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Abstract—Novel road-network services, such as ride sharing,
spatial crowdsourcing and keyword-aware routing often need to
find out whether there exists a route that can go through (or
match) a service area. A ride-sharing system, for instance, may
need to find for a moving taxi a route that passes through a region
in which a passenger is located. A fundamental question is: given
two locations s and t, and an area A on the road network, is
there a “reasonably short” route from s to t that also crosses
A? This Route and Area Matching (ROAM) query is important
as 1) its efficient evaluation allows the application involved to
recommend appropriate services to objects in an online manner;
2) its algorithm can be incorporated into some sophisticated
systems to optimize their performance. Despite its importance, the
ROAM query has not been well studied especially when “service
area” instead of “service point” is concerned. We examine efficient
ROAM query algorithms. Particularly, we develop solutions for
testing the existence of a ρ-route, which is an s-t path that passes
through A, with a length of at most (1 + ρ) times the shortest
distance between s and t. We propose index-free and index-based
algorithms. Our index structures, with a size linear to the number
of road network nodes, enable significant query improvement over
baseline approaches. We have performed extensive experiments
on several large road network datasets to validate the efficiency
and scalability of our approaches. In addition, we incorporate
our efficient algorithm to an existing keyword-aware routing
system and one dynamic ride-sharing system. Our experiments
show that an efficient ROAM query algorithm helps improve the
performance of these systems.

I. INTRODUCTION

Location-based services, such as ride-sharing, spatial
crowdsourcing and keyword-aware routing, have attracted
tremendous interest in recent years. A taxi ride-sharing ap-
plication (e.g., RYDE [1], uberPool1) enables passengers to
share a taxi ride; a spatial crowdsourcing system [2]–[4] invites
mobile Internet users (called workers) to visit a given place
to conduct a task (e.g., shooting photos of attractions [5]);
a keyword-aware routing system [6], [7] allows a mobile
user to describe objects of interest (e.g., Italian restaurant)
by keywords, and recommends to her interesting ones. These
applications, which take users’ locations into account, provide
convenience and business opportunities.

The above applications share a common characteristic: they
consider an object m (e.g., a taxi or a mobile user) moving
from an origin s to a destination t, and recommend to m a
service (e.g., a restaurant) or service request (e.g., a shared
ride request). Then, m traverses to the service area, conducts
some activities (e.g., picking up a passenger), and continues
her journey to t. A service is recommended to m, only if
m’s detour from s to the service area (and then go to t)

1https://www.uber.com/
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Fig. 1: Illustrating ROAM queries.

does not seriously affect her original travel plan from s to
t. Fig. 1(a) shows an example in ride-sharing: a taxi, located
at s, is carrying her current passenger to t (solid line). The
ride-sharing system receives requests of two passengers, who
also want to go to t, at locations x and y. The enclosed circles
indicate the areas the passengers are willing to walk to be
picked up. The system accepts the request from x as its detour
cost is small enough. The taxi then takes a detour (dashed line)
to pick up x, after which she continues to go to t. Fig. 1(b)
illustrates a spatial crowdsourcing system for collecting recent
photos of attractions. Each task is an attraction enclosed with
a suitable photo-shooting area [5]. A worker who is walking
to home (t) from her office (s), is recommended the tasks that
are close to her path (e.g., task 1). As another example, in
Fig. 1(c), a user who has just viewed a movie (in s) would
like to have a meal before going home (in t). She wants to
go to certain food mall and picks a restaurant there. She can
input “food mall” in a keyword-aware routing system [6], and
the system recommends to her a food mall which costs her a
little extra traveling time.

To recommend appropriate services, a system should con-
sider the amount of effort needed for an object to approach the
suggested service area. Suppose that a service (request) e is
initiated in a region A (e.g., a pick-up area). Then, an object m
on a route from s to t would be interested in handling e, only
if its detour from s to A does not seriously affect her original
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travel plan from s to t. Therefore, before recommending e
to m, the system should check whether there is a “reasonably
short” path from s to t that passes through A. For example, the
length of the path can be required to be at most (1+ ρ) times the
shortest distance from s to t, with ρ ≥ 0 a parameter decided
by the system or the object involved. We refer to the decision
problem of checking whether such a path (called ρ-route) exists
as the ROute and Area Matching (ROAM) query. In Fig. 1(a),
for instance, ρ = 0.2. The dashed line is a 0.2-route between
s and t, because its length is less than (1 + ρ = 1.2) times
the shortest distance between s and t. Moreover, this 0.2-
route passes through one pick-up point within the pick-up
area around x, and so the ROAM query on (s, t, x) returns
“true” to indicate that there is a “match” of x and the given
(s, t) pair. However, the pick-up area around y is far from the
shortest path between s and t, and so the ROAM query for
y returns “false”, revealing that the length of a detour taking
the passenger in y is more than 1.2 times that of the shortest
distance between s and t.

Drawbacks of Existing Solutions. A simple way of answering
a ROAM query is to examine all paths from s to t, and
check if there is a ρ-route that intersects A. This solution
is prohibitively expensive, due to the enormous number of
paths that have to be examined. Two classes of solutions can
also be adapted. The first is based on Dijkstra’s algorithm [8].
The idea is to perform Dijkstra’s algorithm with s and t
as source nodes respectively. We examine whether the two
searches meet at a node inside area A and the meeting node
is on a ρ-route from s to t (See details in Sec. IV-A).
This solution is inefficient when handling queries on large
road networks. The other approach uses well-studied point-
to-point shortest distance algorithms [8]–[14]. Particularly, we
can sample a portion of nodes in A, then we compute the
shortest distances between each sample to s and t respectively
to examine whether the sample is on a ρ-route from s to
t. Once such a sample is found, we can conclude that a ρ-
route from s to t passing through A exists. This approach is
inefficient when many samples are involved and we cannot
guarantee its correctness as it depends on the samples. A
few recent works in spatial crowdsourcing [3], [4] and ride-
sharing [15]–[19] addressed related but different issues. Those
techniques proposed suffer from at least one of the following
deficiencies. First, they gauge the distance between object m
and service request e by their Euclidean distance. As pointed
out in [11], Euclidean distance is often inaccurate, since an
object’s movement is constrained by a road network. Second,
previous works assume that a service is handled at a precise
location; in practice, a service can be served in a region.
In ride-sharing, a passenger may walk to a pick-up location
nearby; a spatial crowdsourcing task, such as taking photos for
a monument, can be done within some distance from it. Last,
existing works (e.g. [6], [19]) often overlook the possibility of
optimizing the cost of validating a detour constraint, as they
tend to involve a more sophisticated queries (e.g., TSP-like
queries). Therefore, existing solutions either cannot efficiently
support ROAM query or has a orthogonal objective.

Our Contributions. This paper presents a comprehensive
study on ROAM queries, which is a fundamental query that
supports many road-network applications (e.g., ride-sharing,
spatial crowdsourcing and keyword-aware routing). We first
develop an index-free approach, known as the bi-directional

search with temporary stop, which improves query evaluation
by considering the relationship between (s, t) pairs and the
service area. The approach yields significant improvement
over the basic solution. To further improve the efficiency, we
then design a data structure called Sketch, and based on it a
Sketch Framework. The Sketch Framework is a general search
framework that can incorporate any ROAM query algorithm.
We also analyze our approach, and show that the size of the
Sketch is linear to the number of network nodes.

We have conducted experiments on seven large real
datasets, the largest of which contains 0.5 billion edges. On
a dataset about New York’s taxi trajectories, Sketch is up to
30 times faster than the index-free approach. Our solution is
scalable to large datasets. In terms of effectiveness, the ROAM
query yields up to 10 times more matches between services
and objects, compared with traditional methods, which assume
that the service request is initiated at a point.

We incorporate our efficient ROAM query algorithms to an
existing keyword-aware routing system and a dynamic ride-
sharing system. We show that ROAM queries help improve
their performance considerably. For example, by simply em-
ploying our ROAM query algorithm as a preprocessing to a
keyword-aware routing algorithm, the algorithm runs up to
seven times faster.

Organization. The rest of the paper is organized as follows.
We discuss related works in Sec. II. In section III, we introduce
the detailed problem settings. In section IV, we propose two
index free methods to handle the ROAM query. We propose
our main algorithm in section V and VI. Section VII shows our
experimental evaluation. We conclude the paper in Sec. IX.

II. RELATED WORK

We now discuss related works including shortest path
queries, ride-sharing and keyword-aware routing systems.

