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Abstract
This paper introduces interface-based object-oriented pro-
gramming (IB). Unlike class-based OO programming (CB),
in IB there is no need for classes. To support state, IB uses
abstract state operations, such as getters, setters or clone-like
methods. This new way to deal with state allows flexibility not
typically available in CB. In IB state (including mutable state)
can be type-refined in subtypes. The combination of a purely
IB style of programming and type-refinement enables power-
ful idioms using multiple inheritance and state. To introduce
IB to programmers we created Classless Java: an embedding
of IB directly into Java. Classless Java uses annotation pro-
cessing for code generation, and relies on new features of
Java 8 for interfaces. The code generation techniques used
in Classless Java have interesting properties, including guar-
antees that no type errors occur in generated code and good
integration with IDE’s. We illustrate the usefulness of IB and
Classless Java through various examples and case studies.

1. Introduction
Object-oriented languages strive to offer great code reuse.
They couple flexibility and rigour, expressive power and
modular reasoning. Two main ideas emerged to this end:
prototype-based (PB) [21] and class-based languages such
as Java, C# or Scala. In prototype-based languages objects
inherit from other objects. Thus objects own both behaviour
and state (and objects are all you have). In class-based
languages an object is an instance of a specific class, and
classes inherit from other classes. Objects own state, while
classes contain behaviour and the structure of the state.

This paper presents a third alternative: the concept of
interface-based object-oriented programming languages (IB),
where objects implement interfaces directly. In IB interfaces
own the implementation for the behaviour, which is struc-
turally defined in their interface. Programmers do not define
objects directly, but delegate the task to object interfaces,
whose role is similar to non-abstract classes in class-based
object-oriented programming languages (CB). Objects are
instantiated by static factory methods in object interfaces.

A key challenge in IB lies in how to model state, which
is fundamental to have stateful objects. All abstract opera-
tions in an object interface are interpreted as abstract state
operations. The abstract state operations include various com-
mon utility methods (such as getters and setters, or clone-like
methods). Objects are only responsible to define the ultimate
behaviour of a method. Anything related to state is completely
contained in the instances and does not leak into the inheri-
tance logic. In CB, the structure of the state is fixed and can
be only grown by inheritance. In contrast, in IB the state is
never fixed, and methods such as abstract setters and getters
can always receive an explicit implementation down in the in-
heritance chain, improving modularity and flexibility. That
is, the concept of abstract state is more fluid.

Object interfaces provide support for automatic type-
refinement. In contrast, in CB special care and verbose
explicit type-refinement are required to produce code that
deals with subtyping adequately.

We believe that such verbosity hindered and slowed down
the discovery of useful programming patterns involving
type-refinement. A recently discovered solution [23] to the
Expression Problem [22] in Java-like languages, shows how
easy it is to solve the problem using only type-refinement.
However it took nearly 20 years since the formulation of the
problem for that solution to be presented in the literature.
In IB, due to its emphasis on type-refinement, that solution
should have been much more obvious.

One advantage of abstract state operations and type-
refinement is that it allows a new approach to type-safe
covariant mutable state. That is, in IB, it is possible to type-
refine mutable “fields” in subtypes. This is typically forbidden
in CB: it is widely known that naive type-refinement of mu-
table fields is not type-safe. While covariant refinement of
mutable fields is supported by some type systems [5, 6, 8, 17],
this requires significant complexity and restrictions to ensure
that all uses of covariant state are indeed type-safe.

Another advantage of IB is its support for multiple inher-
itance. The literature is rich on how easy it is to combine
multiple sources of pure behaviour, using mechanisms such
as traits [19]. In Java multiple interface inheritance has been
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supported since inception, and in Java 8 default methods [10]
bring some of the advantages of traits into Java. In contrast,
the literature [4, 13, 18] is also rich on how hard it is to mod-
ularly combine multiple sources of behaviour and state with
multiple implementation inheritance of classes. In IB there is
only multiple interface inheritance, yet programmers can still
use state via abstract state operations. IB enables powerful
idioms using multiple inheritance and state.

IB could be explained by defining a novel language, with
new syntax and semantics. However, this would have a steep
learning curve. We take a different approach instead. For
the sake of providing a more accessible explanation, we
will embed our ideas directly into Java. Our IB embedding
relies on the new features of Java 8: interface static methods
and default methods, which allow interfaces to have method
implementations. In the context of Java, what we propose
is a programming style, where we never use classes (more
precisely, we never use the class keyword). We call this
restricted version of Java Classless Java.

Using Java annotation processors, we produce an imple-
mentation of Classless Java, which allows us to stick to pure
Java 8. By annotating the interfaces that represent object in-
terfaces with @Obj, code for interface instantiation and type
refinement can be automatically generated. Such code should
not be needed in the first place in a real IB language, and the
annotation processor allows us to transparently hide it from
Java programmers. The implementation works by perform-
ing AST rewriting, allowing most existing Java tools (such
as IDEs) to work out-of-the-box with our implementation.
Moreover, the implementation blends Java’s conventional CB
style and IB smoothly. As a result, we experiment object
interfaces with several interesting Java programs and conduct
various case studies. Finally, we also discuss the behaviour
of our @Obj annotation and its properties.

While the Java embedding has obvious advantages from
the practical point-of-view, it also imposes some limitations
that a new IB language would not have. In particular, support-
ing proper encapsulation is difficult in Java due to limitations
of Java interfaces. In particular in Java interfaces the visibil-
ity of all methods is public. Thus modelling private state is
difficult in current Java 8. However, using existing design pat-
terns [2] we can emulate hiding methods from interfaces. Fur-
thermore Java 9 will allow private methods on interfaces [20],
greatly improving the support for encapsulation.

In summary, the contributions of this paper are:
• IB and Object Interfaces: which enable powerful

programming idioms using multiple-inheritance, type-
refinement and abstract state operations.

• Classless Java: a practical realization of IB in Java. Class-
less Java is implemented using annotation processing,
allowing most tools to work transparently with our ap-
proach. We provide the formal semantics here 1. Existing
Java projects can use our approach and still be backward

1 See Formal semantics for Classless Java is provided in Section A

compatible with their clients, in a way that is specified by
our safety properties.

• Type-safe covariant mutable state: we show how the
combination of abstract state operations and type-refinement
enables a form of mutable state that can be covariantly
refined in a type-safe way.

• Applications and case studies: we illustrate the useful-
ness of IB through various examples and case studies.

2. A Running Example: Animals
This section illustrates how our programming style, supported
by @Obj, enables powerful programming idioms based on
multiple inheritance and type refinements. We propose a
standard example: Animals with a 2-dimensional Point2D

representing their location, subtypes Horses, Birds, and
Pegasus. Birds can fly, thus their locations need to be 3-
dimensional Point3Ds (field type refinement). We model
Pegasus (a well-known creature in Greek mythology) as
a kind of Animal with the skills of both Horses and Birds
(multiple inheritance). A simple class diagram illustrating the
basic system is given on the left side of Figure 1.2

2.1 Simple Multiple Inheritance with Default Methods
Before modelling the complete animal system, we start with
a simple version without locations. This version serves the
purpose of illustrating how Java 8 default methods can already
model simple forms of multiple inheritance. Horse and Bird
are subtypes of Animal, with methods run() and fly(),
respectively. Pegasus can not only run but also fly! This is
the place where “multiple inheritance” is needed, because
Pegasus needs to obtain fly and run functionality from
both Horse and Bird. A first attempt to model the animal
system is given on the right side of Figure 1. Note that the
implementations of the methods run and fly are defined
inside interfaces, using default methods. Moreover, because
interfaces support multiple interface inheritance, the interface
for Pegasus can inherit behaviour from both Horse and Bird.
Although Java interfaces do not allow instance fields, no form
of state is needed so far to model the animal system.

Instantiation To use Horse, Bird and Pegasus, some ob-
jects must be created first. A first problem with using inter-
faces to model the animal system is simply that interfaces
cannot be directly instantiated. Classes, such as:
class HorseImpl implements Horse {}
class BirdImpl implements Bird {}
class PegasusImpl implements Pegasus {}
are needed for instantiation. Now a Pegasus animal can be
created using the class constructor:
Pegasus p = new PegasusImpl();
There are some annoyances here. Firstly, the sole purpose of
the classes is to provide a way to instantiate objects. Although

2 Some research argues in favor of using subtyping for modeling taxonomies,
other research argues against this practice, we do not wish to take sides in
this argument, but to provide an engaging example.
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interface Animal {} // no points yet!
interface Horse extends Animal {

default void run(){out.println("run!");}
}
interface Bird extends Animal {

default void fly(){out.println("fly!");}
}
interface Pegasus extends Horse, Bird {}

Figure 1. The animal system (left: complete structure, right: code for simplified animal system).

(in this case) it takes only one line of code to provide each of
those classes, this code is essentially boilerplate code, which
does not add behavior to the system. Secondly, the namespace
gets filled with three additional types. For example, both
Horse and HorseImpl are needed: Horse is needed because
it needs to be an interface so that Pegasus can use multiple
inheritance; and HorseImpl is needed to provide object
instantiation. Note that, for this very simple animal system,
plain Java 8 anonymous classes can be used to avoid these
problems. We could have simply instantiated Pegasus using:
Pegasus p = new Pegasus() {}; // anonymous class
However, as we shall see, once the system gets a little more
complicated, the code for instantiation quickly becomes more
complex and verbose (even with anonymous classes).

