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Surface Mosaic Synthesis with Irregular Tiles
Wenchao Hu, Zhonggui Chen, Hao Pan, Yizhou Yu, Eitan Grinspun, Wenping Wang

Abstract—Mosaics are widely used for surface decoration to produce appealing visual effects. We present a method for
synthesizing digital surface mosaics with irregularly shaped tiles, which are a type of tiles often used for mosaics design. Our
method employs both continuous optimization and combinatorial optimization to improve tile arrangement. In the continuous
optimization step, we iteratively partition the base surface into approximate Voronoi regions of the tiles and optimize the positions
and orientations of the tiles to achieve a tight fit. Combination optimization performs tile permutation and replacement to further
increase surface coverage and diversify tile selection. The alternative applications of these two optimization steps lead to rich
combination of tiles and high surface coverage. We demonstrate the effectiveness of our solution with extensive experiments and
comparisons.

Index Terms—Simulated Mosaics, Irregular Packing, Polygon Containment, Surface Tessellation

F

1 INTRODUCTION

MOSAICS represent a popular method for decorat-
ing surfaces and can often be seen in churches,

parks, or on sidewalks. Because of their appealing vi-
sual effects, mosaic patterns are regarded as a popular
form of folk art. Since tiles, called tesserae, used in
mosaics are often broken pieces of crockery, ceramics,
or glass, they may come with a wide range of shapes
and colors. There are many different ways to make
mosaic patterns, such as Opus Regulatum, Opus Tessel-
latum, Opus Vermiculatum, and Opus Palladianum [1].
We are particularly interested in Opus Palladianum,
also known as “crazy paving”, which makes use of
irregularly shaped tiles to form a pattern. Manually
generating aesthetic mosaic patterns in Opus Palladi-
anum, especially in large scale, is a demanding task.
A rule of thumb used by artists is that adjacent tiles
should have complementary shapes which fit each
other.

We shall propose an effective method for synthe-
sizing mosaics with irregularly shaped tiles, with
the aim of decorating virtual objects and scenes for
special visual effects in the entertainment industry.
There are two important goals. First, the developed
technique should be able to work well with any set of
input tiles. Second, the synthesized generated mosaics
should have a look and feel similar to real mosaics in
Opus Palladianum. Irregularly shaped tiles, especially
concave ones, make it harder to achieve these goals.
Given a collection of input tiles, a mosaic synthesis
algorithm needs to determine a subset of tiles that
not only fit each other well in shape but are also
diverse enough to avoid undesirable repetitive layout
of similar tiles. Furthermore, an aesthetic mosaic pat-
tern should have a tight coverage of the base surface,
without any overlap among the tiles.

Our solution is optimization-based. It alternates be-
tween continuous tile configuration optimization and

combinatorial tile selection optimization. Here, the
title configuration refers to the position and orientation
of a tile in a mosaic. More specifically, the configura-
tions of individual tiles are optimized continuously,
and the mosaic tiles are selected with combinatorial
optimization. Because a large number of variables are
used to represent the configurations of the tiles, we
need to solve an optimization problem with a large
number of unknowns. To make the problem tractable,
we decouple interactions among different tiles by par-
titioning the base surface into approximate Voronoi
regions of the tiles. This partition is dynamically
computed while the tile configurations are updated.
With such a partition, increasing surface coverage
by the tiles becomes the problem of increasing the
coverage of individual regions by their corresponding
tiles. Finally, combinatorial tile selection optimization
is used to further reduce the uncovered area of the
surface by tile permutation and tile replacements so
that the new tiles better fit their neighboring tiles in
shape to reduce the gaps between neighboring tiles.

2 RELATED WORK

Irregular Packing: The problem of packing irreg-
ularly shaped objects into a given region or volume
(called a container) is widely studied in industrial
applications, including garment manufacturing, fur-
niture making, and metal sheet cutting. The problem
is to find the tightest non-overlapping spatial arrange-
ment of a set of irregularly shaped objects in the
container. The packing problem is NP-hard [2]. Hence,
heuristics are usually used to obtain suboptimal solu-
tions with reasonable time complexity. A comprehen-
sive review of the work on 2D irregular packing can
be found in [3], [4]. Although many effective methods
have been proposed for 2D or 3D packing of objects
of regular shapes, such as rectangles, the geometric
complexity of irregular shapes makes the packing
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problem more challenging. To our knowledge, there
has been no prior work on the packing problem on
curved surfaces in the field of operational research.