Shortest Path Queries. The shortest path query [8]–[14],
[20], [21] is related to the ROAM query. The shortest path
algorithms can be generally divided into two types. The
first type extends Dijkstra algorithm [8] by considering bi-
directional search (e.g., [9], [10]). These algorithms inspire
the design of our first two ROAM query algorithms. However,
extending these solutions to handle ROAM queries is not
trivial, due to the presence of ρ and the service area. The
second type of algorithms [12]–[14] is a hierarchical approach.
Their common idea is to select some important nodes among
the network, and let them be the routing nodes to speed up
calculation. We experimentally compare our solution to the
shortest distance based solutions. While we borrow the basic
concept of “cover edge” from [12] to define the importance of a
node, our algorithms are significantly different from [12]. [12]
pre-computes pairwise distances among the selected important
nodes, which entail quadratic storage. In contrast, we construct
a light-weight graph that consumes linear storage on the
selected nodes, known as Sketch. We present many new ideas
which are not in [12]. First, we propose the concepts of sketch
edges (Sec. V-C) and bridge edges (Sec. VI-A), which are
the most important parts that constitute a Sketch (Sec. V).
Second, we devise efficient algorithms to construct Sketch
edges (Sec. V-C) and bridge edges (Sec. VI-A). In addition, we
analyze the properties of a sketch, including space complexities



and distance invariance (Sec. V-C and V-D). Lastly, based on
the Sketch, we devise smart algorithms to conduct efficient
ROAM queries (Sec. VI).

Spatial Crowdsourcing. Existing spatial crowdsourcing stud-
ies [2]–[4], [22] assume an Euclidean space, such that the
distance between two locations can be calculated easily. Also,
these spatial crowdsourcing systems rarely consider the situa-
tions where the volunteer workers have a predefined traveling
destination. Therefore, existing studies on spatial crowdsourc-
ing problems are significantly different from the ROAM query.
We also note that existing studies for spatial crowdsourcing
rarely consider a task location as a service area. They often
assume POIs are points. However, as we pointed out, area-
based queries are of interest in some applications. Moreover,
employing this service area constraints makes the query much
more challenging to handle. Directly employing existing point-
based methods can be exhaustive when the given area contains
a large number of nodes. Therefore, the study of the ROAM
query complements to existing point-based queries.

Ride-Sharing.

We compare the methods employed by existing ride-
sharing systems [15], [17], [19] with our proposed algorithms
for the ROAM query. [19] employs a P2P method (detailed
explanation can be found in Sec. VII) that can be adapted
to address the ROAM query. We experimentally compare
this method and show the superiority of our algorithms. The
algorithm introduced in [17] does not help much in address-
ing the ROAM query, as the main technique in [17] relies
on the assumption that the Euclidean distance between two
nodes is not larger than the corresponding shortest network
distance. However, this assumption does not hold when the
edge weight represents the traveling time. Moreover, their
optimization objective, which is formalized as a skyline query,
is significantly different from our ROAM query. As a result,
their solution is hard to be adapted for the ROAM query. [15]
uses an approximate distance method to estimate the network
distance between two nodes. They partition the road network
by a grid and use the distance between two centers of grid cells
to estimate the distance between two nodes respectively inside
the two cells. Since it is a distance approximation method, it
cannot address the ROAM query accurately.

Also, some existing ride-sharing systems can benefit from
an efficient algorithm for the ROAM query which acts as a
fundamental operator. In particular, [19] formulates the ride-
sharing problem as a form of Traveling Salesman Problem
(TSP) (as noted by [18]), while satisfying a detour constraint
similar to the ROAM query. As such, a ROAM query can
act as a necessary filtering condition when plugged into their
solutions and help optimize the performance (See Fig. 7 (h.1)
in experiments).

Keyword-Aware Routing. A keyword-aware routing sys-
tem [6], [7] finds a cost-efficient route on the road net-
work which goes across the POIs collectively marked by the
searched keywords. Their algorithm focus is different from the
ROAM query, as they focus on how to extract a collection of
POIs that are collectively associated with search keywords.
Interestingly, our ROAM query can be incorporated to their
systems to enhance the performance (See Fig. 7 (h.2) in
experiments).

Notation Description
G the input road network

w(u, v) the weight of edge (u, v)
dist(s, t) the shortest network distance between node s and node t

eu dist(s, t) the Euclidean distance between nodes s and t
circ(o, r) the circular area whose center is o and radius is r
ball(s, τ) the set of nodes whose network distances from s is at most τ

gd the grid distance
lower dist(s, t) a network distance lower bound between nodes s and t

C3 (resp. C5) a 3× 3 (resp. 5× 5) sub-grid

TABLE I: Frequently used notations

III. PRELIMINARIES

In this section, we give a formal definition of the ROAM
query (Section III-A). We then review Dijkstra’s Algorithm in
Section III-B, which forms the basis of our discussions.

A. The ROAM Query

A road network is a graph G(V,E), where each node
u ∈ V represents a road junction and each edge e ∈ E is a
road segment. Each node u is associated with a geographical
location (ux, uy), while each edge e is associated with a weight
w(e), which indicates the cost of traversing e (e.g., the physical
length of e or the time required to traverse e). If an edge e has
two end nodes u and v, then we use (u, v) to represent e. For
any path of G, we define its length as the sum of weights of the
edges in the path. We let n = |V |. The shortest path between
two nodes u and v is the path from u to v with the smallest
length. We use (u1, . . . , uh) to represent the path composed of
nodes u1, . . . , uh. Accordingly, the shortest distance between
u and v, dist(u, v), is the length of the shortest path from
node u to node v. We denote the Euclidean distance between
u and v as eu dist(u, v). Unless otherwise specified, we refer
to the shortest distance between two nodes as their distance.
We say that a path between s and t is a ρ-route (ρ ≥ 0), if its
length is at most (1 + ρ) · dist(s, t). For ease of presentation,
we assume that G is undirected, that is, dist(u, v) = dist(v, u)
for any nodes u and v. We discuss how to extend our solution
to directed road networks in Sec. VI-C. The frequently used
notations are summarized in Tab I. Let us now define the
ROAM query.

definition 1 (ROAM Queries): Given a road network graph
G, two nodes s and t, and a circular region circ(o, r) of
G (where o is a node of G and r is the radius), a ROAM
query returns “true” if there exists a ρ-route from s to t that
intersects the circ(o, r), or “false” otherwise.

Here, we assume that the service area has a circular shape.
The reason is twofold. First, it makes our solutions easier to
present. Second, a circular area is natural in some applications.
In ride-sharing, for instance, a user, located at o (e.g., inside
a shopping mall), may not want to walk more than a distance
r to walk to the taxi. Hence, her service area can be modeled
as circ(o, r).

To handle a non-circular service area A, a simple way is
to find the largest circle enclosed by it, and use this circle as
the approximate service area instead. Then, if a ROAM query
returns “true” for this circle, the answer is also true for A. In
Sec. VIII, we also discuss a more accurate solution for non-
circular area based on the Sketch framework.

We also give another example about how a service area can
be defined. Consider a passenger, requesting for a ride, does



not want the ride-sharing system to know about her precise
location (e.g., she is in a specialist hospital). To alleviate
location privacy concern, cloaking techniques can be used,
where the user sends to the system a larger area that covers
her exact location. This area can be considered as a service
area for this passenger.

B. Dijkstra’s Algorithm

We briefly review Dijkstra’s algorithm [8], which is fun-
damental to our techniques. Dijkstra’s algorithm computes
shortest distances from a source node s to all the other nodes.
During the search, the nodes are examined in an ascending
order of their distances from the source node s. Each node is
associated with a state and a distance that indicates the known
shortest distance from the node s. The state of a node is one of
unseen, labeled and scanned. If a node is unseen, it means the
distance associated with the node is∞. In contrast, if a node is
scanned, it indicates that the distance associated with the node
is the exact distance between s and the node. The other nodes
with state labeled are associated with a finite upper-bound
distance of its true distance from s. For ease of presentation, in
the following, we say a node is scanned (resp. labeled, unseen),
if the state of the node is scanned (resp. labeled, unseen). We
call the search based on Dijkstra’s algorithm a Dijkstra search.
We also define the search space of Dijkstra search as Dijkstra
ball, denoted by ball(s, τ), to describe the set of nodes whose
shortest distances to s are at most τ .

IV. INDEX-FREE APPROACHES

In this section, we introduce index-free algorithms for
the ROAM query. A basic solution is adapted from Dijkstra
search (Sec. IV-A). However, such approach is slow. A more
clever algorithm makes use of the distance relationship among
s, t and o. Based on this idea, we propose BIS algorithm
(Sec. IV-B). BIS considerably outperforms Basic.

A. A Basic Approach

We briefly introduce a straightforward solution, called
BASIC. Our major observation is that every node on a ρ-route
has a shortest distance at most (1 + ρ)dist(s, t) to s as well
as t. Hence, all the ρ-routes are within

I = ball
(
s, (1 + ρ)dist(s, t)

) ⋂
ball

(
t, (1 + ρ)dist(s, t)

)
.

