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Abstract

Consider two collections of objects R and S, where each object is assigned a score (e.g.,
a rating). Given a join predicate � and an integer k, a top-k join query returns the k pairs
of objects which have the highest combined score (based on an aggregate scoring function
�) among all object pairs in R ⇥ S that qualify �. This query type has been extensively
studied in the relational database context where the join predicate is equality, with the main
goal of minimizing the number of tuples accessed from relations R and S. However, if the
top-k join involves a non-equijoin predicate � on complex data types, the computational cost
can easily become the bottleneck of query evaluation. In view of this, we propose a novel
evaluation paradigm for top-k joins, which aims at minimizing the computations cost, without
compromising the access cost. The main idea behind our paradigm is to examine blocks of
data from R and S ordered by the object scores; by performing the top-k join in a block-
wise fashion, we avoid (i) building expensive indexes incrementally and (ii) comparing pairs of
blocks that may not contain results (using appropriate bounds). We show how our paradigm
can be applied for the cases of top-k spatial and string joins and conduct an analysis on how
to derive the optimal block size for each case. Finally, we evaluate our proposal by extensive
experimentation on both real and synthetic data.

1 Introduction

Consider two collections of objects R and S, and assume that the objects in either R or S have (at
least) one join attribute att and a scoring attribute score. Given a predicate � (e.g., equality =)
on the join attributes of two objects and a monotone aggregation function � (e.g., SUM) which
combines their scoring attributes, k-Join retrieves a k-subset J of R ⇥ S such that for every pair
of objects (r, s) 2 J , �(r, s) is satisfied and for any (r0, s0) 2 R ⇥ S r J which satisfies �(r0, s0),
�(r, s) � �(r0, s0) holds. Top-k join queries have been extensively studied for the case of equality
join predicate on attributes of primitive data types such as numerical values [6, 12, 17, 20, 22, 23,
29, 33, 37]. In this paper, we study this problem for the case where the join predicate applies on
complex data types.

Spatial Distance k-Join (k-SDJoin). Consider, for instance, the case of spatial locations as join
attributes. A predicate � could qualify pairs of objects (r, s) which are spatially close based on
a distance threshold ✏, i.e., dist

SD

(r, s)  ✏ where dist
SD

(r, s) denotes the distance between the
spatial locations of r and s. An exemplary application of k-SDJoin in this context is recommending
to the visitors of a city the k pairs of restaurants and hotels within short distance from each other,
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id restaurant name rating

r1 New York Pancakes 3
r2 La Bella Napoli 5
r3 Luigi’s Pizza 2
r4 x-treme Burgers 1

id restaurant name rating

s1 La Bella Napoli 5
s2 Extreme Burgers 2
s3 NY Pancakes 4
s4 Louigi’s Pizza 2

(a) (b)

Figure 1: Example of (a) a k-SDJoin and (b) a k-SSJoin.

that have the top combined ratings. Figure 1(a) illustrates a collection R of four restaurants and
a collection S of four hotels. The objects carry a score shown next to every point. Assuming
that the qualifying pairs should have Euclidean distance at most ✏ = 0.3 and � = SUM , the
result of 2-SDJoin contains pairs (r2, s3) with aggregate score 7 and (r2, s2) with aggregate score
6. k-SDJoin finds application also in emerging scientific fields like bioinformatics; for instance, the
problem of identifying pairs of amino acids that exhibit “good” properties and therefore, contribute
to the stability of a protein. The properties of amino acids like the “solvent accessibility” can be
quantified as scores [25], and thus, the problem at hand can be modeled as a k-SDJoin query which
identifies among pairs of amino acids that are close to each other with respect to their 3D location,
the ones with the highest SUM of their “solvent accessibility” score.

String Similarity k-Join (k-SSJoin). As another example of a k-Join operator on complex data
types consider the case of strings as join attributes. The string attribute value of an object
may contain typographic errors or abbreviations. Thus, in the context of k-SSJoin, a predicate
� would qualify object pairs (r, s) with a similar textual description based on a string distance
threshold ✏, i.e., dist

SS

(r, s)  ✏ where dist
SS

denotes the string distance (e.g., edit or Hamming
distance) between the string attributes of r and s. k-SSJoin finds application in tasks like data
integration where the score ratings of objects from di↵erent data sources are combined to identify
the most dominant ones, or data cleaning and de-duplication. For instance, a person in search of
a good restaurant would find value on a mashable-like search engine that ranks available options
by combining ratings from di↵erent Web sources. Note that the users of a search engine usually
iterate through the first part of the search results [14], i.e., the top-k restaurants, and therefore,
a k-Join operator is more useful than computing the entire join between the sources. Under this
scenario, Figure 1(b) illustrates two restaurant collections R and S from di↵erent websites which
however may store the same object under a di↵erent name. Assuming that the qualifying pairs
should have edit distance at most ✏ = 2 and � = AV G, the result of 2-SSJoin contains pairs (r2, s1)
with aggregate score 5 and (r3, s4) with aggregate score 2.

Existing Solutions. A straightforward approach for the evaluation of the k-Join operator is to
first compute the R ./

�

S join with respect to predicate � on the join attribute of the objects,
and then, identify the top-k result pairs based on the aggregate score function �. This Join-
First Paradigm (JFP) is discussed in more detail in Section 3.2. If input collections R and S are
accessed in decreasing order of their score values, k-Join is evaluated by accessing R and S only
partially, using bounds for the non-examined objects to terminate [12, 22, 29]. Specifically, the
Score-First Paradigm (SFP) examines the objects from R and S incrementally in decreasing order
of their score values. Each time, an object r (or s) is accessed from R (or S) and joined with the
(bu↵ered) objects of S (or R), which have been previously accessed. The bu↵ered objects from
S (or R) are indexed by I

S

(or I
R

) on join attribute att; for instance in case of relational top-k
equijoins I

S

(or I
R

) is a hash-table. After r (or s) has been examined, it is then bu↵ered, i.e.,
inserted into I

R

(or I
S

). Join results are organized in a priority queue based on their aggregate
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score; all results that are guaranteed to be of higher aggregate score compared to the maximum
possible score of join pairs not computed yet are incrementally produced. SFP is presented in
detail in Section 3.1.

Motivation. Previous k-Join evaluation techniques [6, 12, 17, 20, 22, 29, 33, 37] have focused
on applying SFP on relational top-k equijoins. Their primary goal has been the minimization of
accesses from R and S, which corresponds to I/O cost in a centralized setting (assuming unlimited
memory for bu↵ering/indexing the accessed objects) [12, 17, 20, 22, 29] or to communication cost
in the case where R and S (or parts thereof) reside in di↵erent nodes [6, 33, 37]. We observe
that, in case of top-k equijoins, the computational cost of SFP is very low because the I

R

and
I
S

indices are hash tables which support search and updates in constant time. However, as we
show in Section 8.7, when att is an attribute of a complex type and � is not equality (e.g., a
spatial distance join or string similarity join), the computational cost of SFP can easily exceed
the access cost, due to the increased overhead of searching and incrementally updating I

R

and I
S

.
For instance, in the case of a spatial distance k-Join, I

R

and I
S

should be spatial indices (e.g., R-
trees) which are significantly more expensive to search and incrementally update compared to hash
tables. Therefore, the focus of our work is the e�cient (in terms of CPU cost) k-Join evaluation
on complex data types.

Contribution. We propose a novel, hybrid evaluation paradigm, for the k-Join operator termed
the Block-based Paradigm (BLP). BLP processes the objects in decreasing order of their scoring
attribute similar to SFP but in a block-wise fashion, and joins blocks of the input collections in a
similar to JFP manner while using score bounds to avoid computing the entire join of the input
collections. As we discuss in detail in Section 2.2, BLP di↵ers from previous block-based extensions
of k-Join [4, 29]; for example, in [29] a simple extension to SFP that accesses one block of objects
at a time is proposed, but the objects are processed one-by-one as in the original SFP algorithm.
Note that despite focusing on binary k-Join under one scoring attribute per input, as we discuss in
Section 4.3, BLP can directly incorporate the pulling strategy and the bound scheme from [8] for
multiple scores, and handle multiple inputs either as a hierarchy of binary k-Join queries [17] or in
a multi-way fashion [29].

The performance of BLP is strongly related to the size � of the blocks accessed from the input
collections. Under this, we introduce objective cost function C(�) to capture the total cost of
computing k-Join with BLP, and then model the selection of the most appropriate block size as
an optimization problem. Further, we devise a novel model for estimating the number of objects
accessed from each collection which, in contrast to previously proposed models [6, 13, 17, 30],
employs cheap-to-compute statistics and does not require any prior assumptions regarding the
distribution of the join or the scoring attributes. In fact, due to employing expensive statistics,
i.e., multi-dimensional histograms, the models proposed in [6, 30] for estimating the number of
accessed objects cannot be employed in cases other than equijoins on primitive numerical join
attributes.

We study the use cases of spatial distance k-Join (k-SDJoin) and string similarity k-Join (k-SSJoin).
We discuss in detail how SFP, JFP and BLP are applied to compute these novel query operations,
employing special indexing structures and optimization techniques. Finally, we conduct an exten-
sive experimental evaluation showing that BLP greatly outperforms SFP and JFP in the compu-
tation of k-SDJoin and k-SSJoin queries. In our experiments, we employ both real and synthetic
score-carrying object collections. Our analysis demonstrates also the e↵ectiveness of our model for
estimating the number of objects needed to be accessed from each collection in order to compute
a k-Join query, compared to the model proposed in [13] (note that in the absence of expensive
statistics [30] assumes uniform and independent distribution similar to [13]), and the accuracy of
our model for selecting the block size for BLP.

In a preliminary version of this paper [27], we presented BLP and demonstrated its e�ciency
for k-SDJoin. However, the problem of selecting the optimal block size � was not studied and also,
the application of BLP on other join types (e.g. k-SSJoin) was not addressed.

Outline. The rest of the paper is organized as follows. Section 2 reviews related work and
Section 3 discusses in detail the existing evaluation paradigms for k-Join. Section 4 presents our
novel paradigm BLP for e�cient evaluation of the k-Join operator. Sections 5 and 6 discuss the
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application of all three paradigms for spatial and string join attributes, respectively. Section 7
introduces our models for selecting block size and estimating the number of accessed objects.
Comprehensive experiments and our findings are reported in Section 8. Finally, Section 9 concludes
the paper and discusses directions for future work.

2 Related Work

Our work is related to top-k queries and joins. In addition, the use cases of k-SDJoin and k-SSJoin
are related to spatial and string joins, respectively. Sections 2.1 to 2.5 summarize related work on
these subjects.

2.1 Top-k Queries

Fagin et al. [7] present an analytical study of various methods for top-k aggregation of ranked
inputs by monotone aggregate functions. Consider a collection of objects (e.g., restaurants) which
have scores (i.e., rankings) at two or more di↵erent sources (e.g., di↵erent ranking websites). Given
an aggregate function � (e.g., SUM) the top-k query returns the k restaurants with the highest
aggregated score (from the di↵erent sources). Each source is assumed to provide a sorted list of
the objects according to their atomic score there; requests for random accesses of scores based
on object identifiers may be also possible. For the case where both sorted and random accesses
are possible, the Threshold Algorithm (TA) retrieves objects from the ranked inputs (e.g., in a
round-robin fashion) and a priority queue is used to organize the best k objects seen so far. Let
`
i

be the last score seen in source S
i

; T = �(`1, ..., `m) defines a lower bound for the aggregate
score of objects never seen in any S

i

yet. If the k-th highest aggregate score found so far is no
less than T , the algorithm is guaranteed to have found the top-k objects and terminates. For
the case where only sorted accesses are possible, [20] presents an optimized implementation of
the No-Random accesses Algorithm (NRA), originally proposed also in [7]. The top-k results are
incrementally fetched based on their aggregate scores. [36] presents a framework for top-k queries
on top of collections having multi-attribute indices. An index-merge paradigm is proposed to merge
multiple index nodes progressively and selectively.

