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Abstract Given a graph G and a vertex q ∈ G, the com-
munity search query returns a subgraph of G that contains
vertices related to q. Communities, which are prevalent in
attributed graphs such as social networks and knowledge
bases, can be used in emerging applications such as product
advertisement and setting up of social events. In this paper,
we investigate the attributed community query (or ACQ),
which returns an attributed community (AC) for an attribut-
ed graph. The AC is a subgraph of G, which satisfies both
structure cohesiveness (i.e., its vertices are tightly connect-
ed) and keyword cohesiveness (i.e., its vertices share com-
mon keywords). The AC enables a better understanding of
how and why a community is formed (e.g., members of an
AC have a common interest in music, because they all have
the same keyword “music”). An AC can be “personalized”;
for example, an ACQ user may specify that an AC returned
should be related to some specific keywords like “research”
and “sports”.

To enable efficient AC search, we develop the CL-tree
index structure and three algorithms based on it. We fur-
ther propose efficient algorithms for maintaining the index
on dynamic graphs. Moreover, we study two problems that
are related to the ACQ problem. We evaluate our solution-
s on six large graphs. Our results show that ACQ is more
effective and efficient than existing community retrieval ap-
proaches. Moreover, an AC contains more precise and per-
sonalized information than that of existing community search
and detection methods.
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Fig. 1 Attributed graph and AC (circled).

1 Introduction

Due to the recent developments of gigantic social net-
works (e.g., Flickr, Facebook, and Twitter), the topic of at-
tributed graphs has attracted attention from industry and
research communities [37,7,16,20,41,21,12]. An attribut-
ed graph is essentially a graph associated with text strings
or keywords. Figure 1 illustrates an attributed graph, where
each vertex represents a social network user, and its key-
words describe the interest of that user.

In this paper, we investigate the attributed community
query (or ACQ). Given an attributed graph G and a ver-
tex q ∈ G, the ACQ returns one or more subgraphs of G
known as attributed communities (or ACs). An AC is a kind
of community, which consists of vertices that are closely re-
lated [34,6,5,18,28,13]. Particularly, an AC satisfies struc-
ture cohesiveness (i.e., its vertices are closely linked to each
other) and keyword cohesiveness (i.e., its vertices have key-
words in common). Figure 1 illustrates an AC (circled), which
is a connected subgraph with vertex degree 3; its vertices
{Jack, Bob, John, Mike} have two keywords (i.e., “re-
search” and “sports”) in common.

Prior works. The problems related to retrieving com-
munities from a graph can generally be classified into com-
munity detection (CD) and community search (CS). In gen-
eral, CD algorithms aim to retrieve all communities for a
graph [28,13,42,27,24,37,30,38]. These solutions are not
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Table 1 Classification of works in community retrieval.

Graph
Type

Community
detection (CD)

Community
search (CS)

Non-attributed [28,13] [34,6,5,18,22,19]
Attributed [42,27,24,37,30,38] ACQ

“query-based”, i.e., they are not customized for a query re-
quest (e.g., a user-specified query vertex). Moreover, they
can take a long time to find all the communities for a large
graph, and so they are not suitable for quick or online re-
trieval of communities. To solve these problems, CS solu-
tions have been recently developed [34,6,5,18,19,3]. These
approaches are query-based, and are able to derive commu-
nities in an “online” manner. However, existing CS algo-
rithms assume non-attributed graphs, and only use the graph
structure information to find communities. The ACQ is a
class of CS problem for attributed graphs. As we will show,
the use of keyword information can significantly improve
the effectiveness of the communities retrieved. Table 1 sum-
marizes some representative existing works in this area.

Features of ACs. We now present more details of ACs.
• Ease of interpretation. As demonstrated in Figure 1, an
AC contains tightly-connected vertices with similar contexts
or backgrounds. Thus, an ACQ user can focus on the com-
mon keywords or features of these vertices (e.g., the vertices
of the AC in this example contain “research” and “sports”,
reflecting that all members of this AC like research and s-
ports). We call the set of common keywords among AC ver-
tices the AC-label. In our experiments, the AC-labels facili-
tate understanding of the vertices that form the AC.

The design of ACs allows it to be used in setting up of
social events. For example, if a Twitter member has many
keywords about traveling (e.g., he posted a lot of photos
about his trips, with keywords), issuing an ACQ with this
member as the query vertex may return other members inter-
ested in traveling, because their vertices also have keywords
related to traveling. A group tour can then be recommended
to these members.
• Personalization. The user of an ACQ can control the se-
mantics of the AC, by specifying a set of S of keywords.
Intuitively, S decides the meaning of the AC based on the
user’s need. If we let q=Jack, k=2 and S={“research”},
the AC is formed by {Jack, Bob, John, Mike, Alex},
who are all interested in research. Let us consider another
example in the DBLP bibliographical network, where each
vertex’s attribute is represented by the top-20 frequent key-
words in their publications. Let q=Jim Gray. If S is the
set of keywords {transaction, data, management, system, re-
search}, we obtain the AC in Figure 2(a), which contains
six prominent database researchers closely related to Jim.
On the other hand, when S is {sloan, digital, sky, survey,
SDSS}, the ACQ yields another AC in Figure 2(b), which

indicates the seven scientists involved in the SDSS project 1.
Thus, with the use of different keyword sets S, different
“personalized” communities can be obtained.

Existing CS algorithms, which do not handle attributed
graphs, may not produce the two ACs above. For example,
the CS algorithm in [34] returns the community with all the
14 vertices shown in Figures 2(a) and (b). The main reasons
are: (1) these vertices are heavily linked with Jim; and (2)
the keywords are not considered. In contrast, the use of set
S in the ACQ places these vertices into two communities,
containing vertices that are cohesive in terms of structure
and keyword. This allows a user to focus on the important
vertices that are related to S. For example, using the AC
of Figure 2(a), a database conference organizer can invite
speakers who have a close relationship with Jim.

The personalization feature is also useful in marketing.
Suppose that Mary, a yoga lover, is a customer of a gym. An
ACQ can be issued on a social network, with Mary as the
query vertex and S={“yoga”}. Since members of the AC
contain the keyword “yoga”, they can be the gym’s adver-
tising targets. On the other hand, current CS algorithms may
return a community that contains one or more vertices with-
out the keyword “yoga”. It is not clear whether the corre-
sponding user of this vertex is interested in yoga.
•Online evaluation. Similar to other CS solutions, we have
developed efficient ACQ algorithms for large graphs, allow-
ing ACs to be generated quickly upon a query request. On
the contrary, existing CD algorithms [42,30,27,24] that gen-
erate all communities for a graph are often considered to
be offline solutions, since they are often costly and time-
consuming, especially on very large graphs.

Technical challenges and our contributions. We face
two important questions: (1) What should be a sound defi-
nition of an AC? (2) How to evaluate ACQ efficiently? For
the first question, we define an AC based on the minimum
degree, which is one of the most common structure cohe-
siveness metrics [28,13,34,6]. This measure requires that
every vertex in the community has a degree of k or more.
We formulate the keyword cohesiveness as maximizing the
number of shared keywords in keyword set S. The shared
keywords naturally reveal the common features among ver-
tices (e.g., common interest of social network users). We can
also use these shared keywords to explain how a community
is formed.

The second question is not easy to answer, because the
attributed graph G to be explored can be very large, and the
(structure and keyword) cohesiveness criteria can be com-
plex to handle. A simple way is first to consider all the pos-
sible keyword combinations, and then return the subgraph-
s, which satisfy the minimum degree constraint and have
the most shared keywords. This solution, which requires the
enumeration of all the subsets of q’s keyword set, has a com-

1 URL of the SDSS project: http://www.sdss.org.
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Fig. 2 Two ACs of Jim Gray.

plexity exponential to the size l of q’s keyword set. In our
experiments, for some queries, l can be up to 30, resulting
in the consideration of 230 = 1, 073, 741, 824 subsets of q.
The algorithm is impractical, especially when q’s keyword
set is large.

We observe the anti-monotonicity property, which states
that given a set S of keywords, if it appears in every vertex
of an AC, then for every subset S′ of S, there exists an AC in
which every vertex contains S′. We use this intuition to pro-
pose better algorithms. We further develop the CL-tree, an
index that organizes the vertex keyword data in a hierarchi-
cal structure. The CL-tree has a space and construction time
complexity linear to the size of G. Based on the CL-tree
index, we have developed three different ACQ algorithms,
and they are able to achieve a superior performance. In prac-
tice, graphs are continuously evolving [29,2]. For instance,
in the friendship network of Facebook, users may change
their profiles, and make new friends or remove friendship.
Thus the CL-tree index needs to be updated to reflect the
changes in the graph. A straightforward method to handle
the update is to rebuild the CL-tree from scratch. However,
this can be very computationally expensive, especially when
the updates are very frequent. To alleviate this issue, we have
developed efficient algorithms to maintain the CL-tree index
for dynamic graphs.

In addition, we have proposed two problems that are re-
lated to the ACQ problem, which are called Approximate
ACQ problem (or ACQ-A) and Multiple-vertex ACQ prob-
lem (or ACQ-M) respectively. ACQ-A is an approximation
version of the ACQ query, in which vertices of an AC do
not need to exactly share the same keywords as that in AC-
Q. It relaxes the constraint on sharing common keyword-
s; this could be very useful if vertices of the graph do not
have much keyword information. ACQ-M generalizes the
ACQ query for supporting multiple query vertices. It takes
multiple query vertices as input and returns the ACs con-
taining all of them. This could be very helpful if we want
to find the ACs for a group of query vertices. For example,
a database workshop organizer may be interested in invit-
ing researchers who have a close relationship with both Jim
Gray and Michael Stonebraker. To answer the queries for

ACQ-A and ACQ-M, we have also developed efficient algo-
rithms based on the CL-tree index.

We have performed extensive experiments on six large
real graph datasets. We found that a large number of com-
mon keywords appear across vertices in our graph datasets.
In DBLP, for instance, an AC with one common keyword
contains over 5,000 vertices on average; an AC with two
common keywords contains over 700 vertices. Hence, us-
ing shared keywords among vertices as keyword cohesive-
ness makes sense. We have also studied how to quantify
the quality of a community, based on occurrence frequen-
cies of keywords and similarity between the keyword sets
of two vertices. We conducted a detailed case study on D-
BLP. These results confirm the superiority of the AC over
the communities returned by existing community detection
and community search algorithms, in terms of communi-
ty quality. The performance of our best algorithm is 2 to
3 order-of-magnitude faster than solutions that do not use
the CL-tree. We have also experimentally evaluated the in-
dex maintenance algorithms and the results show that they
are very efficient. Moreover, we perform the queries of the
ACQ-A and ACQ-M problems, and the results show that our
index-based algorithms are much faster than the baseline al-
gorithms. In addition, our approaches achieve a higher ef-
ficiency than existing community search solutions (that do
not use vertex keywords in the community search process).

Organization. We review the related work in Section 2,
and define the ACQ problem formally in Section 3. Section 4
presents the basic solutions, and Section 5 discusses the CL-
tree index. In Section 7, we discuss how to maintain the CL-
tree index for dynamic graphs. We present the query algo-
rithms in Section 6. In Section 8, we introduce two problems
related to the ACQ problem and the corresponding query al-
gorithms. Our experimental results are reported in Section 9.
We conclude in Section 10.

2 Related Work

Community detection (CD). A large class of studies
aim to discover or detect all the communities from an en-
tire graph. Table 1 summarises these works. Earlier solu-
tions, such as [28,13], employ link-based analysis to obtain
these communities. However, they do not consider the tex-
tual information associated with graphs. Recent works focus
on attributed graphs, and use clustering techniques to iden-
tify communities. For instance, Zhou et al. [42] considered
both links and keywords of vertices to compute the vertices’
pairwise similarities, and then clustered the graph. Ruan et
al. [30] proposed a method called CODICIL. This solution
augments the original graphs by creating new edges based
on content similarity, and then uses an effective graph sam-
pling to boost the efficiency of clustering. We will compare
ACQ with this method experimentally.



4 Yixiang Fang et al.

Another common approach is based on topic models.
In [27,24], the Link-PLSA-LDA and Topic-Link LDA
models jointly model vertices’ content and links based on
the LDA model. In [37], the attributed graph is clustered
based on probabilistic inference. In [31], the topics, inter-
action types and the social connections are considered for
discovering communities. CESNA [39] detects overlapping
communities by assuming communities “generate” both the
link and content. A discriminative approach [40] has also
been considered for community detection. As discussed be-
fore, CD algorithms are generally slow, as they often consid-
er the pairwise distance/similarity among vertices. Also, it is
not clear how they can be adapted to perform online ACQ.
In this paper, we propose online algorithms for finding com-
munities on attributed graphs.

