition 3.5 (Optimal Shape-preserving Meshes)
A shape-preserving mesh is an optimal shape-
preserving mesh if all its shape-preserving vertices
are optimal shape-preserving vertices.

Remark 3.6 The definition of optimal shape-
preserving vertices can be interpreted intuitively as
follows. The one-ring neighbor vertices around an
optimal shape-preserving vertex v are mapped to nor-
mal vectors of these vertices. The differences between
these normal vectors from the normal of v (the Gauss
map of v) are roughly the same. In other words, a
circle around the normal of v is roughly formed on
the Gauss sphere. Therefore, given a vertex v, the
normal vectors of points in its neighbor region are
close to the normal vector of v. This is a more faith-
ful approximation than an arbitrary choice of one-
ring neighbor vertices, leading to improved conver-
gence properties of discrete differential operators.
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4 Shape-preserving Meshes:
Properties

We now discuss the convergence of several fundamen-
tal discrete geometric quantities and discrete differ-
ential operators on optimal shape-preserving meshes.

4.1 Discrete Normal Vector

The average of the normals of adjacent faces [19] is
often used to approximate the normal vector at a ver-
tex. Let h denote the mesh size, i.e., the length
of the longest edge incident to an optimal shape-
preserving vertex v. Let Qv denote the second or-
der approximating surface at v, which is the second
order Monge’s form in the local canonical coordinate
system. The displacement of the adjacent vertices
of v from Qv is then O(h3), which is the remainder
of the second order Taylor expansion. Based on this
observation, we have the following theorem.

Theorem 4.1 On an optimal shape-preserving
mesh, if the length of the edges incident to a
shape-preserving vertex v is O(h), the error of the
estimated normal vector is O(h2).

Proof 1 By Definition 3.4, the local second order
Monge’s form at the vertex v is z = 1

2 (κ1x
2 + κ2y

2);
the one-ring neighbor vertices of v are given by

vi =
(

si√
|κ1|

, ti√
|κ2|

,

1
2 (sign(κ1)s

2
i + sign(κ2)t

2
i ) +O(h3)

)T
,

where si = cos(θ + iπ
3 )h, ti = sin(θ + iπ

3 )h, i =
1, . . . , 6, and h > 0.

Hence, the normal direction of the triangle vvivi+1

incident to v is( sign(κ1)α1 + sign(κ2)α2√
|κ2|

+O(h4),

sign(κ1)α3 + sign(κ2)α4√
|κ1|

+O(h4),

√
3h2

2
√
|κ1κ2|

)T
,

where α1 = (s2i+1ti − s2i ti+1), α2 = (tit
2
i+1 − t2i ti+1),

α3 = (sis
2
i+1 − s2i si+1) and α4 = (sit

2
i+1 − si+1t

2
i ).

Here, i+ 1 is 1 when i = 6.

Summing up the six normals, we get the estimated

normal at v as
(
O(h2), O(h2), 1

)T
after normaliza-

tion. Since the actual normal at p is (0, 0, 1)T , we
conclude that the error of the estimated normal is
O(h2).

Remark 4.2 It is noted in [33] that on general
meshes, the approximation order of a discrete normal
vector is O(h) only. Hence, optimal shape-preserving
meshes improve the accuracy by one order of magni-
tude.

4.2 Discrete Curvatures

A typical method for estimating the principal cur-
vatures and principal directions of a surface repre-
sented by a triangle mesh is to estimate the nor-
mal curvatures along the edges incident to a vertex
and then find the second fundamental form in the
least squares sense by fitting the normal curvatures
along these edge directions [34, 19]. More specifically,
given a vertex v and its k one-ring neighbor vertices
vi, i = 1, . . . , k, one first estimates the normal at v,
denoted by n, and the tangent plane at v is thus de-
fined. The quadratic curve passing through v and
vi with n as the normal at v is computed. The esti-
mated normal curvature along the projected direction
of vvi into the tangent plane is the curvature of the
osculating circle. An illustration is shown in Figure
6, where the magnitude of the Gaussian curvature is
shown in the tangent plane. The formula to compute
the estimated normal curvature along the edge vvi is
κ̂i = 2vvi·n

−vv2
i
. On the other hand, the normal curva-

ture at v along a direction denoted by the unit vector
u = (ux, uy)

T in the tangent plane can also be com-

puted as: κu = uT IIu, where II =

[
e f
f g

]
is the

second fundamental form at the point v.