2.2 Top-k Joins

The top-k query is a special case of the general top-k join query, which performs rank aggregation
on top of relational join results. Natsev et al. [22] are the first to study top-k join evaluation. The
J⇤ algorithm is a multi-way join operator, which takes as input two or more input streams, one per
collection; in each stream, the objects of the corresponding collection are ranked based on their
scores. Objects are accessed incrementally from the streams (e.g., in round-robin). Partial join
results are computed and given upper bounds based on the maximum possible aggregate scores
of complete join results that may include them. The algorithm maintains a heap for all partial
and complete join results. At each step, the object combination at the top of the heap is popped,
missing values are sought for it (if partial) by accessing the streams and the results are pushed
back to the heap. J⇤ incrementally outputs the top combinations in the heap if they are complete
join results.

Ilyas et al. [12] propose a binary operator, called Hash-based Rank-JoiN (HRJN⇤) for top-k
joins, which produces results incrementally and therefore can be used multiple times in a multi-way
join evaluation plan. Assume that the objects of R and S are accessed incrementally based on
the values of their score attribute. HRJN⇤ accesses objects from R (or S) and joins them using
the join attribute att with the bu↵ered objects of S (or R), which have been previously accessed
(these objects are bu↵ered and indexed by a hash-table). Join results are organized in a priority
queue based on their aggregate score. Let `

R

, h
R

(`
S

, h
S

) be the lowest and highest scores seen in
R (S) so far; all join results currently in the queue having aggregate score larger than threshold
T = max{�(h

R

, `
S

), �(`
R

, h
S

)} are guaranteed to have higher aggregate score than any join result
not found so far and therefore can be output (or pipelined to the next operator). The follow-up
work in [17] applies HRJN⇤ in the more general problems of multiple input collections (similar
to [22]) that contain one or more scoring attributes each. The optimality of algorithms for such
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generalized top-k joins is studied in [29] by defining the Pull/Bound Rank Join (PBRJ) evaluation
framework; in fact, HRJN⇤ [12] is an instantiation of this framework, denoted by PBRJ⇤

c

, which
applies the threshold-adaptive pulling strategy for accessing objects from the input collections and
uses the so-called corner bound scheme for specifying threshold T , described above. In Section 3.1,
we present a generalization of the binary HRJN⇤/PBRJ⇤

c

, i.e., the Score-First Paradigm (SFP),
where any join predicate can be used (HRJN⇤/PBRJ⇤

c

assume only equijoins) and each collection
contains a single scoring attribute. The cases of multiple input collections and/or multiple
scoring attributes per input are out of the scope of our work. In fact as Section 4.3 discusses,
our proposed Block-Based Paradigm (BLP) could directly incorporate the methodology of [8] to
optimize k-Join evaluation with multiple scoring attributes. On the other hand, existing database
systems implement binary physical operators and thus, considering methodologies like [17, 29] for
multiple inputs can be seen as an interesting direction for future work.

Further in [29], Schnaitter et al. shortly discuss a variant of the PBRJ framework where a
block of objects is accessed at a time, instead of a single object; considering any type of join
predicate � a block-based variant of SFP is defined. Such a variant is proven to be instance
optimal in terms of the number of objects accessed from each input collection. In Section 4.2
we build upon this analysis to establish that BLP is also instance optimal with respect to object
accesses. Note however that, in practice the block-based variant of SFP significantly di↵ers from
our BLP proposal: although the objects are accessed in blocks they are still processed one-by-one
as in the original SFP which means that every examined object is still probed against the entire
set of bu↵ered objects from the other collection. In contrast, the currently processed block in BLP
is joined only with a small number of blocks of the other input collection. Chakrabarti et al. [4]
also discuss a block-based evaluation strategy in the context of top-k keyword search where the
join operator involves the intersection of compressed posting lists. The range of the document ids
is first split into intervals and an upper aggregate score bound is defined for each interval. Then,
the lists intersection is performed at the interval level while using score bounds to enable interval-
based pruning. Compared to BLP, the work in [4] di↵ers in two ways: (i) it primarily focuses on
minimizing the decompression cost for the postings list and (ii) the interval-based partitioning and
joining is strongly related to the problem at hand, i.e., keyword search, and cannot be applied to
other type of join attributes and predicates.

Our work is also related to studies [6, 13, 17, 30] on estimating the depth of top-k join operators,
i.e., the number of objects accessed from each input collection. Compared to our estimation
methodology in Section 7.2, these studies either make specific assumptions regarding the objects
of the collections or employ expensive statistics. Particularly, Ilyas et al. [13] propose a probability
based model with the assumptions that the join and scoring attributes are (i) uniformly distributed,
and (ii) independent from each other. Our experimental analysis in Section 8.4 shows that this
model is prone to errors since the above assumptions are often not applicable on real data. Li et al.
[17] propose a sampling-based approach where termination score ✓ is estimated performing a rank
join process on uniformly sampled data. However, such a sampling method usually overestimates
the depth, especially if both k (i.e., the number of required results) and the sampling ratio are small.
Schnaitter et al. [30] address the above issues assuming that the distribution of the scoring and the
join attribute is known in advance as a frequency tensor F (r

i

, s
j

) which is then used to determine
the number of join results with a specific aggregate score. To calculate F the authors employ
multi-dimensional histograms [26]. Similar statistics (2-dimentional histograms) are considered
by [6]. Yet, these approaches cannot be adopted for the problem studied in this paper as multi-
dimensional histograms are e�cient to compute and accurate only for join attributes of small
domains and simple join predicates such as equality. Note that in the absence of such statistics
[30] assumes uniform and independent distribution similar to [13].

Finally, in [6, 23, 33] a di↵erent aspect of the top-k join query was addressed; the case when the
input collections or part of them originate from di↵erent physical locations. Wu et al. [33] model
this problem utilizing a graph and a branch-and-bound algorithm is proposed that minimizes the
number of network accesses required for computing the results of the top-k join query. In contrast,
Doulkeridis et al. [6] determine the number of objects to be accessed from each network input,
through the depth estimation procedure. Ntarmos et al [23] study top-k joins in NoSQL databases
employing statistical structures (similar to 2-dimensional histograms) to reduce object accesses
and e↵ectively estimate the top-k join results in a distributed environment.
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2.3 Top-k Joins and Complex Data Types

There exist very few works on top-k joins related to complex data types but the definition of the
problems at hand significantly di↵er from the k-Join operator we study in our work. Specifically,
the “top-k spatial join” over two collections R and S is defined in [38]; however, this query retrieves
k objects in R intersecting the maximum number of objects from S. Thus, the ranking criterion
is based on the number of spatial intersections and not on the aggregation of (non-spatial) scores
from the two inputs as in case of the k-SDJoin realization of k-Join. Similarly, the “top-k similarity
join” in [16, 35] is di↵erent from a specialization of k-Join as the ranking criterion is based on the
set-similarity of the join attributes. Last, the “proximity rank join” over collections whose objects
carry a feature vector and a scoring attribute, is defined in [21]. This query also di↵ers from k-Join
as (i) it additionally involves a query object and (ii) the ranking criterion is based on a combination
of the scoring attributes, and the distance of the collection objects to each other and to the query
object.

The only work to our knowledge, closely related to k-Join on spatial join attributes is [19],
which studies a spatial join between two collections R and S containing objects associated with
probabilistic values; each object o (e.g., a biological cell) is defined by a set of probabilistic locations
and it is also assigned a confidence p

o

to belong to a specific cell class. Given objects r from R
and s from S, a score of the (r, s) pair is defined by multiplying their confidence probabilities p

r

and p
s

, and also considering distance dist
SD

(r, s) between their uncertain locations. Then, the
top-k probabilistic join between R and S returns the top-k object pairs in order of their scores.
Compared to k-SDJoin, the problem definition in [19] is di↵erent. The aggregate score function
for k-SDJoin does not involve the distance of the objects, but the distance is used in the join
predicate. Further, the solution proposed in [19] is of limited applicability as it is bound to a
specific aggregation function and can e�ciently work only with the L1 distance.

2.4 Spatial Joins

Given two collections of spatial objects R and S the ✏-distance join identifies the object pairs (r, s)
with r 2 R and s 2 S, such that dist

SD

(r, s)  ✏, where dist
SD

(·, ·) denotes the spatial (e.g.,
Euclidean) distance. An ✏-distance join can be processed similarly to a spatial intersection join [3].
Specifically, assuming that each of collections R and S are indexed by an R-tree, the two R-trees
are concurrently traversed by recursively visiting pairs of entries (e

R

, e
S

) for which their MBRs
have minimum distance at most ✏. Minimizing the cost of computing the distance between an
MBR and an object was studied in [5]. For non-indexed inputs, alternative spatial join algorithms
can be applied (e.g., the algorithm of [1] based on external sorting and plane sweep). Finally,
distance joins have been studied also for high-dimensional data like image feature vectors. In this
case, grid-based solutions [2] are preferred due to the ine↵ectiveness of R-trees in high dimensional
spaces.

2.5 String Joins

Given two collections of string objects, the string similarity join finds all similar object pairs with
respect to a string similarity measure, e.g., the edit distance, and a threshold ✏. Most of the existing
solutions [10, 18, 28, 32, 34] employ a filter-and-refinement evaluation framework. Gravano et al.
[10] propose string join techniques on top of commercial databases. By matching q-grams and
taking into account both positions and total number of matches, several pruning techniques are
proposed pairs not within the desired edit distance. Xiao et al. propose ED-Join [34] which is
also a q-gram-based method. However, it enhances the filter process by exploiting an edit distance
lower bound derived from the location-based and content-based q-grams mismatching. Trie-Join
[32] is a trie index based framework which processes string joins using prefix filtering to generate
similar string pairs without the refinement step. Yet, Trie-Join is only e�cient for short strings.
The study in [31] showed that Pass-Join [18] is the most e�cient method for both short and long
strings. In Section 6.1, we discuss Pass-Join in detail and show how it can be integrated into
k-SSJoin evaluation paradigms.
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notation description

R/S Input object collections
I
R

/I
S

Indices on input object collections
k The number of required results
� A join predicate
� A monotone aggregate function
C Candidate/result set of k-Join
✓ k-th highest aggregate score, i.e., lowest score in C

Table 1: Notation

3 Background: Existing Evaluation Paradigms

According to the definition of k-Join in Section 1, the result consists of object pairs with (i) join
attributes qualifying a predicate �, and (ii) high aggregate score based on a monotone aggregate
function �. In other words, k-Join is a combination of a join and a top-k query. Under this, we
discuss two evaluation paradigms based on existing literature that prioritize either of the compo-
nents of k-Join; Sections 3.1 and 3.2 primarily consider the scoring and the join attributes in the
k-Join evaluation, respectively. Table 1 summarizes the notation used in this section and in the
rest of the paper.

3.1 The Score-First Paradigm

The Score-First Paradigm (SFP) builds upon the methods proposed in [12, 29]. SFP is in fact a
generalization of binary HRJN⇤/PBRJ⇤

c

that works with any type of join attributes and predicates.
Similar to HRJN⇤, SFP presumes that both input collections R and S are sorted on the scoring
attribute of their objects in decreasing order. This can be the case if they stem from underlying
operators which produce such interesting orders; otherwise R and S need to be sorted. In principle,
SFP incrementally accesses objects from either R or S and joins them with the objects already
examined from S or R, respectively. To determine which collection to access an object from,
SFP keeps track of the last seen score `

R

from R and `
S

from S. In addition, to facilitate the
join procedure, it maintains two indexing structures denoted by I

R

and I
S

, which organize the
bu↵ered objects accessed so far.1 Finally, SFP maintains set C of join pairs already found with the
k highest aggregate scores, organized as a min-heap, and uses the lowest score ✓ in C as a bound
for pruning and termination.

Paradigm 1 is a high-level pseudo code of the Score-First Paradigm. SFP receives as input two
collections of objects R and S, a predicate � on their join attributes att, a monotone aggregate
function � on their scoring attributes score, and an integer k. First, in Lines 1–4, SFP sorts (if
needed) inputs R and S, and initializes indices I

R

and I
S

, min-heap C and bound ✓. Further, it
initializes last seen scores `

R

and `
S

to 1 in Line 5. Next, in Lines 6–15, it incrementally accesses
objects from collection R or S and evaluates the k-Join query. On each iteration, the paradigm
first decides which collection should be accessed and consequently, which object will be examined.
Following the pulling strategy of HRJN⇤, SFP reads the next object from the collection with the
highest last seen score, i.e., highest between `

R

and `
S

. Without loss of generality, assume that
the next object to be examined is r accessed from R (i.e., i = R, j = S and o

i

= r in Lines 7, 8
and 9, respectively); the other case is symmetric. Then, with current object r, SFP performs the
following steps:

(i) It updates the termination threshold T = max {�(h
R

, `
S

), �(`
R

, h
S

)} following the corner
bounding scheme of HRJN⇤ in Line 11. From Section 2.2, recall that h

R

and h
S

are the
highest scores seen in R and S, respectively, i.e., they equal the score of the very first object
in each input. Note that the examination order of the objects employed by SFP allows
threshold T to decrease faster and hence, SFP to terminate earlier.