2.2 Object Interfaces and Instantiation
To model the animal system with object interfaces all that a
user needs to do is to add an @Obj annotation to the Horse,
Bird, and Pegasus interfaces:
@Obj interface Horse extends Animal {
default void run() {out.println("running!");} }

@Obj interface Bird extends Animal {
default void fly() {out.println("flying!");} }

@Obj interface Pegasus extends Horse, Bird {}
The effect of the annotations is that a static factory method
called of is automatically added to the interfaces. With the
of method a Pegasus object is instantiated as follows:
Pegasus p = Pegasus.of();
The of method provides an alternative to a constructor, which
is missing from interfaces. The following code shows the
code corresponding to the Pegasus interface after the @Obj

annotation is processed:
interface Pegasus extends Horse, Bird {
// generated code not visible to users
static Pegasus of() { return new Pegasus() {}; }

}
Note that the generated code is transparent to a user, who only
sees the original code with the @Obj annotation. Compared
to the pure Java solution in Section 2.1, the solution using
object interfaces has the advantage of providing a direct
mechanism for object instantiation, which avoids adding
boilerplate classes to the namespace.

2.3 Object Interfaces with State
The animal system modeled so far is a simplified version
of the system presented in the left-side of Figure 1. The

example is still not sufficient to appreciate the advantages
of IB programming. Now we model the complete animal
system where an Animal includes a location representing its
position in space. We use 2D points to keep track of locations
using coordinates.

Point2D: simple immutable data with fields Here we will
illustrate how points are modelled with interfaces. In IB state
is accessed and manipulated using abstract methods. The
usual approach to model points in Java is to use a class with
fields for the coordinates. In Classless Java interfaces are used
instead:
interface Point2D { int x(); int y(); }
The encoding over pure Java is now inconvenient: creating
a new point object is cumbersome, even with anonymous
classes:
Point2D p = new Point2D() {
public int x() {return 4;}
public int y() {return 2;}

}
However this cumbersome syntax is not required for every
object allocation. As programmers do, for ease or reuse, the
boring repetitive code can be encapsulated in a method. A
generalization of the of static factory method is appropriate:
interface Point2D { int x(); int y();
static Point2D of(int x, int y) {
return new Point2D() {
public int x(){return x;}
public int y(){return y;}

}; } }

Point2D with object interfaces This obvious “constructor”
code can be generated by the @Obj annotation. By annotating
the interface Point2D, a variation of the shown static method
of will be generated, mimicking the functionality of a simple-
minded constructor. @Obj first looks at the abstract methods
and detects what the fields are, then generates an of method
with one parameter for each of them. That is, we can just
write
@Obj interface Point2D { int x(); int y(); }
More precisely, a field or factory parameter is generated for
every abstract method that takes no parameters. An example
of using Point2D is:
Point2D p = Point2D.of(42,myPoint.y());
where we return a new point, using 42 as x-coordinate, and
taking all the other information (only y in this case) from
another point.
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with- methods in object interfaces The pattern of creating
a new object by reusing most information from an old object
is very common when programming with immutable data-
structures. As such, it is supported by @Obj as with- methods.
For example:
@Obj interface Point2D {

int x(); int y(); // getters
// with- methods
Point2D withX(int val);
Point2D withY(int val);

}
Using with- methods, the point p can also be created by:
Point2D p = myPoint.withX(42);
If there is a large number of fields, with- methods will save
programmers from writing large amounts of tedious code
that simply copies field values. Moreover, if the programmer
wants a different implementation, he may provide an alterna-
tive implementation using default methods. For example:
@Obj interface Point2D {

int x(); int y();
default Point2D withX(int val){ /*myCode*/ }
Point2D withY(int val); }

is expanded into
interface Point2D {

int x(); int y();
default Point2D withX(int val){ /*myCode*/ }
Point2D withY(int val);
static Point2D of(int _x, int _y){
return new Point2D(){
int x=_x; int y=_y;
public int x(){return x;}
public int y(){return y;}
public Point2D withY(int val){
return of(x(),val);} }; } }

Only code for methods needing implementation is generated.
Thus, programmers can easily customize the behaviour for
their special needs. Also, since @Obj interfaces offer the of

factory method, only interfaces where all the abstract methods
can be synthesized can be object interfaces. A non @Obj

interface is like an abstract class in Java.

Animal and Horse: simple mutable data with fields 2D
points are mathematical entities, thus we choose an im-
mutable data structure to model them. However animals are
real world entities, and when an animal moves, it is the same
animal with a different location. We model this with mutable
state.
interface Animal {
Point2D location();
void location(Point2D val); }

Here we declare an abstract getter and setter for the muta-
ble “field” location. Without the @Obj annotation, there is no
convenient way to instantiate Animal. For Horse, the @Obj

annotation is used and an implementation of run() is de-
fined using a default method. The implementation of run()
further illustrates the convenience of with- methods:
@Obj interface Horse extends Animal {
default void run() {
location(location().withX(

location().x() + 20));} }
Creating and using Horse is quite simple:
Point2D p = Point2D.of(0, 0);
Horse horse = Horse.of(p);
horse.location(p.withX(42));
Note how the of, withX and location methods (all gener-
ated automatically) provide a basic interface for dealing with
animals.

In summary, dealing with state (mutable or not) in object
interfaces relies on a notion of abstract state, and state is not
directly available to programmers. Instead programmers use
methods, called abstract state operations, to interact with
state.

2.4 Object Interfaces and Subtyping
Birds are Animals, but while Animals only need 2D locations,
Birds need 3D locations. Therefore when the Bird interface
extends the Animal interface, the notion of points needs to
be refined. Such kind of refinement is challenging in typical
class-based approaches. Fortunately, with object interfaces,
we are able to provide a simple and effective solution.
Unsatisfactory class-based solutions to field type refine-
ment In Java if we want to define an animal class with
a field we have a set of unsatisfactory options in front of us:
• Define a Point3D field in Animal: this is bad since all

animals would require more than needed. Also it requires
adapting the old code to accommodate for new evolutions.

• Define a Point2D field in Animal and define an extra int z

field in Bird. This solution is very ad-hoc, requiring to
basically duplicate the difference between Point2D and
Point3D inside Bird. The most dramatic criticism is that
it would not scale to a scenario when Bird and Point3D

are from different programmers.
• Redefine getters and setters in Bird, always put Point3D

objects in the field and cast the value out of the Point2D

field to Point3D when implementing the overridden
getter. This solution scales to the multiple programmers
approach, but requires ugly casts and can be implemented
in a wrong way leading to bugs.
We may be tempted to assume that a language extension

is needed. Instead, the restriction of (object) interfaces to
have no fields enlightens us that another approach is possible;
often in programming languages “freedom is slavery”.
Field type refinement with object interfaces Object inter-
faces address the challenge of type-refinement as follows:
• by covariant method overriding, the return type of
location() is refined to Point3D;

• by overloading, a new setter for location is defined with a
more precise type;

• a default setter implementation with the old signature is
provided.
Thus, with object interfaces, the code for the Bird interface

is:
@Obj interface Bird extends Animal {
Point3D location(); void location(Point3D val);
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default void location(Point2D val) {
location(location().with(val));

}
default void fly() {
location(location().withX(
location().x() + 40));

}
}
From the type perspective, the key is the covariant method
overriding of location(). However, from the semantics
perspective the key is the implementation for the setter
with the old signature (location(Point2D)). The key to the
setter implementation is a new type of with method, called a
(functional) property updater.

Point3D and property updaters The Point3D interface is
defined as follows:
@Obj interface Point3D extends Point2D {

int z();
Point3D withZ(int z);
Point3D with(Point2D val); }

Point3D includes a with method, taking a Point2D as an
argument. Other wither methods (such as withX) functionally
update a field one at a time. This can be inefficient, and
sometimes hard to maintain. Often we want to update multiple
fields simultaneously, for example using another object as
source. Following this idea, the method with(Point2D) is an
example of a (functional) property updater: it takes a certain
type of object and returns a copy of the current object where
all the fields that match fields in the parameter object are
updated to the corresponding value in the parameter. The idea
is that the result should be like this, but modified to be as
similar as possible to the parameter.

With the new with method we may use the information for
z already stored in the object to forge an appropriate Point3D

to store. Note how all the information about what fields sit
in Point3D and Point2D is properly encapsulated in the with

method, and is transparent to the implementer of Bird.
Property updaters never break class invariants, since they

internally call operations that were already deemed safe by
the programmer. For example a list object would not offer a
setter for its size field (which should be kept hidden), thus a
property updater would not attempt to set it.