Figure 6: A point v, its adjacent vertex vi and the
osculating circle along the shown principal direction.

We now have an identity involving κ̂i induced by vi:

uT
i IIui =

2vvi · n
−vv2

i

(3)

for each adjacent vertex vi of v, where ui =
(uix, uiy)

T is the unit vector of vvi projected on the
tangent plane of v. Hence, we have a linear system of
equations with II as the unknown. By solving this lin-
ear system in a linear least squares sense, we obtain
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the second fundamental form and can then estimate
the principal curvatures and principal directions ac-
cordingly [45]. Since the valence of an internal vertex
is at least three, the solution of the linear system is
unique. The next theorem states the convergence of
discrete curvatures using the above estimation on op-
timal shape-preserving meshes.

Theorem 4.3 On an optimal shape-preserving
mesh, if the length of the edges incident to a vertex
v is O(h), the error of the estimated principal
curvatures and principal directions is O(h).

Proof 2 By Definition 3.4, the one-ring neigh-
bor vertices of v can be represented by vi =(

si√
|κ1|

, ti√
|κ2|

, 1
2 (sign(κ1)s

2
i + sign(κ2)t

2
i ) + O(h3)

)T
,

where h > 0, si = cos(θ + iπ
3 )h and ti = sin(θ +

iπ
3 )h, i = 1, . . . , 6. The estimated normal curvature
at v along the edge (v,vi) is

κ1κ2

(
sign(κ1)cos

2(θ + iπ
3 ) + sign(κ2)sin

2(θ + iπ
3 )

)
κ2cos2(θ +

iπ
3 ) + κ1sin

2(θ + iπ
3 )

+O(h).

We denote the exact normal curvature at v along the
edge (v,vi) as ĉi. Hence, the estimated normal cur-
vature has an O(h) error. From Eq. (3), we have the
following linear system of equations:

uT
i IIui = ĉi +O(h), i = 1, . . . , 6. (4)

Denote II as a vector (e, f, g)T . We rewrite the lin-
ear system in the matrix form as UII = C + O(h),
where U is a 6 × 3 matrix with the six rows vec-
tors (u2

ix, 2uixuiy, u
2
iy), i = 1, . . . , 6, and C is the vec-

tor (ĉ1, . . . , ĉ6)
T . Solving this linear system, we get

II = U−1C+O(h), where U−1 is the generalized in-
verse of U. We see that there is an O(h) error in
the estimated second fundamental form. Then, we
compute the eigenvalues and eigenvectors of the ma-
trix II to get the principal curvatures and principal
directions. For a 2 × 2 matrix, the computation of
its eigenvalues λi is equivalent to solving a quadratic
equation λ2−mλ+n = 0, where m is the trace of the
matrix and n is the determinant of the matrix. The
O(h) error in the coefficients of the quadratic equa-
tion yields an O(h) error in its roots, which are the
principal curvatures in our case. We conclude that
the error in the estimated principal curvatures and
principal directions is O(h).

Remark 4.4 To the best of our knowledge, we are
not aware of any previous literature on convergence
analysis of this method for estimating principle cur-
vature and principal directions on general meshes.
Here, we prove that on optimal shape-preserving

meshes, the estimation of principal curvature and
principal directions converges.

Corollary 1 On an optimal shape-preserving mesh,
if the length of the edges incident to a vertex v is
O(h), the error of the estimated Gaussian curvature
and mean curvature is O(h).

4.3 Discrete Laplace-Beltrami Opera-
tors

Next, we show that the discrete Laplace-Beltrami op-
erators converge on optimal shape-preserving meshes.

Theorem 4.5 The Laplace-Beltrami operators con-
verge on optimal shape-preserving meshes.

Proof 3 It is shown in [23] that the convergence of
the normal vector and the convergence of the Laplace-
Beltrami operator are equivalent, assuming the con-
vergence of the Hausdorff distance. Our proof follows
from Theorem 4.1 and the claim that the Hausdorff
distance converges on an optimal shape-preserving
mesh; the proof of the latter is simple and is thus
omitted here.