Community search (CS). Another class of solutions aim-
s to obtain communities in an “online” manner, based on
a query request. For example, given a vertex q, several ex-
isting works [34,6,22,5,18] have developed fast algorithms
to obtain a community for q. To measure the structure co-
hesiveness of a community, the minimum degree is often
used [34,6,22]. Sozio et al. [34] proposed the first algorithm
Global to find the k-ĉore containing q. Cui et al. [6] pro-
posed Local, which uses local expansion techniques to en-
hance the performance of Global. We will compare these
two solutions in our experiments. Other definitions, includ-
ing k-clique [5], k-truss [18] and edge connectivity [17],
have also been considered for searching communities. A re-
cent work [22] finds communities with high influence. These
works assume non-attributed graphs, and overlook the rich
information of vertices that come with attributed graphs. As
we will see, performing CS on attributed graphs is better
than on non-attributed graphs. An earlier version of this pa-
per can be found in [11].

Graph keyword search. Given an attributed graph G
and a set Q of keywords, graph keyword search solutions
output a tree structure, whose nodes are vertices of G, and
the union of these vertices’ keyword sets is a superset of
Q [7,20]. Recent work studies the use of a subgraph of G
as the query output [21]. These works are substantially d-
ifferent from the ACQ problem. First, they do not specify
query vertices as required by the ACQ problem. Second, the
tree or subgraph produced do not guarantee structure cohe-
siveness. Third, keyword cohesiveness is not ensured; there
is no mechanism that enforces query keywords to be shared
among the keyword sets of all query output’s vertices. Thus,
these solutions are not designed to find ACs.

3 The ACQ Problem

We now discuss the attributed graph model, the k-core,
and the AC. In the CS and CD literature, most existing works
assume that the underlying graph is undirected [34,22,37,

Table 2 Symbols and meanings.

Symbol Meaning

G(V,E) A graph with vertex set V and edge set E
W (v) The keyword set of vertex v
degG(v) The degree of vertex v in G

G[S′]
The largest connected subgraph of G s.t. q∈G[S′]

and ∀v∈G[S′], S′⊆W (v)

Gk[S′]
The largest connected subgraph of G s.t. q∈Gk[S′]

and ∀v∈Gk[S′], degGk[S′]v ≥ k and S′⊆W (v)

30]. We also suppose that an attributed graph G(V,E) is
undirected, with vertex set V and edge set E. Each vertex
v ∈ V is associated with a set of keywords, W (v). Let n
and m be the corresponding sizes of V and E. The degree
of a vertex v of G is denoted by degG(v). Table 2 lists the
symbols used in the paper.

A community is often a subgraph ofG that satisfies struc-
ture cohesiveness (i.e., the vertices contained in the commu-
nity are linked to each other in some way). A common no-
tion of structure cohesiveness is that the minimum degree of
all the vertices that appear in the community has to be k or
more [34,33,4,8,6,22]. This is used in the k-core and the
AC. Let us discuss the k-core first.

Definition 1 (k-core [33,4]) Given an integer k (k ≥ 0),
the k-core of G, denoted by Hk, is the largest subgraph of
G, such that ∀v ∈ Hk, degHk

(v) ≥ k.

We say that Hk has an order of k. Notice that Hk may
not be a connected graph [4], and its connected components,
denoted by k-ĉores, are usually the “communities” returned
by k-ĉore search algorithms.
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Fig. 3 Illustrating the k-core and the AC.

Example 1 In Figure 3(a), {A,B,C,D} is both a 3-core
and a 3-ĉore. The 1-core has vertices {A,B,C,D,E, F,G,
H, I}, and is composed of two 1-ĉore components: {A,B,
C,D,E, F,G} and {H, I}. The number k in each circle
represents the k-ĉore contained in that ellipse.

Observe that k-cores are “nested” [4]: given two positive
integers i and j, if i < j, then Hj ⊆ Hi. In Figure 3(a), H3

is contained in H2, which is nested in H1.
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Definition 2 (Core number) Given a vertex v ∈ V , its core
number, denoted by coreG[v], is the highest order of a k-
core that contains v.

A list of core numbers and their respective vertices for
Example 1 are shown in Figure 3(b). In [4], an O(m) algo-
rithm was proposed to compute the core number of every
vertex.

We now formally define the ACQ problem as follows.

Problem 1 (ACQ) Given a graph G(V,E), a positive inte-
ger k, a vertex q ∈ V and a set of keywords S ⊆ W (q),
return a set G of graphs, such that ∀Gq ∈ G, the following
properties hold:

• Connectivity. Gq ⊆ G is connected and q ∈ Gq;
• Structure cohesiveness. ∀v ∈ Gq , degGq

(v) ≥k;
• Keyword cohesiveness. The size of L(Gq, S) is max-

imal, where L(Gq, S) = ∩v∈Gq (W (v) ∩ S) is the set of
keywords shared in S by all vertices of Gq .

We call Gq the attributed community (or AC) of q, and
L(Gq, S) the AC-label of Gq . In Problem 1, the first two
properties are also specified by the k-ĉore of a given ver-
tex q [34]. The keyword cohesiveness (Property 3), which
is unique to Problem 1, enables the retrieval of communi-
ties whose vertices have common keywords in S. We use
S to impose semantics on the AC produced by Problem 1.
By default, S = W (q), which means that the AC generated
should have keywords common to those associated with q.
If S ⊂ W (q), it means that the ACQ user is interested in
forming communities that are related to some (but not all)
of the keywords of q. A user interface could be developed
to display W (q) to the user, allowing her to include the de-
sired keywords into S. For example, in Figure 3(a), if q=A,
k=2 and S={w, x, y}, the output of Problem 1 is {A,C,D},
with AC-label {x, y}, meaning that these vertices share the
keywords x and y.

We require L(Gq, S) to be maximal in Property 3, be-
cause we wish the AC(s) returned only contain(s) the most
related vertices, in terms of the number of common key-
words. Let us use Figure 3(a) to explain why this is impor-
tant. Using the same query (q=A,k=2,S= {w, x, y}), with-
out the “maximal” requirement, we can obtain communi-
ties such as {A,B,E} (which do not share any keyword-
s), {A,B,D}, or {A,B,C} (which share 1 keyword). Note
that there does not exist an AC with AC-label being exact-
ly {w, x, y}. Our experiments (Section 9) show that impos-
ing the “maximal” constraint yields the best result. Thus, we
adopt Property 3 in Problem 1. If there is no AC whose ver-
tices share one or more keywords (i.e., |L(Gq, S)|=0), we
return the subgraph of G that satisfies Properties 1 and 2
only. 2

2 In practice, the query user can be alerted by the system when there
is no sharing among the vertices.

There are other candidates for structure cohesiveness (e.g.,
k-truss, k-clique) and keyword cohesiveness (e.g., Jaccard
similarity and string edit distance). An AC can also be de-
fined in different ways. For example, an ACQ user may spec-
ify that an AC returned must have vertices that contain a spe-
cific set of keywords. An interesting direction is to extend
ACQ to support for these criteria, and study their effective-
ness.

4 Basic Solutions

For ease of presentation, we say that v contains a set
S′ of keywords, if S′ ⊆ W (v). We use G[S′] to denote the
largest connected subgraph ofG, where each vertex contains
S′ and q ∈ G[S]. We use Gk[S

′] to denote the largest con-
nected subgraph of G[S′], in which every vertex has degree
being at least k in Gk[S

′]. We call S′ a qualified keyword
set for the query vertex q on the graph G, if Gk[S

′] exists.
Given a query vertex q, a straightforward method to an-

swer ACQ performs three steps. First, all non-empty subsets
of S, S1, S2, · · · , S2l−1 (l=|S|), are enumerated. Then, for
each subset Si(1≤ i ≤ 2l−1), we verify the existence of
Gk[Si] and compute it when it exists (We postpone to dis-
cuss the details). Finally, we output the subgraphs having the
most shared keywords among all Gk[Si].

One major drawback of the straightforward method is
that we need to compute 2l − 1 subgraphs (i.e., Gk[Si]).
For large values of l, the computation overhead renders the
method impractical, and we do not further consider this method
in the paper. To alleviate this issue, we propose the following
two-step framework.

4.1 Two-Step Framework

The two-step framework is mainly based on the follow-
ing anti-monotonicity property.

Lemma 1 (Anti-monotonicity) Given a graph G, a vertex
q ∈ G and a set S of keywords, if there exists a subgraph
Gk[S], then there exists a subgraph Gk[S

′] for any subset
S′ ⊆ S.

All the proofs of lemmas studied in this paper can be
found in Appendix A. The anti-monotonicity property al-
lows us to stop examining all the super sets of S′(S′ ⊆ S),
once have verified that Gk[S

′] does not exist. The basic so-
lution begins with examining the set, Ψ1, of size-1 candidate
keyword sets, i.e., each candidate contains a single keyword
of S. It then repeatedly executes the following two key steps,
to retrieve the size-2 (size-3, . . . ) qualified keyword subsets
until no qualified keyword sets are found.
• Verification. For each candidate S′ in Ψc (initially

c=1), mark S′ as a qualified set if Gk[S
′] exists.
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•Candidate generation. For any two current size-c qual-
ified keyword sets which only differ in one keyword, union
them as a new expanded candidate with size-(c+1), and put
it into set Ψc+1, if all its subsets are qualified, by Lemma 1.

Among the above steps, the key issue is how to com-
pute Gk[S

′]. Since Gk[S
′] should satisfy the structure co-

hesiveness (i.e., minimum degree at least k) and keyword
cohesiveness (i.e., every vertex contains keyword set S′). In-
tuitively, we have two approaches to compute Gk[S

′]: either
searching the subgraph satisfying degree constraint first, fol-
lowed by further refining with keyword constraints (called
basic-g); or vise versa (called basic-w). These two al-
gorithms form our baseline solutions. Their pseudocodes are
presented in Appendix B.

5 CL-tree Index

The major limitation of basic-g and basic-w is that
they need to find the k-ĉores and do keyword filtering re-
peatedly. This makes the community search very inefficient.
To achieve higher query efficiency, we propose a novel in-
dex, called CL-tree (Core Label tree), which organizes both
the k-ĉores and keywords into a tree structure. Based on the
index, the efficiency of answering ACQ and its variants can
be improved significantly. We first introduce the index in
Section 5.1, and then propose two index construction meth-
ods in Section 5.2.

5.1 Index Overview

The CL-tree index is built based on the key observa-
tion that cores are nested. Specifically, a (k+1)-ĉore must
be contained in a k-ĉore. The rationale behind is, a subgraph
has a minimum degree at least k+1 implies that it has a min-
imum degree at least k. Thus, all k-ĉores can be organized
into a tree structure3. We illustrate this in Example 2.

Example 2 Consider the graph in Figure 3(a). All the k-
ĉores can be organized into a tree as shown in Figure 4(a).
The height of the tree is 4. For each tree node, we attach the
core number and vertex set of its corresponding k-ĉore.

From the tree structure in Figure 4(a), we conclude that,
if a (k+1)-ĉore (denoted as Ck+1) is contained in a k-ĉore
(denoted as Ck), then there is a tree node corresponding to
Ck+1 and its parent node corresponds to Ck. Besides, the
height of the tree is at most kmax + 1, where kmax is the
maximum core number.

The tree structure in Figure 4(a) can be stored compact-
ly, as shown in Figure 4(b). The key observation is that, for
any internal node p in the tree, the vertex sets of its child

3 We use “node” to mean “CL-tree node” in this paper.
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Fig. 4 An example CL-tree index.

nodes are the subsets of p’s vertex set, because of the inclu-
sion relationship. To save space cost, we can remove the re-
dundant vertices that are shared by p’s child nodes from p’s
vertex set. After such removal, we obtain a compressed tree,
where each graph vertex appears only once. This structure
constitutes the CL-tree index, the nodes of which are further
augmented by inverted lists (Figure 4(b)). For each keyword
e that appears in a CL-tree node, a list of IDs of vertices
whose keyword sets contain e is stored. For example, in n-
ode r3, the inverted list of keyword y contains {A,C,D}.
As discussed later, given a keyword set T , these inverted
lists allow efficient retrieval of vertices whose keyword sets
contain T . To summarize, each CL-tree node p contains five
elements:
• coreNum: the core number of the k-ĉore;
• vertexSet: a set of graph vertices;
• invertedList: a list of <key, value> pairs, where the

key is a keyword contained by vertices in vertexSet and the
value is the list of vertices in vertexSet containing key;
• childList: a list of child nodes;
• fatherNode: the father node of p.
Figure 4(b) depicts the CL-tree index for the example

graph in Figure 3(a), the elements of each tree node are la-
beled explicitly. Using the CL-tree, the following two key
operations used by our query algorithms (Section 6), can be
performed efficiently.
• Core-locating. Given a vertex q and a core number c,

find the k-ĉore with core number c containing q, by travers-
ing the CL-tree.
•Keyword-checking. Given a k-ĉore, find vertices which

contain a given keyword set, by intersecting the inverted lists
of keywords contained in the keyword set.