Generated boilerplate Just to give a feeling of how much
mechanical code @Obj is generating, we show the generated
code for the Point3D in Figure 2. Writing such code by hand
is error-prone. For example a distracted programmer may
swap the arguments of calls to Point3D.of. Note how with-

methods are automatically refined in their return types, so
that code like:
Point3D p = Point3D.of(1,2,3); p = p.withX(42);
will be accepted. If the programmer wishes to suppress this
behavior and keep the signature as it was, it is sufficient to
redefine the with- methods in the new interface repeating the
old signature. Again, the philosophy is that if the programmer
provides something directly, @Obj does not touch it. The cast
in with(Point2D) is trivially safe because of the instanceof

interface Point3D extends Point2D {
int z(); Point3D withZ(int val);
Point3D with(Point2D val);
// generated code
Point3D withX(int val);
Point3D withY(int val);
public static Point3D of(int _x, int _y, int _z){
int x=_x; int y=_y; int z=_z;
return new Point3D(){
public int x(){return x;}
public int y(){return y;}
public int z(){return z;}
public Point3D withX(int val){
return Point3D.of(val, this.y(), this.z());

}
public Point3D withY(int val){
return Point3D.of(this.x(), val, this.z());

}
public Point3D withZ(int val){
return Point3D.of(this.x(), this.y(), val);

}
public Point3D with(Point2D val){
if(val instanceof Point3D)
return (Point3D)val;

return Point3D.of(val.x(), val.y(), this.z());
}

}; } }

Figure 2. Generated boilerplate code.

test. The idea is that if the parameter is a subtype of the
current exact type, then we can just return the parameter, as
something that is just “more” than this.
Summary of operations in Classless Java In summary, ob-
ject interfaces provide support for different types of abstract
state operations: four field-based state operations; and func-
tional updaters. Furthermore object interfaces support direct
object instantiation via of factory methods. Figure 3 summa-
rizes the six operations supported by @Obj. The field-based
abstract state operations are determined by naming conven-
tions and the types of the methods. Fluent setters are a variant
of conventional setters, and are discussed in more detail in
Section 4.2.

2.5 Advanced Multiple Inheritance
Finally, defining Pegasus is as simple as we did in the simpli-
fied (and stateless) version on the right of Figure 1. Note how
even the non-trivial pattern for field type refinement is trans-
parently composed, and Pegasus has a Point3D location.
@Obj interface Pegasus extends Horse, Bird {}

3. Bridging between IB and CB in Java
Creating a new language/extension would be an elegant way
to illustrate the point of IB. However, significant amounts of
engineering would be needed to build a practical language
and achieve a similar level of integration and tool support as
Java. To be practical, we have instead implemented @Obj as
an annotation in Java 8, and a compilation agent. That is, the
Classless Java style of programming is supported by library.

Disciplined use of Classless Java (avoiding class declara-
tions as done in Section 2) illustrates what pure IB is like.
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Operation Example Description

State operations
(for a field x)

“fields”/getters int x() Retrieves value from field x.
withers Point2D withX(int val) Clones object; updates field x to val.
setters void x(int val) Sets the field x to a new value val.
fluent setters Point2D x(int val) Sets the field x to val and returns this.

Other operations
factory methods static Point2D of(int _x,int _y) Factory method (generated).
functional updaters Point3D with(Point2D val) Update all matching fields in val.

Figure 3. Abstract state operations for a field x, together with other operations, supported by the @Obj annotation.

Figure 4. The flow chart of @Obj annotation processing.

However, using @Obj, CB and IB programming can be mixed
together, harvesting the practical convenience of using exist-
ing Java libraries, the full Java language, and IDE support.
The key to our implementation is compilation agents, which
allows us to rewrite the Java AST just before compilation.
We discuss advantages and limitations of our approach.

3.1 Compilation Agents
Java supports compilation agents, where Java libraries can
interact with the Java compilation process, acting as a man in
the middle between the generation of AST and bytecode.

This process is facilitated by frameworks like Lom-
bok [27]: a Java library that aims at reducing Java boilerplate
code via annotations. @Obj was created using Lombok. Fig-
ure 4 [14] illustrates the flow of the @Obj annotation. First
Java source code is parsed into an abstract syntax tree (AST).
The AST is then captured by Lombok: each annotated node
is passed to the corresponding (Eclipse or Javac) handler. The
handler is free to modify the information of the annotated
node, or even inject new nodes (like methods, inner classes,
etc). Finally, the Java compiler works on the modified AST
to generate bytecode.

Advantages of Lombok The Lombok compilation agent
has advantages over pre-processors or other Java annotation
processors. Lombok offers in Java an expressive power simi-
lar to that of Scala/Lisp macros, except, for the syntactic con-
venience of quote/unquote templating. Compilation agents
act modularly on each compilation unit, applying transforma-
tions to one annotated class/interface at a time. This allows
library code to be reused without the need of being repro-
cessed and recompiled, making our approach 100% compati-
ble with existing Java libraries. In Eclipse, the processing is
performed transparently and the information of the interface
from compilation is captured in the “Outline” window as
shown in Figure 5.. This includes all the methods inside the
interface as well as the generated ones.

3.2 @Obj AST Reinterpretation
Of course, careless reinterpretation of the AST could still be
surprising for badly designed rewritings. @Obj reinterprets the
syntax with the sole goal of enhancing and completing code:
we satisfy the behaviour of abstract methods; add method
implementations; and refine return types. We consider this to
be quite easy to follow and reason about, since it is similar to
what happens in normal inheritance. Refactoring operations
like renaming and moving should work transparently in
conjunction with our annotation, since they rely on the overall
type structure of the class, which we do not arbitrarily modify
but just complete.

Thus, in addition to the advantages of Lombok, Classless
Java offers some more advantages with respect to arbitrary
(compilation agent driven) AST rewriting.
Syntax and type errors Some preprocessors (like the C
one) can produce syntactically invalid code. Lombok ensures
only syntactically valid code is produced. Classless Java
additionally guarantees that no type errors are introduced
in generated code and client code. We discuss these two
guarantees in more detail next:
• Self coherence: the generated code itself is well-typed.

That is, type errors are not present in code the user has not
written (for example of methods in Figure 5). In our case,
it means that either @Obj produces (in a controlled way) an
understandable error or the interface can be successfully
annotated and the generated code is well-typed.

• Client coherence: all the client code (for example method
calls) that is well-typed before code generation is also
well-typed after the generation. The annotation just adds
more behaviour without removing any functionality.

Heir coherence Another form of guarantee that could be
useful in AST rewriting is heir coherence. That is, interfaces
(and in general classes) inheriting the instrumented code are
well-typed if they were well-typed without the instrumenta-
tion. In a strict sense, our rewriting does not guarantee heir
coherence. The reason is that this would forbid adding any
(default or abstract) method to the annotated interfaces, or
even doing type refinement. Indeed consider the following:
interface A { int x(); A withX(int x); }
@Obj interface B extends A {}
interface C extends B { A withX(int x); }
This code is correct before the translation, but @Obj would
generate in B a method “B withX(int x);”. This would break
C. Similarly, an expression of the form “new B(){.. A withX
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Figure 5. Generated methods shown in the Outline window of Eclipse and auto-completion.

(int x){..}}” would be correct before translation, but ill-
typed after the translation.

Our automatic type refinement is a useful and convenient
feature, but not transparent to the heirs of the annotated
interface. They need to be aware of the annotation semantics
and provide the right type while refining methods. To support
heir coherence, we would need to give up automatic type
refinement, which is an essential part of IB programming.
However, the reader should note that Java libraries almost
always break heir coherence during evolution and still claim
backward compatibility (false in theory but statistically true
in practice). In practice, adding any method to any non-final
class of a Java library is enough to break heir coherence. We
think return type refinement breaks heir coherence “less"
than normal library evolution, and if no automatic type-
refinements are needed, then @Obj can claim a form of heir
coherence. We provide a formal definition for our safety
claims here 3.

3.3 Limitations
Our prototype implementation has certain limitations:
• Lombok allows writing handlers for either javac or

ejc(Eclipse’s own compiler). Our current implementa-
tion only realizes ejc version. The implementation for the
javac version is still missing.

• Simple generics is supported: type parameters can be used,
but generic method typing not explicitly checked by @Obj,
but simply delegated to the Java compiler.

• Due to limited support in Lombok for separate compila-
tion, i.e., accessing information of code defined in differ-
ent files, @Obj requires that all related interfaces have to
appear in a single Java file. Reusing the logic inside the ex-
perimental Lombok annotation @Delegate, we also offer a
less polished annotation supporting separate compilation
for files in the same package.

4. Applications and Case Studies
This section illustrates applications and larger case studies
for Classless Java. The first application shows how a useful
pattern, using multiple inheritance and type-refinement, can
be conveniently encoded in Classless Java. The second appli-

3 See Section B

cation shows how to model embedded DSLs based on fluent
APIs. The two larger case studies, take existing projects and
refactor them into Classless Java. The first case study shows a
significant reduction in code size, while the second case study
maintains the same amount of code, but improves modularity.