(ii) It probes r against index I
S

to retrieve objects s 2 S, such that pair (r, s) qualifies predicate
� and �(r, s) > ✓. To this end, SFP invokes the Probe procedure in Line 12. Probe employs I

S

1
In the case of a top-k equijoin, IR and IS are hash-tables as discussed in Section 2.2.
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PARADIGM 1: Score-First Paradigm (SFP)

Input : R, S, �, �, k
Output: C

1 sort R and S in descending order of the score attribute, if not already sorted;
2 initialize a min-heap C := ; of candidate results;
3 initialize ✓ := �1;
4 initialize indices I

R

:= ; and I
S

:= ;;
5 initialize `

R

:= 1 and `
S

:= 1;
6 while more objects exist in R and S do
7 i := next collection to be accessed ; // `

S

> `
R

? S : R
8 j := the other collection;
9 o

i

:= get next(i) ; // get next object from collection i
10 `

i

:= score of o
i

; // update last seen score from collection i
11 T := max{�(h

R

, `
S

), �(`
R

, h
S

)} ; // HRJN⇤ threshold

12 h✓, Ci := Probe(o
i

, I
j

, T,�, �, k, ✓, C);
13 if T  ✓ then
14 break ; // result secured; no need to access more

15 insert o
i

to I
i

;

16 return C;

to identify every qualifying pair (r, s) and immediately after, it updates C and ✓ as follows.
If |C| < k, pair (r, s) is inserted into candidates set C regardless of its aggregate score.
Otherwise, (r, s) is inserted into C only if �(r, s) > ✓ and in this case it replaces the k-th pair
in C, such that set C always keeps the best k pairs found so far. Finally, in either case, ✓ is
updated to the k-th aggregate score in C.

(iii) It checks if the evaluation of the k-Join query can terminate in Line 13. Specifically, as soon
as T  ✓, SFP terminates reporting C as the query result.

(iv) It updates index I
R

on R by inserting object r in Line 15 which will be probed by objects in
S in future iterations.

3.2 The Join-First Paradigm

The Join-First Paradigm (JFP) prioritizes the join component of the k-Join query; JFP first joins
the input collections R and S to get the object pairs that qualify predicate �, and then retrieves
the top-k pairs among them with the highest aggregate score. Paradigm 2 is a high-level pseudo
code of the Join-First Paradigm. Similar to SFP, JFP receives as input collections R and S, a
join predicate �, a monotone aggregate score function �, and an integer k. Note, though, that
JFP does not make any pre-assumptions regarding the order of the objects in R and S. JFP also
employs a min-heap C of size k to produce the final results which is initialized in Line 1. Then,
in Lines 2–4, the paradigm computes the join between collections R and S based on predicate �
invoking the Join procedure. Join passes each join result to the heap C, which keeps track of the
k pairs with the highest aggregate scores. The type of the join attributes and the nature of the
predicate � determine the strategy for performing the actual join. Without loss of generality, we
assume at this point that the Join procedure performs an index join between I

R

and I
S

created
for collection R and S in Lines 2–3, respectively.

Depending on the type of join attributes and predicate, the performance of JFP can be en-
hanced, e.g., by the use of special indexing schemes or by sorting the input collections. The idea
behind this is to avoid computing the entire R ./

�

S join. For instance, in Sections 5.2 and 6.3,
we show how to use appropriate data structures in order to allow JFP to examine candidate re-
sult pairs in decreasing order of their aggregate scores, and thus, avoid joining the entire object
collections.
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PARADIGM 2: Join-First Paradigm (JFP)

Input : R, S, �, �, k
Output: C

1 initialize a min-heap C := ; of candidate results;
2 I

R

:= create index(R);
3 I

S

:= create index(S);
4 C := Join(I

R

, I
S

,�, �, k);
5 return C;

4 The Block-Based Paradigm

So far, we discussed how existing work is employed to compute k-Join, i.e., the Score-First and
the Join-First Paradigms. However, due to primarily focusing on either the top-k or the join
component of a k-Join query, both paradigms have certain shortcomings. Specifically, SFP is
expected to be fast only if the k-Join results are found after a few accesses over sorted collections
R and S. In contrast, if the best pairs include objects deep in the collections, the overhead of
repeatedly updating and probing the I

R

and I
S

indices will be high which will also slow down
the evaluation of the k-Join query. On the other hand, JFP is expected to be slower than SFP
especially over large inputs and small values of k because of computing the entire join between the
input collections. Even if special index structures are used to avoid computing the entire join, JFP
may still need to index the entire input collections although part of them do not contribute to the
k-Join result.

In this section, we propose a novel evaluation paradigm for the k-Join operator called the
Block-based Paradigm (BLP) that alleviates the aforementioned shortcomings of SFP and JFP.
BLP, like SFP, processes the objects in decreasing order of their scoring attributes but in a block-
wise fashion, and joins blocks of the input collections using score bounds to early terminate the
k-Join evaluation. Section 4.1 presents in detail the Block-based Paradigm. Then, Section 4.2
establishes the optimality of BLP in terms of the number of accessed objects while Section 4.3
discusses the extension of our work in case of multiple scoring attributes.

4.1 Description

Similar to SFP, BLP examines the objects in decreasing order of their scores. However, instead
of probing each accessed object against bu↵ered objects of the other collection seen so far, BLP
each time probes a block of objects against the bu↵ered blocks of objects from the other collection.
Moreover, before probing a new block of objects, BLP creates an index for this block, and thus,
the block-level probe can be performed by running instances of JFP. Under this perspective, BLP
can be considered as an adaptation of JFP at the block level which, however, avoids to compute
the entire R ./

�

S. For this purpose, BLP associates each accessed block of objects b with a lower
score bound b` and an upper score bound bu. Since, the objects inside b are in decreasing order of
their scoring attributes, bu (b`) corresponds to the score of the first (last) object inside b.

Paradigm 3 is a high-level pseudo code of the Block-based Paradigm. Similar to SFP and JFP,
BLP receives as input two collections R and S, a join predicate �, a monotone aggregate score
function �, and an integer k. Initially, in Lines 1–3, BLP first sorts (if needed) the input collections
R and S (similar to SFP) and it initializes the min-heap C for the candidate result pairs and the
✓ bound. In addition, similar to SFP, it initializes the last seen scores `

R

and `
S

from R and S in
Line 4. Next, in Lines 5–16, BLP evaluates the k-Join query following an approach similar to SFP,
but it examines one block of objects, instead of one object, at a time. The procedure of selecting
the input collection and the block to be accessed in Lines 6–9 is exactly the same as in SFP; note
that `

R

and `
S

are updated to the score of the very last object inside the currently examined
block (see Line 9). Without loss of generality assume that the next block b

i

is to be accessed from
collection R, i.e., i = R, b

i

= b
R

and j = S; the other case is symmetric. BLP first constructs the
I
bR index for the current block b

R

and then joins it with every block b
S

accessed (and bu↵ered) so
far from collection S. The b

S

blocks are considered in decreasing order of their score ranges (i.e.,
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first b
S1 , then b

S2 etc). A pair of blocks b
R

and b
S

is joined in a similar fashion to a JFP call of
the Join procedure with two important di↵erences, though. First, BLP decides whether the join
should take place, based on the following idea. Aggregate score �(bu

R

, bu
S

) represents an upper score
bound for all object pairs in b

R

./
�

b
S

. If we have already found at least k candidate pairs, i.e.,
|C| = k, then we know that joining b

R

with b
S

is pointless when �(bu
R

, bu
S

)  ✓ (recall that ✓ is the
k-th best aggregate score so far). In other words, the current block b

R

from R is only joined with
the blocks b

S

from S for which �(bu
R

, bu
S

) > ✓. Second, Join updates both the min-heap C and ✓,
similar to SFP. Finally, after handling current block b

R

, BLP updates the termination threshold
T and checks the termination condition in Lines 14–16. Note that threshold T is the same as in
SFP with h

R

and h
S

being the highest score from R and S, respectively, i.e., they are equal to the
score of the very first object inside b

R1 and b
S1 .

PARADIGM 3: Block-based Paradigm (BLP)

Input : R, S, �, �, k
Output: C

1 sort R and S in descending order of the score attribute, if not already sorted;
2 initialize a min-heap C := ; of candidate results;
3 initialize ✓ := �1;
4 initialize `

R

:= 1 and `
S

:= 1;
5 while more blocks of objects exist in R and S do
6 i := next collection to be accessed ; // `

S

> `
R

? S : R
7 j := the other collection;
8 b

i

:= get next block(i,�) ; // get next block of objects from collection i
9 `

i

:= b`
i

; // update last seen score from collection i
10 I

bi := create index(b
i

);
11 for each block b

j

of j do
12 if �(b

i

u, b
j

u) > ✓ then
13 h✓, Ci := Join(I

bi , Ibj , T,�, �, k, ✓, C);

14 T := max{�(h
R

, `
S

), �(`
R

, h
S

)};
15 if T  ✓ then
16 break ; // result secured; no need to access more

17 return C

Despite the resemblance, BLP has two major advantages over SFP. First, performing the join
at the block level is more e�cient as (i) each block of objects is indexed just once and e�ciently
in a bulk-loading manner instead of iteratively inserting objects as in SFP, and (ii) the index of
a given block can be used for multiple block-level joins. Second, in BLP, the currently processed
block is joined only with a small number of blocks of the other input collection (with the help
of the upper score bounds of the blocks), while in SFP the current object is probed against the
entire set of objects bu↵ered from the other input’s collection. This makes a big di↵erence if the
performance of the index depends on its size (e.g., consider the di↵erence between a spatial index
with logarithmic search cost vs. a simple hash-table with constant look-up and update cost).

4.2 Instance Optimality

We analyze the performance of the Block-based Paradigm based on the notion of instance optimal-
ity defined by Fagin et al. [7]. We first introduce the necessary notation and discuss the connection
to the study in [29].

Definition 4.1 (k-Join Instance) An instance of the k-Join problem is an (R,S,�, �, k) tuple
such that input collections R and S are accessed in decreasing order of their score attribute, � is
a join predicate, � is a monotone aggregate function, and 1  k  |R ./

�

S|.
Note that Definition 4.1 defines a rank join instance of two inputs and one scoring attribute, similar
to I2�rel \ I1�dim in [29], extended though to any join predicate �.
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Let A denote the class of deterministic rank join algorithms that solve a k-Join instance with a
behavior determined only by (i) the size of the input collections R and S, (ii) the objects r 2 R and
s 2 S already examined by the algorithm, and (iii) the values of the aggregate function �(r, s) on
pairs of these objects. In other words, an algorithm in A operates solely based on the knowledge it
has from the objects accessed so far and it does not have any prior knowledge about the objects of
the input collections. The cost of applying an algorithm A 2 A is defined in terms of the number
of objects accessed from each collection, denoted by topkdepth(A,R) and topkdepth(A,S).

Definition 4.2 (Access Cost) Given a k-Join instance (R,S, �, �, k) and an algorithm A, the
access cost of A equals the total number of objects accessed from R and S:

acost(A,R, S) = topkdepth(A,R) + topkdepth(A,S)

In [29], HRJN⇤/PBRJ⇤
c

is proven to be instance optimal within the class of algorithms A
with an optimality ratio of 2, for all k-Join instances of equality join predicate. This finding is
straightforwardly extended for any join predicate � and thus, SFP is also instance optimal within
class A with an optimality ratio of 2, i.e., there exists a constant c, such that for any k-Join instance
and any A 2 A:

acost(SFP, R, S)  2 · acost(A,R, S) + c

Finally, we establish the optimality of BLP. Schnaitter et al. [29] present a variant of the PBRJ
framework where a block of objects, instead of a single object, at a time, is accessed from the input
collections. In this setup, the cost of applying a deterministic rank join algorithm A is defined
with respect to the total number of accessed blocks.