Remarks. The CL-tree can also support k-ĉore queries
on general graphs without keywords. For example, it can
be applied to finding k-ĉore in previous community search
methods [34].

Space cost. Since each graph vertex appears only once
and each keyword only needs constant space cost, the space
cost of keeping such an index isO(l̂ ·n), where l̂ denotes the
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average size of W (v) over V . Thus, the space cost is linear
to the size of G.

5.2 Index Construction

To build the CL-tree index, we propose two method-
s, basic and advanced, as presented in Section 5.2.1
and 5.2.2.

5.2.1 The Basic Method

As k-ĉores of a graph are nested naturally, it is straight-
forward to build the CL-tree recursively in a top-down man-
ner. Specifically, we first generate the root node for 0-core,
which is exactly the entire graph. Then, for each k-ĉore of
1-core, we generate a child node for the root node. After
that, we only remain vertices with core numbers being 0 in
the root node. Then for each child node, we can generate its
child nodes in the similar way. This procedure is executed
recursively until all the nodes are well built.

Algorithm 1 Index construction: basic
1: function BUILDINDEX(G(V,E))
2: coreG[ ]← k-core decomposition on G;
3: k ←0, root← (k, V );
4: BUILDNODE(root, 0);
5: build an inverted list for each tree node;
6: return root;
7: function BUILDNODE(root, k)
8: k ← k + 1;
9: if k ≤ kmax then

10: obtain Uk from root;
11: compute the connected components for the induced graph

on Uk;
12: for each connected component Ci do
13: build a tree node pi ← (k,Ci.vertexSet);
14: add pi into root.childList;
15: remove Ci’s vertex set from root.vertexSet;
16: BUILDNODE(pi , k);

Algorithm 1 illustrates the pseudocodes. We first do k-
core decomposition using the linear algorithm [4], and ob-
tain an array coreG[ ](line 2), where coreG[i] denotes the
core number of vertex i in G. We denote the maximal core
number by kmax. Then, we initialize the root node by the
core number k=0 and V (line 3). Next, we call the function
BUILDNODE to build its child nodes (line 4). Finally, we
build an inverted list for each tree node and obtain a well
built CL-tree (lines 5-6).

In BUILDNODE, we first update k and obtain the ver-
tex set Uk from root.vertexSet, which is a set of vertices
with core numbers being at least k. Then we find all the con-
nected components from the subgraph induced by Uk (lines
8-11). Since each connected component Ci corresponds to

a k-ĉore, we build a tree node pi with core number k and
the vertex set of Ci, and then link it as a child of root (lines
12-14). We also update root’s vertex set by removing ver-
tices (line 15), which are shared by Ci. Finally, we call the
BUILDNODE function to build pi’s child nodes recursively
until all the tree nodes are created (line 16).

Complexity analysis. The k-core decomposition can be
done inO(m). The inverted lists of each node can be built in
O(l̂ · n). In function BUILDNODE, we need to compute the
connected components with a given vertex set, which costs
O(m) in the worst case. Since the recursive depth is kmax,
the total time cost isO(m ·kmax+ l̂ ·n). Similarly, the space
complexity is O(m+ l̂ · n).

5.2.2 The Advanced Method

While the basic method is easy to implement, it meet-
s efficiency issues when both the given graph size and it-
s kmax value are large. For instance, when given a clique
graph with n vertices (i.e., edges exist between every pair
of nodes), the value of kmax is n–1. Therefore, the time
complexity of the basic method could be O((m+ l̂) · n),
which may lead to low efficiency for large-scale graphs. To
enable more efficient index construction, we propose the
advanced method, whose time and space complexities are
almost linear with the size of the input graph.

The advanced method builds the CL-tree level by lev-
el in a bottom-up manner. Specifically, the tree nodes corre-
sponding to larger core numbers are created prior to those
with smaller core numbers. For ease of presentation, we di-
vide the discussion into two main steps: creating tree nodes
and creating tree edges.

1. Creating tree nodes. We observe that, if we acquire
the vertices with core numbers at least c and denote the in-
duced subgraph on the vertices as Tc, then the connected
components of Tc have one-to-one correspondence to the c-
ĉores. A simple algorithm would be, searching connected
components for Tc(0 ≤ c ≤ kmax) independently, followed
by creating one node for each distinct component. This al-
gorithm apparently costs O(kmax · m) time, as computing
connected components takes linear time.

However, we can do better if we can incrementally up-
date the connected components in a level by level manner
(i.e., maintain the connected components of Tc+1 from those
of Tc). We note that, such a node creation process is feasi-
ble by exploiting the classical union-find forest [1]. Gener-
ally speaking, the union-find forest enables efficient main-
tenance of connected components of a graph when edges
are incrementally added. Using union-find forest to main-
tain connected components follows a process of edge ex-
amination. Initially, each vertex is regarded as a connected
component. Then, edges are examined one by one. During
the examine process, two components are merged together
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when encounters an edge connecting them. To achieve an ef-
ficient merge of components, the vertices in the component
form a tree. The tree root acts as the representative vertex
of the component. As such, merging two components is es-
sentially linking two root vertices together. To guarantee the
CL-tree nodes are formed in a bottom-up manner, we assign
an examine priority to each edge. The priority is defined by
the larger value of the two core numbers corresponding to
the two end vertices of an edge. The edges associated to ver-
tices with larger core numbers are examined first.

2. Creating tree edges. Tree edges are also inserted dur-
ing the graph edge examination process. In particular, when
we examine a vertex v with a set, B, of its neighbors, whose
core numbers are larger than coreG[v], we require that the
tree node containing v should link to the tree node contain-
ing the vertex, whose core number is the smallest among
all the vertices in B. Nevertheless, the classical union-find
forest is not able to maintain such information. To address
this issue, we thus propose an auxiliary data structure, called
Anchored Union-Find (details of AUF are in Appendix D),
based on the classical union-find forest. We first define an-
chor vertex.

Definition 3 (Anchor vertex) Given a connected subgraph
G′ ⊆ G, the anchor vertex is the vertex with core number
being min{coreG[v]|v ∈ G′}.

The AUF is an extension of union-find forest, in which
each tree has an anchor vertex, and it is attached to the root
node. In CL-tree, for any node p with corresponding k-ĉore
Ck, its child nodes correspond to the k-ĉores, which are con-
tained by Ck and have core numbers being the most close to
the core number of node p. This implies that, when build-
ing the CL-tree in a bottom-up manner, we can maintain the
anchor vertices for the k-ĉores dynamically, and they can
be used to link nodes with their child nodes. In addition, we
maintain a vertex-node map, where the key is a vertex and
the value is the tree node contains this vertex, for locating
tree nodes.

Algorithm 2 presents the advanced method. Similar
with basicmethod, we first conduct k-decomposition (line
2). Then, for each vertex, we initialize an AUF tree node
(line 3). We group all the vertices into sets (line 4), where set
Vk contains vertices with core numbers being exactly k (line
5). Next, we initialize k as kmax and the vertex-node map
map, where the key is a vertex and the value is a CL-tree
node whose vertex set contains this vertex. In the while loop
(lines 6-25), we first find the set V ′ of the representatives
for vertices in Vk, then compute the connected components
for vertex set Vk ∪ V ′ (lines 7-9). Next, we create a node
pi for each component (lines 10-11). For each vertex v ∈
{Ci − V ′}, we add a pair (v, pi) to the map (lines 12-13).
Then for each of v’s neighbor, u, if its core number is at least
coreG[v], we link u and v together in the AUF by a UNION

Algorithm 2 Index construction: advanced
1: function BUILDINDEX(G(V,E))
2: coreG[ ]← k-core decomposition on G;
3: for each v ∈ V do MAKESET(v);
4: put vertices into sets V0, V1, · · · , Vkmax

;
5: k ← kmax, map← ∅;
6: while k ≥ 0 do
7: V ′ ← ∅;
8: for each v ∈ Vk do V ′.add(FIND(v));
9: compute connected components for Vk ∪ V ′;

10: for each component with vertex set Ci do
11: create a node pi using (k, {Ci − V ′});
12: for each v ∈ {Ci − V ′} do
13: map.add(v, pi);
14: for each u ∈ v’s neighbor vertices do
15: if coreG[u] ≥ coreG[v] then
16: UNION(u, v);
17: if coreG[u] > coreG[v] then
18: uRoot←FIND(u);
19: uAnchor ← uRoot.anchor;
20: p′ ←map.get(uAnchor);
21: add p′ to p’s child List;
22: vRoot←FIND(v);
23: if coreG[vRoot.anchor] > coreG[v] then
24: UPDATEANCHOR(vRoot, coreG[ ], v);
25: k ← k − 1;
26: build the root node root;
27: build an inverted list for each tree node;
28: return root.

operation (lines 14-16), and find pi’s child nodes using the
anchor of the AUF tree (lines 17-21). After vertex v has been
added into the CL-tree, we update the anchor (lines 22-24).
Then we move to the upper level in next loop (line 25). After
the while loop, we build the root node of the CL-tree (line
26). Finally, we build the inverted list for each tree node and
obtain the built index (lines 27-28).

Complexity analysis. In Algorithm 2, lines 1-3 can be
completed in O(m) (We assume m≥n). In the while loop,
the number of operations on each vertex and its neighbors
are constant, and each can be done inO(α(n)), where α(n),
the inverse Ackermann function, is less than 5 for all re-
motely practical values of n. The keyword inverted lists of
all the tree nodes can be computed inO(n · l̂). Therefore, the
CL-tree can be built in O(m · α(n) + n · l̂). The space cost
is O(m+ n · l̂), as maintaining an AUF takes O(n).

Example 3 Figure 5 depicts an example graph with 14 ver-
tices A, · · · , N . Vi denotes the set of vertices whose core
numbers are i. When k=3, we first generate two leaf nodes
p1 and p2, then update the AUF, where roots’ anchor ver-
tices are in the round brackets. When k=2, we first generate
node p3, then link it to p1, and then update the AUF forest.
When k=1, we first generate nodes p4 and p5. Specifically,
to find the child nodes of p4, we first find its neighbor A,
then find A’s parent B using current AUF forest. Since the
anchor vertex of B is E and E points to p3 in the inverted
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Fig. 5 An index built by advanced method.

array, we add p3 into p4’s child List. When k=0, we generate
p6 and finish the index construction.

6 Query Algorithms

In this section, we present three query algorithms based
on the CL-tree index. Based on how we verify the candidate
keyword sets, we divide our algorithms into incremental al-
gorithms (from examining smaller candidate sets to larg-
er ones) and decremental algorithm (from examining larger
candidate sets to smaller ones). We propose two incremental
algorithms called Inc-S (Incremental Space efficient) and
Inc-T (Incremental Time efficient), to trade off between
the memory consumption and the computational overhead.
The decremental algorithm is called Dec (Decremental). Our
interesting finding is that, while Dec seems not intuitive, it
ranks as the most efficient one. Inc-S and Inc-T are pre-
sented in Section 6.1. Dec is introduced in Section 6.2.

6.1 The Incremental Algorithms

While the high-level idea of incremental algorithms re-
sembles the basic solutions (see Section 4), Inc-S and Inc-T
advance them with the exploitation of the CL-tree. Specifi-
cally, they can always verify the existence of Gk[S

′] within
a subgraph of G instead of the entire graph G. More inter-
estingly, the subgraph for such verifications shrinks when
the candidate set S′ expands. Therefore, a large sum of re-
dundant computation is cut off during the verification. We
present Inc-S and Inc-T in Sections 6.1.1 and 6.1.2.