We also observe that, whether there exists a satisfactory ρ-
route is equivalent to examining whether there is a node u in
the given circ(o, r) such that its sum of distances from s and
t is less than (1 + ρ)dist(s, t).

Claim 1 (Positive Condition Rule): A ROAM query re-
turns true, if and only if there is a node u ∈ circ(o, r) such
that dist(s, u) + dist(u, t) ≤ (1 + ρ)dist(s, t).

Based on the Positive Condition Rule, a straightforward
solution of the ROAM query is composed of the following
two steps:

1) Search from s: We calculate ball
(
s, (1 + ρ)dist(s, t)

)
; we

return false if circ(o, r) does not intersect the ball.

2) Checking from t: Conduct Dijkstra search from node t,
whenever visit a node u satisfying the positive condition rule,
we return true.

Basic contains a large number of fruitless searches. We
discuss this in detail in the following sections.

B. First-Cut: Bi-Search with Temporary Stop

One unsatisfactory effect of Basic is that the ball(s, (1+
ρ) dist(s, t)) is always fully computed. In quite a few cases,
this full search is unnecessary. We propose bi-directional
search for ROAM queries, which we refer to as BIS (BI-
directional ROAM Search). We exploit the location relation-
ship among s, t and o so as to optimize the search. Our strategy
is considerably different from the traditional bi-directional
search for the shortest path computation [9], as the traditional
bidirectional search overlooks the position of o. Let us first
consider the motivating case in Fig. 2 (a) where the given
circle is near to the bisector of the line connecting s and t. In
this case, an iterative search which takes turns to expand the
Dijkstra balls from s and t leads to an early stop of the search
(i.e., two balls meeting around the bisector), even when both
ball(s, (1+ρ)dist(s, t)) and ball(t, (1+ρ)dist(s, t)) have not
been fully computed.

The second example shown in Fig. 2 (b) motivates us to
consider the position of the circle. When the given circle is near
to node s, the iterative search still incurs a large search space.
The reason is, the search will not stop until the two search
balls meet inside the given circle. Therefore, we incorporate
into the bidirectional search a more reasonable strategy by
considering the position of circle center o. We begin with an
iterative expansion from s and t. We will temporarily stop the
expansion from one side when the ball touches the central node
of the circle and wait for the search from the other side. We call
it a temporary stop strategy. A simplified procedure is shown
in Fig. 2 (c.1) and (c.2). At first, a Dijkstra ball centering at
s temporarily stops its expansion when its boundary touches
o. Later, the expansion from the other side touches the circle
area and finds a node satisfying the positive condition rule
(Claim 1). To further improve the efficiency, we next show
the following early stop rule, i.e., Lemma 1. With Lemma 1,
BIS can have a chance to stop when the circle central node
o has been scanned by both Dijkstra balls. We summarize the
procedures of our bi-directional ROAM search in Alg. 1.

Lemma 1: Denote the nearest node (measured in shortest
distance) in circ(o, r) to s (resp. t) is node us (resp. ut). When
the circle center o is scanned in both searches, the search can
stop if min

{
dist(t, o)+dist(s, us), dist(s, o)+dist(t, ut)

}
>

(1 + ρ)dist(s, t).

Proof: All the omitted proofs can be found in Appendix.

Remarks. There are two cases where we need to resume
the temporarily stopped search: 1) the condition of the above
Lemma 1 is not fulfilled; 2) when one side of the search is
stopped by the radius bound (i.e., (1 + ρ)dist(s, t)) while the
other side is stopped due to temporary stop strategy. We call
them resume checking.

V. THE SKETCH FRAMEWORK

In this section, we introduce a general framework to
facilitate the index-based ROAM query, based on a novel
structure called Sketch.
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Algorithm 1: BIS(G, s, t, o, r, ρ)
1 best dist←∞ ; /* Current best distance */
2 temp stops ← false; temp stopt ← false;
/* Indicator of temporary stop */

3 radi stops ← false; radi stopt ← false;
/* Indicator of radius bound. */

4 while expandable from s or t do
5 if temp stops = false and radi stops = false then
6 u← expanded node;
7 best dist← min{best dist, dist(s, u)+dist(t, u)};
8 if u = o then
9 temp stops ← true;

10 if dist(s, u) > (1 + ρ)best dist then
11 radi stops ← true;

12 if u ∈ circ(o, r) and
dist(s, u) + dist(t, u) ≤ (1 + ρ)best dist then

13 return true;

14 if the condition of Lemma 1 holds then
15 return false;

16 if u is the central node o then
17 temporarily stop the expansion of current side;

18 Apply resume checking;

19 return false;

A. Basic Idea of the Sketch
A Sketch abstracts the input road network. The high-level

idea of employing a Sketch resembles our behavior in looking
up an online road network: we often first browse a coarser
level of the road network to locate the most interesting area,
then dive into the specific locations by adjusting the resolution
of the network. This daily life behavior inspires us to devise
a road network sketch, which contains much less nodes and
edges. Our aim is to answer a large part of the ROAM query
on the Sketch. We achieve this target by a careful design of
the Sketch. In our design, one key feature of the Sketch is the
distance invariance property: the shortest distance between any

two nodes on the Sketch is the same as that on the original
network. We further show that, if there is a ρ-route intersecting
the given area, then there must be a ρ-route intersecting a
relevant area on the Sketch. The result is interesting as it can
facilitate a good pruning on the sketch. We also point out the
result is independent of any specific ROAM query algorithm
run on the (Sketch) network. In other words, any ROAM
query approach M can be incorporated into the Sketch
Framework (Alg. 2).

Algorithm 2: Sketch Framework
1 if M(s, t, o, σ + r, ρ) on the Sketch returns false /* σ is

a constant. */
2 then
3 returns false

4 return false; return M(s, t, o, r, ρ) on G;

In what follows, we will present the Sketch construction in
Sec. V-B and V-C, and analyze the complexities in Sec. V-D.

B. Grid and Sketch Node Selection

We divide the Sketch construction into Sketch nodes se-
lection and Sketch edges creation. We first describe Sketch
node selection in this section. The construction is based on
an M ×M (M > 5) grid imposed on the road network, with
M a parameter. Each cell may contain some network nodes. If
a node is in the cell of i-th row and j-th column, we say its grid
location is (i, j). Next, we define the grid distance between two
nodes u (with grid location (i1, j1)) and v (with grid location
(i2, j2)) as max{|i1− i2|, |j1−j2|}, and denote it by gd(u, v).
For example, the nodes n3 and n4 in Fig. 3 (a) have a grid
location (2, 1) (row 2, column 1) and (3, 3) (row 3, column 3)
respectively, and their grid distance is max{|2−3|, |1−3|} = 2.

Next, we describe our Sketch node selection approach. The
selection is based on a concept called shortest path cover for
two sets of nodes (S1,S2). A shortest path cover for (S1,S2)



is a node set H such that the shortest path between any node
u1 ∈ S1 and any node u2 ∈ S2 must pass through at least one
node of H . We use shortest path cover to describe the Sketch
node selection, as follows.

Sketch Node Selection. We conduct local Dijkstra searches
to select Sketch nodes. Specifically, for each cell C, we pick
the 5× 5 sub-grid C5 whose central cell is C, and the 3× 3
sub-grid C3 whose central cell is C. Let the nodes inside C as
S1 and the nodes outside of C5 as S2. In the example in Fig. 3
(a), C is the 1× 1 square in blue solid lines. C3 is the 3× 3
square in dashed lines and C5 is the 5 × 5 square in dotted
lines. S1 = {n1} and S2 = {n2, n3, n11, n14}. Intuitively, a
shortest path cover for (S1,S2) contains structurally important
nodes for the region in C5. We thus compute a shortest path
cover with respect to (S1,S2) and let the nodes in it be Sketch
nodes. To get a shortest path cover, the idea is, all shortest
paths connecting one node in S1 and one node in S2 must go
across the boundary of the 3 × 3 sub-grid C3. We locate the
edges, on such a shortest path, that intersect the C3 boundary
while one end node is inside C3. We call them cover edges. For
example, the shortest path (n1, n4, n5, n2) is such a shortest
path because n1 is inside cell C and n2 is outside of C5. The
cover edge on this path is (n4, n5) because it intersects the C3

boundary (in dashed lines) and n4 is in C3. Then we select the
Sketch nodes based on two conditions: (i) For each cover edge,
one of its end node is selected as a Sketch node if it is inside
C3; for example, node n4 of cover edge (n4, n5) is selected as
a Sketch node since n4 locates inside C3; (ii) For each cover
edge, if one end node is inside the central cell C, then both end
nodes are selected as Sketch nodes; for example, (n12, n13) is
such a cover edge and both n12 and n13 are selected as Sketch
nodes.