Definition 4.3 (Block Access Cost) Given a k-Join instance (R,S, �, �, k) and an algorithm
A, the block access cost of applying A equals the total number of � sized blocks accessed from R
and S:

bacost(A,R, S) =

⇠
topkdepth(A,R)

�

⇡
+

⇠
topkdepth(A,S)

�

⇡

The instance optimality analysis conducted in [29] for HRJN⇤/PBRJ⇤
c

, and thus, also for SFP in
case of complex join attributes, can be directly extended to the bacost metric in place of acost
since the block variant of SFP processes an object similar to the original method. In practice, BLP
extends and optimizes the block variant of SFP minimizing the computational cost of k-Join while
employing the same bound scheme to determine termination threshold T and the same pulling
strategy. Thus, BLP is, similar to the block variant of SFP, instance optimal within the class of
deterministic ranked join algorithms A for all k-Join instances of Definition 4.1.

4.3 Extensions

We finally discuss the applicability of BLP under more general k-Join definitions.

Multiple scoring attributes per input. Under this setup, the objects of each collection, e.g.,
r 2 R, are accessed in decreasing order of their aggregate score bound �(r) which is defined over
aggregate function � using the values of r’s scoring attributes while setting the scoring attributes
of collection S to their maximum value. Although BLP can be directly applied in this setup, it is
no longer instance optimal as shown in [29] due to using (similar to HRJN⇤/PBRJ⇤

c

) the corner
bounding scheme to specify termination threshold T . To address the issue of instance optimality
while providing a computationally e�cient top-k join method, Finger et al. [8] proposed the FRPA
algorithm as a specialization of the PBRJ framework which employs the so-called FR⇤ bound
scheme to determine a tight threshold T and the PA pulling strategy, i.e., FRPA corresponds to
PBRJPA

FR

⇤ . As BLP extends and optimizes PBRJ in an orthogonal direction it can directly employ
the bound scheme and the pulling strategy of FRPA to provide both an instance optimal and an
e�cient method for k-Join on complex data types with multiple scoring attributes.

Multiple inputs R1, . . . , Rn

. There exist two approaches in dealing with multiple inputs. Fol-
lowing [17], the first option is to incrementally join the collections using multiple k-Join binary
operators. Without loss of generality, consider three input collections R1, R2 and R3, all sorted
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by their scoring attribute score; R3 is incrementally joined with the results of the R1, R2 k-Join
operator. In order to access the next block on this hierarchy of k-Join operators, higher level BLP
either accesses the next � objects from R3, or issues a �-Join query over R1 and R2 to a lower-level
BLP component. The accessed block is then indexed and joined with the bu↵ered blocks exactly
as discussed in Section 4.1 for the binary BLP. The second approach is to treat multiple inputs
in a multi-way join fashion [29]. In this case, a multi-way variant of BLP selects the next input
source R

i

that satisfies �({bu
Rj

|j 6= i}, b`
Ri
) > max

j 6=i

�(b`
Rj

, {bu
Rj0

|j0 6= j}), and accesses � objects

to form a new block b
i

. Then, block b
i

is indexed and joined against the indices of the bu↵ered
blocks from all input collections R

j

with j 6= i. Last, note that in both approaches, the result set
C is updated and the termination condition is examined as discussed in Section 4.1.

5 Spatial Join Attributes

In this section we investigate the application of Score-First, Join-First and Block-Based Paradigms
for spatial join attributes. In this case, att models the spatial location of an object and takes
values from the two-dimensional geographic space. As an example consider the collections of
spatial objects R = {r1, . . . , r8} and S = {s1, . . . , s8} of Figure 2. The object locations are shown
on the left part of the figure, while the two tables on the right list the objects in each collection
in descending order of their scores. Spatial joins have been extensively studied due to their wide
range of applications and their potentially high cost. Several join predicates have been proposed
but in the context of this study, we consider the spatial ✏-distance join predicate. The result of
a spatial distance k-Join query denoted by k-SDJoin, involves pairs of objects (r, s) such that r is
spatial close to s with respect to a given distance threshold ✏, i.e., predicate � = (dist

SD

(r, s)  ✏)
where dist

SD

denotes the spatial distance between the spatial attribute of r and s. Note that for
the rest of the paper we consider the Euclidean distance as dist

SD

.
The dominant indexing structure for spatial data is the R-tree [11] which indexes minimum

bounding rectangles (MBRs) of the objects hierarchically. SFP, JPF and BLP employ (in a di↵erent
fashion each) an extension of the R-tree, called the aR-tree [24], which indexes both spatial locations
and aggregate information of the objects. The rationale is that the aR-tree provides a way to
prioritize the computation of k-SDJoin according to the aggregate scores and allows for pruning
the search space based on both spatial distance predicate and aggregate score. The aR-tree has
identical structure and update algorithms as the R-tree, however, each non-leaf entry is augmented
with the maximum score of all objects in the subtree pointed by it. Figure 3 illustrates two aR-trees
for the collections of Figure 2.

In the following, we discuss in detail how each of the three paradigms for k-Join evaluation can
be realized for the k-SDJoin operator.

5.1 Applying the Score-First Paradigm

As discussed in Section 3.1, SFP incrementally accesses the objects from collection R or S in
decreasing order of their scoring attributes, and joins them with the objects already examined
from S or R, respectively, which for k-SDJoin are indexed by aR-trees I

S

and I
R

. Under this
perspective, each accessed object, e.g., r from R, is probed against aR-tree I

S

to retrieve objects
s 2 S such that pair (r, s) qualifies the join predicate � = (dist

SD

(r, s)  ✏) and �(r, s) > ✓ holds,
where ✓ equals the score of k-th candidate result pair found so far.

Procedure 1 is a pseudocode of the Probe procedure for k-SDJoin following the Score-First
Paradigm. Given an object o (either r 2 R or s 2 S), Probe performs an aR-tree search on the
index I of the other collection (resp. I

S

or I
R

) as a score-based incremental ✏-distance range
query. The aR-tree search is guided by a max-heap H of (o, e) pairs where e is an entry of the
aR-tree I. Max-heap H allows Probe to examine (o, e) pairs in decreasing order of their aggregate
score �(o, e). Note that �(o, e) is computed using the aggregate score for entry e in the aR-tree
I and it is an upper bound of the score of every object contained in the subtree pointed by e.
During the aR-tree search, an (o, e) pair is pruned if (i) the MBR of entry e is farther than ✏, i.e.,
dist

SD

(o, e) > ✏, or (ii) �(o, e)  ✓ as it would not be possible to find an object o0 in the subtree
pointed by e with �(o, o0) > ✓. Otherwise, pair (o, e) is inserted to the max-heap H. Finally, notice
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id att score

r1 (0.20, 0.78) 1.0
r2 (0.30, 0.64) 0.8
r3 (0.20, 0.45) 0.8
r4 (0.40, 0.90) 0.6
r5 (0.63, 0.12) 0.6
r6 (0.91, 0.63) 0.4
r7 (0.79, 0.20) 0.3
r8 (0.76, 0.42) 0.1

Object collection R

id att score

s1 (0.69, 0.85) 0.9
s2 (0.81, 0.71) 0.9
s3 (0.24, 0.38) 0.8
s4 (0.15, 0.52) 0.7
s5 (0.40, 0.22) 0.6
s6 (0.25, 0.70) 0.4
s7 (0.58, 0.50) 0.4
s8 (0.68, 0.42) 0.2

Object collection S

Figure 2: Example of collections R and S with 8 spatial objects each.

that when Probe examines an (o, e) pair where e is a leaf node entry of the I aR-tree, i.e., e is
an object (Lines 14–16), it updates the set of candidates pairs C and the ✓ bound which is the
aggregate score of k-th candidate pair found so far.

Example 5.1 Consider collections R and S of Figure 2 and k-SDJoin with k = 1, ✏ = 0.1, and
� = SUM . First, SFP accesses r1 from R and as aR-tree I

S

is currently empty, r1 is just
inserted to I

R

. Then, s1 is accessed from S and probed against I
R

resulting in no match as
dist

SD

(r1, s1) > ✏. Since `
R

= 1.0 > `
S

= 0.9, r2 is next accessed and joined (unsuccessfully) with
I
S

. Similarly, s2 and s3 are processed, still without producing any distance join results. When r3 is
accessed and joined with I

S

which now contains {s1, s2, s3}, SFP inserts to C the first result (r3, s3).
At this point bound ✓ = �(r3, s3) = 1.6 and threshold T = max{�(1.0, 0.8), �(0.8, 0.9)} = 1.8 > ✓,
and thus, a possibly better pair can be found and SFP cannot terminate yet. Next accessed object
is r4, which gives no join results. When s4 is accessed and probed against aR-tree I

R

, pair (r3, s4)
qualifies the spatial distance predicate but it is discarded as �(r3, s4) = 1.5 < ✓. Then, s5 gives
no new join pairs. Finally, s6 is retrieved without producing any join pair with an aggregate score
higher than ✓. However, since termination threshold T = 1.5, i.e., lower than ✓, SFP terminates
reporting C = {(r3, s3)} as the final result. ⌅

5.2 Applying the Join-First Paradigm

As discussed in Section 3.2, JFP primarily focuses on the join component of a k-Join query. Specifi-
cally, it first joins the input collections R and S to get the object pairs that qualify the predicate �,
which in case of k-SDJoin is dist

SD

(r, s)  ✏, and then, retrieves the top-k pairs among them with
the highest aggregate scores. For implementing the spatial distance join, we could apply algorithms
either like the R-tree join [3], assuming that R and S are already indexed by R-trees, or methods
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Figure 3: aR-trees for collections R and S of Figure 2.

that spatially join non-indexed inputs, like the (external memory) plane sweep algorithm [1], which
first sorts R and S based on one of their coordinates and then sweeps a line along the sort axis to
compute the results. However, the above approaches do not provide a way to prioritize the join
result computation according to the aggregate scores of qualifying distance join pairs. Towards this
direction, we present an optimized approach of applying JFP for k-SDJoin that employs aR-trees
indices and manages to avoid computing the full spatial distance join between the inputs R and S.

Procedure 2 is a pseudocode of the Join procedure for k-SDJoin following the Join-First Paradigm.
Given two aR-trees I

R

and I
S

(for input collections R and S, respectively), Join spatially joins the
two trees by adapting the classic algorithm of [3] to traverse them not in a depth-first, but in a best-
first order, which (i) still prunes entry pairs (e

R

, e
S

), e
R

2 I
R

, e
S

2 I
S

for which dist
SD

(e
R

, e
S

) > ✏
(dist

SD

here denotes the minimum distance between the MBRs of the two entries), but (ii) it also
prioritizes the entry pairs to be examined based on �(e

R

, e
S

) (here, � is applied on the aggregate
scores stored at the entries). In other words, the entry pairs which have the maximum aggregate
score are examined first during the join and this order guarantees that the qualifying object pairs
will be computed incrementally in decreasing order of their aggregate scores. To achieve this, Join
employs a max-heap H which initially contains all pairs of root entries within distance ✏ from each
other in the two trees (Lines 3–5). Pairs of entries from H are examined (de-heaped) in priority
of their aggregate scores �(e

R

, e
S

) as follows. The spatial distance join is evaluated for the corre-
sponding aR-tree nodes and the results are inserted to H if they are non-leaf entries (branching
condition at Line 10). Otherwise, if a leaf node entry pair (r, s) (i.e., object pair) is de-heaped, it
is guaranteed that (r, s) has higher aggregate score than any other object pair to be found later,
since entry and object pairs are accessed in decreasing order of their �-scores from H. Therefore,
the object pair is included as the next result of the k-SDJoin query to the return set C (Line 17).
Finally, Join and thus JFP, terminates after k results have been computed.