Remark 4.6 Approximately the Hausdorff distance
between a smooth surface and an interpolating mesh
(i.e., its piecewise linear approximation) is the inter-
polation error of the mesh.

5 Shape-preserving Meshes:
Computation

In this section, we adopt the metric M = diag(κ1, κ2)
[46] in the ACVT framework to generate optimal
shape-preserving meshes. We first discuss the in-
trinsic relation between the metric M and shape-
preserving meshes.

5.1 Riemannian Metric for Shape-
preserving Mesh Generation

It is noted in [44] that there is a correspondence
between an anisotropic CVT of a two-dimensional
manifold and a CVT in a higher dimensional Eu-
clidean space. According to the Gersho’s conjecture
[17, 21], the shape of a Voronoi cell in a CVT of a
two-dimensional domain is asymptotically a regular
hexagon. Therefore, the shape of a Voronoi cell in
an anisotropic CVT can be inferred from the met-
ric M defined on that domain. Given the metric M,
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there is a mapping G from the high dimensional Eu-
clidean space to the Riemannian manifold that satis-
fies M = (G−1)TG−1. The shape of a Voronoi cell
in an anisotropic CVT is then the image of a regular
hexagon under the transformation G.

We now derive the metric tensor M required for
generating shape-preserving meshes with the CVT
framework. As illustrated in Figure 5, in an isotropic
region where the two principal curvatures are of
similar magnitude, the triangles incident to an op-
timal shape-preserving vertex are regular triangles
asymptotically. According to the definition of op-
timal shape-preserving vertices, the triangles inci-
dent to an optimal shape-preserving vertex can be
obtained by transforming the triangles at an opti-
mal shape-preserving vertex at an umbilical point.
For each principal direction, this transformation ap-
plies a scaling along that direction. The triangles
incident to an optimal shape-preserving vertex are
thus scaled from the regular triangles by a factor
of 1√

|κi|
along di, where κi is the principal cur-

vature along di, i = 1, 2, the two principal direc-
tions. Therefore, we can see that the mapping re-
quired to generate the appropriate Voronoi cells and
hence the triangles for shape-preserving meshes is
G = cdiag( 1√

|κ1|
, 1√

|κ2|
), where c is a constant. We

have thus obtained M = ρdiag(|κ1|, |κ2|), where ρ is
considered a density function which will be discussed
in the next section.

5.2 Optimal Approximation

The density function ρ in the metric M =
ρdiag(|κ1|, |κ2|) is yet to be determined. Since the
L∞ distance error is a good approximation of the
Hausdorff distance, which in turn is related to the
convergence of the Laplace-Beltrami operator, we ex-
ploit the density function ρ to achieve minimal L∞
distance error. Using the observation that the ener-
gies of all seeds are equal asymptotically [17] after
convergence of the ACVT energy function (Eq. (2)),
one may derive that the density function ρ should be
taken as

√
|κ1κ2|. In other words, the ACVT en-

ergy function that we shall use for generating shape-
preserving meshes is given by Eq. (2) with the metric
being M = ρdiag(|κ1|, |κ2|), where ρ =

√
|κ1κ2|.

5.3 L-BFGS Method

We use the limited memory BFGS method [30], or
L-BFGS method for short, to minimize the ACVT

function F (X) in Eq. (2). The L-BFGS method is an
iterative quasi-Newton method, which approximates
the inverse of the Hessian matrix by accumulating
gradients of the previous iterations. As demonstrated
in [32], the L-BFGS method is an efficient method for
large-scale problems on which Newton methods are
too costly. On the other hand, the L-BFGS method
is also much more effective than the gradient descent
methods with nearly the same running time.

Given initial seeds X = (xi), the ACVT optimization
involves the following steps in each iteration: (a) com-
puting the anisotropic Voronoi tessellation of X; (b)
evaluating the ACVT function F (X) and its gradi-
ent ∇F (X); (c) updating the seeds by the L-BFGS
method. If the termination condition is met, the al-
gorithm terminates; otherwise, we call the L-BFGS
method to find the new positions of the seeds X.