Polygon Containment: Polygon containment,
which is a variant of the packing problem, is to
determine whether and how one or more nonover-
lapping polygons can fit within a given region. Sin-
gle polygon containment with translation only has
been investigated by Baker et al [5], and rotations
are considered in [6], [7], [8], [9]. The cases of two
and three polygons are studied in [10], [11]. Transla-
tional and rotational polygon containment problems
with even more multiple polygons is investigated by
Milenkovic [12], [13]. Grinde and Cavalier [8] use
a mathematical programming formulation/model to
solve the following containment problem: can a (not
necessarily convex) polygon P be translated and/or
rotated such that P fits within a convex polygon Q?

Computer Simulated Mosaics: The problem of
synthesizing 2D mosaics has extensively been studied.
A relatively recent survey of mosaics on images and
planar surfaces can be found in [14]. Much research
has focused on adding mosaic-like effects to a source
image. Here we only focus on the method categorized
as ancient mosaics by [14] which simulates mosaics
by arranging tile images in a container image. Haus-
ner [15] creates mosaics with rectangular tiles using
centroidal Voronoi diagrams based on the Manhattan
distance. Liu et al [16] improves Hausner’s method
by proposing a fully automatic approach that opti-
mizes an objective function accounting for the desired
mosaic properties. Kim and Pellacini [17] pack image
tiles into an image container by matching the color of
the image tiles to colors in the image container. Tight
packing has been achieved by energy minimization
and permitting tiles to undergo small deformation.
In [18], [19], [20], Lloyd-type relaxation is exploited to
evenly distribute tiles within a planar region. When
tiles have irregular shapes, these methods become less
effective, and often leave large gaps between the tiles.
Reinert et al. [21] propose a method for arranging
given shapes into an artistic layout by inferring from
user’s interactions.

There is relatively little work on creating mosaics on
surfaces in 3D. The work presented in [22] considers
placing square tiles with equal size on a surface. Dos
Passos and Walter [23] extends Lai et al.’s technique
to surface mosaics with nonuniform rectangular tiles.
In [24], they simulate mosaics over a sculpture surface
using the Voronoi tiles of a set of seed points on the
surface. As a consequence, the tiles in their results al-
ways have the recognizable convex shapes of Voronoi
cells. In contrast, we tackle a more challenging and
practical problem of creating surface mosaics using a
set of irregularly shaped tiles that the user provides.

Reassembly of Fragments: Automatic reassem-
bly of broken objects from a large collection of ir-
regular fragments is of great interest in archaeol-

ogy. Computer-aided technologies make it possible
to digitize detailed geometry and texture of each
fragment and reassemble digitized fragments using
a computer algorithm. A common approach to this
problem, based on automated cluster agglomeration,
first identifies pairwise matches among the fragments
according to shape [25], [26], texture and normal [27]
cues, and then assembles them into larger clusters
through a connectivity graph. One important assump-
tion made in these reassembly solutions is that the
fragments are broken pieces of the same object so
that one may expect to find perfect matches from
the fragments. This assumption is not applicable in
our setting, since the tiles used in a mosaic can have
arbitrary shapes and are not necessarily the pieces of
the same original object.

3 PROBLEM DESCRIPTION

The input to our mosaic synthesis problem consists of
a base surface M, which is usually represented as a
triangle mesh surface, and a set of irregularly shaped
meta objects represented as planar polygons, denoted
L = {Si}mi=1. The goal of optimizing tile selection and
configuration is to have sufficiently large coverage of
the base surface. Every tile lies on a 2D plane that is
tangent to the base surface at the centroid ci of Pi.
Our task is to seek an optimal arrangement of tiles,
{(Pj ,Θj)}nj=1, where the tile Pj is a duplicate of an
object in L = {Si}mi=1, and Θj denotes the set of the
parameters describing the configuration of Pj , i.e. its
position coordinates and orientation angle on the base
surface M. The tile arrangement needs to meet the
constraint that the tiles do not overlap with each other.
Note that the number of tiles to be used in a mosaic,
denoted n, is not predefined, and is itself a variable.
Surface coverage is defined as the ratio of the sum of
the areas of the chosen tiles to the total area of the
base surface.