4.1 The Expression Problem with Object Interfaces
As the first application for Classless Java, we illustrate a
useful programming pattern that improves modularity and
extensibility of programs. This useful pattern is based on
an existing solution to the Expression Problem (EP) [22],
which is a well-known problem about modular extensibility
issues in software evolution. Recently, a new solution [23]
using only covariant type refinement was proposed. When this
solution is modeled with interfaces and default methods, it
can even provide independent extensibility [25]: the ability to
assemble a system from multiple, independently developed
extensions. Unfortunately, the required instantiation code
makes a plain Java solution verbose and cumbersome to use.
The @Obj annotation is enough to remove the boilerplate code,
making the presented approach very appealing. Our last case
study, presented in Section 4.4, is essentially a (much larger)
application of this pattern to an existing program. Here we
illustrate the pattern in the much smaller Expression Problem.
Initial System In the formulation of the EP, there is an
initial system that models arithmetic expressions with only
literals and addition, and an initial operation eval for expres-
sion evaluation. As shown in Figure 6, Exp is the common
super-interface with operation eval() inside. Sub-interfaces
Lit and Add extend interface Exp with default implementa-
tions for the eval operation. The number field x of a literal
is represented as a getter method x() and expression fields
(e1 and e2) of an addition as getter methods e1() and e2().
Adding a New Type of Expressions In the OO paradigm,
it is easy to add new types of expressions. For example, the
following code shows how to add subtraction.
@Obj interface Sub extends Exp {
Exp e1(); Exp e2();
default int eval() {
return e1().eval() - e2().eval();} }

Adding a New Operation The difficulty of the EP in OO
languages arises from adding new operations. For example,
adding a pretty printing operation would typically change
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interface Exp { int eval(); }
@Obj interface Lit extends Exp {

int x();
default int eval() {return x();}

}
@Obj interface Add extends Exp {

Exp e1(); Exp e2();
default int eval() {

return e1().eval() + e2().eval();
}

}

interface ExpP extends Exp {String print();}
@Obj interface LitP extends Lit, ExpP {

default String print() {return "" + x();}
}
@Obj interface AddP extends Add, ExpP {

ExpP e1(); //return type refined!
ExpP e2(); //return type refined!
default String print() {

return "(" + e1().print() + " + "
+ e2().print() + ")";}

}

Figure 6. The Expression Problem (left: initial system, right: code for adding print operation).

all existing code. However, a solution should add operations
in a type-safe and modular way. This turns out to be easily
achieved with the assistance of @Obj. The code in Figure 6
(on the right) shows how to add the new operation print.
Interface ExpP extends Exp with the extra method print().
Interfaces LitP and AddP are defined with default imple-
mentations of print(), extending base interfaces Lit and
Add, respectively. Importantly, note that in AddP, the types
of “fields” (i.e. the getter methods) e1 and e2 are refined. If
the types were not refined then the print() method in AddP
would fail to type-check.

Independent Extensibility To show that our approach sup-
ports independent extensibility, a new operation collectLit
which collects all literal components in an expression is de-
fined. For space reasons, we omit some code:
interface ExpC extends Exp {

List<Integer> collectLit(); }
@Obj interface LitC extends Lit, ExpC {...}
@Obj interface AddC extends Add, ExpC {

ExpC e1(); ExpC e2(); ...}
Now we combine the two extensions together:
interface ExpPC extends ExpP, ExpC {}
@Obj interface LitPC extends ExpPC, LitP, LitC {}
@Obj interface AddPC extends ExpPC, AddP, AddC {

ExpPC e1(); ExpPC e2(); }
ExpPC is the new expression interface supporting print and
collectLit operations; LitPC and AddPC are the extended
variants. Notice that except for the routine of extends clauses,
no glue code is required. Return types of e1,e2 must be
refined to ExpPC.

Note that the code for instantiation is generated by @Obj.
Creating a simple expression of type ExpPC is as simple as:
ExpPC e8 = AddPC.of(LitPC.of(3), LitPC.of(4));
Without our approach, tedious instantiation code would need
to be defined manually.

4.2 Embedded DSLs with Fluent Interfaces
Since the style of fluent interfaces was invented in Smalltalk
as method cascading, more and more languages (Java, C++,
Scala, etc) came to support fluent interfaces. In most lan-
guages, to create fluent interfaces, programmers have to ei-
ther hand-write everything or create a wrapper around the
original non-fluent interfaces using this. In Java, there are
several libraries (including jOOQ, op4j, fluflu, JaQue, etc)

providing useful fluent APIs. However most of them only
provide a fixed set of predefined fluent interfaces.

The @Obj annotation can also be used to create fluent
interfaces. When creating fluent interfaces with @Obj, there
are two main advantages:
1. Instead of forcing programmers to hand-write code using

return this, our approach with @Obj annotation removes
this verbosity and automatically generates fluent setters.

2. The approach supports extensibility: the return types of
fluent setters are automatically refined.

We use embedded DSLs of two simple SQL query languages
to illustrate. The first query language Database models
select, from and where clauses:
@Obj interface Database {

String select(); Database select(String select);
String from(); Database from(String from);
String where(); Database where(String where);
static Database of() {return of("", "", "");} }

The main benefit that fluent methods give us is the conve-
nience of method chaining:
Database query1 = Database.of().select("a, b").from(

"Table").where("c > 10");
Note how all the logic for the fluent setters is automatically
provided by the @Obj annotation.
Extending the Query Language The previous query lan-
guage can be extended with a new feature orderBy which
orders the result records by a field that users specify. With
@Obj programmers just need to extend the interface Database
with new features, and the return type of fluent setters in
Database is automatically refined to ExtendedDatabase:
@Obj interface ExtendedDatabase extends Database {
String orderBy();
ExtendedDatabase orderBy(String orderBy);
static ExtendedDatabase of() {
return of("", "", "","");} }

In this way, when a query is created using ExtendedDatabase,
all the fluent setters return the correct type, and not the old
Database type, which would prevent calling orderBy.
ExtendedDatabase query2 = ExtendedDatabase.of().

select("a, b").from("Table").where("c > 10").
orderBy("b");

4.3 A Maze Game
This case study is a simplified variant of a Maze game, which
is often used [3, 9] to evaluate code reuse ability related to
inheritance and design patterns. In the game, there is a player
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with the goal of collecting as many coins as possible. She may
enter a room with several doors to be chosen among. This is a
good example because it involves code reuse (different kinds
of doors inherit a common type, with different features and
behavior), multiple inheritance (a special kind of door may
require features from two other door types) and it also shows
how to model operations symmetric sum, override and
alias from trait-oriented programming. The game has been
implemented using plain Java 8 and default methods by Bono
et. al [3], and the code for that implementation is available
online. We reimplemented the game using @Obj. Due to
space constraints, we omit the code here. The following table
summarizes the number of lines of code and classes/interfaces
in each implementation:

SLOC # of classes/interfaces
Bono et al. 335 14

Ours 199 11
Reduced by 40.6% 21.4%

The @Obj annotation allowed us to reduce the interfaces/-
classes used in Bono et al.’s implementation by 21.4% (from
14 to 11). The reductions were due to the replacement of
instantiation classes with generated of methods. The number
of source lines of code (SLOC4) was reduced by 40% due
to both the removal of instantiation overhead and generation
of getters/setters. To ensure a fair comparison, we used the
same coding style as Bono et al.’s.

4.4 Refactoring an Interpreter
The last case study refactors the code from an interpreter for
a Lisp-like language Mumbler5, which is created as a tutorial
for the Truffle Framework [24]. Keeping a balance between
simplicity and useful features, Mumbler contains numbers,
booleans, lists (encoding function calls and special forms
such as if-expression, lambdas, etc). In the original code base,
which consists of 626 SLOC of Java, only one operation
eval is supported. Extending Mumbler to support one more
operation, such as a pretty printer print, would normally
require changing the existing code base directly.

Our refactoring applies the pattern presented in Section 4.1
to the existing Mumbler code base to improve its modularity
and extensibility. Using the refactored code base it becomes
possible to add new operations modularly, and to support
independent extensibility. We add one more operation print
to both the original and the refactored code base. In the
original code base the pretty printer is added non-modularly
by modifying the existing code. In the refactored code base
the pretty printer is added modularly. Although the code in
the refactored version is slightly increased (by 2.4% SLOC),
the modularity is greatly increased, allowing for improved
reusability and maintainability. We list the results in the
following table:

4 Only Java code is counted, excluding comments and blank lines.
5 https://github.com/cesquivias/mumbler/tree/master/simple

Code SLOC Code SLOC
original (eval) 626 original (eval+print) 661
refactored (eval) 560 refactored (eval+print) 677

5. Related Work
Multiple inheritance in object-oriented languages Many
authors have argued in favor or against multiple inheritance.
Multiple implementation inheritance is very expressive, but
difficult to model and implement, and can cause difficulties
(including the famous diamond (fork-join) problem [4, 18],
conflicting methods, etc.) in reasoning about programs. To
conciliate the need for expressive power and simplicity,
many models have been proposed, including C++ virtual
inheritance, mixins [4], traits [19], and hybrid models such
as CZ [13]. They provide novel programming architecture
models in the OO paradigm. In terms of restrictions set
on these models, C++ virtual inheritance aims at a relative
general model; the mixin model adds some restrictions; and
the trait model is the most restricted one (excluding state,
instantiation, etc).