5.4 Post-processing

Due to its nature as an optimization framework, the
L-BFGS method cannot reach the global minimium
in general and stops at a local minimum in practice.
Some non shape-preserving vertices still persist af-
ter the optimization by using the L-BFGS method.
An observation is that in a convex area with positive
Gaussian curvature, a local convex hull of the vertices
within this area is shape-preserving (although not
necessarily optimal). Thus, to further optimize the
result generated by the L-BFGS method, we check
the non shape-preserving vertices in a locally con-
vex area and check whether two neighboring non
shape-preserving vertices can be modified to shape-
preserving vertices by an edge flip; and if so, perform
the edge flip. This post-processing step further re-
duces the number of non shape-preserving vertices.
In Figures 7, 8, 9 and 10, the number of non shape-
preserving vertices is reduced from 59 to 31, from 13
to 7, from 29 to 21 and from 16 to 12, respectively,
by post-processing.

6 Implementation Issues

In this section, we will discuss several implementa-
tion issues. We start with the computation of the
anisotropic Voronoi tessellation of a set of seeds X,
which is essential for evaluating the ACVT function
F (X) and its gradient ∇F (X).
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6.1 Computing Anisotropic Voronoi
Tessellation

The existence of the Voronoi diagram (VD) of a
given set of sufficiently dense seeds on a Rieman-
nian manifold has been established by Leibon and
Letscher [28]. However, the computation of the cor-
responding restricted anisotropic Voronoi diagram (in
which the Voronoi cells are restricted to a given
manifold) [13] is not easy, even for many applica-
tions in which a manifold is endowed with a piece-
wise constant or a piecewise linear metric. Differ-
ent algorithms for computing anisotropic VD have
been presented in [8, 26, 5]. However, no practi-
cal implementation of their methods are known for
mesh surfaces. There are several existing methods for
approximating anisotropic VDs, assuming that the
manifold is triangulated. In the work by Valette et
al. [46], an approximation of the anisotropic VD is
computed by clustering of triangles, that is, assign-
ing each triangle in its entirety to one seed. This re-
sults in a very crude approximation, especially when
the number of seeds is comparable to the number
of mesh triangles. It may even lead the optimiza-
tion for a CVT to getting stuck at a bad minimizer.
The right figure illustrates a typ-
ical situation in which a trian-
gle is covered by more than one
(four in this example) Voronoi
cells and therefore should be tes-
sellated into parts belonging to different seeds.

On the other hand, in order to achieve efficient com-
putation of the anisotropic CVT, Lévy and Liu [29]
replace the anisotropic VDs by standard VDs. We
will show later in our experiments that this method
is not effective for shape-preserving mesh generation.

Inspired by the exact computation of restricted
isotropic VDs on mesh surfaces [50], we devise an
efficient method for restricted anisotropic VD which
also splits a triangle that should belong to more than
one seeds. We define a constant metric on each tri-
angle for robust computation. We observe that when
the seeds assume a good distribution and the num-
ber of seeds is a fraction of the number of triangles
in the domain, most triangles on the border of an
anisotropic Voronoi cell belong to only two Voronoi
cells. We note also that near a Voronoi vertex, one tri-
angle almost always belongs to three or four Voronoi
cells in practice, although it may belong to arbitrar-
ily many Voronoi cells theoretically. Based on this
observation, for each triangle, we first find the near-
est seeds of its vertices. If the entire triangle lies
within the Voronoi cell of a seed, it is assigned to the

seed. Otherwise, we split the triangle into at most
four parts and assign them to different seeds. The
approximated anisotropic Voronoi cell is thus found.
Our experiments show that with the number of trian-
gles being several times of the number of seeds, such
an approximation is accurate in the converging stage
when the the seeds are distributed evenly.

6.2 Initialization of Seeds

It can also be shown that on a two-dimensional Rie-
mannian manifold, the density of seeds at conver-
gence is proportional to

√
∥M∥2, where ∥M∥2 is the

2-norm of the metric M of the domain. Therefore,
in order to accelerate computation, we initialize the
seeds to conform to a desired density accordingly. We
achieve this by using the error diffusion method as
in [3] with a region growing approach.

6.3 Handling Degenerate Case

It is noted that when a region is nearly planar or
cylindrical, one or both principal curvatures can be
very small. To ensure a robust computation in the
computation of anisotropic VDs, we set a positive
tolerance value δ. If the absolute value of the input
principal curvature is less than δ, we replace it by δ.
This improves the numerical robustness when either
κ1 or κ2 vanishes or is very small.