In our problem formulation, we allow each tile
to be a scaled version of the meta object that it is
associated with, and the scaling factor of each tile is a
continuous variable to be optimized. This flexibility in
scaling is used to accommodate the fact that the tile
size should change according to the local curvature
variation of the base surface to provide a tight fit on it;
specifically, smaller tiles should be placed at regions of
high surface curvature. We note that this variation in
tile size does not compromise much the visual effect of
the mosaic, which is mainly determined by the shape
and layout pattern of the tiles. Furthermore, these
scaling factors are used in our algorithm for growing
a set of small “seed tiles” into a mosaic of tiles. Note
that allowing the final scale factors not to strictly be
1.0 makes our problem formulation different from a
packing problem requiring that the tile size remain
the same as specified in the input.
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(a) (b) (c) (d) (e) (f)

Fig. 1. Algorithm overview. (a) Tile initialization and associated domain partition; (b) Relaxation result before
reaching the first scaling factor barrier; (c) Relaxation result by Algorithm 2; (d) Result by tile permutation
(Algorithm 3.1) and relaxation; (e) Result by tile replacement (Algorithm 3.2) and relaxation; (f) Result by hole
filling (Algorithm 3.3).

4 OVERVIEW OF METHOD

Our hybrid optimization scheme for the mosaicing
problem defined in the previous section consists of
continuous configuration optimization and discrete
combinatorial optimization. The pseudo-code of the
overall algorithm is given in Algorithm 1. The in-
termediate results of the algorithm are shown in
Figure 1.

The continuous configuration optimization is based
on an iterative relaxation scheme, which iteratively
adjusts tile configuration, including position, orienta-
tion and scaling, with the goal of increasing surface
coverage. It starts with an initial arrangement of tiles
{Pi}ni=1 of sufficiently small size over the surface
M (Section 5.1). As shown in Algorithm 2, in each
iteration, the base surface is partitioned into a set of
nonoverlapping regions using the tiles as the centers
of the regions (Section 5.2). To increase surface cover-
age, the configuration of every tile is adjusted using
constrained nonlinear optimization (Section 5.3) so
that the tile can cover more area within its own region.
More details about the algorithm will be explained in
Section 5.3.

When the tiles grow during tile optimization, some
tiles may reach their prescribed sizes earlier than
the others, before their attaining optimal position
and orientation. That may hinder other tiles from
reaching their optimal configuration. To avoid such
suboptimal scenarios, we control the pace of scaling
factor optimization with a multi-phase synchroniza-
tion strategy. That is, all the tiles are expected to
almost simultaneously reach their prescribed sizes. By
adopting this synchronization scheme, tile sizes can be
optimized in a more coordinated manner and better
tile configurations can be reached globally.

Starting from a random initial placement of tiles,
configuration optimization alone usually cannot pro-
duce satisfactory results. Therefore, we further apply
combinatorial optimization for tile permutation, tile
replacement and hole filling, as illustrated in Algo-
rithm 3. For every tile in an existing layout, we
temporarily remove it and extract the boundary of

Algorithm 1 Synthesizing Mosaic by Hybrid Opti-
mization
Input: M, a supporting surface

α, a threshold for coverage rate increase
L = {S1, S2, ..., Sm}, a set of meta objects

Output: A compact layout of tiles over M
1: Generate initial tiles by randomly sampling L

with repetition
2: Shrink the tiles and distribute them overM with-

out any overlap
3: Perform tile configuration optimization (Algo-

rithm 2)
4: repeat
5: Swap the tiles (Algorithm 3.1)
6: Shrink the tiles and optimize (Algorithm 2)
7: until the increase of surface coverage < α
8: repeat
9: Replace the tiles (Algorithm 3.2)

10: Shrink the tiles and optimize (Algorithm 2)
11: until the increase of surface coverage < α
12: Fill the holes (Algorithm 3.3)

the vacancy formed by its surrounding tiles. The tile
permutation step checks whether there exists a subset
of tiles such that a permutation of the tiles in this
subset will yield a tighter fit inside the tiles’ regions
than their current occupants. If yes, the performed tile
permutation will be accepted; otherwise, the permu-
tation is not accepted and we back track to the con-
figuration before the the permutation. See details in
Section 6.1. Since there may exist a number of different
meta objects that could be used for every unoccupied
region, the replacement step tries to replace a tile with
a meta ojbect that better fills the region (Section 6.2).
Finally, we detect areas on the supporting surface that
have not been covered by any tiles, and fill them with
additional tiles to obtain the final mosaic pattern.