The above Sketch node selection guarantees that, any
shortest path between two faraway nodes must pass through
one Sketch node. We make the following claim.

Lemma 2: The shortest path from node u to node v must
pass through a Sketch node other than u and v, if two
conditions hold: 1) gd(u, v) ≥ 3; and 2) the path contains
at least two edges.

Proof: Denote the cell containing node u as C and the
5 × 5 sub-grid (resp. 3 × 3 sub-grid), whose central cell is
C, as C5 (resp. C3). Then node v must be outside of C5

since gd(u, v) ≥ 3. Hence, the shortest path from u to v must
contain a cover edge (p, q) and p is in C3. Then by our Sketch
node selection strategy, node p is selected as a Sketch node.
Now, we consider two cases. Case (i): p 6= u. In this case, the
lemma holds as node p is a Sketch node other than u and v.
Case (ii): p = u. In this case, by our Sketch node selection
strategy, when one end node p (i.e., u) is inside cell C, the
other end node will also be selected. Then node q will be a
Sketch as well node in this case. We also note that according to
the lemma conditions, the shortest path from u to v contains at
least two edges, then we have q 6= v (otherwise (u, v) = (p, q),
violating the lemma condition). Hence the lemma holds in the
second case as node q is a Sketch node other than u and v.

Computation. We devise efficient algorithms for extracting
Sketch nodes. Let us focus on a specific 5 × 5 sub-grid. The
key is to locate the cover edges. A straightforward method
is to conduct a Dijkstra search from every node inside the

central cell. Then, those shortest paths which can reach outside
of C5 are extracted. Finally, the extracted shortest paths are
backtracked to locate the cover edges by examining whether
it intersects the boundary of C3 and has a node in C3. This
method, however, is inefficient. It requires as many rounds
of Dijkstra searches as the number of nodes in the central
cell. A smarter approach is to only conduct Dijkstra searches
from the nodes which have an outgoing edge intersecting the
boundary of the central cell (n1 in Fig. 3 (a) is such a node
since its outgoing edge (n1, n4) intersects the boundary of the
cell C). The rationale behind is that any shortest path, which
has one end point in the central cell and the other outside
of C5, will intersect the boundary of the central cell. Hence,
each such shortest path must contain a sub-path that starts with
an edge intersecting the boundary of the central cell C, and
ends at an edge intersecting the boundary of the corresponding
C5. For example, in Fig. 3 (a), (n1, n4, n5, n2) is a such sub-
path of the shortest path (n12, n1, n4, n5, n2). Hence, we only
need to enumerate all such sub-paths to locate cover edges, as
illustrated by Alg. 3.

Algorithm 3: SketchNodeSelect(G)
1 V ′ = ∅
2 for each 5× 5 sub-grid C5 do
3 Extract the regional graph, RG, which is the subgraph

composed of the edges having at least one end node
inside the spatial region confined by the C5 sub-grid.

4 for node p in central cell and p has an outgoing edge
intersecting the boundary of the central cell do

5 Conduct Dijkstra search from p in RG;
6 for leaf node q outside of C5 do
7 Backtrack along the shortest path from node q to

node p and locate the cover edges;
8 for each cover edge (u, v) do
9 if u (resp. v) is in C3 then

10 V ′ = V ′ ∪ {u} (resp. V ′ = V ′ ∪ {v})
11 if u (resp. v) is in the central cell then
12 V ′ = V ′ ∪ {v} (resp. V ′ = V ′ ∪ {u})

13 return V ′

Example Procedure. Call back to Fig. 3 (a). The figure
shows a regional graph (corresponding to RG in Alg. 3).
n1 is one node which has an outgoing edge intersecting
the boundary of cell C. The shortest paths from n1 are
(n1,n4, n5, n2), (n1,n4, n6, n7, n3), (n1, n8, n10, n11) and
(n1, n12, n13, n14). The bold nodes n4, n10 and n12 are
selected as Sketch nodes since they have an outgoing edge
intersecting the boundary of C3 and they are inside C3. Note
that, n13 is also selected as a Sketch node because n12 is inside
the central cell C and (n12, n13) is a cover edge.

C. Sketch Edge Creation

We introduce how we create the Sketch edges. The chal-
lenges lie in how to maintain the invariance of the shortest
distance between two Sketch nodes. Namely, we want the
shortest distance between any two Sketch nodes u∗ and v∗ on
the Sketch the same as their shortest distance on the original
network. To this end, for each Sketch node u∗, we conduct a
Dijkstra search with u∗ as the source on the original network.
When it scans another Sketch node v∗, we create a Sketch edge



(u∗, v∗), if the shortest path from u∗ to v∗ does not contain
any Sketch node other than u∗ and v∗.

The Dijkstra search from u∗ only needs to be conducted
regionally due to Lemma 2. By Lemma 2, if a shortest path
from the Sketch node u∗ reaches outside of its C5 sub-grid (i.e.,
the 5 × 5 sub-grid with the cell containing u∗ as the central
cell), the path already passes through another Sketch node. This
indicates we can safely stop further expansion of the path for
creating a Sketch edge. Since Lemma 2 only applies when
the shortest path from u∗ to v∗ contains at least two edges,
a further discussion is needed if the shortest path itself is an
edge, namely (u∗, v∗), of the original network. In this special
case, we also need to create a Sketch edge (u∗, v∗). This can
be conveniently handled regionally as v∗ is a neighbor node of
u∗ in the original network. A pseudo-code is shown in Alg. 4.

Algorithm 4: SketchEdgeCreate(G)
1 E′ = ∅
2 for each 5× 5 sub-grid C5 do
3 Extract the regional graph, RG, which is the subgraph

composed of the edges having at least one end node
inside the spatial region confined by the C5 sub-grid.;

4 for each Sketch node u∗ in the central cell do
5 Conduct Dijkstra search from p in RG;
6 for each leaf node v do
7 Backtrack from node v to node u∗ along the

shortest path, and locate the u∗’s nearest Sketch
node v∗ in the path ;

8 E′ = E′ ∪ {(u∗, v∗)};

9 return E′

Example Procedure. In Fig. 3 (b), S1 is a Sketch node inside
the central cell. Then, we conduct a Dijkstra search from S1

(Alg. 4 line 5). For each leaf node (n4, S3, S4), backtrack the
shortest path to the source node S1. The backtracked paths are
{n4, S4,S2, n1, S1}, {S3, n3, n2, S1} and (S4, S1). The bold
ones are Sketch nodes nearest to S1 along the paths. Hence,
we create three Sketch edges from S1 to S1’s nearest Sketch
nodes, namely S2, S3 and S4 (Alg. 4 line 8).

Distance Invariance. The shortest distance between two nodes
on the Sketch is the same as that on the original network. We
consider a shortest path (u1, . . . , uh) on the original network,
where u1 and uh are Sketch nodes. Suppose the Sketch node
closest to u1 along the shortest path is u∗. By our Sketch
edge creation strategy, we would create a Sketch edge (u1, u

∗).
Repeat the similar procedure, we link all the consecutive Sketch
nodes along the shortest path with Sketch edges. Hence, the
distance invariance property holds.

Sketch Updates. The Sketch can be updated locally. The
reason is, when an edge weight changes, only a small number,
which is up to 50, of 5 × 5 C5 sub-grids containing the
end nodes of the edge would be affected. We thus can only
recompute the Sketch edges intersecting these sub-grids for an
edge weight update.

D. Sketch Complexities

In this section, we will show that Sketch takes O(φ2M2)
space where φ is typically a small constant. All the analysis

are based on a road network sparsity dimension called cover
dimension, following the arterial dimension in [13]. For ease
of presentation, we will call the 5 × 5 sub-grid “the C5 sub-
grid of u”, if the sub-grid whose central cell contains the node
u. Similarly, we define “the C3 sub-grid of u” as the 3 × 3
sub-grid whose central cell contains u.

We first introduce cover dimension. Cover dimension is
defined on the number of cover edges within 5 × 5 sub-
grids. Following [13], we make the following assumption. Our
experiments (in []) show that the number of cover edges of a
sub-grid is within [3, 18] on average.

Assumption 1 (Cover Dimension): For any square grid on
G and any 5 × 5 sub-grid C5, the number of cover edges of
C5 is at most a constant φ, referred to as the cover dimension
of G.