Example 5.2 Consider again the collections of Figure 2 and k-SDJoin with k = 1, ✏ = 0.1, and
� = SUM . Initially, JFP creates the aR-trees of Figure 3; the entries are augmented with the
maximum scores of any objects in the subtrees indexed by them (e.g., R2 has score 0.6). Next, JFP
performs the aR-tree based spatial distance join. The roots of I

R

and I
S

are first considered, which
adds (R1, S1) and (R2, S2) entry pairs to H; the other two combinations (R1, S2) and (R2, S1)
are pruned by the ✏-distance join predicate. The next pair to be examined is (R1, S1) because
�(R1, S1) = 1.8 > �(R2, S2). Thus, the nodes pointed by R1 and S1 are synchronously visited and
their ✏-distance join adds pairs (R3, S4), (R4, S4), and (R4, S3) to H. The next entry pair to be
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PROCEDURE 1: Probe
Input : o, I, T , � = (dist

SD

(·, ·)  ✏), �, k, ✓, C
Output: ✓, C

1 initialize a max-heap H := ; of aR-tree entries, organized by aggregate scores;
2 for each entry e in I.root do
3 if dist

SD

(o, e)  ✏ then
4 push e into H;

5 while H 6= ; and T > ✓ do
6 e := H.dequeue();
7 if �(o, e)  ✓ then
8 break;

9 if e is non-leaf node entry then
10 n := node of I pointed by e;
11 for each entry e0 2 n do
12 if �(o, e) > ✓ and dist

SD

(o, e)  ✏ then
13 push e0 into H;

14 else
15 insert (o, e) to C, remove the k-th pair in C first if |C| = k ;
16 ✓ := aggregate score of the k-th pair in C;

17 return h✓, Ci;

de-heaped is (R3, S4) with �(R3, S4) = 1.7; this results in object pair (r1, s6) being found and added
to H. Then, (R4, S3) is de-heaped and (r3, s3) is added to H. The next pair to be popped from H
is the object pair (r3, s3); note that this is guaranteed to be the ✏-distance join pair with the highest
aggregate score, since it is the first object pair to be extracted from the max-heap H, and thus, the
algorithm terminates. ⌅

5.3 Applying the Block-based Paradigm

Recall from Section 4 that BLP, similar to SFP, examines the objects of the collections in decreasing
order of their scoring attribute, but considers a block of objects at a time, instead of a single object.
The currently accessed block is spatially joined against the blocks examined so far from the other
collection, using the score bounds retained for each block to prune block pairs which may not
contain k-SDJoin results. BLP joins two blocks similar to JFP. Procedure 3 illustrates the Join

procedure of BLP for k-SDJoin. Notice that, di↵erent from Procedure 2 and JFP, (i) Join for BLP
employs the termination threshold T in Line 5, and (ii) when the procedure identifies object pair
(r, s) that qualifies the spatial ✏-distance predicate with an aggregate score higher than bound ✓,
the pair is treated as a candidate result similar to SFP and thus, min-heap C and bound ✓ are
updated accordingly in Lines 16–17.

Example 5.3 Consider again the collections of Figure 2 and k-SDJoin with k = 1, ✏ = 0.1, � =
SUM . For the sake of this example, the inputs are divided into blocks of 2 objects in Figure 4.
First, b

R1 is read and aR-tree I
R1 is created. Then, b

S1 and b
S2 are accessed, bulk-loaded to I

S1

and I
S2 , respectively, and joined with I

R1 producing no spatial join results. Next, b
R2 is read and

joined with b
S1 and b

S2 (in this order), to generate C = {(r3, s3)} and set ✓ = 1.6. The next block
b
S3 is joined with b

R1 , but not b
R2 , because �(bu

R2
, bu

S3
) = �(0.8, 0.7) = 1.5 < ✓; i.e., in the best

case a spatial distance join between b
R2 and b

S3 will produce a pair of aggregate score 1.5, which
is not higher than the score of current top pair (r3, s3). Next, the join between b

S3 and b
R1 does

not improve current k-SDJoin result. At this stage, BLP terminates because T = 1.5 is not higher
than ✓ = 1.6, and C = {(r3, s3)} is returned as the final result. ⌅
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PROCEDURE 2: Join
Input : I

R

, I
S

, � = (dist
SD

(·, ·)  ✏), �, k
Output: C

1 initialize ✓ := �1;
2 initialize a max-heap H of aR-tree entry pairs (e

R

, e
S

) organized by �(e
R

, e
S

);
3 for each pair (e

R

, e
S

) in I
R

.root⇥ I
S

.root do
4 if dist

SD

(e
R

, e
S

)  ✏ then
5 push (e

R

, e
S

) into H;

6 while H 6= ; do
7 (e

R

, e
S

) := H.dequeue();
8 if �(e

R

, e
S

)  ✓ then
9 break;

10 if e
R

and e
S

are non-leaf node entries then
11 n

R

:= node of I
R

pointed by e
R

;
12 n

S

:= node of I
S

pointed by e
S

;
13 for each entry e0

R

2 n
R

and each entry e0
S

2 n
S

do
14 if �(e

R

, e
S

) > ✓ and dist
SD

(e0
R

, e0
S

) < ✏ then
15 push (e0

R

, e0
S

) into H;

16 else
17 insert (r, s) to C as next k-SDJoin result;

18 return C;

block id att score

b
R1

r1 (0.20, 0.78) 1.0
r2 (0.30, 0.64) 0.8

b
R2

r3 (0.20, 0.45) 0.8
r4 (0.40, 0.90) 0.6

b
R3

r5 (0.63, 0.12) 0.6
r6 (0.91, 0.63) 0.4

b
R4

r7 (0.79, 0.20) 0.3
r8 (0.76, 0.42) 0.1
(a) collection R

block id att score

b
S1

s1 (0.69, 0.85) 0.9
s2 (0.81, 0.71) 0.9

b
S2

s3 (0.24, 0.38) 0.8
s4 (0.15, 0.52) 0.7

b
S3

s5 (0.40, 0.22) 0.7
s6 (0.25, 0.70) 0.4

b
S4

s7 (0.58, 0.50) 0.4
s8 (0.68, 0.42) 0.2
(b) collection S

Figure 4: Example of BLP with � = 2 for k-SDJoin.

6 String Join Attributes

In this section we investigate the application of the Score-First, Join-First, and Block-Based
Paradigms for string join attributes. Specifically, every object has a string attribute att that
models its textual description or other types of sequential information. For example consider the
collections of string objects R = {r1, . . . , r8} and S = {s1, . . . , s8} in Figure 5 which contain restau-
rant ratings from two di↵erent sources. Similar to spatial joins, string joins have been extensively
studied due to their wide range of applications, e.g., data de-duplication and integration, collab-
orative filtering, entity reconciliation, and their high computational cost. Several join predicates
have been proposed but in this study, we consider the string ✏-similarity join predicate. A string
similarity k-Join query denoted by k-SSJoin returns the k pairs of objects with the highest aggre-
gate score among all pairs (r, s) 2 R ⇥ S where the string attributes of r and s are similar with
respect to a given distance threshold ✏ (i.e., predicate � = (dist

SS

(r, s)  ✏) and dist
SS

measures
the distance between the string attribute of r and s). Thus, k-SSJoin focuses on identifying the
most important object pairs based on their aggregate score, instead of computing the (possibly
overwhelming) set of all string-similar pairs similar to conventional similarity join.
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PROCEDURE 3: Join
Input : I

R

, I
S

, T , � = (dist
SD

(·, ·)  ✏), �, k, ✓, C
Output: ✓, C

1 initialize a max-heap H of aR-tree entry pairs (e
R

, e
S

) organized by �(e
R

, e
S

);
2 for each pair (e

R

, e
S

) in I
R

.root⇥ I
S

.root do
3 if dist

SD

(e
R

, e
S

)  ✏ then
4 push (e

R

, e
S

) into H;

5 while H 6= ; and T > ✓ do
6 (e

R

, e
S

) := H.dequeue();
7 if �(e

R

, e
S

)  ✓ then
8 break

9 if e
R

and e
S

are non-leaf node entries then
10 n

R

:= node of I
R

pointed by e
R

;
11 n

S

:= node of I
S

pointed by e
S

;
12 for each entry e0

R

2 n
R

and each entry e0
S

2 n
S

do
13 if �(e

R

, e
S

) > ✓ and dist
SD

(e0
R

, e0
S

) < ✏ then
14 push (e0

R

, e0
S

) into H;

15 else
16 insert (r, s) to C, remove the k-th pair in C first if |C| = k;
17 ✓ := aggregate score of the k-th pair in C;

18 return h✓, Ci;

id att score

r1 “extreme burgers” 1.0
r2 “x�treme burgers” 0.8
r3 “burgermeister” 0.8
r4 “dragon snacks” 0.6
r5 “the cafe drive” 0.6
r6 “lougi0s pizza” 0.4
r7 “golden snacks” 0.3
r8 “the cake place” 0.1

(a) Object collection R

id att score

s1 “gourmet food” 0.9
s2 “luigi0s pizza” 0.9
s3 “burgermaster” 0.8
s4 “burger meister” 0.7
s5 “columbus food” 0.7
s6 “extreme burgers” 0.4
s7 “new york pancakes” 0.4
s8 “the cake palace” 0.2

(b) Object collection S

Figure 5: Example of collections R and S with 8 string objects each.

For the rest of the paper, we consider the edit distance as dist
SS

; two objects r and s are
similar if the string attribute of r can be transformed to the string attribute of s by at most ✏
edit operations. The set of edit operations includes replacing an element in r, deleting an element
from r, and inserting an element into r. For example, under an information integration scenario
k-SSJoin combines the ratings from the collections of Figure 5 to identify the k restaurants with
the highest average score. To this purpose, the query needs to match the textual descriptions of a
restaurant contained in both collections allowing however for some small di↵erences (e.g., due to
misspelling).

Section 6.1 details the state-of-the-art method for string ✏-similarity joins. Then, Sections 6.2–
6.4 present how the three k-Join paradigms are applied for k-SSJoin.

6.1 Background on String Similarity Joins: Pass-Join

Pass-Join [18] adopts a filter-and-refinement framework similar to the majority of the string simi-
larity join methods in the literature. In the filtering step, the algorithm follows a partition-based
approach. Particularly, given two collections of string objects R and S and an edit distance thresh-
old ✏, Pass-Join splits each object r in R into ✏ + 1 disjoint segments based on the property that
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in order for a string object s in collection S to be similar to r w.r.t. threshold ✏, object s must
contain a substring which matches a segment of r; otherwise, candidate pair (r, s) can be safely
pruned.

ALGORITHM 1: Pass-Join
Input : R, S, ✏
Output: C = {(r 2 R, s 2 R) : dist

SS

(r, s)  ✏)}
1 sort R and S first by string length and second in alphabetical order;
2 for each r 2 R do
3 partition r into ✏+ 1 segments;
4 add segments into index I

R

;

5 for each s 2 S do
6 for each inverted list Ll,i

R

in I
R

with |s|� ✏  l  |s|+ ✏ and 1  i  ✏+ 1 do
7 W := SelectSubstrings(s, Ll,i

R

);
8 for w 2 W do
9 if w is in Ll,i

R

then
10 C := Verify(Ll,i

R

[w], s, ✏, C) ; // Ll,i
R [w] is the entry for segment w in Ll,i

R

11 return C;

Algorithm 1 illustrates the pseudocode of Pass-Join. The algorithm takes as input two col-
lections of string objects R and S, and an edit distance threshold ✏. The string objects in the
collections are sorted first by their length and second lexicographically (Line 1). Next, an inverted
index I

R

is built on top of collection R (Lines 2–4) by dividing every object r 2 R into ✏ + 1
segments. The inverted lists of I

R

associate every distinct string segment with the objects that
contain it. Particularly, inverted list Ll,i

R

in I
R

indexes the i-th segment of every object with
length l. Figure 6 shows inverted index I

R

for collection R in Figure 5(a) and an edit distance
threshold ✏ = 3 (ignore for now the score associated to each list entry). Consider for exam-
ple object r1.att = “extreme burgers” of length 15. The object is partitioned into 4 segments
{“ext”, “reme”, “ bur”, “gers”} which are added to lists L15,1

R

, L15,2
R

, L15,3
R

, L15,4
R

, respectively. If
more than one objects contain a segment w, a bucket entry is added to the corresponding inverted
list. Observe bucket entries h“ bur”, {r1, r2}i and h“gers”, {r1, r2}i of lists L15,3

R

and L15,4
R

, respec-
tively in Figure 6, for objects r1.att = “extreme burgers” and r2.att = “x�treme burgers”,
which both contain segments “ bur” and “gers”.