We perform tile configuration optimization and
tile combination optimization alternately in multiple
passes. These operations are complementary to each
other and together they lead to an optimized choice
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Algorithm 2 Tile Configuration Optimization
Input: M, a supporting surface
{P1, P2, ..., Pn}, an initial layout of tiles over M
{b1, b2, ..., bl|bj < bj+1}, scaling factor barriers
itnmax, the maximum iteration number for each
phase

Output: A compact layout of tiles over M
1: for each scaling barrier bj do
2: itncurr ← 0
3: while itncurr < itnmax do
4: Construct an approximate chordal axis trans-

form and project the resulting regions to the
planes of {Pi}ni=1

5: for each tile Pi do
6: ri ← scaling factor between Pi and its

corresponding meta object
7: Find the largest copy of Pi (with a scaling

factor si, a rotation angle θi, and a transla-
tion ti) that lies completely inside Vi

8: if siri < bj then
9: Apply the transformation T (si, θi, ti) to

Pi
10: else
11: Apply the transformation T (

bj
ri
, θi, ti) to

Pi
12: end if
13: end for
14: Project the centroids of the updated tiles to

the supporting surface, and align the tiles
with the tangent planes

15: itncurr ← itncurr + 1
16: end while
17: end for

of tiles and their configuration. After each pass of tile
combination optimization, as a relaxation technique,
we reduce the size of all tiles by a certain percentage
before optimizing their configuration again. Surface
coverage is usually improved significantly after a few
rounds of such combinatorial tile optimization and
relaxation.

In the following, we discuss the details of our
algorithm.

5 TILE CONFIGURATION OPTIMIZATION

5.1 Initial Tile Placement
The initial number of tiles, denoted n, is determined
by dividing the total area of the supporting surface
by the average area of the meta objects. After deter-
mining the number, the tiles are initially distributed
over input surface. This distribution is achieved by
a curvature based strategy, such that initial tile den-
sity varies with curvature at different regions of a
surface. In particular, the tile density is positively
correlated with the curvature, i.e. more tiles with
small sizes at high curved regions and vice versa, so

Algorithm 3 Tile Combination Optimization
Input: M, a supporting surface

L = {S1, S2, ..., Sm}, a set of meta ojbects
{P1, P2, ..., Pn}, an initial layout of tiles over M

Output: A layout of tiles with improved shape com-
patibility

Algorithm 3.1 Tile Permutation
1: choose a subset of the tiles in the current layout
2: compute the best permutation of the tiles in the

subset

Algorithm 3.2 Tile Replacement
3: for the tile surrounded by large uncovered region

do
4: Remove it from the layout
5: Extract the hole boundary formed by surround-

ing tiles
6: Fill the hole with the best matching meta object
7: end for

Algorithm 3.3 Hole Filling
8: Detect the vacant space (holes)
9: Fill the holes with the best matching meta objects

Fig. 2. Approximate construction of Chordal Axis
Transform. T1, T2, and T3 are a junction triangle, an
external triangle, and an internal triangle, respectively.

as to make tiles closely capture surface features. In
our implementation, we use the curvature to define a
function on surface to control the desired tile size at
a surface point p, denoted as DTS(p). Then n points
are uniformly sampled on the surface according to
the density function derived from DTS(p) by the blue
noise sampling method in [28]. The tiles are placed on
the tangent planes at the selected points over the sur-
face. In addition, all tiles are shrunk to be 10% of their
desired sizes to remove potential overlaps between
any tiles. Note that subsequent relaxation steps will
make the tiles larger to reach their prescribed sizes.

5.2 Approximate Chordal Axis Transform
Given a set of n disjoint tiles {P1, ..., Pn} with their
centroids on the supporting surface, we would like
to partition the supporting surface into a set of
nonoverlapping regions, one surrounding each tile,
so that we can optimize the configuration of each tile
individually to improve the coverage of its containing
region. We use the chordal axis transform (CAT) [29]
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for partitioning the surface.
In practice, we approximate a tile with a set of suf-

ficiently dense and uniformly spaced sample points
along its boundary. Furthermore, a Delaunay trian-
gulation of these sample points over the supporting
surface is constructed as in [30]. Then we compute
the chordal axis [29] from the Delaunay mesh. We
first classify the edges of the Delaunay mesh into two
categories. Edges connecting vertices from two tiles
are called external edges while the other edges are
called internal edges. Triangles can also be classified
into three categories: triangles with three external
edges (junction triangle), triangles with two external
edges(external triangle), and triangles without exter-
nal edges (internal triangle), as shown in Figure 2. The
chordal axis is obtained by connecting the midpoints
of the external edges of every external triangle and
also connecting the midpoints of all edges of every
junction triangle to the centroid of that triangle.