6.1.1 Inc-S Algorithm

We first introduce a new concept, called subgraph core
number, which is geared to the main idea of Inc-S.

Definition 4 (Subgraph core number) The core number of
a subgraphG′ ofG, coreG[G′], is defined asmin{coreG[v]|
v ∈ G′}.

Inc-S follows the two-step framework (verification and
candidate generation) introduced in Section 4. With the CL-
tree, we improve the verification step as follows.

– Core-based verification. For each newly generated size-
(c+1) candidate keyword set S′ expanded from size-c
sets S1 and S2, mark S′ as a qualified set if Gk[S

′] ex-
ists in a subgraph of core number max{coreG[Gk[S1]],
coreG[Gk[S2]]}.
The core-based verification guarantees that, with the ex-

pansion of the candidate keyword sets, the verification be-
comes faster as it only needs to examine the existence of
Gk[S

′] in a smaller k-ĉore (Recall that cores with large core
numbers are nested in the cores with small core numbers).
The correctness of such shrunk verification range is guaran-
teed by the following lemma.

Lemma 2 Given two subgraphs Gk[S1] and Gk[S2] of a
graph G, for a new keyword set S′ generated from S1 and
S2 (i.e., S′ = S1 ∪ S2), if Gk[S

′] exists, then it must appear
in a k-ĉore with core number at least

max{coreG[Gk[S1]], coreG[Gk[S2]]}. (1)

The verification process can be further accelerated by
checking the numbers of vertices and edges, as indicated by
Lemma 3.

Lemma 3 Given a connected graph G(V,E) with n=|V |
and m=|E|, if m− n < k2−k

2 − 1, there is no k-ĉore in G.

This lemma implies that, for a connected subgraph G′,
whose edge and vertex numbers are m and n, if m − n <
k2−k

2 − 1, then we cannot find Gk[S
′] from G′.

We present Inc-S in Algorithm 3. The input is a CL-
tree rooted at root, a query vertex q, a positive integer k
and a keyword set S. We apply core-locating on the
CL-tree to locate the internal nodes whose corresponding k-
ĉores contain q (line 2). Note that their core numbers are
in the range of [k, coreG[q]], as required by the structure
cohesiveness. Then, we set l=0, indicating the sizes of cur-
rent keyword sets, and initialize a set Ψ of <S′, c> pairs,
where S′ is a set containing a keyword from S and c is
the initial core number k (line 3). Note that we skip those
keywords, which are in S, but not in W (q). In the while
loop (lines 4-18), for each <S′, c> pair, we first perform
keyword-checking to find G[S′] using the keyword in-
verted lists of the subtree rooted at node rc. If we cannot
ensure that G[S′] does not contain a k-ĉore by Lemma 3,
we then find Gk[S

′] from G[S′] (lines 8-9). If Gk[S
′] exists,

we put S′ with its core number into the set Φl (lines 10-11).
Next, if Φl is nonempty, we generate new candidates by call-
ing GENECAND(Φl), which is detailed in Appendix C. For
each candidate S′ in Ψ , we compute the core number using
Lemma 2 and update it as a pair in Ψ (lines 12-17); other-
wise, we stop (line 18). Finally, we output the communities
of the latest verified keyword sets (line 19).
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Algorithm 3 Query algorithm: Inc-S
1: function QUERY(G, root, q, k, S)
2: find subtree root nodes rk, rk+1, · · · , rcoreG[q];
3: initialize l=0, Ψ using S;
4: while true do
5: l← l + 1; Φl ← ∅;
6: for each <S′, c> ∈ Ψ do
7: find G[S′] under the root rc;
8: if G[S′] is not pruned by Lemma 3 then
9: find Gk[S′] from G[S′];

10: if Gk[S′] exists then
11: Φl.add(<S′, coreG[Gk[S′]]>);
12: if Φl 6= ∅ then
13: Ψ ← GENECAND(Φl);
14: for each S′ in Ψ do
15: if S′ is generated from S1 and S2 then
16: c← max{coreG[Gk[S1]], coreG[Gk[S2]]};
17: Ψ .update(S′, <S′, c>);
18: else break;
19: output the communities of keyword sets in Φl−1;

Example 4 Consider the graph in Figure 3(a) and its index
in Figure 4(b). Let q=A, k=1 and S={w, x, y}. By Algorith-
m 3, we first find 3 root nodes r1, r2 and r3. In the first while
loop, we find 2 qualified keyword sets {x}and{y}with core
numbers being 3 and 1. By Lemma 2, we only need to verify
the new candidate keyword set {x, y} under node r3.

6.1.2 Inc-T Algorithm

We begin with a lemma which inspires the design of
Inc-T.

Lemma 4 Given two keyword sets S1 and S2, ifGk[S1] and
Gk[S2] exist, we have

Gk[S1 ∪ S2] ⊆ Gk[S1] ∩Gk[S2]. (2)

This lemma implies, if S′ is generated from S1 and S2,
we can find Gk[S

′] from Gk[S1] ∩ Gk[S2] directly. Since
every vertex inGk[S1]∩Gk[S2] contains both S1 and S2, we
do not need to consider the keyword constraint again when
finding Gk[S

′].
Based on Lemma 4, we introduce a new algorithm Inc-T.

Different from Inc-S, Inc-TmaintainsGk[S
′] rather than

coreG[Gk[S
′]] for each qualified keyword set S′. As we will

demonstrate later, Inc-T is more effective for shrinking the
subgraphs containing the ACs, and thus more efficient. As a
trade-off for better efficiency, Inc-T consumes more mem-
ory as it needs to store a list of subgraph Gk[S

′] in memory.
Algorithm 4 presents the steps of Inc-T. We first ap-

ply core-locating to find the k-ĉore containing q from
the CL-tree (line 2). Then, we set l=0, indicating the sizes
of current keyword sets, and initialize a set Ψ of < S′, Ĝ >

pairs, where S′ is a set containing a keyword from S and Ĝ
is the k-ĉore. The while loop (lines 4-18) is similar with that

Algorithm 4 Query algorithm: Inc-T
1: function QUERY(G, root, q, k, S)
2: find the k-ĉore, which contains q;
3: initialize l=0, Ψ using S;
4: while true do
5: l← l + 1; Φl ← ∅;
6: for each < S′, Ĝ > ∈ Ψ do
7: find G[S′] from Ĝ;
8: if G[S′] is not pruned by Lemma 3 then
9: find Gk[S′] from G[S′];

10: if Gk[S′] exists then
11: Φl.add(< S′, Gk[S′] >);
12: if Φl 6= ∅ then
13: Ψ ← GENECAND(Φl);
14: for each S′ ∈ Ψ do
15: if S′ is generated from S1 and S2 then
16: Ĝ← Gk[S1] ∩Gk[S2];
17: Ψl.update(S′,< S′, Ĝ >);
18: else break;
19: output the communities of keyword sets in Φl−1;

of Inc-S. The main differences are that: (1) for each qual-
ified keyword set S′, Inc-T keeps Gk[S

′] in memory (line
11); and (2) for each candidate keyword set S′ generated
from S1 and S2, Inc-T findsGk[S

′] fromGk[S1]∩Gk[S2]

directly without further keyword verification (lines 6-9, 16).

Example 5 Continue the graph and query (q=A, k=1, S={w,
x, y}) in Example 4. By Inc-T, we first find G1[{x}] and
G1[{y}], whose vertex sets are {A,B,C,D} and {A,C,D,
E,F,G}. Then to find G1[{x, y}], we only need to search it
from the subgraph, induced by the vertex set {A,C,D}.

6.2 The Decremental Algorithm

The decremental algorithm, denoted by Dec, differs from
previous query algorithms not only on the generation of can-
didate keyword sets, but also on the verification of candidate
keyword sets.

1. Generation of candidate keyword sets. Dec exploits
the key observation that, if S′ (S′ ⊆ S) is a qualified key-
word set, then there are at least k of q’s neighbors containing
set S′. This is because every vertex in Gk[S

′] must has de-
gree at least k. This observation implies, we can generate
all the candidate keyword sets directly by using the query
vertex q and q’s neighbors, without touching other vertices.

Specifically, we consider q and q’s neighbor vertices. For
each vertex v, we only select the keywords, which are con-
tained by S and at least k of its neighbors. Then we use
these selected keywords to form an itemset, in which each
item is a keyword. After this step, we obtain a list of item-
sets. Then we apply the well studied frequent pattern mining
algorithms (e.g., Apriori [14] and FP-Growth [15]) to find
the frequent keyword combinations, each of which is a can-
didate keyword set. Since our goal is to generate keyword
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combinations shared by at least k neighbors, we set the min-
imum support as k. In this paper, we use the well-known
FP-Growth algorithm [15].
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Fig. 6 An example of candidate generation.

Example 6 Consider a query vertexQ (k=3, S={v, x, y, z})
with 6 neighbors in Figure 6(a), where the selected keyword-
s of each vertex are listed in curly braces. By FP-Growth,
8 candidate keyword sets are generated, as shown in Fig-
ure 6(b). Ψi denotes the set of keyword sets with sizes being
i.

2. Verification of candidate keyword sets. As candi-
dates can be obtained using S and q’s neighbors directly, we
can verify them either incrementally as that in Inc-S, or
in a decremental manner (larger candidate keyword sets first
and smaller candidate keyword sets later). In this paper, we
choose the latter manner. The rationale behind is that, for
any two keyword sets S1 ⊆ S2, the number of vertices con-
taining S2 is usually smaller than that of S1, which implies
S2 can be verified more efficiently than S1.

Algorithm 5 Query algorithm: Dec
1: function QUERY(G, root, q, k, S)
2: generate Ψ1, Ψ2, · · · , Ψh using S and q’s neighbors;
3: find the subtree root node rk;
4: create R1, R2, · · · , Rh′ by using subtree rooted at rk;
5: l← h; Q← ∅;
6: R̂← Rh ∪ · · · ∪Rh′ ;
7: while l ≥ 1 do
8: for each S′ ∈ Ψl do
9: find G[S′] from the subgraph induced on R̂;

10: find Gk[S′] from G[S′];
11: if Gk[S′] exists then Q.add(Gk[S′]);
12: if Q=∅ then
13: l← l − 1;
14: R̂← R̂ ∪Rl;
15: else break;
16: output communities in Q;

Based on the above discussions, we design Dec as shown
in Algorithm 5. We first generate candidate keyword sets us-
ing S and q’s neighbors by FP-Growth algorithm (line 2).
Then, we apply core-locating to find the root (with
core number k) of the subtree from CL-tree, whose corre-
sponding k-ĉore contains q (line 3). Next, we traverse the

subtree rooted at rk and find vertices which share keyword-
s with q (line 4). Ri denote the sets of vertices sharing i

keywords with q. Then, we initialize l as h (line 5), as we
verify keyword sets with the largest size h first. We main-
tain a set R̂ dynamically, which contains vertices sharing at
least l keywords with q (line 6). In the while loop, we ex-
amine candidate keyword sets in the decremental manner.
For each candidate S′ ∈ Ψl, we first try to find G[S′], then
find Gk[S

′], and put Gk[S
′] into Q if it exists (lines 8-11).

Finally, if we have found at least one qualified community,
we stop at the end of this loop and output Q; otherwise, we
examine smaller candidate keyword sets in next loop.

7 Index Maintenance

In practice, the graphs are continuously evolving [29,2].
Thus keywords and edges of graphs are often frequently up-
dated. Clearly, when the graph is updated, both the CL-tree
index and the ACQ query results also need to be updated. A
straightforward method for handling the dynamic graph is
to rebuild the index from scratch when an update is made.
However, this method is very inefficient, especially when
the updates are very frequent. To alleviate this issue, in this
section we study how to dynamically maintain the CL-tree
index efficiently, and propose algorithms for maintaining the
CL-tree without rebuilding the CL-tree from scratch.

We first present how to handle keyword update in Sec-
tion 7.1. Then, we discuss the maintenance of CL-tree for
the insertion and deletion of an edge in Sections 7.2 and 7.3.

7.1 Keyword Update

The update for keyword update, i.e., inserting or delet-
ing a keyword from a vertex’s keyword set, is easy to be
handled, since we can simply find the CL-tree node con-
taining the vertex and update its invertedList. Recall that
in the advanced method (Section 5.2.2), we have built a
vertex-node map, where each vertex is mapped to a CL-tree
node. Note that we can build such a map by traversing the
tree if we use basic. To insert a new keyword for a vertex
v, we can first locate the CL-tree node, p, containing v by the
vertex-node map, and then insert the keyword and vertex ID
into p.invertedList. To remove a keyword of a vertex, we
can have a similar process on the CL-tree.