C++ has a general solution to multiple inheritance by
virtual inheritance, dealing with the diamond problem by
keeping only one copy of the base class [7]. However C++
suffers from the object initialization problem [13]. It bypasses
constructor calls to virtual superclasses, which can cause
serious semantic errors. In our approach, the @Obj annotation
has full control over object initialization, and the mechanism
is transparent to users. Moreover, customized factory methods
are also allowed: if users are not satisfied with the default
generated of method, they can implement their own.

Mixins are more restricted than the C++ approach. Mix-
ins allow naming components that can be applied to various
classes as reusable functionality units. However, the lineariza-
tion (total ordering) of mixin inheritance cannot provide a
satisfactory resolution in some cases and restricts the flexi-
bility of mixin composition. To fight this limitation, an alge-
bra of mixin operators is introduced [1], but this raises the
complexity, especially when constructors and fields are con-
sidered [26]. Scala traits [15] are in fact more like linearized
mixins. Scala avoids the object initialization problem by dis-
allowing constructor parameters, causing no ambiguity in
cases such as the diamond problem. However this approach
has limited expressiveness, and suffers from all the problems
of linearized mixin composition. Java interfaces and default
methods do not use linearization: the semantics of Java ex-
tends clause in interfaces is unordered and symmetric.

Malayeri and Aldrich proposed a model CZ [13] which
aims to do multiple inheritance without the diamond problem.
Inheritance is divided into two concepts: inheritance depen-
dency and implementation inheritance. Using a combination
of requires and extends, a program with diamond inher-
itance is transformed to one without diamonds. Moreover,
fields and multiple inheritance can coexist. However untan-
gling inheritance also untangles the class structure. In CZ,
not only the number of classes, but also the class hierarchy
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complexity increases. IB does not complicate the hierarchical
structure, and state also coexists with multiple inheritance.

Simplifying the mixins approach, traits [19] draw a strong
line between units of reuse and object factories. Traits, as
units of reusable code, contain only methods as reusable
functionality, ignoring state and state initialization. Classes,
as object factories, require functionality from (multiple) traits.
Java 8 interfaces are closely related to traits: concrete method
implementations are allowed (via the default keyword) inside
interfaces. The introduction of default methods opens the
gate for various flavors of multiple inheritance in Java. Traits
offer an algebra of composition operations like sum, alias,
and exclusion, providing explicit conflict resolution. Former
work [3] provides details on mimicking the trait algebra
through Java 8 interfaces.

There are also proposals for extending Java with traits. For
example, FeatherTrait Java (FTJ) [12] extends FJ [11] with
statically-typed traits, adding trait-based inheritance in Java.
Except for few, mostly syntactic details, their work can be
emulated with Java 8 interfaces. There are also extensions to
the original trait model, with operations (e.g. renaming [16],
which breaks structural subtyping) that default methods and
interfaces cannot model.

Traits vs Object Interfaces. We consider object interfaces
to be an alternative to traits or mixins. In the trait model two
concepts (traits and classes) coexist and cooperate. Some
authors [2] see this as good language design fostering good
software development by helping programmers to think about
the structure of their programs. However, other authors see the
need of two concepts and the absence of state as drawbacks of
this model [13]. Object interfaces are units of reuse, and at the
same time they provide factory methods for instantiation and
support state. Our approach promotes the use of interfaces
instead of classes, in order to rely on the modular composition
offered by interfaces. Since Java was designed for classes, a
direct classless programming style is verbose and unnatural.
However, annotation-driven code generation is enough to
overcome this difficulty, and the resulting programming style
encourages modularity, composability and reusability, by
keeping a strong OO feel. In that sense, we promote object
interfaces as being both units of reusable code and object
factories. Our practical experience is that, in Java, separating
the two notions leads to a lot of boilerplate code, and is quite
limiting when multiple inheritance with state is required.
Abstract state operations avoid the key difficulties associated
with multiple inheritance and state, while still being quite
expressive. Moreover the ability to support constructors adds
expressivity, which is not available in approaches such as
Scala’s traits/mixins.

ThisType and MyType Object interfaces support automatic
type-refinement. Type refinement is part of a bigger topic
in class-based languages: expressing and preserving type re-
cursion and (nominal/structural) subtyping at the same time.
One famous attempt in this direction is provided by My-

Type [5], representing the type of this, changing its meaning
along with inheritance. However when invoking a method
with MyType in a parameter position, the exact type of the
receiver must be known. This is a big limitation in class-
based object-oriented programming, and is exasperated by
the interface-based programming we propose: no type is ever
going to be exact since classes are not explicitly used. A
recent article [17] lights up this topic, proposing two new
features: exact statements and nonheritable methods. Both
are related to our work: 1) any method generated inside the
of method is indeed non-inheritable since there is no class
name to extend from; 2) exact statements (a form of wild-
card capture on the exact run-time type) could capture the
“exact type” of an object even in a class-less environment.
Admittedly, MyType greatly enhances the expressiveness and
extensibility of object-oriented programming languages. Ob-
ject interfaces use covariant-return types to simulate some
uses of MyType. But this approach only works for refining re-
turn types, whereas MyType is more general, as it also works
for parameter types. Our approach to covariantly refine state
can recover some of the additional expressiveness of MyType.
As illustrated with our examples and case studies, object in-
terfaces are still very useful in many practical applications,
yet they do not require additional complexity from the type
system.

6. Conclusion
Before Java 8, concrete methods and static methods were
not allowed to appear in interfaces. Java 8 allows static inter-
face methods and introduces default methods, which enables
implementations inside interfaces. This had an important pos-
itive consequence that was probably overlooked: the concept
of class (in Java) is now (almost) redundant and unneeded. We
proposed a programming style, called Classless Java, where
truly object-oriented programs and (reusable) libraries can be
defined and used without ever defining a single class.

However, using this programming style directly in Java is
very verbose. To avoid syntactic boilerplate caused by Java
not being originally designed to work without classes, we
introduce a new annotation, @Obj, which provides default
implementations for various methods (e.g. getters, setters,
with-methods) and a mechanism to instantiate objects. We
leverage on annotation processing and the Lombok library,
in this way @Obj is just a normal Java library; thus our
proposed style can be integrated in any Java project. The @Obj
annotation helps programmers to write less cumbersome code
while coding in Classless Java. Indeed, we think the obtained
gain is so high that Classless Java with the @Obj annotation
can be less cumbersome than full Java.

Classless Java is just a programming style, but is showing
the way for a new flavour of object orientation: We propose
interface-based object-oriented languages (IB), as opposed to
class-based or prototype-based. In IB state is not modelled at
the platonic/ideal level but is handled exclusively by instances.
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This unlocks useful code reuse patterns, as shown in Section 2.
An interesting avenue for future work would be to design a
new language based on IB. With a proper language design
we would not need to restrict ourselves to the limitations of
Java and its syntax.
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A. Formal Semantics
This section presents a formalization of Classless Java, which
models the essence of Java interfaces with default methods.
This formalization is used to define the semantics of object
interfaces.

A.1 Syntax
Figure 7 shows the syntax of Classless Java. The syntax for-
malizes a minimal subset of Java 8, focusing on interfaces,
default methods and object creation literals. There is no syn-
tax for classes. To help readability we use many metavariables
to represent identifiers: C, x, f and m; however they all map
to a single set of identifiers as in Java. Expressions consist of
conventional constructs such as variables (x), method calls
(e.m(e)) and static method calls (I.m(e)). For simplicity
the degenerate case of calling a static method over the this

receiver is not considered. A more interesting type of expres-
sions is super calls (I.super.m(e)), whose semantics is to
call the (non-static) method m over the this receiver, but
statically dispatching to the version of the method as visible
in the interface I. A simple form of field updates (x=e;e′) is
also modeled. In the syntax of field updates x is expected to
be a field name. After updating the field x using the value
of e, the expression e′ is executed. To blend the statement
based nature of Java and the expression based nature of our
language, we consider a method body of the form return

x=e;e′ to represent x=e;return e′ in Java. Finally, there is an
object initialization expression from an interface I, where (for
simplicity) all the fields are initialized with a variable present
in scope. To be fully compatible with Java, the concrete syn-
tax for an interface declaration with empty supertype list
would also omit the extends keyword. Following standard
practice, we consider a global Interface Table (IT) mapping
from interface names I to interface declarations I.

The environment Γ is a mapping from variables to types.
As usual, we allow a functional notation for Γ to do variable
lookup. Moreover, to help us define auxiliary functions, a
functional notation is also allowed for a set of methods
meth, using the method name m as a key. That is, we define
meth(m) = meth iff there is a unique meth ∈ meth whose
name is m. For convenience, we define meth(m) = None
otherwise; moreover m ∈ dom(meth) iff meth(m) = meth.
For simplicity, we do not model overloading, thus for an
interface to be well formed its methods must be uniquely
identified by their names.

A.2 Typing
Typing statement Γ ` e ∈ I reads “in the environment Γ,
expression e has type I.”. Before discussing the typing rules
we discuss some of the used notation. As a shortcut, we write
Γ ` e ∈ I <: I′ instead of Γ ` e ∈ I and I <: I′.