All edges created in the previous step form n con-
nected 3D polygons, each of which surrounds one of
the tiles, as shown in Figure 1. We call these polygons
CAT regions. In the optimization detailed in the next
section, a tile will be restricted to lie on a tangent
plane in every iteration. We project every CAT region
onto the tangent plane containing the corresponding
tile, resulting in a 2D projected CAT region for each
tile. The projected CAT region of tile Pi is denoted Vi.

Open Boundaries and Sharp Features: We treat
open boundaries and sharp features on a supporting
surface as follows. We sample a sufficient number of
points on a mesh boundary and use them as barriers
to stop tiles from moving beyond the boundary. The
projected CAT regions associated with these points
are sufficiently small when tiles are packed tightly
near the boundary. In other words, these extra points
do not occupy much surface area so that there is
little gap between the tiles and the mesh boundary.
In practice, this method makes tiles align well with
the boundary (see Figure 6 and 7). In addition, a sharp
feature curve on the mesh surface is handled as a two-
sided boundary in our implementation.

5.3 Tile Containment Optimization

In the relaxation process as described in Algorithm 2,
we need to optimize the position, size, and orientation
of a tile Pi within its projected CAT region Vi. We
solve this problem by finding the largest copy of
Pi inside Vi, since our goal is to maximize surface
coverage. Because the projected CAT region Vi is
actually a planar polygonal region, the problem is
equivalent to solving extremal polygon containment
problem [31] with two polygons. There has been
much work on this problem as reviewed in Section 2.
However, we cannot use the existing methods directly
because those methods have restrictive assumptions
on fixed rotations and convex polygons, while both

(a) (b)

Fig. 3. Local constraints for extremal polygon optimiza-
tion: (a) local constraints for vertex pi; (b) the extremal
polygon obtained by our method.

the tile polygon and the container polygon may be
concave in our setting.

We formulate extremal polygon containment as an
optimization problem with nonlinear constraints as
follows. Let P denote the inner tile polygon be P
and Q the container polygon. Recall that the inner
polygon P is approximated with a sequence of sample
points, denoted {p1, . . . ,pl}. Our strategy is to define
a feasible region delimited by a subset of edges of Q
for each sample pi. We compute a Voronoi diagram for
the set of sample points on P . Each edge of polygon
Q must intersect with at least one of the Voronoi
regions, as shown in Figure 3. Let {e1, ..., em} be the
set of edges of Q. We collect the subset of edges of Q
that intersect with the Voronoi region of each sample
pi, and denote it as Ei. In our formulation, sample
pi is constrained to be on the positive side of the
edges in Ei. Note that the set of edges in Ei changes
as the optimization proceeds. Therefore, we need to
dynamically update Ei during the optimization.

Our formulation relies on the local coordinate frame
associated with the polygon P . Let the translation of
P be t = (t1, t2), the angle of the rotation around the
origin be θ, and scaling, if allowed, be s. As P moves
away from its initial position, the samples on P can
be represented as functions of (s, θ, t1, t2) as follows,

pi
′ = pi(s, θ, t) = s ·Rθ(pi) + t, 1 ≤ i ≤ n,

where Rθ is the 2D rotation matrix specified by the
angle θ.

In the above context, we formulate the extremal
polygon containment problem as a 2D constrained
nonlinear optimization as follows.

Maximize f(s, θ, t) = s

subject to
(pi
′ − v0

j )× ej

|ej|
≥ 0 for 1 ≤ i ≤ l, j ∈ Ei

− π

6
≤ θ ≤ π

6
,

(1)

where v0
j is the starting point of the directed edge ej.

The objective function of the optimization is simply
the scaling factor s, which directly controls the area of
P . The amount of incremental rotation is constrained
to a small range every time the set of constraining
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edges is updated, because the local containment con-
straints for P may not continue to hold if there is
large step of rotation. An empirical range for the in-
cremental rotation is [−π/6, π/6], which always leads
to stable results in our experiments.