7.2 Edge Insertion

For the update of edge, i.e, inserting (deleting) an edge,
it is not straightforward update the CL-tree accordingly. This
is because, the insertion (deletion) of a single edge may trig-
ger updates in several CL-tree nodes as well as their struc-
tures. We illustrate this by Example 7.
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Example 7 Consider the graph in Figure 5. If we insert an
edge (H , G) as shown in Figure 7(a), the core number of
vertex H increases to 2 and we need to move it down to a
node in the lower level. If we insert an edge (G, I), the con-
nectivity of some vertices changes as shown in Figure 7(b)
and thus the corresponding subtrees are merged as a new
one.
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Fig. 7 The core number and connectivity change.

To maintain the CL-tree for inserting an edge, we pro-
pose an algorithm called insertEdge. The main idea is
that, we first find vertices whose core numbers change, then
change their positions in the CL-tree, and merge some sub-
trees. Let V + be the set of vertices whose core numbers in-
crease after inserting an edge (u, v). We summarize the main
steps of insertEdge as follows.
• Step 1: Compute V +;
• Step 2: Move down vertices of V +;
• Step 3: Merge subtrees.
We now elaborate these steps one by one.
Step 1: Compute V +. Inserting an edge only affects the

core numbers of a small number of vertices [23,32]. We first
give a definition, a theorem and a lemma proposed in this
paper.

Definition 5 ([23]) Given a graph G and a vertex v, the in-
duced core subgraph of v, denoted as Gv , is a connected
subgraph containing v and the core numbers of all vertices
in Gv equal to coreG[v].

Notice that, the sets of vertices in Gu (Gv) are actually
subsets of vertices in pu.vertexSet (pv.vertexSet), where
pu, pv denote the nodes that contain u, v.

Theorem 1 (k-core update [23]) Given a graph G and two
vertices u and v. After inserting or deleting an edge (u,v) in
G, we have that,
• If coreG[u] > coreG[v], only the core numbers of ver-

tices in Gv may need to be updated.

• If coreG[u] < coreG[v], only the core numbers of ver-
tices in Gu may need to be updated.
• If coreG[u] = coreG[v], only the core numbers of ver-

tices in the union of Gu and Gv , i.e., Gu∪v may need to be
updated.

Lemma 5 ([23]) After inserting (deleting) an edge, the core
number of any vertex in G increases (decreases) by at most
1.

By above theorem and lemma, we can conclude that only
a small number of vertices need to change their core num-
bers. In specific, we can first find node pu (pv) and then
compute the vertex set V + in which vertices’s core numbers
increase by 1 using the algorithm in [23].

Step 2: Move down vertices of V +. Let p be the node
containing V + and c=min{coreG[u], coreG[v]}). Since the
core numbers of vertices in V + increase by 1 (from c to
c+1), we need move them down to nodes in the lower level.
During the moving down process, we may also need to reor-
ganize p’s child nodes. Let us illustrate this by Example 8.
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Fig. 8 An example of the tree index update.

Example 8 Consider a graph in Figure 8(a) and its CL-tree
in Figure 8(b). Let us insert an new edge (8, 11). We first get
V +={8, 11, 23} and c=2. Next, we move them down from
r1 to r3. Besides, we have to merge r2 into r3 and place r4
as r3’s child node, since their connectivity changes after the
insertion. The updated CL-tree is depicted in Figure 8(c).

Clearly, moving down vertices of V + from p to p’s child
node (denoted by p′) may change the connectivity of p’s
child nodes. Consider a specific vertex a∈V + and we ini-
tialize two empty sets B1 and B2. For each of a’s neighbor
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b whose coreG[b]>c, we first find the node pb containing b,
and then trace it up from pb along the CL-tree until a child
node of p, denoted by ob. If ob has a core number of c+1,
we put it into B1; Otherwise, we put it into B2. Then, after
moving down vertices of V +, nodes inB1 should be merged
into p′ and nodes in B2 will be child nodes of p′.

Algorithm 6 move down vertices: moveDown
1: function MOVEDOWN(V + , p)
2: if V +=∅ then return p;
3: P ← ∅;
4: update p using V +;
5: for each a ∈ V + do
6: for each b ∈ a’s neighbor vertices do
7: if coreG[b] > c and b /∈ V + then
8: locate node pb;
9: run TRACE(pb), and update P ;

10: pmax ← a node of P , which has a core number of c+1 and
its vertexSet is the largest among all nodes of P ;

11: if pmax = null then
12: create a new node p′;
13: update p′;
14: add P to childList of p′;
15: else
16: add V + to pmax.vertexSet;
17: for each pi ∈ P do
18: if pi.coreNum = c+ 1 then
19: merge pi to pmax;
20: else
21: add pi to childList of pmax;
22: p′ ← pmax;
23: update vertex-node map;
24: if p.vertexSet = ∅ then
25: add {p.childList− P} to childList of p.father;
26: return p′;

Algorithm 6 presents moveDown. If V + 6= ∅, we first
initialize a node set P (line 3). Then, we remove V + from
p.vertexSet and update p.invertedList (line 4). ∀a ∈ V +,
we enumerate a’s neighbor b whose coreG[b]>c, locate pb,
trace up from pb to find pb’s ancestor node ob which is a
child node of p, and put ob into P (lines 5-9). Let the node
which has the largest size with core number being c+1 in P
be pmax (line 10). Next, if pmax=null, we need to create a
new child node of p (lines 11-14); otherwise, we merge and
reorganize p’s child nodes (lines 15-22). Finally we return
node p′ (line 26), which will be used later.

Step 3: Merge subtrees. Recall in Figure 7(b), after in-
serting (G, I), the corresponding subtrees, which correspond
to the k-ĉores containing G and I are merged into one sub-
tree. The process of merging subtrees starts from the tree
nodes which contain G and I , and ends at their common
ancestor node. The merging process is guaranteed by Lem-
mas 6 and 7.

Lemma 6 After inserting an edge between two vertices, the
maximum numbers of disconnected k-ĉores which need to
be merged is two.

Proof. Suppose that there are at least three disconnected k-
ĉores that need to be merged after inserting an edge. We first
randomly select three disconnected k-ĉores. Then we can
prove by contradiction that one of them is already connected
to one of the other two k-ĉores, which means there does not
exist the third disconnected k-ĉore that needs to be merged.
That completes the proof.

Lemma 7 In the process of merging subtrees, the maximum
number of nodes which need to be merged in each level is
two.

Proof. It can be proved similarly by contradiction.

By Lemmas 6 and 7, we conclude that, to merge the sub-
trees, we can first trace two paths starting from pu and pv
until their common ancestor in the CL-tree, and then merge
the pairs of nodes on the paths, if their core numbers are the
same.

Algorithm 7 presents the overall steps of insertEdge.
Following Theorem 1, we first compute V +, and invoke
moveDown to update these nodes in CL-tree (lines 2-16).
Next, if p′u and p′v belong to two disconnected k-ĉores, we
need to merge the subtrees (lines 17-19). In detail, we first
trace two paths starting from p′u and p′v up until one com-
mon ancestor. Then, for each pair of nodes on the paths, if
their core numbers are equal, we merge them as a single n-
ode. Finally, the tree index is updated. Note that during the
above process, the elements of nodes and vertex-node map
are also updated.

Algorithm 7 index update algorithm: insertEdge
1: function INSERTEDGE(pu ,pv )
2: if pu.coreNum=pv.coreNum then
3: compute V +

1 in pu.vertexSet;
4: p′u ← MOVEDOWN(V +

1 ,pu);
5: p′v ← pv ;
6: if pu 6= pv then
7: compute V +

2 in pv.vertexSet;
8: p′v ← MOVEDOWN(V +

2 ,pv );
9: else if pu.coreNum < pv.coreNum then

10: compute V + in pu.vertexSet;
11: p′u ← MOVEDOWN(V + ,pu);
12: p′v ← pv ;
13: else
14: compute V + in pv.vertexSet;
15: p′v ← MOVEDOWN(V + ,pv );
16: p′u ← pu;
17: if p′u and p′v are in two disconnected k-ĉores then
18: trace two paths starting from p′u and p′v up until a common

ancestor;
19: merge pairs of nodes with the same core number on the

paths;
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7.3 Edge Deletion

Similar to the edge insertion, deleting an edge may trig-
ger the updates of CL-tree nodes as well as their structures.
We illustrate this by Example 9.

Example 9 Consider the graph in Figure 7. If we delete an
edge (H , G) of the graph in Figure 5, the core number of
vertex H decreases to 1. Thus we need to create a new node
with core number being 1 and then move H up to the new
node. If we delete an edge (G, I), the connectivity of some
vertices changes as shown in Figure 5 and thus the corre-
sponding subtree has to be split to two new ones.

To maintain the CL-tree for deleting an edge, we propose
an algorithm called deleteEdge. Let V − be the set of
vertices whose core numbers decrease after deleting an edge
(u, v). We summarize the main steps of deleteEdge as
follows.
• Step 1: Compute V −;
• Step 2: Split nodes in a path;
• Step 3: Move up vertices of V −.
We now elaborate these steps one by one.
Step 1: Compute V −. By Lemma 5, the core numbers

of vertices inG decrease by at most 1 after deleting an edge.
We compute V − using the algorithm in [23].

Step 2: Split nodes in a path. Similar to edge inser-
tion, the connectivity of vertices may change after deleting
an edge. Let p be the node containing vertex u if coreG[u]
≤coreG[v]; or the node containing v if coreG[v]<coreG[u].
From Example 9, we conclude that after deleting an edge
(u, v), we may have to split p and its ancestor nodes. To en-
able efficient splitting, we first build a vertex-tree map for
p. In this map, the key is a vertex vkey , which is a neighbor
of a vertex in p and is in a descendant node of p; the value
of vkey is a child node of p, whose subtree contains vkey .
The vertex-tree map can be built simply by traversing the
subtree. We illustrate the vertex-tree map via Example 10.
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Fig. 9 Illustrating the vertex-tree map.

Example 10 Figure 9 depicts a subtree rooted at p. Suppose
p only has one vertex x which has two neighbors y and z.
Vertices y and z are in the descendant nodes of p. Then, in
the vertex-tree map, there are two keys y and z, and their
values are p1 and p2 respectively.

Next, we regroup vertices of p using the vertex-tree map.
Specifically, we consider each vertex a∈ p.vertexSet. For
each neighbor b of a, if it has coreG[b]>coreG[a], we locate
the chid node of p which contains b using the vertex-tree
map. As a result, each vertex corresponds to a list of child
nodes of p. Then, we partition vertices of p into groups such
that:
• For each vertex a in a group g, there is at least another ver-
tex in g that is a neighbor of a or has the same corresponding
child node.
• If there are two groups g1 and g2, then their corresponding
child nodes should be completely different.

Essentially, each group corresponds to a k-ĉore. Since
deleting an edge in a k-ĉore can result in at most two k-ĉore,
vertices in p can be partitioned into at most two groups. Af-
ter regrouping, we can split the nodes in the path from p to
all its ancestor nodes as follows:
• If there is only one group, we do not split p; otherwise
we split p into two nodes, each of which contains a group
of vertices and links to a set of child nodes that its vertices
correspond to.
• If p remains unsplit, and each child node of p is still linked
to p, we stop; otherwise, we perform these two steps for p’s
father node.

Clearly, the splitting process is recursively performed on
p’s ancestor nodes and thus we split nodes in a path. We give
Example 11 to illustrate the process.
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Fig. 10 The process of splitting nodes in a path.

Example 11 Consider the graph in Figure 7(b). We show the
splitting process for deleting (G, I) in Figure 10. We first lo-
cate node p3 containing G, regroup vertices of p3 and find
that p2 cannot be linked as a child node p3. So we link p2
to p3’s father node p4 and perform splitting on p4. After re-
grouping vertices in p4, we split it to two nodes because p2
and p3 are respectively shared by vertices H and M . Now
since each child node of p5 is still linked to it, we stop the
splitting process.