Space Complexity. The number of Sketch nodes is closely
related to cover dimension φ. Since a Sketch node must be an
end node of a cover edge, the number of Sketch nodes is at
most 2 times of the number of cover edges. Next, we count
the number of cover edges for an imposed M ×M grid. The
number of 5×5 sub-grids is at most M2. Each sub-grid defines
at most φ cover edges. Totally, there are at most M2φ cover
edges. Therefore, there are at most 2M2φ Sketch nodes. And
then, we show for a Sketch node u∗, there are at most φ Sketch
edges with u∗ as its end node. We consider the C5 of u∗. For a
Sketch edge (u∗, v∗), we discuss two cases. First, if the Sketch
edge reaches outside of the C5 (like (S1, S4) in Fig. 3 (b)), then
this edge must be an edge of the original network. Otherwise,
the shortest path from u∗ to v∗ contains at least two edges
and they have a grid distance at least 3. Based on Lemma 2,
there is a closer Sketch node to u∗ along the shortest path. This
violates our strategy of creating a Sketch edge, as an Sketch
edge (u∗, v∗) is created means there is no other Sketch nodes in
between along the shortest path from u∗ to v∗. Therefore, such
Sketch edges correspond to edges of the original networks and
they are cover edges by definition. It follows that the number
of such Sketch edges must be at most the number of cover
edges, which is at most φ. Second, if the Sketch edge locates
inside C5, then the number of the Sketch edges with u∗ as its
end node is at most the number of Sketch nodes in C5. Any
sketch node u∗ in C5 can be mapped to a 5× 5 sub-grid that
defines a cover edge associated with u∗ and intersects with C5.
Note that, C5 intersects at most 81(= 9 × 9) 5 × 5 sub-grids
(including itself). Those intersected sub-grids contain at most
81φ cover edges, and thus we have at most 81 × 2φ = O(φ)
Sketch nodes associated with u∗ by sketch edges. In total, the
number of Sketch edges is 2M2φ × O(φ) = O(φ2M2). We
formalize this result as follows.

Lemma 3: The Sketch costs O(φ2M2) space.

Time Complexity. We denote b as the maximal number of
edges that intersect a cell, and denote n′ as the maximal
number of nodes in a cell. We assume the maximal degree of
a node is d. In Sketch node selection, we conduct at most bM2

rounds of Dijkstra searches in a 5×5 sub-grid. Each round of
Dijkstra search costs O(d(25n′) log (25n′)). Totally, it takes
O(bdM2n′ log n′) time to select the Sketch nodes. Then, in
Sketch edge creation, we conduct O(φM2) rounds of Dijkstra
searches, since the number of Sketch nodes is O(φM2). Each
round of Dijkstra search takes O(d(25n′) log (25n′)) time.
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Fig. 4: Key ideas of Sketch based pruning.

Totally, it takes O(dφM2 n′ log n′) time. We formalize the
results as follows.

Lemma 4: It takes O((b + φ)dM2n′ log n′) time to con-
struct a Sketch.

VI. THE SKETCH SOLUTION

In this section, we propose efficient ROAM query al-
gorithms based on the Sketch. We first introduce a general
idea to use the Sketch for faster pruning in Sec. VI-A,
namely, the sketch framework. Then, we incorporate the goal-
directed search into the sketch framework for ROAM query in
Sec. VI-B. Lastly, we describe how to extend the solutions to
directed networks in Sec. VI-C.

A. The Sketch framework

Key Idea. We map each node u to its cover sketch nodes Su,
if u is not a sketch node (we also call it a non-sketch node). A
node u∗ is a cover sketch node of a non-sketch node u, if u∗
satisfies: 1) u∗ is an end node of a cover edge defined in the
C5 sub-grid of u; and 2) u∗ is inside the C3 sub-grid of u. The
key observation is, when s and t are enough faraway and u is
on a ρ-route from s to t, there must be a node in Su on a ρ-
route from s to t defined on the (s, t)-sketch. The (s, t)-sketch
is the Sketch augmented with a few created edges that link s
and t to their cover sketch nodes. As shown in Fig. 4, there
is a ρ-route from s to t (in solid line) passing through certain
node u, and we would show under certain circumstance, there
must be a ρ-route from s to t (in dashed line) passing through
a cover sketch node u∗ of u and the route is defined on the
(s, t)-sketch (in dashed rectangle). We summarize this result
in Lemma 6.

(s,t)-sketch. We introduce how to efficiently create (s, t)-
sketch offline. The key is to precompute all edges linking any
non-sketch node u to its cover Sketch nodes, with the edge
weight as the shortest distance between two end nodes. We
call them bridge edges. An example is shown in Fig. 3 (c).
There are two bridge edges (n1, S1) and (n1, S2), because
S1 and S2 are inside the C3 sub-grid of n1 and they are on
the cover edges (S1, S3) and (S2, n4). Then, when s and t in
ROAM query are given in an online manner, we can efficiently
extract bridge edges associated with s and t and combine them
to the precomputed Sketch, forming the (s, t)-sketch. Next, we
introduce how we create bridge edges offline. Take node s as
an example and neglect the trivial case where node s itself is
a Sketch node.

To construct bridge edges, a naive approach is to run a
Dijkstra search from each non-sketch node until it scans all
of its cover sketch nodes. This approach requires n rounds of
regional Dijkstra searches, where “regional” means the search
range is within a 5×5 sub-grid. A smarter approach is to do it

reversely, by running regional Dijkstra search, within a 5× 5
sub-grid, from the sketch nodes. When the Dijkstra search,
with the sketch node u∗ as the source node, scans any non-
sketch node p, we create a bridge edge (p, u∗). The bridge
edge construction time is O(n log n) and the space cost is
linear to the input network (Lemma 5. Next, we show how to
use (s, t)-sketch to conduct efficient ROAM query.

Lemma 5: It takes O(dφn log n) time to construct bridge
edges; bridge edges cost O(φn) space.

Proof: Since there are at most O(φ) sketch nodes in-
side a 5 × 5 sub-grid, we only need to run at most O(φ)
rounds of Dijkstra search within each sub-grid. Hence, it takes
O(dφn log n) time totally. In addition, since each node has at
most φ bridge edges, it takes O(φn) space in total.

Lemma 6: For nodes s, t and a non-sketch node u such
that gd(s, u) ≥ 4 and gd(u, t) ≥ 4, if u is on a ρ-route from s
to t on the original network, there exists a cover sketch node
u∗ of u, such that u∗ is on a ρ-route from s to t on the (s, t)-
sketch.

Use (s, t)-sketch to Prune. We rely on the precomputed
sketch and bridge edges, and the key observation (Lemma 6) to
conduct an efficient ROAM query. Lemma 6 relates a ρ-route
passing through a non-sketch node u and a ρ-route passing
through a cover sketch node of u on the (s, t)-sketch. With
Lemma 6, to handle ROAM query, the given circle circ(o, r)
is enlarged to be circ(o, r + σ) with the same center, and we
show that the larger circle contains all the cover sketch nodes
of the non-sketch nodes in circ(o, r). In Fig. 4. The cover
sketch node u∗ of node u is covered by a larger circle. We
formalize this claim in Claim 2. By combining Lemma 6 and
Claim 2, we show our main result in Theorem 1. It states
that, under certain conditions, if there is a ρ-route from s to t
going across the smaller circle, there must be a ρ-route from
s to t going across the larger circle and such a ρ-route is
defined on the (s, t)-sketch. As such, we can first examine
whether there is a ρ-route from s to t on the (s, t)-sketch
crossing circ(o, r + σ). If no, we can directly return false.
Such examination is efficient as the sketch is small.

Claim 2: circle circ(o, r + 21.5Cd) contains all the cover
sketch nodes of non-sketch nodes in circ(o, r).

Detailed Query Procedures. The query algorithm is divided
into two parts. First, when o is faraway from s and t, we
use Theorem 1 to test whether there is a ρ-route from s to t
intersecting circ(o, r+21.5Cd) on the (s, t)-sketch with certain
ROAM query approachM. If such a ρ-route does not exist, we
return false, otherwise we resort to the ROAM query on the
original network. The procedures are summarized in Alg. 5.

Theorem 1 (Sketch Pruning): If gd(o, s) ≥ 4 + r/Cd and
gd(o, t) ≥ 4 + r/Cd, then ROAM(s, t, o, r, ρ) returns true
on G implies ROAM(s, t, o, r+21.5Cd, ρ) returning true on
the (s, t)-sketch, where Cd is the width of a grid cell edge.

Summary. We introduce a general search framework based on
sketch, which can enhance existing ROAM query algorithms
(see experiments in Fig. 7 (g.1) to (g.4)).

B. Optimization with Goal-Directed Search

Previously, we use Dijkstra based algorithm to perform
ROAM query. This method can be improved by the goal-



Algorithm 5: Sketch-search(G, s, t, o, r, ρ)
1 exist← true;
2 get (s, t)-sketch from index;
3 if gd(o, s) ≥ 4 + r/Cd and gd(o, t) ≥ 4 + r/Cd then
4 exist←M(s, t, o, r + 21.5Cd, ρ) in (s, t)-sketch;

/* M is a ROAM query algorithm. */

5 if exist = false then
6 return false ;

7 return M(s, t, o, r, ρ) on G;

directed search with Sketch node based distance estimation.