Specifically, we introduce a set of scaling factor
barriers {b1, b2, ..., bl = 1.0|bi < bi+1}, which is a
monotonic sequence of numbers within the valid
range for scaling factors. As shown in Algorithm 2, we
increase an active barrier step by step from the small-
est number to the largest in this sequence. At each
step, we perform a number of relaxation iterations.
Those tiles which scale fast would reach the active
barrier first and have to wait for the others. Once the
size of every tile has reached the active barrier, the
active barrier is increased to the next level and tiles
can be further scaled again.

We use the interior-point algorithm provided by the
software library KNITRO [32] to solve the above op-
timization problem. It replaces a nonlinear program-
ming problem with a series of barrier subproblems,
and follows an interior path to the solution. The initial
values for (s, θ, t1, t2) are set to (1, 0, 0, 0). A local
maximizer of the above optimization problem with
this particular starting point is usually satisfactory for
our application. In the presence of an active barrier
for the purpose of synchronization among tiles, as
discussed in Section 4, we simply make the scaling
factor equal to the active barrier when the final scaling
factor from the above optimization exceeds the active
barrier.

6 TILE COMBINATION OPTIMIZATION

Tiling results obtained from the relaxation process are
often not visually satisfactory enough. There may be
areas of uncovered space left within projected CAT
regions due to shape mismatch between a tile and its
surrounding tiles. We resort to tile combination opti-
mization to further reduce the amount of uncovered
space. Generally, for every tile, we extract the ”hole”
delimited by its surrounding tiles, and try to locate
a different meta ojbect that, after appropriate scaling,
can better fit into the hole than its current occupant.

6.1 Tile Permutation
Since we maintain a Delaunay mesh of all the sample
points along the edges of tiles, the extraction of the
uncovered hole region around a tile can be performed
through a region growing scheme, as shown in Fig-
ure 4(a). Starting with the set of boundary edges of
a tile that participates in a permutation, the region
grows by including triangles incident to its bound-
ary edges. The growth of the region stops if all the
boundary edges either reach other tiles or are shorter
than a threshold. To find another tile that can better fit
into the extracted region, we exploit a shape matching
method (Section 6.3).

Given two shapes, the shape matching method
returns a matching transformation and a similarity
score between them. For each tile, we compute shape
similarity scores between its hole region and all other
tiles. We compute a new permutation of the tiles
used in the layout as follows. Firstly, we build a
bipartite graph, where each edge between the i-th
region and j-th tile is associated with a weight defined
by their similarity score. Our task is then finding the
matching with the minimum accumulated weight in
the bipartite graph. Such a matching corresponds to
the best permutation of the tiles and is found by
solving the assignment problem using the Hungarian
algorithm [33]. Note that the hole regions of the tiles
used in shape matching give an overlapping decom-
position of the supporting surface. As a result, the
new shapes of adjacent tiles after permutation may be
overlapping with each other. To avoid this problem,
we divide the tiles in the current layout into subsets
such that the tiles in the same subset are not adjacent
to each other. Two tiles are considered to be adjacent if
there is at least one Delaunay edge connecting them.

6.2 Tile Replacement and Hole Filling
The tile replacement replaces a tile with another one
(from the meta objects), which can better fill its sur-
rounding region. However, the excessive use of this
operation could lead to the loss of shape diversity
in the layout, since it tends to favor some tiles than
others in the resulting layout. Thus, we only replace
tiles surrounded by large uncovered regions. We use
the area ratio between a tile and its surrounding
region to measure the uncovered space. Empirically,
we sort all the area ratios in an increasing order and
only replace the first 25% of these tiles.

Due to the limited number of shapes provided
by the user, there may still be some relatively large
uncovered areas on the supporting surface. We follow
the same steps as in Section 6.1 to detect and extract
holes. We fill every detected hole with a new tile.
During hole filling, a new shape is selected through
shape matching. In our experiments, we fill only those
holes whose areas are larger than 50% of the mean
area of all the tiles.

6.3 Shape Matching
There exist many shape matching techniques that
work with different shape representations and trans-
formations. We use the affine registration method in
[34] to compute the matching transformation between
two shapes. Only its similarity transformation part of
the matching transformation is used in our solution.