Step 3: Move up vertices of V −. After computing V −

and splitting some nodes in CL-tree, we move up vertices of
V − to an upper level. We denote the algorithm of perform-
ing moving up by moveUp.
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We outline moveUp in Algorithm 8. We firs update p by
removing V − from its vertex set and updating its inverted
list (line 3). Then, if the core number of p.father is c–1,
we add V − to it; otherwise, we create a new node and add
it to the tree (lines 4-9). Next, we collect the remaining ver-
tices of p in set, regroup them and split nodes and update
the vertex-node map (lines 10-12). We also need to update
childList and invertedList of p.father (lines 14-15). If
there exists child nodes that are unconsidered in line 11, we
re-link them to p.father because these nodes are connected
to vertices of V − (line 16).

Algorithm 8 move up vertices: moveUp
1: function MOVEUP(V − , p)
2: if V −=∅ then return ;
3: update p;
4: if (p.father).coreNum = c–1 then
5: add V − to p.father;
6: else
7: create a new node newFather;
8: add V − to newFather;
9: add newFather to the tree;

10: set← p.vertexSet;
11: P ← regroup vertices of set and split node;
12: update vertex-node map;
13: link each pi ∈ P to p.father;
14: update invertedList of p.father;
15: P ′ ← child nodes unconsidered in above step;
16: if P ′ 6= ∅ then re-link each p ∈ P ′ to p.father;

We present the overall steps of deleteEdge in Algo-
rithm 9. Similar to edge insertion, we have three cases to
be handled separately. In these three cases, we first compute
V − (lines 3,7,11). Then we split the nodes and get the up-
dated node(s) p′v or p′u or both p′u and p′v (lines 4,8,12). Next
we apply moveUp to move up vertices of V − (lines 5,9,13).
In pu.coreNum = pv.coreNum case, if vertices of V − be-
long to two disconnected k− ĉores, we should separate V −

to two sets and invoke moveUp accordingly (lines 14-16).

8 The ACQ-A and ACQ-M Problems

In this section, we introduce two problems related to the
ACQ problem, namely Approximate ACQ problem (or ACQ-
A) and Multiple-vertex ACQ problem (or ACQ-M). We also
develop the query algorithms based on the CL-tree.

8.1 The ACQ-A Problem

We first present an approximation version of the ACQ
query, denoted by Problem 2. In Problem 2, vertices of an
AC do not need to exactly share the same keywords in S;
instead, they just need to share a predefined percentage of

Algorithm 9 index algorithm: deleteEdge
1: function DELETEEDGE(pu, pv )
2: if pu.coreNum > pv.coreNum then
3: compute V − in pv.vertexSet;
4: p′v ← split p and its ancestor nodes;
5: MOVEUP(V − , p′v );
6: else if pu.coreNum < pv.coreNum then
7: compute V − in pu.vertexSet;
8: p′u ← split p and its ancestor nodes;
9: MOVEUP(V − , p′u);

10: else
11: compute V − in pu.vertexSet;
12: p′u, p

′
v ← split p and its ancestor nodes;

13: if p′u = p′v then MOVEUP(V − , p′u);
14: else
15: Vu

−, Vv
− ← separate V −;

16: MOVEUP(Vu
− ,p′u); MOVEUP(Vv

− ,p′v );

keywords in S. Thus, the keyword cohesiveness is relaxed.
This could be useful for graphs if the keyword information
of vertices is weak.

Problem 2 (ACQ-A) Given a graph G, a positive integer k,
a vertex q ∈ V , a predefined keyword set S, and a thresh-
old θ ∈[0,1], return a subgraph Gq , the following properties
hold:
• Connectivity. Gq ⊆ G is connected and q ∈ Gq;
• Structure cohesiveness. ∀v ∈ Gq , degGq (v) ≥k;
•Keyword cohesiveness. ∀v ∈ Gq , it has at least |S|×θ

keywords in S.

We illustrate problem 2 using Example 12.

Example 12 In Figure 3(a), let q=A and k=2. If S={x, y},
θ=50%, ACQ-A will return the subgraph induced by the ver-
tex set {A,B,C,D,E} as the target AC.

In line with Problem 1, we first introduce the basic so-
lutions without index, which are extended naturally from
basic-g and basic-w, and are denoted by basic-g-v1
and basic-w-v1 respectively. Their detailed algorithms
are presented in Appendix E.

We also propose an efficient query algorithm SWT, based
on the CL-tree index. Algorithm 10 presents SWT. We first
apply core-locating to find node rk, whose correspond-
ing k-ĉore contains q, from CL-tree (line 1). Then we tra-
verse the subtree rooted at rk, and collect a set V ′ of vertices
containing at least |S|×θ keywords by applying keyword-
checking. Next, we find G[S] from the subgraph induced
by vertices in V ′ (line 3), and findGk[S](line 4). Finally, we
output Gk[S] as the target AC, if it exists (line 5).

8.2 The ACQ-M Problem

The ACQ-M problem generalizes the ACQ problem for
supporting a set Q of vertices, and it finds the ACs contain-
ing all the vertices in Q. We give its definition as follows.
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Algorithm 10 Query algorithm: SWT
1: function QUERY(G, root, q, k, S)
2: find the node rk from the CL-tree index;
3: traverse the subtree rooted at rk and collect a set V ′ of vertices

containing at least |S| × θ keywords by intersecting the inverted
lists;

4: find G[S] from the subgraph induced by V ′;
5: find Gk[S] from G[S];
6: output Gk[S] as the target AC.

Problem 3 Given a graph G, a positive integer k, a vertex
setQ⊆V , and a predefined keyword set S, return a subgraph
GQ, the following properties hold:
• Connectivity. GQ ⊆ G is connected and GQ contains

all the vertices of Q;
• Structure cohesiveness. ∀v ∈ GQ, degGQ

(v) ≥k;
•Keyword cohesiveness. The size of L(GQ, S) is max-

imal, where L(GQ, S) = ∩v∈GQ
(W (v) ∩ S) is the set of

keywords shared in S by all vertices of GQ.

We illustrate Problem 3 via Example 13.

Example 13 In Figure 3(a), letQ={A,C} and k=2. If S={w,
x, y, z}, then ACQ-M returns the subgraph induced by the
vertex set {A,C,D} as the target AC, whose shared key-
word set is{x, y}.

To answer the query in Problem 3, we can first find a set
S′ of intersected keywords, which are contained by S and
every vertex in Q. Then, we randomly take a vertex q∈Q as
the query vertex. Finally, we can find the target ACs by any
of previous ACQ algorithms. Following the above idea, we
extend basic-g and basic-w and obtain two basic al-
gorithms, i.e., basic-g-v2 and basic-w-v2. We also
extend Dec and get an index based algorithm MDec. Algo-
rithm 11 presents MDec. Note that we do not extend Inc-S
and Inc-T, as they are generally slower than Dec, which has
been demonstrated by the earlier version of this paper [11].

Algorithm 11 Query algorithm: MDec
1: function QUERY(G, root, Q, k, S)
2: S′ = (

⋂|Q|−1
i=0 W (qi)) ∩ S;

3: q ← randomly select a vertex from Q;
4: run Dec with q, k, and S′;
5: output target ACs which contain Q;

9 Experiments

We now present the experimental results. Section 9.1
discusses the setup. We discuss the effectiveness and effi-
ciency results in Sections 9.2 and 9.3 respectively.

9.1 Setup

We consider six real datasets. The first four datasets (Flick-
r, DBLP, Tencent, and DBpedia) are static graphs. For Flick-
r 4 [35], a vertex represents a user, and an edge denotes a
“follow” relationship between two users. For each vertex,
we use the 30 most frequent tags of its associated photos as
its keywords. For DBLP 5, a vertex denotes an author, and
an edge is a co-authorship relationship between two authors.
For each author, we use the 20 most frequent keywords from
the titles of her publications as her keywords. In the Tencen-
t graph provided by the KDD contest 2012 6, a vertex is a
person, an organization, or a microblog group. Each edge
denotes the friendship between two users. The keyword set
of each vertex is extracted from a user’s profile. For the DB-
pedia 7, each vertex is an entity, and each edge is the rela-
tionship between two entities. The keywords of each entity
are extracted by the Stanford Analyzer and Lemmatizer. Ta-
ble 3 shows the numbers of vertices and edges, kmax value,
a vertex’s average degree d̂, and its keyword set size l̂.

The remaining two dynamic datasets, i.e., DFlickr and
Youtube [25,26], are dynamic evolving graphs, which con-
tain the snapshots of graphs as the time goes on. Note that
these two datasets do not have keywords. Both DFlickr and
Youtube datasets are about the user friendship networks on
Flickr and Youtube websites respectively. Each vertex de-
notes a user and each edge denotes a friendship between two
users. DFlickr contains edges which are inserted and deleted
during the evolving process; while in Youtube, there are on-
ly inserted edges as the time goes on. In Table 3, the initial
numbers of vertices and edges in the first day of each dataset
are reported. In the next 100 days, for DFlickr, 10,301,741
edges were inserted and 2,211,272 edges were deleted; for
Youtube, 13,954,071 edges were inserted.

Table 3 Datasets used in our experiments.

Dataset Vertices Edges kmax d̂ l̂

Flickr 581,099 4,972,274 152 17.1 9.90
DBLP 977,288 3,432,273 118 7.02 11.8

Tencent 2,320,895 50,133,369 405 43.2 6.96
DBpedia 8,099,955 71,527,515 95 17.7 15.0
DFlickr 2,585,569 22,838,277 600 17.6 —
Youtube 1,881,147 4,571,023 55 4.9 —

To evaluate ACQs, we set the default value of k to 6. The
input keyword set S is set to the whole set of keywords con-
tained by the query vertex. For each dataset, we randomly

4 https://www.flickr.com/
5 http://dblp.uni-trier.de/xml/
6 http://www.kddcup2012.org/c/

kddcup2012-track1
7 http://dbpedia.org/datasets

https://www.flickr.com/
http://dblp.uni-trier.de/xml/
http://www.kddcup2012.org/c/kddcup2012-track1
http://www.kddcup2012.org/c/kddcup2012-track1
http://dbpedia.org/datasets
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select 300 query vertices with core numbers of 6 or more,
which ensures that there is a k-core containing each query
vertex. In all the following figures about efficiency, we re-
port the average time cost of these queries.

To evaluate the index maintenance algorithms, we con-
sider all the six datasets. For the first four datasets, we ran-
domly select 1,000 vertices and for each of them, we ran-
domly insert and delete one keyword to evaluate the perform
keyword update. Meanwhile, we randomly insert and delete
five groups of edges, each of which has 100 edges, and their
core numbers vary from 5 to 25. For each of the remaining
datasets (DFlickr and Youtube), we first take the snapshots
in 100 consecutive days, then divide them into five groups,
each of which are in a period of 20 consecutive days, and
finally we randomly select 200 records from each group as
test edges.

We implement all the algorithms in Java, and run ex-
periments on a machine having a quad-core Intel i7-3770
3.40GHz processor, and 32GB of memory, with Ubuntu in-
stalled. We present the effectiveness and efficiency results in
Sections 9.2 and 9.3.

9.2 Results on Effectiveness

We now study the effectiveness of ACQ, and compare it
with existing CD and CS methods. We then discuss a case
study.

9.2.1 ACQ Effectiveness

We first define two measures, namely CMF and CPJ, for
evaluating the keyword cohesiveness of the communities.
Let C(q)={C1, C2, · · · , CL} be the set of L communities
returned by an algorithm for a query vertex q ∈ V (Note
that S=W (q)).
• Community member frequency (CMF): this is in-

spired by the classical document frequency measure. Con-
sider a keyword x of q’s keyword set W (q). If x appears in
most of the vertices (or members) of a community Ci, then
we regard Ci to be highly cohesive. The CMF uses the oc-
currence frequencies of q’s keywords in Ci to determine the
degree of cohesiveness. Let fi,h be the number of vertices of
Ci whose keyword sets contain the h-th keyword of W (q).
Then, fi,h

|Ci| is the relative occurrence frequency of this key-
word in Ci. The CMF is the average of this value over all
keywords in W (q), and all communities in C(q):

CMF (C(q)) =
1

L · |W (q)|

L∑
i=1

|W (q)|∑
h=1

fi,h
|Ci|

(3)

Notice that CMF (C(q)) ranges from 0 to 1. The higher its
value, the more cohesive is a community.

• Community pair-wise Jaccard (CPJ): this is based
on the similarity between the keyword sets of any pair of
vertices of community Ci. We adopt the Jaccard similarity,
which is commonly used in the IR literature. Let Ci,j be the
j-th vertex ofCi. The CPJ is then the average similarity over
all pairs of vertices of Ci, and all communities of C(q):

CPJ(C(q)) =
1

L

L∑
i=1

 1

|Ci|2

|Ci|∑
j=1

|Ci|∑
k=1

|W (Ci,j) ∩W (Ci,k)|
|W (Ci,j) ∪W (Ci,k)|


(4)

The CPJ(C(q)) value has a range of 0 and 1. A higher
value of CPJ(C(q)) implies better cohesiveness.