Key idea. We propose an extension of A∗ search [23] to
handle ROAM query. The goal directed search requires short-
est distance estimation between two nodes. We use triangle
inequality of the shortest distance measure to perform es-
timation. Since sketch nodes are structurally important, we
precompute the shortest distances between a set of selected
Sketch nodes (l1, . . . , lk) and other nodes. By the triangle
inequality, therefore, for any two nodes u and v, we have
dist(p, q) ≥ max1≤i≤k{|dist(li, p)− dist(li, q)|}.

A∗ Extension. We first revisit A? search, and then describe
how to extend it to handle ROAM query (Lemma 7). In
contrast to the classical Dijkstra search, A? search notes that
the search expansion should be influenced by the location of
t. This strategy is called goal directed search, where the goal
refers to the target node t. Specifically, A? search expands
the node u with the current smallest value of dist(s, u) +
lower dist(u, t), where dis(s, u) is the currently found short-
est distance between node s and node u, and lower dist(u, t)
is a lower bound of the shortest distance between node
u and the target node t. As such, the search towards the
opposite directions (i.e., deviating faraway from t) is cut down
considerably. Compared with the edge relaxation of Dijkstra
search, A? sets the value of dis(s, v)+ lower dist(v, t) as the
priority value for node v.

Following above goal directed search, we show that for
ROAM query, the search can stop when it scans a node u
such that dist(s, u)+lower dist(u, t) > (1+ρ)dist(s, t). The
result is shown in Lemma 7. Interested readers are referred to
our full technical report [] for a detailed pseudocode.

Lemma 7 (Stop Rule): When the scanned node u has
dist(s, u) +lower dist(u, t) > (1 + ρ)dist(s, t), each node
of any ρ-route is scanned.

C. Extension to Directed Road Networks
We discuss how to extend our solutions to directed road

networks. In a directed road network, there can be two directed
edges (u, v) and (v, u) between nodes u and v. In addition,
the weight of (u, v) can be not equal to that of (v, u).

Queries Adaptation. The adaptation relies on two kinds of
Dijkstra searches, i.e., forward Dijkstra search and backward
Dijkstra search. Forward Dijkstra search only relaxes each
edge (u, v) when node u is scanned, while backward Di-
jkstra search only relaxes each edge (v, u) when node u is
scanned. Based on these two concepts, we conveniently adapt
the ROAM query algorithms to directed road networks. For
instance, in Basic method, we use forward Dijkstra search
for source node s and backward Dijkstra search for source

node t. Then, for each scanned node u, dist(s, u)+ dist(u, t)
(instead of dist(s, u)+dist(t, u)) is computed. We then check
whether this distance is at most (1 + ρ)dist(s, t). Following
this idea, we further demonstrate the adaptation needed for
sketch construction and queries.

Sketch Adaptation. When selecting sketch nodes, forward and
backward Dijkstra searches are conducted for each node u.
Respectively, within each C5 sub-grid, we have forward (resp.
backward) shortest paths from (resp. to) u. In defining cover
edges, all those shortest paths are considered and use the same
strategy we discussed to select the end nodes of cover edges
as sketch nodes. When creating sketch edges, we respectively
create forward sketch edge and backward sketch edge. The
backward sketch edge (v, u) means the shortest path from u
to v does not contain any other sketch nodes. Similarly, we
maintain forward bridge edges and backward bridge edges for
each node u. The (s, t)-sketch is composed of the sketch with
the forward bridge edges of s and backward bridge edges of
t. As such, the sketch pruning (Theorem 1) still holds.

VII. EXPERIMENTS

In this section, we demonstrate the experimental evaluation
for the proposed methods, in terms of efficiency (Sec. VII-B),
index cost (Sec. VII-C) and effectiveness (Sec. VII-D).

A. Setup
We perform ROAM queries on 7 real datasets, D1, . . . , D7,

downloaded from [24]. Tab. II shows the dataset characteris-
tics. The set of ROAM queries on D1 (resp. D2) is generated
based on the green (resp. yellow) cab trajectories recorded in
Jan 2015 [25]. We set the pick-up/drop-off locations as the
(s, t) pairs, and the areas are generated randomly. D3 contains
60 POIs from Florida. The starting location s, destination
location t and the location o are randomly selected from the
60 POIs. For D4 to D7, we aim to perform the scalability
testing of different large scale datasets. D7 is one of the biggest
road network (full USA) published. The evaluation is done on
a machine with 16GB memory and a 2.5GHz Intel core i7.
We compare the efficiency, index sizes and indexing time. We
select the shortest path deviation within a range of [0.1−0.9],
which means the ρ-route does not stretch up to double of the
exact shortest path. Last, we test the usefulness of the ROAM
query based on the New York taxi datasets.
Competitors. Besides the comparison among 3 exact methods
proposed in this paper, namely Basic, BIS, and Sketch, we
also compare Sketch method with the solution employed by
[19]. Particularly, [19] uses a state-of-the-art index-based short-
est distance algorithm (e.g., CH [14]), to compute the shortest
distances between s (resp. t) and the pick-up location so as to
decide whether the detour cost exceeds (1 + ρ) × dist(s, t).
To adapt their methods to the ROAM query which employs
a pick-up area instead of a pick-up location, we sample 50%
of nodes inside the given area. Once we meet a sample node
u and dist(s, u) + dist(u, t) ≤ (1 + ρ) · dist(s, t), we return
true immediately. We name this method P2P as it uses a point
to point shortest distance algorithm. For the Sketch method,
we incorporate it with the goal-directed search introduced in
Sec. VI-B unless specified otherwise.
B. Efficiency

Fig. 5 show the efficiency comparisons among the ap-
proaches. The running time is the average of the running time
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Fig. 5: Efficiency results on practical query datasets D1, D2 and D3.
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Fig. 6: Effectiveness of ROAM query (d.1 and d.2); Resolution study (f.1 to f.3).

ID Road Network #Edges #Nodes Query set
D1 New York (NY) 733846 264346 G-cab
D2 New York (NY) 733846 264346 Y-cab
D3 Florida (FLA) 2712798 1070376 POI sets
D4 Northeast (NE) 3897636 1524453 Random
D5 Lakes (LK) 6885658 2758119 Random
D6 Western (WU) 15248146 6262104 Random
D7 Full USA (FU) 58333344 23947347 Random

TABLE II: Datasets

spent on 400 queries. The 400 queries consist of 4 groups
of 100 queries, where each group of queries is set with area
radius of 10 (resp. 20,30,40) times the average edge length
respectively. The unit of running time reported is either “ms”
(milliseconds) or its scaled version “×10t ms”. For example
“×103 ms” means the time unit is “1000 ms”. As shown
in Fig. 5, BIS is up to 2 times faster than Basic as its
search space is relatively smaller. Sketch performs the best
in efficiency. For dataset D1 and D2, Sketch can be up to
30 times faster than the basic approach.

Varying ρ. Sketch shows a good scalability when the devi-
ation value ρ varies (see Fig. 5). The changes of the deviation
value ρ incur a small deviation of the running time. For certain
dataset (e.g., Fig. 7 (e.1)), we observe that the running time
slightly drops down when ρ increases from 0.7 to 0.9. This
is due to our implementation optimization when ROAM query

returns true. The search can stop once we visit a node u such
that dist(s, u) + lower dist(u, t) > (1 + ρ)dist(s, t). Since
there are more queries returning true for ρ = 0.9 compared
with ρ = 0.7. This, sometimes, can lead to shorter running
time for ρ = 0.9.

Grid Resolution Study. We study how to set a reasonable
grid resolution. The grid resolution is not monotone to the
performance. When the imposed grid is finer, the Sketch
is larger and thus executing queries on the Sketch becomes
slower. On the other hand, when the grid is coarser, less queries
will satisfy the pruning condition in Theorem 1 (line 3 in
Alg. 5), and hence less queries enjoy faster pruning. For ease of
presentation, we refer to the percentage of queries satisfying
the conditions in line 3 of Alg. 5, among a set of queries,
as valid ratio. We thus study the relationship among valid
ratio, grid resolution and the query performance, as shown in
Fig. 6 (f.1) to (f.3). We select two real datasets with significant
different distribution of (s, t) distances, namely D2 and D3. We
randomly pick 500 test queries for D2 and D3 respectively. The
difference of distance distribution of the two datasets is verified
in Fig. 6 (f.3), such that the valid ratio has a steady growth
for D3 while a drastic valid ratio jump is observed for D2. To
gauge the relationship between query time and grid resolution,
we pick another 2000 queries for testing query running times,
as shown in Fig. 6 (f.1) and (f.2). These results show that with
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Fig. 7: Scalability on large road networks (e.1-e.4); Comparison to and enhancing shortest distance based algorithms P2P
(employed by [19]) (g.1-g.4); Support some existing systems [6], [19] (h.1-h.2).

the increase of grid resolution, the query time first drops down
and then goes up. This indicates that when the grid resolution
is small, the valid ratio outweighs the sketch size, in affecting
the query time, and vise versa when grid resolution is large.
In combing these results, we conclude that a good resolution
should simultaneously satisfy two criteria: 1) a majority of
queries (80% to 90%) can satisfy line 3 in Alg. 5; 2) the grid
resolution is not overly large. For example, in this test, 80×80
would be a good choice for D2 and D3.