Specifically, the best matching meta object for a
target region is selected as follows. First, the centroid
of every meta object is aligned with that of the target
region. Second, an optimal 2D orientation of every
meta object is computed by applying the registration
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(a) (b)

Fig. 4. Tile combination optimization. (a) Region ex-
traction; (b) Replaced tile with better shape compatibil-
ity with surrounding tiles.

method in [34]. Third, every meta object is uniformly
scaled so that it has the same area as the target
region. Finally, the scaled meta ojbect with the largest
common area shared between itself and the target
region is chosen to be the best matching one. And the
area of the symmetric difference of the two shapes is
defined as the similarity metric.

Note that a meta object is not associated with a
specific size during shape matching. All the tiles will
be scaled smaller before the subsequent relaxation
step. And again, the synchronization strategy for the
scaling factor during relaxation will prevent tiles from
becoming overly large or small.

7 EXPERIMENTS AND RESULTS

We have implemented our algorithm in C++. All
the experiments were conducted on a PC with a 2.4
GHz Intel quad-core processor and 8GB memory. We
use OpenMP to automatically parallelize the code
for tile configuration optimization. The running time
for each model depends mainly on the number of
tiles used. Typically, our algorithm generates a high-
quality synthesized surface mosaic in 10-20 minutes
for a mesh covered with 2000 tiles.

Eight sets of tiles were presented for mosaic syn-
thesis in this paper, as shown in Figure 5. These tile
sets include synthetic shapes, like the random convex
polygons in Figure 5(a), shapes cropped from clip arts
as in Figure 5(b)-(e) as well as tile sets cropped from
photographs of real-world tiles made from rocks and
stones, as shown in Figure 5(f)-(g). Note that every
tile set we use consists of irregularly shaped tiles.

In all our experiments, we use the following func-
tion to define the desired tile size at a mesh vertex:

DTS(vi) = (|κmax|+ 1)−0.6,

where κmax is the maximum principal curvature at
the mesh vertex vi, and the constant 1 is added to
ensure that the denominator does not vanish. The
desired tile size at any point of the mesh surface
is then obtained by linear interpolation. During the
optimization discussed in Section 5, the size function

(a) Synthetic tiles (b) Cartoons

(c) Flowers and leafs (d) Letters (e) Fruit

(f) Pebble tiles (g) Black tiles (h) Glazed pebble tiles

Fig. 5. Tile sets used in mosaic synthesis. The number
of meta objects in tile sets (a-h) are 100, 28, 16, 40, 25,
70, 54, and 79, respectively.

Fig. 7. Synthesized surface mosaics with user-defined
masks.

is used to guide the initial distribution of tiles and
the tile size at any point over a mesh surface. In
all the rendered images, all the 2D planar tiles are
extruding them off the base surface slightly so that the
3D appearance of the titles allows better appreciation
of the the mosaics.

We have tested our algorithm on various mesh
models and tile sets to create a variety of surface
mosaic patterns. Figure 6 shows some of the results
synthesized by our method. The coverage rate of the
supporting surfaces is between 85% and 89% for the
rock and stone tiles and between 72% and 80% for
tiles cropped from clip arts. The tiles in these results
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Fig. 6. A gallery of synthesized mosaics on surfaces. From left to right and top to bottom: Hypersheet with the tile
set in Fig 5(f), #tiles n = 1869 , coverage rate α = 0.868; Bunny with the tile set in Fig 5(a), n = 4753, α = 0.881;
Double torus with the tile set in Fig 5(h), n = 1530, α = 0.865; Bowl with the fruit tile set, n = 500, α = 0.788;
Cloak with the flower tile set, n = 800, α = 0.726; Egg with the tiles of letters, n = 1000, α = 0.801.

faithfully follow the geometry of the supporting sur-
face by varying their size according to the surface
curvature. Figure 7 show mosaic patterns on surfaces
with different parts of the patterns. Here the curves
delineating different parts are treated as two-sided
boundary curves.

Anisotropic mosaics: It often happens that the
orientations of the tiles are required to align with
a given vector field, especially when the tiles have
regular shapes with distinct orientations, such as
rectangles and squares. Our method can easily be
adapted for this type of anisotropic mosaic synthesis.
When the tile relaxation algorithm (Algorithm 2) is
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Fig. 8. Anisotropic mosaic simulation on surface.

applied, the rotation of a tile is not a variable subject
to optimization, but determined by a vector field.
That is, only tile translation and scaling are optimized.
Figure 8 shows an example where the orientations of
the tiles are aligned with the principal directions of a
surface.