After indexing collection R, Pass-Join iterates over the objects in collection S and computes the
join result C by probing the I

R

index (Lines 5–10). According to the length filtering introduced
in [10], every object s in S can be only joined with objects in R of length l, such that l � |s| � ✏
and l  |s| + ✏, where |s| denotes the length of the string object s. To access such objects in
R, Pass-Join traverses every inverted list Ll,i

R

with |s| � ✏  l  |s| + ✏ and 1  i  ✏ + 1 (Line

6). The contents of every Ll,i

R

list are filtered keeping only the objects whose segments can match
at least one of the substrings of s in set W (Lines 8–9). The substrings of s contained in set W
are selected in a multi-match-aware manner employed by the SelectSubstrings procedure (Line 7).
Finally, Pass-Join verifies candidate object pairs (r, s) for every object r in Ll,i

R

that contains a
matched segment/substring w, using a length-based and an extension-based verification method
(Line 10).

In the following, we adapt Pass-Join to compute k-SSJoin using the Score-First, Join-First and
Block-based Paradigms. For this purpose and similar to the aggregate score information on the
aR-tree, we extend the I

R

index of Pass-Join including inside each list (bucket) entry the maximum
score of the involved objects. Consider inverted index I

R

in Figure 6. Bucket entry h“the”, {r5, r8}i
in list L14,1

R

is assigned a score of 0.6 which equals r5.score, since r5.score > r8.score.
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inverted list entries
Ll,i

L13,1 h“bur”, {r3}, 0.8ih“dra”, {r4}, 0.6ih“lou”, {r6}, 0.4i
h“gol”, {r7}, 0.3i

L13,2 h“ger”, {r3}, 0.8ih“gon”, {r4}, 0.6ih“gi0”, {r6}, 0.4i
h“den”, {r7}, 0.3i

L13,3 h“mei”, {r3}, 0.8ih“ sn”, {r4,r7}, 0.6ih“s p”, {r6}, 0.4i
L13,4 h“ster”, {r3}, 0.8ih“acks”, {r4, r7}, 0.6i

h“izza”, {r6}, 0.4i
L14,1 h“the”, {r5, r8}, 0.6i
L14,2 h“ ca”, {r5, r8}, 0.6i
L14,3 h“fe d”, {r5}, 0.6i, h“ke p”, {r8}, 0.1i
L14,4 h“rive”, {r5}, 0.6i, h“lace”, {r8}, 0.1i
L15,1 h“ext”, {r1}, 1.0i, h“x�t”, {r2}, 0.8i
L15,2 h“reme”, {r1, r2}, 1.0i
L15,3 h“ bur”, {r1, r2}, 1.0i
L15,4 h“gers”, {r1, r2}, 1.0i

Figure 6: Inverted index I
R

on collection R in Figure 5 and an edit distance threshold ✏ = 3.

6.2 Applying the Score-First Paradigm

As discussed in Section 3.1, SFP incrementally accesses the objects of the input collection R or S
in decreasing order of their scoring attribute, and joins them with the objects already examined
from S or R. Under this perspective, to employ Pass-Join in the context of SFP, we need to make
two adjustments: (i) the objects in each collection are no longer sorted first by their lengths and
second lexicographically but according to their scoring attribute, and (ii) instead of indexing only
collection R building o✏ine I

R

, two inverted indices I
R

and I
S

are incrementally built online to
bu↵er the objects examined from collections R and S, respectively. Hence, the currently accessed
object, e.g., r from R, is first probed against the I

S

inverted index to retrieve objects s 2 S such
that pair (r, s) qualifies the join predicate � = (dist

SS

(r, s)  ✏) and �(r, s) > ✓ holds, where ✓
equals the score of k-th candidate result pair found so far, and then, r is divided into ✏+1 segments
and indexed by I

R

according to the rationale of Pass-Join.
Procedure 4 illustrates a pseudocode of the Probe procedure for k-SSJoin. The functionality of

Probe is reminiscent to the probing part of Algorithm 7 in Lines 6–10. The current object o = r
(assume without loss of generality that o is from R) is joined with already examined objects s in S
of length l that is larger than or equal to |r|� ✏ and smaller than or equal to |r|+ ✏, provided that
the segments of s can match at least one of the substrings of r. Di↵erent from Pass-Join, though,
the objects s from S that contain a match substring w of r, i.e., the contents of the Ll,i

S

[w] entry,
are further filtered using the �(o.score, Ll,i[w].score) > ✓ condition, where Ll,i[w].score equals
the highest score of the objects in Ll,i[w] (Line 5). Finally, Pass-Join employs the Verify procedure
to verify the candidate object pairs similar to Pass-Join. Verify for SFP also updates set C and
the ✓ bound which equals the aggregate score of k-th candidate pair found so far.

Example 6.1 Consider collections R and S of Figure 5 and k-SSJoin with k = 1, ✏ = 3, and
�=SUM . SFP first accesses r1 from R. As index I

S

is empty, r1 is split in ✏ + 1=4 segments
which are inserted to I

R

: L15,1
R

= {h“ext”, {r1}, 1.0i}, L15,2
R

= {h“reme”, {r1}, 1.0i}, L15,3
R

=
{h“ bur”, {r1}, 1.0i}, L15,4

R

= {h“gers”, {r1}, 1.0i}. Next, s1 is accessed from S and probed against
I
R

without producing any join results as no substring of s1 matches the existing segments in I
R

.
Since `

R

= 1.0 > `
S

= 0.9, r2 is the next object to be accessed and joined (unsuccessfully) with I
S

.
Similarly, s2 and s3 are accessed in turn, still without producing any string join results. When r3
is accessed and probed against I

S

(now containing entries for s1, s2 and s3), the substring “bur” of
r3 is matched with entry L12,1

S

[“bur”] that contains s3. Verification confirms that dist
SS

(r3, s3) =
2 < ✏, and as bound ✓ is not yet defined, SFP inserts to C the first join result (r3, s3) and sets
✓ = �(r3, s3) = 1.6. Currently, T = max{�(1.0, 0.8), �(0.8, 0.9)} = 1.8 > ✓, which means that a
possibly better object pair can be found and SFP cannot terminate yet. The next accessed object
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PROCEDURE 4: Probe
Input : o, I, T , � = (dist

SS

(·, ·)  ✏), �, k, ✓, C
Output: ✓, C

1 for each inverted list Ll,i in I with |o|� ✏  l  |o|+ ✏ and 1  i  ✏+ 1 and while T > ✓
do

2 W := SelectSubstrings(o, Ll,i);
3 for w 2 W do
4 if w is in Ll,i then
5 if �(o.score, Ll,i[w].score) > ✓ then
6 h✓, Ci := Verify(Ll,i[w], o, ✏, ✓, C);

7 return h✓, Ci;

is r4, which gives no new join results. Then, s4 is accessed and probed against I
R

. Note that
although a substring of s4 matches a segment of r3 and in fact dist

SS

(r3, s4) = 1 < ✏, the pair
(r3, s4) cannot be part of the result as �(r3, s4) = 1.5 < ✓. Next, s5 gives no new join pairs.
Finally, s6 is retrieved without producing a join pair with aggregate score higher than ✓, similar to
the case of s4. However, since termination threshold T is now set to 1.5, i.e., lower than ✓, SFP
terminates reporting C = {(r3, s3)} as the final result. ⌅

6.3 Applying the Join-First Paradigm

To compute k-SSJoin following the rationale of JFP, we directly employ the Pass-Join algorithm
discussed in Section 6.1 to get the object pairs that qualify the predicate � = (dist

SS

(r, s)  ✏).
In Section 3.2, JFP is described as an index join for the sake of generality, but for string join
attributes we index only R and probe every object in S against I

R

, according to Pass-Join. For
probing I

R

, we apply the Probe procedure introduced in the previous section for SFP by setting
termination threshold T = 1. Finally, we use bounds to avoid computing the entire string join
between the input collections, accelerating the computation of k-SSJoin. The idea is to sort the
objects of collection S in decreasing order of their score attribute; when JFP accesses an object s
it checks whether s can contribute to a join result of aggregate score higher than the ✓ threshold,
i.e., the score of the k-th object pair found so far. If not, JFP terminates, because all objects from
S not examined yet have score equal to or lower than current object s. Procedure 5 is a pseudocode
of the Join procedure for k-SSJoin following the Join-First Paradigm. For the termination condition
in Line 4, we consider the object r

max

with the highest score in R, and therefore, �(r
max

, s) is an
upper bound of the aggregate score a join pair that includes current object s could have.

PROCEDURE 5: Join
Input : I

R

, S, � = (dist
SS

(·, ·)  ✏), k
Output: C

1 initialize ✓ := �1;
2 sort S in descending order of the score attribute;
3 for each s in S do
4 if �(r

max

, s)  ✓ then
5 break; // r

max

is the object in R with the highest scoring attribute.

6 h✓, Ci := Probe(s, I
R

,1, (dist
SS

(·, ·)  ✏), �, k, ✓, C);

7 return C;

Example 6.2 Consider again collections R and S of Figure 5 and k-SSJoin with k = 1, ✏ = 3,
and � = SUM . As a first step, JFP partitions the string attribute of the objects in R into ✏+1 = 4
segments and builds the I

R

inverted index of Figure 6. It also sorts the objects of S in descending
order of their scores. Next, JFP performs the string join by probing first object s1 against I

R

which
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produces no join result. Then, s2 is successfully joined with r6 as distSS

(r6, s2) = 1; thus, the result
pair (r6, s2) is inserted into C and ✓ = �(r6, s2) = 1.3. When s3 is examined, JFP considers the best
possible result pair (r1, s3) combined with r1 = r

max

from collection R. Since, �(r1, s3) = 1.8 > ✓,
JFP cannot terminate; thus, s3 is probed against I

R

. At this point, the candidate join pair (r3, s3)
which has higher aggregate score than current ✓ is identified and hence, (r3, s3) replaces (r6, s2)
in C and ✓ = �(r3, s3) = 1.6. In the following, objects s4 and s5 are considered without however
producing any better results than (r3, s3). Finally, when s6 is accessed and the best possible result
pair (r1, s6) is considered, �(r1, s6) = 1.4 < ✓ holds; thus, JFP terminates ignoring the rest of the
objects in S and reporting C = {(r3, s3)} as the final result. ⌅

6.4 Applying the Block-based Paradigm

BLP operates as an adaptation of both SFP and JFP at the block level. To compute k-SSJoin, the
objects of input collections R and S, sorted in decreasing order of their score attribute similar
to SFP, are in blocks of size �. BLP accesses one block of objects at a time from either of the
collections. Following the rationale of Pass-Join for string joins, the current block is indexed only
if it originates from R, i.e., b

R

, while in both cases the current block b
R

or b
S

is joined against
the blocks already accessed from collection S or R, respectively.2 Recall at this point that BLP
utilizes the score bounds retained for each block to avoid computing every possible block-level
join, and consequently, the entire string join (Line 11 in Paradigm 3). The process of joining two
blocks b

R

and b
S

is similar to the one employed by JFP, i.e., every object s in b
S

is probed against
inverted index I

bR . Note that di↵erent from JFP, objects in b
S

are already in decreasing order of
their score attribute. Procedure 6 illustrates the pseudocode of the Join procedure for k-SSJoin
following the Block-based Paradigm. Similar to JFP, Join for BLP employs a breaking condition
to terminate a block-level join between b

R

and b
S

if for current object s in b
S

, �(bu
R

, s.score)  ✓
holds, i.e., s cannot contribute to a join result with an aggregate score higher than the score of the
k-th object pair found so far; recall that bu

R

is the highest score of the objects contained in block
b
R

. Join for BLP uses the Probe procedure of SFP but, di↵erent to JFP, it also utilizes termination
threshold T .