1. Effect of common keywords. We examine the im-
pact of the AC-label length (i.e., the number of keywords
shared by all the vertices of the AC) on keyword cohesive-
ness. We collect ACs containing one to five keywords, and
then group the ACs according to their AC-label lengths. The
average CMF and CPJ value of each group is shown in Fig-
ure 11. For all the datasets, when the AC-label lengths in-
crease, both CMJ and CPJ value rises. This justifies the use
of the maximal AC-label length as the criterion of returning
an AC in our ACQ Problem.
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Fig. 11 AC-label length.

2. Comparison with existing CD methods As men-
tioned ahead, the existing CD methods for attributed graph
can be adapted for community search. We choose to adapt
CODICIL [30] for comparison. The main reasons are: (1) it
has been tested on the ever reported largest attributed graph
(vertex number:3.6M); (2) it identifies communities of com-
parable or superior quality than those of many existing meth-
ods like [27,40]; and (3) it runs faster than many existing
methods. Since CODICIL needs users to specify the num-
ber of clusters expected, we set the numbers as 1K, 5K, 10K,
50K and 100K. The corresponding adapted algorithms are
named as Cod1K, · · · , Cod100K respectively. Other pa-
rameter settings are the same as those in [30]. We first run
these algorithms offline to obtain all the communities. Giv-
en a query vertex q, they return communities containing q as
the results.

We consider both keyword and structure for evaluating
community quality. (1) Keyword: Figures 12(a) and (b) show
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(a) Keyword (CMF) (b) Keyword (CPJ)

(c) Structure (Avg. degree) (d) Structure (degree ≥ 6)

Fig. 12 Comparing with community detection method.

that ACQ (implemented by Dec) always performs the best,
in terms of CMF and CPJ. (2) Structure: As CODICIL has
no guarantee on vertices’ minimum degrees, it is unfair to
compare them using this metric. We intuitively compare their
structure cohesiveness by reporting the average degree of the
vertices in the communities and the percentage of vertices
having degrees of 6 or more. When the number of clusters
in CODICIL is too large or too small, the structure cohe-
siveness becomes weak, as shown in Figures 12(c) and (d).
ACQ always performs better than CODICIL, even when its
number of cluster is well set (e.g., Cod10K and Cod50K on
DBLP dataset).

3. Comparison with existing CS methods. The existing
methods mainly focus on non-attributed graphs. We imple-
ment two state-of-the-art methods: Global [34] and Local
[6]. Both of them use the metric minimum degree, we thus
focus on the keyword cohesiveness. Figure 13 shows the
CMF and CPJ values on four datasets. We can see that the
keyword cohesiveness of ACQ is superior to both Global
and Local, because ACQ considers vertex keywords, while
Global and Local do not.

(a) CMF (b) CPJ

Fig. 13 Comparing with community search methods.

9.2.2 A Case Study

We next perform a case study on the DBLP dataset, in
which we consider two renowned researchers in database

and data mining: Jim Gray and Jiawei Han. We use k = 4

here. We use Cod50K to represent CODICIL for further
analysis. We mainly consider the input query keyword set
S, keywords and sizes of communities.

1. Effect of S. Figure 14 shows two ACs of Jiawei (AC-
labels are shown in the captions), where the query keyword
set S are set as {analysis, mine, data, information, network}
and {mine, data, pattern, database} respectively. These t-
wo groups of Jiawei’s collaborators are involved in graph
analysis (Figure 14(a)) and pattern mining (Figure 14(b)).
Although these researchers all have close co-author rela-
tionship with Jiawei, the use of the input keyword set S
enables the identification of communities with different re-
search themes. For Jim, we can obtain similar results as dis-
cussed in Section 1 (Figure 2). While for CODICIL, it is not
clear how to consider the keyword set S, and we thus do not
show the results.
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Fig. 14 Jiawei Han’s ACs.
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Fig. 15 Frequency distribution of keywords.

Table 4 # distinct keywords of communities.

Researcher Cod50K Global Local ACQ

Jim Gray 134 139,881 60 44
Jiawei Han 140 139,881 58 54

2. Keyword analysis. We analyze the frequency distri-
bution of keywords in their communities. Specifically, given
a keyword wh, we define the member frequency (MF) of wh

as: MF (wh, C(q)) =
1
L

L∑
i=1

fi,h
|Ci| . The MF measures the oc-

currence of a keyword in C(q). For each Cq generated by an
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algorithm, we select 30 keywords with the highest MF val-
ues. We report the MF of each keyword in descending order
of their MF values in Figure 15. We see that ACQ has the
highest MF values for the top 20 keywords. Thus, the key-
words associated with the communities generated by ACQ
tend to repeat among the community members.

The number of distinct keywords of ACQ communities
is also the fewest, as shown in Table 4. For example, the
k-ĉore returned by Global has over 139K distinct key-
words, about 2,300 times more than that returned by ACQ
(less than 60 keywords). While the semantics of the k-ĉore
can be difficult to understand, the small number of distinct
keywords of AC makes it easier to understand why the com-
munity is so formed. We further report the keywords with
the 6 highest MF values in Jim and Jiawei’s communities
in Tables 5 and 6. We can see that, words “sloan”, “digi-
tal”, “sky”, “survey”, and “sdss” reflect that the community
is likely about the SDSS project led by Jim. The top-6 key-
words of Jiawei’s AC are related to heterogenous networks.
In contrast, the keywords of Global and Local tend to be
less related to the query keyword set, and thus they cannot
be used to characterize the communities specifically relat-
ed to Jiawei. Note that the top-6 keywords of Global are
the same for both Jim and Jiawei, as they are in the same
k-ĉore. The overall results show that, ACQ performs better
than other methods.

Table 5 Top-6 keywords (Jim Gray).

Algo. Keywords

Cod50K server, archive, sloan, digital, database
Global use, system, model, network, analysis, data
Local database, system, multipetabyte, data, lsst, story
ACQ sloan, digital, sky, data, sdss, server

Table 6 Top-6 keywords (Jiawei Han).

Algo. Keywords

Cod50K information, mine, data, cube, text, network
Global use, system, model, network, analysis, data
Local scalable, topical, text, phrase, corpus, mine
ACQ mine, analysis, data, information, network, heterog

3. Effect of k on community size. We vary the value of
k and report the average size of communities in Figure 16.
We can see that the communities returned by Global are
extremely large (more than 105), which can make them d-
ifficult for a query user to analyze. The community size
of Local increases sharply when k=8. In this situation,
Local returns the same community as Global. The size
of an AC is relatively insensitive to the change of k, as AC

contains around a hundred vertices for a wide range of val-
ues of k.
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Fig. 16 Community size.

9.3 Results on Efficiency

For each dataset, we randomly select 20%, 40%, 60%
and 80% of its vertices, and obtain four subgraphs induced
by these vertex sets. For each vertex, we randomly select
20%, 40%, 60% and 80% of its keywords, and obtain four
keyword sets.

1. Index construction. Figures 17(a)-17(d) compare the
efficiency of Basic and Advanced. We study their main
parts, which build the tree without considering keywords.
We denote them by Basic- and Advanced-. Notice that
Advanced performs consistently faster, and scales better,
than Basic. When the subgraph size increases, the per-
formance gap between Advanced and Basic is enlarged.
Similar results can be observed between Advanced- and
Basic-. In addition, we also run the CD method CODICIL,
which takes 32 mins, 2 mins, 1 day, and 3+ days (we stop it
after runing 3 days) to cluster the vertices of Flickr, DBLP,
Tencent and DBpedia offline respectively.

2. Index Maintenance. We first evaluate the performance
of keyword update and the results show that the keyword up-
date is very fast. For example, we compute the average time
of 1,000 keyword insertion and deletion on Flickr dataset,
and the results show that they are over 106 and 105 times
faster than rebuilding the index respectively. Similar results
are obtained on other three datasets.

Next, we show the performance of edge update on four
static datasets in Figures 18(a)-18(h) by varying k. In Fig-
ures 18(a)-18(b), we report the efficiency by separately per-
forming edge insertion and deletion. Clearly, insertEdge
is 102 to 105 times faster than rebuilding the index, and
deleteEdge is also around 102 times faster than rebuild-
ing index. The main reason is that, inserting or deleting one
edge only affects a small proportion of CL-tree nodes and
their connectivity. In other words, most of the nodes remain
unaffected. Moreover, the algorithm deleteEdge is slow-
er than insertEdge. This is because, splitting tree nodes
generally involves more computational cost than merging
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Fig. 17 Efficiency results of index construction.
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Fig. 18 Efficiency results of index maintenance.

tree nodes. In addition, we put all the insertion and dele-
tion edges together, and report the efficiency by performing
insertion and deletion for these edge with a random order.
We report the results in Figures 18(c)-18(d), where “update”
denotes our algorithms including both insertEdge and
deleteEdge. We can see that, the index update algorithm
is still much faster than rebuilding the index.

The results on real dynamic graphs (DFlickr and Youtube
datasets) are shown in Figures 18(i)-18(j). It is obvious to
observe that, the results on real dynamic graphs are similar
to those on static graphs, and our proposed algorithms are
at least two orders of magnitude faster than rebuilding the
CL-tree from scratch. In summary, our proposed algorithms
are efficient for maintaining the index for dynamic graphs.

3. Efficiency of CS methods. Figures 19(a)-19(d) com-
pares our best algorithm Dec with existing CS methods. We

see that Local performs faster than Global for most cas-
es. Also, Dec, which uses the CL-tree index, is the fastest.

4. Effect of k. Figures 19(e)-19(h) compare the query
efficiency under different k. A lower k renders a larger sub-
graph, so as the time costs, for all the algorithms. Note that
basic-g performs faster than basic-w, but are slower
than index-based algorithms. Inc-T performs better than
Inc-S, and Dec performs the best. The performance gaps
decrease as k increases.

5. ACQ scalability w.r.t. keyword. Figures 19(i)-19(l)
examine scalability over the fraction of keywords for each
vertex. All the vertices are considered. The running times of
the algorithms increase as more keywords are involved. Dec
performs the best.

6. ACQ scalability w.r.t. vertex. Figures 19(m)-19(p)
report the scalability over different fraction of vertices. Al-
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Fig. 19 Efficiency results of community search.

l the keywords of each vertex are considered. Again, Dec
scales the best.

7. Effect of size of S. For each query vertex, we random-
ly select 1, 3, 5, 7 and 9 keywords to form the query keyword
set S. As Dec performs better than Inc-S and Inc-T,
we mainly compare Dec with the baseline solutions. Fig-
ures 19(q)-19(t) show that the cost of all algorithms increase
with the |S|. Also, Dec is 1 to 3 order-of-magnitude faster
than basic-g and basic-w.

8. Effect of invertedList. To test the importance of in-
vertedList, we have implemented Inc-S* and Inc-T*,

which are respective variants of Inc-S and Inc-T, but
without the invertedList structure at each CL-tree node. Fig-
ure 20 shows the results. We see that Inc-S (Inc-T) is 1
to 2 order of magnitude faster than Inc-S* (Inc-T*) on
all the four datasets in our experiments. The reason is that
the keyword-checking operation mentioned in the above ex-
ample is frequently performed in the ACQ search process.
Thus, the invertedList, which improves the performance of
this operation, allows the ACQ search to be conducted more
efficiently.
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Fig. 20 Effect of InvertedList for Inc-S and Inc-T.
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Fig. 21 Results on non-attributed graphs.
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Fig. 22 Efficiency results of ACQ-A and ACQ-M.

9. Non-attributed graphs. We have tested Dec and Local
on non-attributed graphs. This is done by running these al-
gorithms on our datasets, without using any of their associ-
ated keyword sets. As shown in Figure 21, for Flickr, Ten-
cent and DBpedia, Dec is consistently faster than Local.
In Dec, cores are organized into the CL-tree structure. Be-
cause the height of the CL-tree is not very high (lower than
405 for all datasets), the core-locating operation can be done
quickly. For DBLP, Dec is also faster than Local, except
when k=4. In this dataset, a paper often has few (around 3
to 5) co-authors. Since an author may be closely related to a
few co-authors, finding a 4-ĉore in Local can be done ef-
ficiently through local expansion. From these experiments,
we conclude that Dec can also be efficiently executed on
non-attributed graphs.