Meanwhile, we also show that the sensitivity of grid
resolution within an empirical range is not high. As shown
in Fig. 5 (a.4), (b.4) and (c.4), the query time is close when
grid resolution varies from 20× 20 to 100× 100. This means,
when a good empirical grid resolution range (e.g., 20× 20 to
100 × 100) is selected by the aforementioned two criteria, it
is less important to gauge an optimized detailed resolution.

Varying Area Size. Fig. 5 (a.5), (b.5) and (c.5) show the effect
of varying area sizes. We vary the area radius from 0 to 50
times of the average edge length. The grid resolution is set to
100×100 (by default) for the sketch method. ρ is set to 0.5. In
Basic and BIS, the search periphery touches the area earlier
if the area is larger. Therefore, the search can stop earlier once
it finds a node in the area satisfying the positive condition rule
(Claim 1). Such changes have subtle effects on Sketch.

Varying Network Size. We confirm the scalability of our
algorithms in testing large scale road networks (see Fig. 7 (e.1)
to (e.4)). We set 100 × 100 grid for Sketch. The Sketch
method consistently outperforms the Basic approach by
around 1 order of magnitude for most settings.

Dataset Input Sketch
time sketch bridge edges

NY 22.1M 1.9mins 4.2M 148.6M
FLA 86.6M 8.1mins 1.3M 270.9M
NE 126.9M 8.3mins 3.5M 1.1G

LKS 232.2M 13.0mins 3.1M 2.2G
WU 534.6M 55.0mins 7.3M 6.6G
USA 2.1G 4.5hours 4.2M 12.8G

TABLE III: Index size and time.

Comparison to P2P. We compare the sketch method with
P2P method in four representative datasets, as shown in Fig. 7
(g.1) to (g.4). We did not show the query performance on the

largest dataset D7 because the CH index algorithm for P2P
method runs out of memory on testing D7. From the results, we
conclude that P2P performs better when the deviation value
ρ increases. The reasons are: 1) the P2P method has more
early stops when more queries returning true. 2) More queries
return true when ρ increases. We also observe P2P method
has a good scalability on large datasets, as the shortest distance
algorithm CH can keep very efficient. However, for all the
testable datasets, Sketch method consistently outperforms
P2P method. In addition, we show our sketch framework
can help enhance them, by incorporating the P2P method
into our sketch based search. Particularly, before using P2P
method, we conduct a sketch based pruning first. We use P2P
method to verify the result only when the sketch based pruning
does not work. We refer to this method as Sketch(P2P).
Sketch(P2P) improves the P2P method significantly. This
experiment thus shows an evidence that our sketch framework
can enhance existing ROAM query algorithms.

Improving Keyword-aware Routing. We show that an effi-
cient evaluation of the ROAM query helps improve a keyword-
aware routing algorithm [6]. Keyword-aware routing aims
to extract a route from s to t and it goes through several
POIs that are marked with input keywords (e.g., restaurant),
within a time limit (e.g., 2 hours). A satisfactory route can be
transformed to a ρ-route of certain ρ and each POI passed by
should be on a ρ-route (Interested readers can refer to [?]). We
implement the fastest algorithm suggested in [6]. We randomly
select 5 keywords and 500 POIs marked with each of the
keywords on FLA road network. Our Sketch based algorithm
can be easily adapted to test whether one POI q is on a ρ-
route from s to t, by setting the service area as circ(q, 0). As
such, we incorporate our algorithm to their algorithm (marked
as “with ROAM”), and a significant efficiency improvement
is observed (Fig. 7 (h.1)). The reason is, the most costly
computation is the distance computation between POIs. By
the ROAM query, some computation is unnecessary as some
POIs, which are not on a ρ-route, can be efficiently extracted
by a ROAM query algorithm.

Improving Dynamic Ride-sharing. An efficient ROAM query
helps improve an important case in dynamic ride-sharing [19].
A dynamic ride-sharing system considers to assign a new



passenger request (v1, v2, T ) to a taxi, where v1 (resp. v2)
denotes the passenger’s current location (resp. destination) and
T is the maximal waiting time of the passenger to be picked up.
For each passenger, the service guarantee for her, as suggested
by [19], is that her actual trip must be a ρ-route with respect to
her origin and destination. An important case is, when a taxi is
taking one passenger from s to t, how the coordinate system
assigns one of the requests from close passengers (so as to
satisfy waiting time) to the taxi so that the service guarantee
is still achieved by the detour route (s, v1, v2, t)? In other
words, (s, v1, v2, t) should be a ρ-route from s to t. Hence,
an efficient ROAM query can be incorporated to help optimize
the passenger request selection. We conduct experiments on the
FLA road network. We assume there are 100 queries satisfying
the waiting time guarantee are considered to be assigned to
the taxi. As shown in Fig. 7 (h.2), with a ROAM query
incorporated (named “with ROAM”), the query performance
is significantly improved.

C. Index Cost

Tab. III shows the index size and indexing time for
Sketch. The grid resolution is set to 100×100. For moderate
sized datasets (up to millions of edges) such as NY, FLA,
NE and LK, the index construction is finished within a few
minutes. For larger datasets (up to billions of edges) such as
WU and USA, the construction is finished within a few hours.
The space costs are moderate compared with the input sizes.
Tab. IV shows the index construction time and space cost when
using different grid resolutions. The Sketch size increases when
the grid becomes finer (from 20×20 to 100×100). The results
conform to our theoretical analysis that the size of the Sketch
is linear to the number of grid cells involved. We only show
the results in representative datasets. Our tested results in other
datasets are similar.

Dataset grid time sketch bridge edges

FLA

20× 20 596s 0.1M 281.5M
40× 40 563s 0.3M 286.3M
60× 60 549s 0.6M 286.6M
80× 80 505s 0.9M 281.1M

100× 100 487s 1.3M 270.9M

TABLE IV: Index size and time for different grid resolutions.

D. Effectiveness
We are interested in the usefulness of ROAM query. We

consider a scenario: there are c moving objects (e.g., taxis) and
100 random points or areas (e.g., 100 querying passengers). We
say a point or an area matches to the c moving objects if there
exist at least one moving object that can match the point or area
with ROAM query. In ride-sharing, this indicates at least one
taxi can serve the passenger. The moving objects ((s, t) pairs)
are randomly drawn from dataset D1. We vary the deviation ρ
in [0,0.4]. We assume the 100 moving objects have identical
ρ values. If there are p points/areas with a matched moving
object, we say the match rate is p%. We compare the match
rate of different settings of ROAM to a traditional setting (i.e.,
radius=0 and ρ = 0). In particular, in addition to varying ρ
values, we also vary the area radius from 0-4 units of radius,
where we set 1 unit radius as 5 times the average edge length.
The result is shown in Fig. 6 (d.1) and (d.2). We set c = 500
and c = 5000. From the result, we observe that increasing
area size and deviation ratio helps increase the match rate.
For example, in Fig. 6 (d.1), the match rates jump from 3% to

32%. Low match rates can be annoying. For example, when
the match rate is only 3% in a taxi recommendation, it means
97% passenger queries cannot get a response. ROAM query
brings in more possibilities to increase the match rate.

VIII. FURTHER DISCUSSIONS

We discuss the solutions for non-circular area A. Our
Sketch based pruning can still be used, by modifying
Claim 2 slightly. In particular, we can still find a larger circle
that contains all the cover sketch nodes of non-sketch nodes
inside A, regardless of whether A is a circle or not. For
instance, we can first extract a circle C, with a radius r and
central node o, that covers A. Then Claim 2 still holds, in
the sense that circ(o, r+21.5Cd) contains all the cover sketch
nodes of non-sketch nodes in C (and of course contains cover
sketch nodes of non-sketch nodes in A, because A is contained
in C). Hence, we can still use Theorem 1 for Sketch based
pruning. Then, we can extract all the nodes inside A and use
the Sketch(P2P) method introduced in our experiments to
handle ROAM query for a non-circular area.