7 Empirical Validation

In this section, we demonstrate the effectiveness of
our algorithm for shape-preserving mesh generation
by several experiments. Our implementation uses
CGAL 4.0 [14] to compute Delaunay triangulations.
All experiments are performed on a computer with a
2.3 GHz Intel Core i5 CPU and 4 GB RAM.

First we show the experiments on the convergence
properties of optimal shape-preserving meshes. To
compare with the ground truth, we choose several
analytic surfaces with known exact normal and cur-
vature information. Second, we demonstrate the ef-
fectiveness of our algorithm on free-form surfaces.
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7.1 Experiments on the Convergence
of Discrete Differential Operators

To show the convergence properties on analytic sur-
faces we generate meshes with different resolutions
using the prevailing mesh decimation algorithm in
[16] based on quadratic error minimization (QEM).
The convergence statistics on these meshes are shown
in Table 1. Table 2 shows the statistics on nearly
optimal shape-preserving meshes generated by our
method.

We choose four analytic surfaces whose exact normal
vectors and Gaussian curvatures are known prior to
the comparison. On a surface, increasing the num-
ber of vertices fourfold halves the triangle size of
the mesh. Therefore, for each surface, we generate
meshes with 200, 800, 3,200 and 12,800 vertices. We
see that the convergence of both the normal vector
and the Gaussian curvature is improved on nearly
shape-preserving meshes, compared with meshes gen-
erated by using the QEM algorithm [16]. This is in
conformity with our discussion in Section 4.

7.2 Experiments on Free-form Sur-
faces

We evaluate our algorithm for generating shape-
preserving meshes against both isotropic and
anisotropic remeshing methods, which are most
widely used for mesh generation. Specifically, we
compare against the implementation by Yan et al. [50]
for isotopic remeshing and the discrete anisotropic
CVT method by Valette et al. [46] which uses the
same metric M as ours in their quadratic error min-
imization (QEM).

The first example is conducted on a duck model with
50,000 triangles. A total of 2,048 seeds is used. The
results of the three methods are shown in Figure 7,
with non shape-preserving vertices highlighted in red.
For the isotropic mesh (left), the mesh is of bad qual-
ity in terms of shape-preservation although each tri-
angle is nearly regular. There are 341 vertices which
are not shape-preserving. The mesh in the middle is
generated by the discrete anisotropic CVT. The re-
sult is better than isotropic remeshing, but still 237
vertices are not shape-preserving, due to both the dis-
crete computation and updating of seeds by QEM.

Our algorithm, on the other hand, reduces the non
shape-preserving vertices dramatically to 31 ver-
tices. In our resulting mesh, the anisotropic triangles
around the neck of the duck capture the local shape

faithfully. As a side note, given a free-form shape, it
is hard to generate a mesh with only shape-preserving
vertices, due to the combinatorics of the vertices and
the difficulty of local optimization in searching for a
good minimizer.

The second example is a double-torus model with
50,000 triangles (Figure 8). The number of seeds
is 1,024. Again, our algorithm generates much bet-
ter result (with only 7 non shape-preserving vertices)
than the other two methods. The third example is
a human face with 115,876 triangles (Figure 9). The
number of seeds is 2,048. Note that on the nose and
the cheek, the non shape-preserving vertices are much
reduced in our result. The last example is a pig with
56,960 triangles (Figure 10) with 1,024 seeds. On
this model, there are both elliptic and hyperbolic
regions. Near the region border, adjacent vertices
may fall onto different regions. According to Defi-
nition 3.1 of shape-preserving vertices, these vertices
are not considered when classifying whether a vertex
is shape-preserving or not.

The computation time of both isotropic CVT [50] and
our algorithm is less than 10 minutes for all these
examples. The computation of discrete ACVT [46]
is faster (in less than 1 minute), since no triangle
clipping operation is involved.