10. Effect of θ in ACQ-A. For each query vertex, we
randomly select 10 keywords to form set S, set θ as 0.2,
0.4 0.6, 0.8 and 1.0, and answer the query of ACQ-A us-
ing basic-g-v1, basic-w-v1 and SWT. Figures 22(a)-
22(d) show their efficiency results. We can see that SWT out-
performs the basic solutions consistently, since it is based on
the CL-tree index.

11. Effect of |Q| in ACQ-M. We randomly select five
groups of query sets by varying the size of Q from 2 to
6. Each group has 200 query sets. We run basic-g-v2,
basic-w-v2 and MDec with these five groups of query
sets, and report efficiency in Figures 22(e)-22(h). We can
observe that, similar to the results of single query vertices,
MDec is at least two orders of magnitude faster than the
baseline solutions which do not use the CL-tree index.
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10 Conclusions

An AC is a community that exhibits structure and key-
word cohesiveness. To facilitate ACQ evaluation, we devel-
op the CL-tree index and its query algorithms. We further
propose index maintenance algorithms for dynamic graphs.
Moreover, we formally define ACQ-A and ACQ-M prob-
lems and propose efficient query algorithms based on the
CL-tree index. Our experimental results on several dataseats
show that ACs are easier to interpret than those of existing
community detection/search methods, and they can be “per-
sonalized”. In addition, our solutions are also faster than ex-
isting community search algorithms.

In the future, we will study the use of other measures
of structure cohesiveness (e.g., k-truss, k-clique) and key-
word cohesiveness (e.g., Jaccard similarity and string ed-
it distance) in the ACQ definition. We will also investigate
how the directions of edges will affect the formation of an
AC. We will examine how graph pattern matching techniques
[36,9,10] can be extended to find ACs effectively from large
attributed graphs. An interesting research direction is to s-
tudy how to automatically generate a meaningful graph pat-
tern that well reflects a real community, and how to use these
patterns to find ACs efficiently.
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A Proofs of Lemmas

Lemma 4 (Anti-monotonicity) Given a graph G, a vertex q ∈ G
and a set S of keywords, if there exists a subgraph Gk[S], then there
exists a subgraph Gk[S′] for any subset S′ ⊆ S.

Proof. Based on the definition of Gk[S], each vertex of Gk[S] con-
tains S. Consider a new keyword set S′ ⊆ S. We can easily con-
clude that, each vertex of Gk[S] contains S′ as well. Also, note that
q ∈ Gk[S]. These two properties imply that there exists one subgraph
of G, namely Gk[S], with core number at least k, such that it contains
q and every vertex of it contains keyword set S′. It follows that there
exists such a subgraph with maximal size (i.e., Gk[S′]).

Proposition 1 For any keyword set S, and vertex q, if Gk[S] exists,
then Gk[S] ⊆ Gk[S′] for any subset S′ ⊆ S.

Proof. Since Gk[S] contains vertex q and every vertex in Gk[S] con-
tains S′ (due to S′ ⊆ S), then Gk[S] ∪ Gk[S′] also contains vertex
q and every vertex in it contains S′. In addition, the core numbers of
Gk[S] and Gk[S′] are at least k, it follows that the core number of
Gk[S] ∪ Gk[S′] is at least k. Based on the definition of Gk[S′], we
have Gk[S] ∪ Gk[S′] ⊆ Gk[S′]. It follows that Gk[S] ⊆ Gk[S′].

Lemma 5 Given two subgraphs Gk[S1] and Gk[S2] of a graph G,
for a new keyword set S′ generated from S1 and S2 (i.e., S′ = S1 ∪
S2), ifGk[S′] exists, then it must appear in a k-ĉorewith core number
at least

max{coreG[Gk[S1]], coreG[Gk[S2]]}. (3)

Proof. Since S′ is generated from S1 and S2, then S1 ⊆ S′ and
S2 ⊆ S′. Based on Proposition 1, we have Gk[S′] ⊆ Gk[S1].
With such a containment relationship, it follows that min{coreG[v]|
v ∈ Gk[S1]} ≤ min{coreG[v]|v ∈ Gk[S′]}. Hence, the core
number of Gk[S′] is at least the core number of Gk[S1]. Formally,
coreG[Gk[S1]]≤ coreG[Gk[S′]]. For the same reason, coreG[Gk[S2]] ≤
coreG[Gk[S′]]. It directly follows the lemma.

Lemma 6 Given a connected graphG(V,E) withn=|V | andm=|E|,
if m− n < k2−k

2
− 1, there is no k-ĉore in G.

Proof. From Definition 1, we can easily conclude that, for any specific
k, a k-ĉore has at least k+1 vertices. Since each vertex in a specific k-
ĉore has at least k edges, the minimum number of edges in a k-ĉore
is (k+1)k

2
.

Consider a connected graph, which contains a k-ĉore and has the
minimum number of edges, where the k-core contains only k+ 1 ver-
tices and all the rest n−(k+1) vertices are connected with this k-ĉore.
The total number of edges is

(k + 1)k

2
+ [n− (k + 1)] = m (4)

By simple transformation, we can conclude that, if m − n <
k2−k

2
− 1, there is no k-ĉore in G.

Lemma 7 Given two keyword sets S1 and S2, ifGk[S1] andGk[S2]
exist, we have

Gk[S1 ∪ S2] ⊆ Gk[S1] ∩Gk[S2]. (5)

Proof. Based on Proposition 1 and S1 ⊆ S1 ∪S2, we have Gk[S1 ∪
S2] ⊆ Gk[S1]. For the same reason we haveGk[S1∪S2] ⊆ Gk[S2].
It directly follows the lemma.

B Basic Solutions for ACQ

Algorithms 12 and 13 present basic-g and basic-w respec-
tively. The input of basic-g is a graph G, a query vertex q, an in-
teger k and a set S. It first generates a set, Ψ , of candidate keyword
sets, each of which contains a single keyword of S (line 2). Then, it
finds the k-ĉore, Ck, containing q from the graph G. In the while loop
(lines 4-14), it first initializes an empty set Φ (line 5), which is used
to collect all the qualified keyword sets. Then for each candidate key-
word set S′ ∈ Ψ , it finds G[S′] from Ck by considering the keyword
constraint. After that, it finds Gk[S′] from G[S′] (lines 7-8), and put
it into Φ if Gk[S′] exists (lines 9-10). After checking all the candidate
keyword sets in Ψ , if there are at least one qualified keyword sets in
Φ, it generates a new set Ψ of larger candidate keyword sets by calling
GENECAND(Φ) (see Appendix C) and continues to checking longer
candidate keyword sets in next loop; otherwise, it stops and outputs all
the communities of the latest verified keyword sets as the target ACs.

Algorithm 12 Basic solution: basic-g
1: function QUERY(G, q, k, S)
2: init Ψ using S;
3: find the k-ĉore, Ck, containing q from G;
4: while true do
5: Φ← ∅;
6: for each S′ ∈ Ψ do
7: find G[S′] from Ck;
8: find Gk[S′] from G[S′];
9: if Gk[S′] exists then

10: Φ.add(S′);
11: if Φ 6= ∅ then
12: Ψ ← GENECAND(Φ);
13: else
14: break;
15: output the communities of keyword sets in Φ;

Algorithm 13 presents the pseudocodes of basic-w. It follows
the main steps of basic-g, except that for each candidate keyword
set S′, it finds G[S′] from G directly, rather than from Ck.

Algorithm 13 Basic solution: basic-w
1: function QUERY(G, q, k, S)
2: init Ψ using S;
3: while true do
4: Φ← ∅;
5: for each S′ ∈ Ψ do
6: find G[S′] from G;
7: find Gk[S′] from G[S′];
8: if Gk[S′] exists then
9: Φ.add(S′);

10: if Φ 6= ∅ then
11: Ψ ← GENECAND(Φ);
12: else
13: break;
14: output the communities of keyword sets in Φ;
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C Candidate Generation

Given a set Φ of qualified keyword sets, Algorithm 14 generates
new candidate keyword sets incrementally by linking each pair of key-
word sets. We first initialize Ψ as an empty set (line 2). Then for each
pair, Si and Sj , of keyword sets in Φ, we sort their keywords. If they
differ only at the last keyword, then we generate a new keyword set
S′=Si ∪ Sj , by a union operation (lines 3-6). According to Lemma 1,
if any subset of S′ does not appear in Φ, we prune S′; otherwise, we
regard it as a candidate and add it into Ψ (lines 7-8). Finally, we return
Ψ as the results (line 9).

Algorithm 14 Generate candidate keyword sets
1: function GENECAND(Φ)
2: Ψ ← ∅;
3: for each Si ∈ Φ do
4: for each Sj ∈ Φ do
5: if Si and Sj differs at the last keyword then
6: initialize S′=Si ∪ Sj ;
7: if S′ cannot be pruned by Lemma 1 then
8: Ψ .add(S′);
9: return Ψ ;

D Anchored Union-find

Algorithm 15 presents the four functions of the anchored union-
find (AUF) data structure.

Algorithm 15 Functions on the AUF data structure
1: function MAKESET(x)
2: x.parent, x.anchor ← x;
3: x.rank ← 0;
4: function FIND(x)
5: if x.parent=x then
6: x.parent← FIND(x.parent);
7: return x.parent;
8: function UNION(x, y)
9: xRoot← FIND(x);

10: yRoot← FIND(y);
11: if xRoot=yRoot then return ;
12: if xRoot.rank < yRoot.rank then
13: xRoot.parent← yRoot;
14: else if xRoot.rank > yRoot.rank then
15: yRoot.parent← xRoot;
16: else
17: yRoot.parent← xRoot;
18: xRoot.rank ← xRoot.rank + 1;
19: function UPDATEANCHOR(x, coreG[ ], y)
20: xRoot← FIND(x);
21: if coreG[xRoot.anchor] > coreG[y] then
22: xRoot.anchor ← y;

The functions FIND and UNION are exactly the same as that of the
classical union-find data structure [1]. For function MAKESET, the only
change made on the classical MAKESET is that, it initializes x.anchor
as x (line 2). The function UPDATEANCHOR is used to update the an-
chor vertex of x’s representative vertex. It first finds x’s representative

vertex by calling FIND (line 20). Then, if the core number of x’ rep-
resentative vertex is larger than that of the current input vertex y, it
updates the anchor vertex of x’s representative vertex as y.

Complexity analysis. The time complexities of functions FIND
and UNION areO(α(n)) [1], where α(n) is less than 5 for all practical
values of n. In function MAKESET, the time complexity of MAKESET
is still O(1). In function UPDATEANCHOR, as FIND can be completed
in O(α(n)) and updating anchor can be completed in O(1), the total
time cost of function UPDATEANCHOR is O(α(n)).

E Basic Algorithms for ACQ-A and ACQ-M

1. ACQ-A. We present basic-g-v1 and basic-w-v1 in Al-
gorithms 16 and 17 respectively.

Algorithm 16 Query algorithm: basic-g-v1
1: function QUERY(G, q, k, S)
2: find the k-ĉore, Ck, containing q from G;
3: collect a set V ′ of vertices containing at least |S|×θ keywords

from Ck;
4: find G[S] from the subgraph induced by V ′;
5: find Gk[S] from G[S];
6: output Gk[S] as the target AC.

Algorithm 17 Query algorithm: basic-w-v1
1: function QUERY(G, q, k, S)
2: collect a set V ′ of vertices containing at least |S|×θ keywords

from G;
3: find G[S] from the subgraph induced by V ′;
4: find Gk[S] from G[S];
5: output Gk[S] as the target AC.

2. ACQ-M. Algorithms basic-g-v2, basic-w-v2 are ex-
tended from basic-g and basic-w. Detailed pseudocodes are at-
tached in Algorithms 18 and 19 respectively.

Algorithm 18 Query algorithm: basic-g-v2
1: function QUERY(G, Q, k, S)
2: S′ = (

⋂|Q|−1
i=0 W (qi)) ∩ S;

3: q ← randomly select a vertex from Q;
4: run basic-g with q, k, and S′;
5: output target ACs which contain Q;

Algorithm 19 Query algorithm: basic-w-v2
1: function QUERY(G, Q, k, S)
2: S = (

⋂|Q|−1
i=0 W (qi)) ∩ S;

3: q ← randomly select a vertex from Q;
4: run basic-w with q, k, and S′;
5: output target ACs which contain Q;
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