PROCEDURE 6: Join
Input : I

bR , bS , T , � = (dist
SS

(·, ·)  ✏), �, k, ✓, C
Output: ✓, C

1 for each object s in block b
S

do
2 if �(bu

R

, s.score)  ✓ then
3 break;

4 h✓, Ci := Probe(s, I
bR , T, (distSS

(·, ·)  ✏), �, k, ✓, C);

5 return h✓, Ci;

Example 6.3 Consider again collections R and S in Figure 5 and k-SDJoin with k = 1, ✏ = 3,
� = SUM . For the sake of this example, the collections are partitioned into blocks of 2 ob-
jects each, as pictured in Figure 7. Initially, block b

R1 is read and inverted index I
bR1

is built

by dividing the string attribute of the contained objects into ✏ + 1 = 4 segments; we have L15,1
bR1

=

{h“ext”, {r1}, 1.0i, h“x�t”, {r2}, 0.8i}, L15,2
bR1

= {h“reme”, {r1, r2}, 1.0i}, L15,3
bR1

= {h“ bur”, {r1, r2}, 1.0i},
and L15,4

bR1
= {h“gers”, {r1, r2}, 1.0i}. Then, bS1 is accessed and objects s1 and s2 are probed against

I
bR1

producing no join results. Similarly, b
S2 is accessed and joined (unsuccessfully) with b

R1 .
After reading b

R2 , the block is joined with b
S1 and b

S2 (in this order). When joining with b
S2 ,

the substring “bur” in s3 is matched with the L13,1
bR2

[“bur”] entry that contains object r3. Further

verification confirms that dist
SS

(r3, s3) = 2 < ✏ and thus, the (r3, s3) pair is inserted into C and
✓ = �(r3, s3) = 1.6. In addition, index I

bR2
for current block b

R2 is built. The next block b
S3 is

joined with b
R1 but not with b

R2 , because �(bu
R2

, bu
S3
) = �(0.8, 0.7) = 1.5 < ✓ = 1.6. Specifically for

2
We also experimented with a version of BLP that uses two inverted indices, which however was always less

e�cient.
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block id att score

b
R1

r1 “extreme burgers” 1.0
r2 “x-treme burgers” 0.8

b
R2

r3 “burgermeister” 0.8
r4 “dragon snacks” 0.6

b
R3

r5 “the cafe drive” 0.6
r6 “lougi’s pizza” 0.4

b
R4

r7 “golden snacks” 0.3
r8 “the cake place” 0.1

(a) collection R

block id att score

b
S1

s1 “gourmet food” 0.9
s2 “luigi’s pizza” 0.9

b
S2

s3 “burgermaster” 0.8
s4 “burger meister” 0.7

b
S3

s5 “columbus food” 0.7
s6 “extreme burgers” 0.4

b
S4

s7 “new york pancakes” 0.4
s8 “the cake palace” 0.2

(b) collection S

Figure 7: Example of BLP with � = 2 for k-SSJoin.

b
S3 , probing s5 against I

bR1
does not improve the current k-SSJoin result while s6 is not probed

against I
bR1

at all because �(bu
R1

, s6.score) = �(r1, s6) = 1.4 < ✓, i.e., s6 is not able to produce join
results of aggregate score higher than ✓. At this stage, BLP terminates as T = 1.5 is not higher
than ✓ = 1.6, and C = {(r3, s3)} is returned as the final result. ⌅

7 Models

An issue that remains open is how to determine an appropriate block size � for BLP. We model
this selection as an optimization problem.

7.1 Selecting Block Size �

The optimal value of � minimizes the cost of computing a k-Join query with BLP, captured by the
objective cost function C(�):

C(�) = |N
index

(�)| · C
index

(�) + |N
join

(�)| · C
join

(�) (1)

Intuitively, the |N
index

(�)|·C
index

(�) part of the objective function equals the total indexing cost for
BLP with |N

index

(�)| being the total number of blocks indexed from input collections R and S, and
C
index

(�) being the cost of indexing each of these blocks. On the other hand, the |N
join

(�)|·C
join

(�)
part equals the total joining cost for BLP with |N

join

(�)| being the total number of block-level joins
performed, and C

join

(�) being the cost of joining two blocks. In the following, we first elaborate on
each factor of the C(�) objective function and then we discuss how the value of � that minimizes
C(�) can be estimated.

Regarding C
index

(�) and C
join

(�), both costs are determined by the join attribute type and
the methodology to perform a block-level join. In Section 8, we conduct an experimental analysis
of BLP for the case studies of spatial and string join attributes, and we discuss in detail how
C
index

(�) and C
join

(�) can be empirically estimated. Next, we consider the |N
index

(�)| factor.
Following the analysis in Section 4.2, BLP terminates after accessing blocks b

RddR/�e and b
SddS/�e
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Figure 8: Example of score histograms for the object collections in Figure 2.

which contain objects r
dR and s

dS , respectively; rdR and s
dS are the last objects examined by SFP

with d
R

= topkdepth(SFP, R) and d
S

= topkdepth(SFP, S). Thus, BLP will index

|N
index

(�)| = dd
R

/�e+ dd
S

/�e (2)

blocks, in total. Finally, we consider the |N
join

(�)| factor. To determine the total number of
block-level joins performed by BLP we employ the notion of any-k depth c

R

and c
S

introduced in
[13] as the minimum number of objects examined from each input collection in order to identify
the first k candidate object pairs. Note that the first k candidate object pairs are not necessarily
among the final k-Join results, and that by definition c

R

 d
R

and c
S

 d
S

. With c
R

and c
S

, the
execution of BLP can be divided in two parts:

(i) Until the b
RdcR/�e and b

SdcS/�e blocks containing objects r
cR and s

cS , respectively, are ex-
amined, BLP cannot employ the �(bu

Ri
, bu

Sj
)  ✓ pruning mechanism as there are less than k

candidate object pairs identified so far and the ✓ threshold that equals the aggregate score of
the current k-th best candidate object pair is not yet defined. Thus, every possible block-level
join b

Ri ./� b
Sj is to be computed, resulting in a total number of dc

R

/�e · dc
S

/�e block-level
joins.

(ii) After blocks b
RdcR/�e and b

SdcS/�e are examined, threshold ✓ can be defined based on the score
of the r

cR and s
cS objects, i.e., ✓ = �(r

cR , scS ) and consequently, the �(bu
Ri
, bu

Sj
)  ✓ pruning

criterion for block-level joins can be applied. Thus, to approximate the total number of
block-level joins to be performed by BLP after r

cR and s
cS , denoted by |N cR,cS

join

(�)|, we need
to estimate first the score of the r

cR and s
cS objects for computing threshold ✓, and second,

the upper score bound of every block, i.e., the score of the very first object in the block,
for determining which block-level joins qualify the pruning criterion. For this purpose, we
employ histogram statistics from the input collections R and S. In particular, we assume that
equi-width histograms H

R

and H
S

summarize the score distributions in R and S. Unlike the
expensive multi-dimensional histograms employed by [6, 30], 1-dimensional H

R

and H
S

can
be derived in low cost from the initial inputs based on an independence assumption or via
sampling. Note that in case collections R and S are not pre-sorted on their scoring attribute
(as required by BLP), H

R

and H
S

can be also computed during the sorting process. Figure 8
illustrates exemplaryH

R

andH
S

for the collections in Figure 2. A single pass overH
R

su�ces
to identify which interval contains the score of an object r

i

, e.g., r
cR or the first inside a b

R

block. Since the objects in R are sorted in decreasing order of their score attribute, r
i

is the
i-th object of the collection. Without loss of generality, we finally set the score of r

i

equal to
the upper bound of the score interval. Consider for instance H

R

in Figure 8 and assume that
we want to estimate the upper score bound of the b

R2 block in Figure 4. By definition, bu
R2

equals the score of the first object in b
R2 , i.e., r3, which is the 3rd object of collection R. As

the (0.8, 1.0] and the (0, 6, 0.8] score intervals of H
R

contain 1 and 2 objects, respectively, the
score of r3 should fall inside (0, 6, 0.8] which gives an estimation of 0.8. Note that the actual
score of r3 is 0.8.
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Combining the two parts, BLP will perform

|N
join

(�)| = dc
R

/�e · dc
S

/�e+ |N cR,cS
join

(�)| (3)

block-level joins, in total.
With objective cost function C(�) defined using Equations (1)–(3), we now discuss how the

� value that minimizes C(�) can be estimated. Following the definition of top-k depth in
Section 4.2, we do not need to consider more than max{d

R

, d
S

} objects inside each block, i.e.,
� 2 [1,max{d

R

, d
S

}], since no more that d
R

and d
S

objects from collections R and S, respectively,
are examined to compute the k-Join results. In fact with �=1, BLP operates exactly as SFP, while
with � = max{d

R

, d
S

}, BLP operates as an improved JFP that joins only the first (in decreasing
order of their score) d

R

and d
S

objects of the collections. To e�ciently determine a good value for
� inside [1,max{d

R

, d
S

}], we employ the golden section search technique proposed in [15]. The
idea behind this technique is to progressively narrow the range where optimal � value lies inside
following a divide and conquer approach, until a good estimation of this value is found.

7.2 Estimating any-k and top-k Depths

Finally, we discuss how depths c
R

, d
R

, c
S

and d
S

are estimated. One option is to adopt the model
proposed in [13] for this purpose (recall that in the absence of multi-dimensional statistics, the [30]
model operates similar to [13]). Specifically, assuming that c

R

· c
S

· � ⇡ k, any-k depths are set
to c

R

= c
S

=
p
k/�, where � is the join selectivity of the input collections, and top-k depths are

set to d
R

= d
S

= 2 · c
R

= 2 · pk/�. Join selectivity � is computed via sampling inputs R and
S. This model however is of limited applicability; it is based on the assumptions that the values
of both the join and the scoring attributes should follow a uniform distribution and that there
exists no correlation between these two attributes. On one hand, with a uniformly distributed
join attribute a good estimation for join selectivity � is achieved via sampling and thus, also a
good estimation of any-k depths c

R

and c
S

. On the other hand, a uniformly distributed scoring
attribute is required for estimating d

R

and d
S

as twice the any-k depth. In practice, however,
either of these assumptions may not hold. For instance, as pointed out even in [13], in a hierarchy
of joins where the output of one k-Join operator serves as input to another, the score distributions
of higher level joins tend to be normal. Although formulas for computing c

R

, c
S

, d
R

and d
S

for
the high level joins are provided, the work in [13] still requires knowledge of the join hierarchy and
the distribution for both join and scoring attributes, which limits the applicability of the proposed
model. Further, our analysis in Section 8 on real-world collections shows that a correlation between
the join and the scoring attribute may exist. As an example, consider the collections of spatial
objects in Figure 1(a). Hotels located in the city center close to important landmarks are usually
assigned higher scores compared to the rest of the hotels.

Under this, we devise a novel approach for estimating any-k and top-k depths which uses cheap-
to-compute statistics and is able to better cope with the special characteristics of the inputs.
In Section 8, we experimentally show the superiority of our model over the work in [13]. We
first discuss any-k depths. Our analysis on real data showed that c

R

, c
S

are determined by
the join selectivity of the upper part of the sorted inputs, i.e., the highly scored objects, and is
usually di↵erent from the selectivity of the entire collections. The idea behind our approach is
to repeatedly sample the upper part of each input and compute the join selectivity of these parts
until the potential number of results, denoted by k0, becomes k  k0  � · k, where k is the
number of desired results for k-Join and � is a tuning threshold parameter to avoid the k0 � k
case. Specifically, we initially focus on the first t objects in each collection and estimate their join
selectivity �

t

via sampling; t is a tuning parameter but alternatively any-k depth computed by [13]
can be employed in its place. Based on the potential number of results k0 = t2 ·�

t

we distinguish
between two cases. If k0<k, we need to join a larger part of the collections to identify the first k
candidate object pairs, i.e., c

R

, c
S

>t, and thus, we increase t by ⇠+ times and repeat the process
for the new t=⇠+ ·t value. Otherwise, if k0 > � · k although we have enough join results we choose
to decrease t by ⇠� times and repeat the process to get a better estimation for c

R

, c
S

; note that
tuning parameters ⇠+ and ⇠� are selected such that ⇠+>1>⇠�>0. The above process terminates
when k � k0 � � ·k, and current t is returned as the estimation of both c

R

and c
S

. Finally, to
estimate top-k depths d

R

and d
S

, we employ the ✓ = �(r
cR , scS ) threshold defined by BLP after
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accessing blocks b
RdcR/�e and b

SdcS/�e . Specifically, dR equals the number of r
i

objects in collection
R whose aggregate score � with the highest scored object in S, i.e., s1, is higher than threshold ✓.
Depth d

S

is defined in a similar manner. Formally, we have:

d
R

= |{r
i

2 R : �(r
i

, s1) > ✓}|
d
S

= |{s
j

2 S : �(r1, sj) > ✓}| (4)

To evaluate Equation 4 we employ again the H
R

and H
S

score histograms on the input collections,
as follows. Without loss of generality we focus on d

R

. Following Equation 4, the goal is to find the
last record r

i

in R with �(r
i

, s1) > ✓. Given threshold ✓ = �(r
cR , scS ) and the score of s1 we first

deduce a lower bound `
R

for the score of such an object r
i

, and then identify the score interval
of H

R

where `
R

falls inside. With this interval, we also get how many intervals involve scores
higher than `

R

and hence, how many objects in collection R have a score higher than `
R

. The
aggregate score of these objects with s1 is by definition higher than ✓. Consider now the example
in Figure 4 and the histograms in Figure 8. For simplicity, assume that we have already estimated
any-k depths c

R

= c
S

= 2, and thus, threshold ✓ = �(r
cR , scS ) = �(r2, s2) = SUM(0.8, 0.8) = 1.6.