8 Conclusion

In this paper, we define a shape-preserving mesh
whose vertices represent faithfully the local shape of
a surface. We demonstrate the importance of shape-
preserving meshes by proving the convergence of sev-
eral widely used discrete differential operators on
these meshes. Moreover, we propose an effective al-
gorithm for computing shape-preserving meshes. The
new algorithm is based on the centroidal Voronoi tes-
sellation framework with a carefully derived metric.
Experimental results show that our method performs
much better than the existing methods in generating
shape-preserving meshes.

While the optimal shape-preserving mesh is well de-
fined, its efficient computation is nontrivial because it
involves determination of optimal layout of mesh ver-
tices as well as optimal mesh connectivity. We have
proposed a numerical method based on anisotropic
centroidal Voronoi diagram. Due to its nature of lo-
cal optimization, our method produces satisfactory
but not perfect results, which means that non shape-
preserving vertices cannot be removed completely for
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Elliptic Paraboloid Hyperbolic Paraboloid Hyperboloid Torus
#vertices en eGC en eGC en eGC en eGC

200 2.23 × 10−2 2.54 × 10−2 1.15 × 10−2 2.29 × 10−2 1.33 × 10−2 1.51 × 10−2 3.40 × 10−2 2.76 × 10−2

800 7.92 × 10−3 1.03 × 10−2 5.94 × 10−3 1.31 × 10−2 7.26 × 10−3 3.85 × 10−3 1.85 × 10−2 8.27 × 10−3

3, 200 5.56 × 10−3 7.39 × 10−3 3.87 × 10−3 1.27 × 10−2 5.18 × 10−3 2.97 × 10−3 1.12 × 10−2 7.92 × 10−3

12, 800 4.77 × 10−3 5.76 × 10−3 1.96 × 10−3 7.39 × 10−3 4.01 × 10−3 1.89 × 10−3 8.71 × 10−3 4.28 × 10−3

Table 1: On meshes generated by using the algorithm in [16], the convergence of the normal vector and the
discrete Gaussian curvature [34] is shown. The error en is the angle between the estimated normal vector
and the exact one. The error eGC is the difference between the estimated Gaussian curvature and the exact
one. The slow convergence is observed. The equations of the elliptic paraboloid, the hyperboloid paraboloid
and the hyperboloid are z = x2 + y2, z = x2 − y2 and x2 + y2 − z2 = 1,respectively. The equation of the
torus is (

√
x2 + y2 − 1)2 + z2 = 1.

Elliptic Paraboloid Hyperbolic Paraboloid Hyperboloid Torus
#vertices en eGC en eGC en eGC en eGC

200 2.91 × 10−3 9.73 × 10−3 5.17 × 10−3 1.33 × 10−2 5.27 × 10−3 6.55 × 10−3 2.68 × 10−2 1.31 × 10−2

800 1.42 × 10−3 4.06 × 10−3 2.02 × 10−3 1.09 × 10−2 3.08 × 10−3 2.96 × 10−3 6.38 × 10−3 5.58 × 10−3

3, 200 9.96 × 10−4 3.47 × 10−3 1.19 × 10−3 7.61 × 10−3 2.11 × 10−3 1.81 × 10−3 3.87 × 10−3 3.80 × 10−3

12, 800 3.81 × 10−4 2.81 × 10−3 4.51 × 10−4 5.90 × 10−3 9.17 × 10−4 9.61 × 10−4 1.54 × 10−3 2.82 × 10−3

Table 2: On nearly optimal shape-preserving meshes generated by our method, the convergence of the normal
vector and the discrete Gaussian curvature [34] is shown. The error en is the angle between the estimated
normal vector and the exact one. The error eGC is the difference between the estimated Gaussian curvature
and the exact one. We see that the convergence of the discrete differential operators is improved on these
meshes, as compared with the convergence of the operators on the meshes given in Table 1.

complex surfaces. The improvement on this aspect
needs further research.
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[3] Pierre Alliez, Éric Colin de Verdière, Olivier
Devillers, and Martin Isenburg. Centroidal
Voronoi diagrams for isotropic surface remesh-
ing. Graphical Models, 67(3):204–231, 2003.

[4] Alexander I. Bobenko and Yuri B. Suris. Dis-
crete differential geometry, volume 98 of Grad-
uate Studies in Mathematics. American Mathe-
matical Society, Providence, RI, 2008. Integrable
structure.