We omit the definition of the usual traditional subtyp-
ing relation between interfaces, that is the transitive and re-
flexive closure of the declared extends relation. The aux-

iliary notation Γmh trivially extracts the environment from
a method header, by collecting the all types and names
of the method parameters. The notation mmh and Imh de-
notes respectively, extracting the method name and the re-
turn type from a method header. mbody(m, I), defined in
Appendix A.3, returns the full method declaration as seen
by I, that is the method m can be declared in I or inherited
from another interface. mtype(m, I) and mtypeS(m, I) return
the type signature from a method (using mbody(m, I) inter-
nally). mtype(m, I) is defined only for non static methods,
while mtypeS(m, I) only for static ones. We use dom(I) to
denote the set of methods that are defined for type I, that is:
m ∈ dom(I) iff mbody(m, I) = meth.

In Figure 8 we show the typing rules. We discuss the most
interesting rules, that is (T-OBJ) and (T-INTF). Rule (T-OBJ)
is the most complex typing rule. Firstly, we need to ensure
that all field initializations are type correct, by looking up
the type of each variable assigned to a field in the typing
environment and verifying that such type is a subtype of the
field type. Finally, we check that all method bodies are well-
typed. To do this the environment used to check the method
body needs to be extended appropriately: we add all fields
and their types; add this : I; and add the arguments (and
types) of the respective method. Now we need to check if the
object is a valid extension for that specific interface. This can
be logically divided into two steps. First we check that all
method headers are valid with respect to the corresponding
method already present in I:
• sigvalid(mh1 . . .mhn, I) =

∀i ∈ 1..n mhi;<:mbody(mmhi , I)
Here we require that for all newly declared methods, there is
a method with the same name defined in the interface I, and
that such method is a supertype of the newly introduced one.
We define subtyping between methods in a general form that
will also be useful later.
• I m(I1x1 . . . Inxn);<: I′m(I1x′1 . . . Inx′n); = I<: I′

• meth<: default mh{return _;} = meth<: mh;
• default mh{return _;} <: meth = mh;<: meth
We allow return type specialization as introduced in Java 5.
A method header with return type I is a subtype of another
method header with return type I ′ if all parameter types are
the same, and I <: I ′. A default method meth1 is a subtype
of another default method meth2 iff mhmeth1 is a subtype of
mhmeth2 . Secondly, we check that all abstract methods (which
need to be explicitly overridden) in the interface have been
implemented:
• alldefined(mh1 . . .mhn, I) = ∀m such that

mbody(m, I) = mh;∃i ∈ 1..n mmhi = m
The rule (T-INTF) checks that an interface I is correctly

typed. First we check that the body of all default and static
methods are well-typed. Then we check that dom(I) is the
same as dom(I1) ∪ . . . ∪ dom(In) ∪ dom(meth). This is
not a trivial check, since dom(I) is defined using mbody,
which would be undefined in many cases: notably if a
method meth ∈ meth is not compatible with some method in
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e ::= x | e.m(e) | I.m(e) | I.super.m(e) | x=e;e′ | obj expressions
obj ::= new I(){ field mh1{ return e1;} . . .mhn{ return en;}} object creation
field ::= I f=x; field declaration
I ::= ann interface I extends I{ meth } interface declaration
meth ::= static mh{ return e;} | default mh{ return e;} | mh; method declaration
mh ::= I0 m (I1 x1 . . . In xn) method header
ann ::= @Obj|∅ annotations
Γ ::= x1:I1 . . . xn:In environment

Figure 7. Grammar of Classless Java

(T-INVK)
Γ ` e ∈ I0

∀i ∈ 1..n Γ ` ei ∈ _ <: Ii
mtype(m, I0)= I1 . . . In→ I

Γ ` e.m(e1 . . . en) ∈ I

(T-STATICINVK)
∀i ∈ 1..n Γ ` ei ∈ _ <: Ii
mtypeS(m, I0)= I1 . . . In→ I

Γ ` I0.m(e1 . . . en) ∈ I

(T-SUPERINVK)
Γ(this) <: I0

∀i ∈ 1..n Γ ` ei ∈ _ <: Ii
mtype(m, I0)= I1 . . . In→ I

Γ ` I0.super.m(e1 . . . en) ∈ I

(T-VAR)
Γ(x) = I
Γ ` x ∈ I

(T-OBJ)
∀i ∈ 1..k Γ(xi)<: Ii

∀i ∈ 1..n Γ, f1:I1, . . . , fk:Ik, this:I,Γmhi ` ei ∈ _<: Imhi

sigvalid(mh1 . . .mhn, I) alldefined(mh1 . . .mhn, I)

Γ ` new I(){ I1 f1=x1; . . . Ik fk=xk; mh1{ return e1;} . . .mhn{ return en;}} ∈ I

(T-UPDATE)
Γ ` e ∈ _ <: Γ(x)

Γ ` e′ ∈ I
Γ ` x=e;e′ ∈ I

(T-INTF)
IT (I) = ann interface I extends I1 . . . In{ meth }

∀default mh{ return e;} ∈ meth, Γmh, this:I ` e ∈ _<: Imh

∀static mh{ return e;} ∈ meth, Γmh ` e ∈ _<: Imh

dom(I) = dom(I1) ∪ . . . ∪ dom(In) ∪ dom(meth)

I OK

Figure 8. CJ Typing

dom(I1) . . . dom(In) or if there are methods in any dom(Ii)
and dom(Ij) (i, j ∈ 1..n) conflict.

A.3 Auxiliary Definitions
Defining mbody is not trivial, and requires quite a lot of
attention to the specific model of Java interfaces, and to
how it differs w.r.t. Java Class model. mbody(m, I) de-
notes the actual method m (body included) that interface
I owns. The method can either be defined originally in I
or in its supertypes, and then passed to I via inheritance.
• mbody(m, I0) = override(meth(m), needed(m, I))

with IT(I0) = ann interface I0 extends I1 . . . In
{ meth } and I ∈ I if Ii <: I, i ∈ 1..n

The definition of mbody reconstructs the full set of super-
types I and then delegates the work to two other auxiliary
functions: needed(m, I) and override(meth,meth).

needed recovers from the interface table only the “needed”
methods, that is, the non-static ones that are not reach-
able by another, less specific superinterface. Since the sec-
ond parameter of needed is a set, we can choose an ar-
bitrary element to be I0. In the definition we denote by
originalMethod(m, I) = meth the non-static method called
m defined directly in I. Formally:

• originalMethod(m, I0) = meth
with IT(I0) = ann interface I0 extends I{ meth } ,

meth ∈ meth not static,m = mmeth

• originalMethod(m, I0) ∈ needed(m, I0 . . . In) =
6 ∃i ∈ 1..n such that originalMethod(m, Ii) is defined

and Ii <: I0

override models how a method in an interface can override
implementations in its superinterfaces, even in the case of
conflicts. Note how the special value None is used, and how
(the 5th case) overriding can solve a conflict.
• override(None, ∅) = None
• override(meth, ∅) = meth
• override(None,meth) = meth
• override(None,mh;) = mostSpecific(mh;)
• override(meth,meth) = meth

with ∀meth′ ∈ meth : meth<: meth′

The definition mostSpecific returns the most specific method
whose type is the subtype of all the others. Since method
subtyping is a partial ordering, mostSpecific may not be
defined, this in turn forces us to rely on the last clause of
override; otherwise the whole mbody would not be defined
for that specific m. Rule (T-INTF) relies on this behavior.
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• mostSpecific(meth) = meth
with meth ∈ meth and ∀meth′ ∈ meth : meth<: meth′

To illustrate the mechanism of mbody, we present an
example. We compute mbody(m, D):
interface A { Object m(); }
interface B extends A { default Object m() {return

this.m();} }
interface C extends A {}
interface D extends B, C { String m(); }
• First {A,B,C}, the full set of supertypes of D is obtained.
• Then we compute needed(m, {A,B,C}) = default Object

m(){...}, that is B.m. That is, we do not consider ei-
ther C.m (since m is not declared directly in C, hence
originalMethod(m, C) is undefined) or B.m (that is a sub-
type of A, thus B.m hides A.m).

• The final step computes override(D.m, B.m) = D.m, by
the last case of override we get that D.m hides B.m suc-
cessfully (String is a subtype of Object). Finally we get
mbody(m, D) = D.m.

B. What @Obj Generates
This section gives an overview of what @Obj generates, and
what formal properties are guaranteed in the translation.

We formalize syntax and typing for Classless Java in
Appendix A, which models the essence of Java interfaces
with default methods. Classless Java is just a proper subset of
Java 8, so it is easy to understand the translation presented in
this section without the syntax and typing rules of Classless
Java. Since the formalized part of Classless Java does not
consider casts or instanceof, the with method is not included
in the formal translation. For the same reason void returning
setters are not included, since they are just a minor variation
over the more interesting fluent setters and they would require
special handling just for the conventional void type. Since
our properties are about preserving typing, we do not need to
formalize Classless Java semantics to prove our statements.

B.1 Translation
For the purposes of the formalization, the translation is di-
vided into two parts for more convenient discussion on for-
mal properties later. To this aim we introduce the annotation
@ObjOf. Its role is only in the translation process, hence is
not part of the Classless Java language. @ObjOf generates the
constructor method of, while @Obj automatically refines the
return types and calls @ObjOf.