IX. CONCLUSIONS

In this paper, we propose the ROAM query, which supports
a broad scope of location based applications. We develop a
general pruning framework based on novel data structures for
ROAM query, and validate its efficiency and effectiveness on
large real road network datasets.
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APPENDIX

Algorithm 6: GoalDirectedSearch(G, s, t, o, r, ρ)
1 dist(s, s)← 0, dist(t, t)← 0;
2 stdis =∞;
3 while expandable from the search from s do
4 u← expanded node;
5 if u = t then
6 stdis← dist(s, u);

7 if dist(s, u) + lower dist(u, t) > (1 + ρ)stdis then
8 Break;

9 for each edge (u, v) do
10 dist(s, v) = min{dist(s, v), dist(s, u) + w(u, v)};
11 priority of v ← dist(s, v) + lower dist(v, t);

12 while expandable from the search from t do
13 u← expanded node;
14 if dist(s, u) + dist(t, u) ≤ (1 + ρ)stdis then
15 return true;

16 if dist(t, u) + lower dist(u, s) > (1 + ρ)stdis then
17 return false;

18 for each edge (u, v) do
19 dist(t, v) = min{dist(t, v), dist(t, u) + w(u, v)};
20 priority of v ← dist(t, v) + lower dist(v, t);

We experimentally estimate the cover dimension. We im-
pose a grid with resolution 2r+2 × 2r+2, where r ranges in
[1, 10]. With each grid imposed, we count the number of cover
edges within every 5× 5 sub-grid. We figure out the maximal
number and the average number of cover edges for all our
test datasets. The results are shown in Fig. 8. The x-axis is
the resolution parameter r and “MAX” (resp. “AVG”) is the
maximal (resp. average) number of cover edges within each
5× 5 sub-grid. All the results show that in practical settings,
the number of cover edges is a small constant.

Proof of Lemma 1.

Proof: By the property of bi-directional Dijkstra search, if
there exists one node v such that the its states of the Dijkstra
searches from both sides are changed to scanned, then the
shortest distance is exactly figured out. Therefore, when node
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Fig. 8: Cover dimension estimation.

o has been scanned by the searches from both sides, the value
dist(s, t) is already known. Next, it suffices to at the moment
when o is scanned by both sides and the condition of the lemma
holds, there does not have a node u∗ ∈ circ(o, r) which still
has at least one side of Dijkstra search do not scan it and that
dist(s, u∗) + dist(t, u∗) ≤ (1 + ρ)dist(s, t). We show this
statement in two cases. Case (i): u∗ has not been scanned by
both sides, then dist(s, u∗) ≥ dist(s, o) as o is scanned before
u∗. Similarly, dist(t, u∗) ≥ dist(t, o). By combining the two
inequality we have

dist(s, u∗) + dist(t, u∗) ≥ dist(s, o) + dist(t, o)

On the other hand, since us is scanned before o, then
dist(s, o) ≥ dist(s, us). Also note that based on the lemma
condition, we have

dist(s, us) + dist(t, o) > (1 + ρ)dist(s, t)

Therefore,

dist(s, u∗) + dist(t, u∗) ≥ dist(s, o) + dist(t, o)

≥ dist(s, us) + dist(t, o)

> (1 + ρ)dist(s, t)

Case (ii): only one side of the search has scanned u∗, say
the search from s. In this case, dist(s, u∗) + dist(t, u∗) ≥
dist(s, us) + dist(t, u∗) ≥ dist(s, us) + dist(t, o) > (1 +
ρ)dist(s, t).

Proof of Lemma 6.

Proof: Since gd(s, u) ≥ 4, node u must be outside of
the C5 sub-grid of s. Hence, the shortest path from node s
to node u must pass through a cover edge e. We let the end
node of e that locates inside the C3 sub-grid of s be u∗. By

http://www.dis.uniroma1.it/challenge9/download.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml


the definition of the cover sketch node, u∗ is one cover sketch
node of s. Next, we show that, the shortest path from s to
u∗ and the shortest path from u∗ to t have a total length at
most dist(s, u) + dist(u, t). By triangle inequality, we have
dist(u∗, t) ≤ dist(u∗, u) + dist(u, t). Then, plus dist(s, u∗)
to both sides, we have

dist(s, u∗) + dist(u∗, t) ≤ dist(s, u∗) + dist(u∗, u) + dist(u, t)

= dist(s, u) + dist(u, t)

Since there is a ρ-route passing u, then dist(s, u)+dist(u, t) ≤
(1+ρ) ·dist(s, t). Therefore, there is also a ρ-route passing u∗
because dist(s, u∗) + dist(u∗, t) ≤ dist(s, u) + dist(u, t) ≤
(1 + ρ) · dist(s, t).

It remains to show dist(s, u∗) and dist(u∗, t) can be
computed with the (s, t)-sketch so that the ρ-route from s
to u∗ and then to t on (s, t)-sketch is also a ρ-route. Since
gd(u, t) ≥ 4 and gd(u, u∗) ≤ 1, we have gd(u∗, t) ≥ 3.
Similarly, we have gd(u∗, s) ≥ 3. We first consider when both
s and t are not sketch nodes. By Lemma 2, there is another
sketch node on the shortest path from s to u∗. Among such
intermediate sketch nodes along the path, we find the one that
is the cover sketch node of s, denoted as u0. By our bridge
edge creation, (s, u0) is a bridge edge, which belongs to the
(s, t)-sketch. Similarly, we can find a bridge edge (u1, u

∗)
along the shortest path from s to u∗. In addition, the shortest
distance between u0 and u1 can be exactly computed on
(s, t)-sketch. Therefore, the shortest distance dist(s, u∗) can
be exactly computed on the (s, t)-sketch; so does dist(t, u∗).
Thus, the route following the shortest path from s to u∗

and then to t on the (s, t)-sketch has a same length as its
counterpart on the original network. In addition, the shortest
distance from s to t on the (s, t)-sketch is at least their shortest
on the original network. Given that the route following the
shortest path from s to u∗ and then to t is a ρ-route on the
original network, it then follows that on the (s, t)-sketch, the
route following the shortest path from s to u∗ and then to t
is also a ρ-route. The proof also easily applies to the cases
where s or t is a sketch node.

Proof of Claim 2.

Proof: For any non-sketch node u, any of its cover sketch
nodes must inside the C3 sub-grid of node u. Next, we show
each C3 sub-grid of a node in circ(o, r) must be totally
contained in circ(o, r + 21.5Cd). W.l.o.g, we consider the C3

sub-grid of node u ∈ circ(o, r). Then, every point p in the C3

sub-grid must be within a Euclidean distance 21.5Cd from u.
Therefore, the Euclidean distance between p and o, is at most
eu dist(p, u) + eu dist(u, o) ≤ 21.5Cd + r.

Proof of Theorem 1.

Proof: If ROAM(s, t, o, r, ρ) returns true, then there
exists one node o′ ∈ circ(o, r) such that dist(s, o′)
+dist(t, o′) ≤ (1+ρ)dist(s, t). Given gd(o, s) ≥ 4+r/Cd, we
have gd(o′, s) ≥ 4. Then, due to sketch node selection, there
exists a sketch node p (can be o′ itself) along the shortest path
from o′ to s such that gd(o′, p) ≤ 1. To finish the proof, it
suffices to show the following two claims: 1) p is on a ρ-route
of the (s, t)-sketch and 2) p ∈ circ(o, r+21.5Cd). For 1), due
to gd(o′, s) ≥ 4 and gd(o′, p) ≤ 1, we have gd(p, s) ≥ 3.
Also, since gd(o, t) ≥ 4 + r/Cd, we have gd(o′, t) ≥ 4 and
hence gd(p, t) ≥ 3. Due to the distance invariance of the

(s, t)-sketch, therefore, we can exactly compute dist(s, p) and
dist(p, t) on the (s, t)-sketch. In addition, by triangle inequal-
ity, we have dist(s, p)+dist(p, t) ≤ dist(s, p)+dist(p, o′)+
dist(o′, t) ≤ dist(s, o′) + dist(o′, t) ≤ (1 + ρ)dist(s, t).
Note that, the distance computed in (s, t)-sketch is at least
dist(s, t), thus p must be on a ρ-route of (s, t)-sketch. For 2),
eu dist(o, p) ≤ eu dist( o, o′)+eu dist(o′, p) ≤ r+20.5Cd ·
gd(o′, p) ≤ r + 21.5Cd.

Proof of Lemma 7.

Proof: We prove by contradition. If a node u∗ on a ρ-
route and u∗ has not been scanned when the expanded node
u has dist(s, u) +lower dist(u, t) > (1 + ρ)dist(s, t). We
consider the shortest path from node s to u∗,{s = u0, u1, . . . ,
uk, uk+1 = u∗}. ∀0 ≤ i ≤ k + 1, we have dist(s, ui) +
dist(ui, t) ≤ (1+ρ)dist(s, t) since u∗ is on a ρ-route. By the
goal directed search, this means as long as ui is in the queue,
ui+1 must be in the queue, and all ui must be scanned before
u. This leads to a contradiction.
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