[5] J-D. Boissonnat, C. Wormser, and M. Yvinec.
Locally uniform anisotropic meshing. In Sym-
posium on Computational Geometry (SOCG),
pages 270–277, 2008.

[6] V. Borrelli, F. Cazals, and J. M. Morvan. On the
angular defect of triangulations and the point-
wise approximation of curvatures. Computer
Aided Geometric Design, 20(6):319 – 341, 2003.

[7] F. Cazals and M. Pouget. Estimating differential
quantities using polynomial fitting of osculating
jets. Comput. Aided Geom. Des., 22:121–146,
February 2005.

[8] Siu Win Cheng, Tamal K Dey, Edgar A Romas,
and Rephael Wengar. Anisotropic surface mesh-
ing. In Proceedings of the seventeenth annual
ACM-SIAM symposium on Discrete algorithm,
pages 202–211, 2006.

[9] David Cohen-Steiner and Jean-Marie Morvan.
Restricted Delaunay triangulations and normal
cycle. In Proceedings of the nineteenth annual
symposium on Computational geometry, SCG
’03, pages 312–321, New York, NY, USA, 2003.
ACM.

[10] Manfredo P. do Carmo. Differential Geometry
of Curves and Surfaces. Prentice Hall, 1976.

[11] Qiang Du, Vance Faber, and Max Gunzburger.
Centroidal Voronoi tessellations: applications
and algorithms. SIAM Review, 41:637–676,
1999.

[12] Qiang Du and Desheng Wang. Anisotropic cen-
troidal Voronoi tessellations and their applica-

13



Figure 7: A duck model: meshing result with 2,048 vertices. From left to right: isotropic CVT [50], discrete
anisotropic CVT [46] and our method. The number of non shape-preserving vertices are 341, 237 and 31,
respectively.

Figure 8: Eight shape model: meshing results with
1,024 vertices. From left to right: isotropic CVT [50],
discrete anisotropic CVT [46] and our method. The
number of non shape-preserving vertices are 213, 104
and 7, respectively.

tions. SIAM J. Sci. Comput., 26(3):737–761,
2005.

[13] Herbert Edelsbrunner and Nimish R. Shah. Tri-
angulating topological spaces. In Proceedings of
the tenth annual symposium on Computational
geometry, SCG ’94, pages 285–292, New York,
NY, USA, 1994. ACM.

[14] A. Fabri. CGAL-the computational geometry al-
gorithm library. In Proceedings of 10th Interna-
tional Meshing Roundtable, pages 137–142, 2001.

[15] Shachar Fleishman, Iddo Drori, and Daniel
Cohen-Or. Bilateral mesh denoising. ACM
Trans. Graph., 22(3):950–953, July 2003.

[16] M. Garland and P. Heckbert. Surface simplifica-

tion using quadric error metrics. In Proceedings
of SIGGRAPH 97, pages 209–216, 1997.

[17] A. Gersho. Asymptotically optimal block quanti-
zation. Information Theory, IEEE Transactions
on, 25(4):373–380, Jul 1979.

[18] D. Glickenstein. Geometric triangulations and
discrete Laplacians on manifolds. ArXiv Mathe-
matics e-prints, August 2005.

[19] Jack Goldfeather and Victoria Interrante. A
novel cubic-order algorithm for approximating
principal direction vectors. ACM Trans. Graph.,
23:45–63, January 2004.

[20] Eitan Grinspun, Yotam Gingold, Jason Reis-
man, and Denis Zorin. Computing discrete shape
operators on general meshes. Computer Graph-
ics Forum, 25:547–556, 2006.

[21] Peter Gruber. Optimal configurations of
finite sets in Riemannian 2-manifolds.
Geometriae Dedicata, 84:271–320, 2001.
10.1023/A:1010358407868.

[22] Peter M. Gruber. A short analytic proof of Fe-
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erronée de l’aire d’une surface rourbe. Gesam-
melte Mathematische Abhandlungen, 2:309–311,
1890.

[43] Olga Sorkine. Differential representations for
mesh processing. Computer Graphics Forum,
25(4):789–807, December 2006.

[44] Feng Sun, Yi-King Choi, Wenping Wang, Dong-
Ming Yan, Yang Liu, and Bruno Lévy. Obtuse
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