Comparisons: We compare our method with the
two surface mosaic methods in [19] and [35], which
employ iterative centroidal Voronoi tessellation for
planar mosaic generation. During each iteration, these
methods compute a Voronoi tessellation of the un-
derlying domain taking polygonal tiles as sites, move
tiles to the centroid of their Voronoi cells, and reorient
the tiles so that the principal direction of a tile matches
the orientation of the closest domain boundary [19] or
the principal direction of the tile’s Voronoi cell [35].
The principal directions are estimated by principal
component analysis. To improve the coverage rate of
the results by these methods, we perform a simple
scaling at the end so that every tile touches the
boundary of its Voronoi cell. From Figure 9, we see
the resulting coverage rates of these two techniques
are typically at least 20% lower than the coverage
achieved by our results.

Square tiles with the same size [22] or different
sizes [23] have been used for surface mosaics. Dos
Passos and Walter [24] present a simple method for
visually simulating mosaics with irregular tiles over
a sculpture surface. The tiles are computed using a
Voronoi diagram defined with a distribution of points
on the surface. We compare our method with this
method in Figure 10. With perfect edge alignment
between adjacent tiles, the result obtained with the
method in [24] does not resemble a man-made mosaic,
where larger gaps between adjacent tiles are necessary
to fill grout, and the edges of two adjacent tiles are not
always perfectly aligned. In comparison, our result
looks closer to a manually produced mosaic pattern.
Most importantly, our method can handle any user-
provided irregularly shaped tiles, while the tiles in
Dos Passos and Walter’s results must have the usual
convex shapes generated as 2D Voronoi cells.

Fig. 9. A comparison with existing techniques using
centroidal Voronoi tessellation. Two tile sets are used:
(a) our results with coverage rates 84.7% (upper) and
84.3% (lower) ; (b) results by [19] with coverage rates
60.9% and 68.1% ; (c) results by [35] with coverage
rates 59.7% and 64.8%.

Fig. 10. A comparison with an existing technique
for surface mosaic generation by using Voronoi poly-
gons [24]. Left: result by [24]; middle&right: our results.

We have also conducted a comparison between
surface mosaics generated by our method and those
by manual design. We have developed a simple in-
terface to allow a user to place tiles directly on a
surface piece by piece. The user is also allowed to
scale the tiles slightly to find a better fit. Figure 11
shows results from both this manual design process
and our automatic method. The manual design can
make very nice surface mosaics at a large labor cost.
Our automatic solution is much faster than manual
work while both results are comparable in terms of
aesthetic quality.

8 CONCLUSION

Automated synthesis of surface mosaic patterns helps
make virtual worlds look more realistic. An important
aspect of realism comes from the history of an artifact,
or the process by which it is made. Therefore, we
seek to compare our automated technique to designs
produced by humans. We have presented a method
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(a) (b) (c) (d)

Fig. 11. A comparison with manual design. (a)&(c): results by manual design, finished in 246 minutes and 357
minutes respectively; (b)&(d) results by our method, finished in 17 minutes and 47 minutes respectively.

for making synthetic surface mosaics with irregularly
shaped tiles. It integrates continuous constrained op-
timization with discrete combinatorial optimization,
and alternates between tile configuration optimization
and tile combination optimization. Tile configuration
optimization relies on a surface partition tailored for
the tiles and optimizes the configuration of each tile
to achieve a relatively tight fit within its own surface
region. Tile combination optimization performs tile
permutation and replacement to reduce uncovered
surface area. These operations are complementary to
each other and altogether they give rise to a near-
optimal choice of tiles and their configuration. Exten-
sive experiments and comparisons have demonstrated
the effectiveness of our solution.

Limitations: To achieve better surface coverage
and adapt to surface curvature variation, we apply
tile scaling during the synthesis process and allow
the tile sizes to be slightly different from their input
sizes. As a consequence, our problem formulation is
different from a packing problem and the method
is not applicable to generating mosaic patterns on
real physical objects with real tiles. Also, we have
only considered the shape characteristics of the tiles
and the underlying surface. Hence, when tiles with
different textures are provided, the mosaic pattern
generated by our methods may look chaotic.
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