Figure 9 presents the translation. In the first function, @Obj
injects refined methods to interface I0. The second function,
@ObjOf invokes ofMethod(I0) and generates the of method
for I0, if such a method does not exist in its domain, and all
the abstract methods are valid for the annotation.

Figure 10 presents more details on the auxiliary functions.
The first two points of Figure 10 define function refine. This
function generates unimplemented with- and fluent setters
in the interface, where the return types have been refined. To
determine whether a method needs to be generated, we check

if such with- or setter methods require an implementation in
I0, but are not declared directly in I0. The third point gives
the definition of valid: it is valid to annotate an interface if all
abstract methods (that is, all those requiring an implementa-
tion) are valid. That is, we can categorize them in a pattern
that we know how to implement (right column): it is either
a field getter (first point), a with method (second point) or a
setter (third point). Note that we write with#m to append m to
with, following the camelCase rule. The first letter of m must
be lower-case and is changed to upper-case upon appending.
For example with#foo=withFoo. Special names special(m)
are with and all identifiers of the form with#m.

Figure 11 defines the ofMethod function, which generates
the static method of as an object factory. It detects all the
field methods of I0 and use them to synthesize its arguments.
The return statement instantiates an anonymous class which
generates the needed getters, fluent setters and with-methods.
The right column first point collects the getter methods,
the second and third point generate implementations for
with- methods if needed; similarly, the fourth and fifth point
generate fluent setters if needed.

Some other features of @Obj, including non-fluent setters
and the with method are not formalized here. Appendix C.2
gives a detailed but informal explanation of generation for
those methods.

B.2 Results
Classless Java provides some guarantees regarding the gener-
ated code. Essentially, Classless Java ensures the self coher-
ence and client coherence properties informally introduced
in Section 3. Furthermore, we can show that if there are no
type-refinements, then heir coherence also holds. The result
about heir coherence is possible to prove because the trans-
lation is split into two parts. In essence heir coherence is a
property of the translation of @ObjOf, but not of @Obj.

To formally characterize the behavior of our annotation
and the two levels of guarantees that we offer, we provide
some notations and two theorems:
• We denote with II and mmeth the name of an interface and

of a method.
• An interface table IT is OK if under such interface table,

all interfaces are OK, that is, well typed.
• Since interface tables are just represented as sequences of

interfaces we write IT = I IT’ to select a specific interface
in a table.

• IT contains an heir of I if there is an interface that extends
it, or a new that instantiates it.

Theorem 1 (@ObjOf). If a given interface table I IT is OK
where I has @ObjOf, valid(II) and of /∈ dom(II), then the
interface table [[I]] IT is OK.

Theorem 2 (@Obj). If a given interface table I IT is OK
where I has @Obj, valid(II) and of /∈ dom(II), and there is
no heir of II , then the interface table [[I]] IT is OK.
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• [[@Obj interface I0 extends I{ meth } ]] = [[@ObjOf interface I0 extends I{ meth meth
′
} ]]

with meth
′

= refine(I0,meth)
• [[@ObjOf interface I0 extends I{ meth} ]] = interface I0 extends I{ meth ofMethod(I0)}

with valid(I0), of /∈ dom(I0)

Figure 9. The translation functions of @Obj and @ObjOf.

• I0 with#m(I _val); ∈ refine(I0,meth) =
isWith(mbody(with#m, I0), I0), with#m /∈ dom(meth)

• I0 _m(I _val); ∈ refine(I0,meth) =
isSetter(mbody(_m, I0), I0), _m /∈ dom(meth)

• valid(I0) = ∀m ∈ dom(I0), if mh; = mbody(m, I0),
one of the following cases is satisfied:
isField(meth), isWith(meth, I0) or isSetter(meth, I0)

• isField(I m();) = not special(m)
• isWith(I′ with#m(I x);, I0) =

I0 <: I′,mbody(m, I0) = I m(); and not special(m)
• isSetter(I′ _m(I x);, I0) =

I0 <: I′,mbody(m, I0) = I m(); and not special(m)

Figure 10. The refine and valid functions (left) and auxiliary functions (right).

• ofMethod(I0) = static I0 of(I1 _m1, . . . In _mn){

return new I0(){
I1 m1 = _m1; . . . In mn = _mn;

I1 m1(){return m1;} . . . In mn(){return mn;}

withMethod(I1,m1, I0, e1) . . .withMethod(In,mn, I0, en)
setterMethod(I1,m1, I0) . . . setterMethod(In,mn, I0)

};}

with I1 m1();, . . . In mn(); = fields(I0)
and ei = m1, . . . ,mi−1,_val,mi+1, . . . ,mn

• meth ∈ fields(I0) =
isField(meth) and meth = mbody(mmeth, I0)

• withMethod(I,m, I0, e) =
I0 with#m(I _val){ return I0.of(e);}

with mbody(with#m, I0) having the form mh;
• withMethod(I,m, I0, e) = ∅ otherwise
• setterMethod(I,m, I0) =

I0 _m(I _val){ m= _val;return this;}

with mbody(_m, I0) having the form mh;
• setterMethod(I,m, I0) = ∅ otherwise

Figure 11. The generated of method (left) and auxiliary functions (right).

Informally, the theorems mean that for a client program
that type-checks before the translation is applied, if the
annotated type has no subtypes and no objects of that type are
created, then type safety of the generated code is guaranteed
after the successful translation.

The second step of @Obj, namely what @ObjOf does in
the formalization, is guaranteed to be type-safe for the three
kinds of coherence by the @ObjOf theorem. The @Obj theorem
is more interesting: since @Obj does not guarantee heir coher-
ence, we explicitly exclude the presence of heirs. In this way
the @Obj theorem guarantees only self and client coherence.
The formal theorem proofs are available in Appendix D.

Type preservation Note that we preferred to introduce self,
client and heir coherence instead of referring to conventional
type preservation theorems. The reason is to better model how
our approach behaves in a object-oriented software ecosys-
tem with inheritance, where only some units may be trans-
lated/expanded. Note inheritance’s crucial influence in heir
coherence. Our formulation of client coherence allows us to
discuss intermediate stages where only some code units are
translated/expanded. Conventional type preservation refers
only to completely translated program. Our coherence guar-
antees mean that developers and designers of Java libraries
and frameworks can start using IB (and our @Obj annotation)
in the evolution of their products and still retain backward
compatibility with their clients.

C. What @Obj Generates
This section presents a formal definition for most of the
generated methods by @Obj.

C.1 Translation
The translation functions of @Obj and @ObjOf are presented in
Figure 9. Note that it is necessary to explicitly check if the
interface is valid for annotation:
• valid(I0) = ∀m ∈ dom(I0), if mh; = mbody(m, I0),

one of the following cases is satisfied:
isField(meth), isWith(meth, I0) or isSetter(meth, I0)

• isField(I m();) = not special(m)
• isWith(I′ with#m(I x);, I0) =

I0 <: I′,mbody(m, I0) = I m(); and not special(m)
• isSetter(I′ _m(I x);, I0) =

I0 <: I′,mbody(m, I0) = I m(); and not special(m)
That is, we can categorize all abstract methods in a pattern
that we know how to implement: it is either a field getter, a
with method or a setter.

Moreover, we check that the method of is not already
defined by the user. In the formalization an existing definition
of the of method is an error. However, in the prototype (which
also needs to account for overloading), the check is more
complex as it just checks that an of method with the same
signature of the one being generated is not already present.

We write with#m to append m to with, following the
camelCase rule. The first letter of m must be lower-case
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and is changed to upper-case upon appending. For example
with#foo=withFoo. Special names special(m) are with and
all identifiers of the form with#m.

The refine function: refine(I0,meth) is defined as follows:
• I0 with#m(I _val); ∈ refine(I0,meth) =

isWith(mbody(with#m, I0), I0), with#m /∈ dom(meth)
• I0 _m(I _val); ∈ refine(I0,meth) =

isSetter(mbody(_m, I0), I0), _m /∈ dom(meth)
The methods generated in the interface are with- and setters.
The methods are generated when they are unimplemented in
I0, because the return types need to be refined. To determine
whether the methods need to be generated, we check if such
with- or setter methods are required by I0, but not declared
directly in I0.

The ofMethod function: The function ofMethod gener-
ates the method of, as an object factory. To avoid boring
digressions into well-known ways to find unique names,
we assume that all methods with no parameters do not
start with an underscore, and we prefix method names
with underscores to obtain valid parameter names for of.
• ofMethod(I0) = static I0 of(I1 _m1, . . . In _mn){

return new I0(){
I1 m1 = _m1; . . . In mn = _mn;

I1 m1(){return m1;} . . . In mn(){return mn;}

withMethod(I1,m1, I0, e1) . . .withMethod(In,mn, I0, en)
setterMethod(I1,m1, I0) . . . setterMethod(In,mn, I0)

};}

with I1 m1();, . . . In mn(); = fields(I0)
and ei = m1, . . . ,mi−1,_val,mi+1, . . . ,mn

Note that, the function fields(I0) denotes all the fields in the
current interface:
• meth ∈ fields(I0) =

isField(meth) and meth = mbody(mmeth, I0)
For methods inside the interface with the form Ii mi();

• mi is the field name, and has type Ii.
• mi() is the getter and just returns the current field value.
• if a method with#mi() is required, then it is implemented

by calling the of method using the current value for all
the fields except for mi. Such new value is provided as a
parameter. This corresponds to the expressions ei.

• _mi(Ii _val) is the setter. In our prototype we use name
mi, here we use the underscore to avoid modeling over-
loading.
The auxiliary functions are defined below. Note that we

do not need to check if some header is a subtype of what we
would generate, this is ensured by valid(I0).
• withMethod(I,m, I0, e) =

I0 with#m(I _val){ return I0.of(e);}
with mbody(with#m, I0) having the form mh;

• withMethod(I,m, I0, e) = ∅ otherwise
• setterMethod(I,m, I0) =

I0 _m(I _val){ m= _val;return this;}

with mbody(_m, I0) having the form mh;
• setterMethod(I,m, I0) = ∅ otherwise

C.2 Other Features
We do not formally model non-fluent setters and the with

method. An informal explanation of how those methods are
generated is given next:
• For methods inside the interface with the form void

m(I x);:
Check if method I m(); exists. If not, generate error
(that is, valid(I0) is false).
Generate the implemented setter method inside of:
public void m(I _val){ m=_val;}

There is no need to refine the return type for non-fluent
setters, thus we do not need to generate the method
header in the interface body itself.

• For methods with the form I′ with(I x);:
I must be an interface type (no classes or primitive
types).
As before, check that I′ is a supertype of the current
interface type I0.
Generate implemented with method inside of:
public I0 with(I _val){

if(_val instanceof I0){return (I0)_val;}
return I0.of(e1 . . . en);}

with ei =_val.mi() if I has a mi() method where
m1 . . .mn are fields of I0; otherwise ei = mi.
If needed, as for with- and setters, generate the method
headers with refined return types in the interface.

D. Lemmas and Theorems
D.1 LEMMA 1 and Proof
Lemma 1 (a). For any expression e under an interface table
I IT where Γ ` e ∈ II , I has @ObjOf annotation and
[[I]] = I ′, then under the interface table I ′ IT, Γ ` e ∈ II .

Proof. By induction on the typing rules: by the grammar
shown in Figure 7, there are 6 cases for an arbitrary expres-
sion e:
• Variables are typed in the same exact way.
• Field update. The type preservation is ensured by induc-

tion.
• A method call (normal, static or super). The corresponding

method declaration won’t be “removed” by the translation,
also the types remain unchanged. The only work @ObjOf

does is adding a static method of to the interface, however,
a pre-condition of the translation is of /∈ dom(II), so
adding of method has no way to affect any formerly well
typed method call.

• An object creation. Adding the of method doesn’t intro-
duce unimplemented methods to an interface, moreover,
the static method is not inheritable, hence after translation
such an object creation still type checks and has the right
type by induction.
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Lemma 1 (b). For any expression e under an interface table
I IT where there is no heir of II , Γ ` e ∈ II , I has @Obj

annotation and [[I]] = I ′, then under the interface table I ′
IT, Γ ` e ∈ _ <: II .

Proof. The proof follows the same scheme of Lemma 1 (a),
but for the case of method call the return type may be refined
with a subtype. This is still ok since we require _ <: II . On
the other side, this weaker result still allows the application
on the method call typing rules, since in the premises the
types of the actual parameter are required to be a subtype of
the formal one.

D.2 LEMMA 2 and Proof
Lemma 2 (a). If I has @ObjOf annotation and II OK in I IT,
then [[I]] OK in [[I]] IT.

Proof. By the rule (T-INTF) in Figure 8, we divide the proof
into two parts.
Part I. For each default or static method in the domain of [[II ]],
the type of the return value is compatible with the method’s
return type.

Since I OK, and by Lemma 1 (a), all the existing default
and static methods are well typed in [[I]], except for the
new method of. It suffices to prove that it still holds for
ofMethod(I).

By the definition of ofMethod(I), the return value is an
object

return new II(){ ... }

To prove it is of type II , we use the typing rule (T-OBJ).
• All field initializations are type correct. By the definition

of ofMethod(II) in Appendix C.1, the fields m1, . . . ,mn

are initialized by of’s arguments, and types are compati-
ble.

• All method bodies are well-typed.
Typing of the i-th getter mi.

Γ,mi : Ii, this : II ` mi ∈ Ii

We know that Ii = Imhi since the i-th getter has its
return type the same as the corresponding field mi.
Typing of the with- method of an arbitrary field mi.
By Appendix C.1, if the with- method of mi is well-
defined, it has the form

II with#mi(Ii _val){ return II.of(ei);}

ei is obtained by replacing mi with _val in the list
of fields, and since they have the same type Ii, the
arguments ei are compatible with II .of method. Hence

Γ,m1 : I1 . . .mn : In, this : II , _val : Ii ` II.of(ei) ∈ II

We know that II = Imhi by the return type of with#mi

shown as above.

Typing of the i-th setter _mi. If the _mi method is
well-defined, it has the form

II _mi(Ii _val){ mi= _val;return this;}

By (T-UPDATE), the assignment “mi= _val;” is cor-
rect since mi and _val have the same type Ii, and the
return type is decided by this.

Γ, this : II , _val : Ii ` this ∈ II

We know that II = Imhi by the return type of _mi

shown as above.
• All method headers are valid with respect to the domain

of II . Namely

sigvalid(mh1 . . .mhn, I)

For convenience, we use “meth in ofMethod(II)” to
denote that meth is one of the implemented methods in
the return expression of ofMethod(II), namely new II()
{...}.

For the i-th getter mi,

Ii mi(){...} in ofMethod(II)

implies Ii mi(); ∈ fields(II)

implies Ii mi(); = mbody(mi, II)

implies Ii mi(); <: mbody(mi, II)

For the with#mi method,

II with#mi(Ii _val){...} in ofMethod(II)

implies mbody(with#mi, II) is of form mh;

with valid(II)

implies isWith(mbody(with#mi, II), II)

implies II with#mi(Ii _val); <: mbody(with#mi, II)

For the i-th setter _mi,

II _mi(Ii _val){...} in ofMethod(II)

implies mbody(_mi, II) is of form mh;

with valid(II)

implies isSetter(mbody(_mi, II), II)

implies II _mi(Ii _val); <: mbody(_mi, II)

• All abstract methods in the domain of II have been
implemented. Namely

alldefined(mh1 . . .mhn, I)

Here we simply refer to valid(II), since it guarantees
each abstract method to satisfy isField, isWith or isSetter.
But that object includes all implementations for those
cases. A getter mi is generated if it satisfies isField; a
with- method is generated for the case isWith, by the
definition of withMethod; a setter for isSetter, similarly,
by the definition of setterMethod. Hence it is of type II

by (T-OBJ).
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Part II. Next we check that in [[I]],

dom([[I]]) = dom(I1)∪. . .∪dom(In)∪dom(meth)∪dom(meth′)

Since I OK, we have dom(I) = dom(I1) ∪ . . . ∪
dom(In) ∪ dom(meth), and hence it is equivalent to prove

dom([[I]]) = dom(II) ∪ dom(meth′)

This is obvious since a pre-condition of the translation is
of /∈ dom(II), so meth′ doesn’t overlap with dom(II). The
definition of dom is based on mbody, and here the new
domain dom([[I]]) is only an extension to dom(I) with the
of method, namely meth′. Also note that after translation,
there are still no methods with conflicted names, since the
of method was previously not in the domain, hence [[I]] is
well-formed, which finishes our proof.

Lemma 2 (b). If I has @Obj annotation II OK in I IT and
there is no heir of II , then [[I]] OK in [[I]] IT.

Proof. Part I. Similarly to what already argued for Lemma 2
(a), since I OK, and by Lemma 1 (b), all the existing default
and static methods are well typed in [[I]] IT. The translation
function delegates its work to @ObjOf in such way that we can
refer to Lemma 2 (a) to complete this part. Note that all the
methods added (directly) by @Obj are abstract, and thus there
is no body to typecheck.
Part II. Similar to what we already argued for Lemma 2
(a), but we need to notice that the newly added methods
are valid refinements for already present methods in dom(II)
before the translation. Thus by the last clause of the definition
of override(_), mbody(_) is defined on the same method
names.

D.3 THEOREM and Proof
Theorem 1 (@ObjOf tuning). If a given interface table I
IT is OK where I has @ObjOf, valid(II) and of /∈ dom(II),
then the interface table [[I]] IT is OK.

Proof. Lemma 2 (a) already proves that [[I]] is OK. On the
other hand, for any I ′ ∈ IT\I , by Lemma 1 (a), we know that
all its methods are still well-typed, and the generated code
in translation of @ObjOf is only a static method of, which has
no way to affect the domain of I ′, so after translation rule
(T-INTF) can still be applied, which finishes our proof.

Theorem 2 (@Obj tuning). If a given interface table I IT
is OK where I has @Obj, valid(II) and of /∈ dom(II), and
there is no heir of II , then the interface table [[I]] IT is OK.

Proof. Similar to what already argued for Theorem 1, we can
apply Lemma 2 (b) and Lemma 1 (b). Then we finish by
Theorem 1.
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