Hence, in order for an object r
i

in R to have an aggregate score with s1 higher than threshold
✓, i.e., �(r

i

, s1) = �(r
i

, 0.9) > 1.6, its score needs to be higher than `
R

= 0.7. According to H
R

,
score bound `

R

falls inside interval (0.6, 0.8]. By assuming similar to the case of estimating c
R

and
c
S

that all objects whose score falls inside (0.6, 0.8] have a score equal to the upper bound 0.8,
collection R contains approximately 3 objects with score higher than `

R

, i.e., 2 from score interval
(0.6, 0.8] and 1 from (0.8, 1.0], and therefore, we set d

R

= 3.

8 Experimental Evaluation

In this section, we experimentally evaluate our methodology for processing k-Join on complex data
types and particularly, the cases of spatial and string join attributes. First, Section 8.1 details the
setup of our evaluation. Section 8.2 justifies our decision to focus on the e�cient, in terms of CPU
cost, k-Join evaluation, while Section 8.3 our decision to use aR-trees as the indexing structure for
k-SDJoin. Sections 8.4 and 8.5 demonstrate the e↵ectiveness of our model on estimating any-k and
top-k depths, and of our model for estimating the optimal block size � used in BLP, respectively.
Finally, Section 8.6 carries out an extensive comparison of the Score-First, Join-First and Block-
based evaluation paradigms. All methods involved in this study were implemented in C++ and
the experiments were conducted on a 2.3 GHz Intel Core i7 CPU with 8GB of RAM running OS
X.

8.1 Experimental Setup

Our experimental analysis involves both real and synthetic collections of score-carrying objects.
Specifically, regarding the real-world collections:

(i) For k-SDJoin, we used a collection of 645K hotels from Booking.com (BHOTELS) and a set
of 481K restaurants from TripAdvisor.com (RESTS). Join attribute att stores the location
of an object in 2-dimensional space and score is a user-generated rating. We denote this test
by BHOTELS-RESTS.

(ii) For k-SSJoin, we used BHOTELS and a set of 255K from TripAdvisor.com (THOTELS).
Attribute score is a user-generated rating and attribute att stores the name of a hotel.

Due to the limited size of the real-world datasets, we also generated collections with synthetic
scores employing both real and synthetic join attributes. Specifically:

(i) For k-SDJoin, we used the FLICKR collection of 1.68M locations associated with photographs
taken from the city of London, UK over a period of 2 years and hosted on flickr.com, and the
ISLES collection of 20M POIs in the area of the British Isles drawn from openstreetmap.org.

(ii) For k-SSJoin, we used the CITIES collection of 1M geographical names taken from World
Gazetteer with a 200 symbols dictionary and a non-uniform distribution of the strings length
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Figure 9: Hotels in Paris with user-generated scores from TripAdvisor.com.

description parameter values

Join selectivity

✏
SD

0.0001, 0.0005,0.001, 0.005, 0.01

✏
SS

READS: 0, 4,8, 12, 16
BHOTELS-THOTELS: 0, 1,2, 3, 4

CITIES: 0, 1,2, 3, 4
Number of results k 1, 5,10, 50, 100
Number of seeds |⌃| CORR: 10,20, 50, 100
Number of objects

|R|+ |S|
ISLES: 2.5, 5, 10, 20

(⇥1,000,000) READS: 0.625, 1,25, 2.5, 5
Cardinality ratio |R| : |S| 1, 2 ,3, 4

Table 2: Experimental parameters (default values in bold).

(5-64), and the READS collection of 5M reads obtained from a human genome with a 5
symbols dictionary and a uniform length distribution (around 100 symbols per string). Both
collections were provided by [31].

To perform the experiments, each of the collections with synthetically generated scores is split into
two equi-sized (disjoint) partitions denoted by R and S. This way, we avoid performing a self-join
which will produce result pairs involving exactly the same object.

To generate scores, we analyzed the real data making two observations. First, object scores
usually follow a normal distribution, as shown in Figure 9(a) for hotels in Paris from TripAd-
visor.com. Second, a correlation between join attributes and scores may exist. In Figure 9(b),
the rating of a hotel is denoted by how dark its red marker is. We observe that the majority
of the highly rated hotels are close to each other, and conveniently located next to one of Paris’
landmarks, the River Seine. Under these, we distinguish between score of type IND and CORR
similar to [33]. For IND, score values are normally distributed inside [0, 1] and independent to
att (join) values. In contrast, for CORR, we first randomly generate |⌃| seeds, and assign them
a score uniformly distributed inside [0, 0.8]. The generated objects are divided into |⌃| clusters
based on their distance to the seeds and the score of each object equals the score of its closest seed
plus a noise normally distributed inside [0, 0.2].

Finally, to assess the performance of each evaluation paradigm, we measure their response time
for aggregate score function � = SUM3, including any index building and/or sorting costs. We
measured the performance of the paradigms varying three evaluation parameters: the first is the
selectivity of the join, captured by distance thresholds ✏

SD

for k-SDJoin and ✏
SS

for k-SSJoin. The
second evaluation parameter is the number of returning pairs k and the third is the number of seeds
|⌃| in case of CORR and the synthetic collections. We also perform a scalability and a cardinality
test over subsets of the initial synthetic collections varying the |R|+ |S| and |R| : |S| parameters.
Table 2 summarizes all the parameters involved in our experimental study. On each experiment,

3
Please note that our analysis can be directly extended to any monotone aggregate function �.
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we vary one of ✏
SD

, ✏
SS

, k, |⌃|, and |R|+ |S| while we keep the remaining parameters fixed to their
default values. The values for ✏

SS

are the ones considered also in the String Similarity Search and
Join Competition [31]. Further, note that as the value of |⌃| increases the score generator tends
to generate more independent and less correlated score distributions; for |⌃| = 100, the generated
scores can be considered as uniformly distributed. Finally, also note that both the collections
and the indexing structures used by the evaluation paradigms are stored in main memory. In
Section 8.7, we discuss how our analysis can be extended in case all involved data do not entirely
fit inside the available main memory.

8.2 Focus on Computational Cost

First, we justify our decision to focus on CPU e�cient k-Join evaluation for complex data types,
instead of minimizing the object accesses from the inputs, similar to previous studies . Assume
that inputs R, S reside on disk, already sorted in decreasing order of score, and SFP gradually
accesses their objects. To calculate the number of I/Os by SFP, consider a 16KB page (typical
for modern database systems) and the case of performing only random accesses. To measure the
access cost of SFP, we charge 10ms for each page access (similar to a 7200rpm HDD). Table 3
clearly shows that CPU cost overshadows access cost, being up to an order of magnitude higher;
an exception arises if the total number of accessed objects is small, e.g., FLICKR with IND scores.
Note that in practice access cost can be even less important as some pages are sequentially accessed
(e.g. data prefetching) or modern hardware (e.g., SSDs) is used.

collection
score number access cost CPU cost
type of I/Os (seconds) (seconds)

BHOTELS-RESTS – 44 0.44 1.48

FLICKR
IND 2 0.02 0.02

CORR 128 1.28 3.13

ISLES
IND 9 0.09 0.19

CORR 704 7.04 29.16
BHOTELS-THOTELS – 56 0.56 2.39

CITIES
IND 16 0.16 0.75

CORR 28 0.28 1.27

READS
IND 3,637 36.37 109.41

CORR 774 7.74 18.39

Table 3: Access and CPU cost of SFP (for default k, ✏
SD

, ✏
SS

).

8.3 Selecting Index Structure for k-SDJoin

As discussed in Section 5, although R-tree is the dominant indexing structure for spatial data,
SFP, JFP and BLP all employ the aR-tree for computing k-SDJoin. In what follows, we justify
this decision by comparing three alternative implementations for SFP and JFP termed:

• the aR-tree, as discussed in Section 5.

• the R-tree, which uses R-trees instead of aR-trees to index the spatial join attribute att.

• the No-Index, which performs a scan against the bu↵ered objects in case of SFP, while sorts
the objects and applies a spatial plane sweep join technique in case of JFP.

Figure 10 reports the response time of SFP alternatives in case of IND and CORR scoring
attributes on ISLES, while varying ✏, k and |⌃|. As expected, we observe that the aR-tree alter-
native outperforms the other two as it is able to prune object pairs in terms of both their spatial
distance and their aggregate scores. We also observe that the behaviour of the R-tree alternative
di↵ers when increasing ✏

SD

on IND or CORR scoring types. The reason is the following. As ✏
SD

increases, more object pairs qualify the spatial predicate. Since the objects are sorted in descend-
ing order of their scores, a smaller number of pairs needs to be examined. However, the increase
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Figure 10: Comparison of SFP alternatives: scoring attributes of type IND & CORR and ISLES.

of ✏
SD

also incurs a higher cost for the range queries performed by the R-tree alternative. The
e↵ect of this cost is more obvious in case of CORR scoring attributes compared to IND because
an overall larger number of object pairs need to be examined. Another important observation is
that the response time of the aR-tree alternative is less a↵ected by the varying parameters, due to
its ability to prune more object pairs in many circumstances. Finally, with the usage of more seed
nodes for score generation, the response time of all alternatives decreases since more object pairs
have high aggregate scores.

Figure 11 reports the response time for a similar test on JFP. The aR-tree implementation
always outperforms the other alternatives, in some cases for more than two orders of magnitude.
This is due to the fact that the R-tree and No-Index alternatives primarily focus on the spatial
predicate of k-SDJoin, which is naturally independent of the scores, and therefore, they cannot
take advantage of the ✓ and T bounds as we discuss for the aR-tree alternative in Section 5.2. On
the contrary, due to its ability to use score aggregation bounds, the aR-tree based implementation
not only outperforms the other alternatives, but it is also very little a↵ected by the increase of
✏
SD

. In fact, the overall cost of the aR-tree implementation is dominated by the indexing time
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Figure 11: Comparison of JFP alternatives: scoring attributes of type IND & CORR and ISLES
(Log-Scaled).

(over 95%). We also observe that all JFP alternatives perform similar on IND and CORR scoring
types and are oblivious to the number of seed points |⌃|; this is because the execution time of the
aR-tree alternative is dominated by indexing cost while the other alternatives focus on the spatial
join attribute.

Finally, we also implemented BLP with di↵erent versions of its block-based join module and
the results are reported in Figure 12. They confirm that the bounding and pruning advantages of
aR-tree based module is superior to the other alternatives, even when the join is being performed
on a smaller block level.

8.4 Estimating any-k and top-k Depths

We first investigate the e↵ectiveness of our model on estimating any-k and top-k depths (Sec-
tion 7.2). Tables 8.4 and 8.4 report the estimated values of c

R

, c
S

, d
R

and d
S

for the default
values of ✏

SD

, ✏
SS

, k, |⌃| and |R| + |S| and the real and synthetic score-carrying collections,
employing our model and the model proposed in [13]. As expected, when objects are assigned
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Figure 12: Comparison of BLP alternatives: : scoring attributes of type IND & CORR and ISLES.

IND scoring attributes both models accurately estimate c
R

and c
S

; the average relative error of
the [13] estimation is 18% while of our model is 10%. The values of c

R

and c
S

are solely related
to the join selectivity of the inputs and since the IND scoring attribute is independent of the
join attribute, sampling either the upper part of the collections that contains the highly ranked
objects (our model), or the entire collections ([13]) both provide a good estimation of the actual
join selectivity, i.e., �

t

⇡ �. In contrast, for d
R

and d
S

, the estimation of [13] model has an 93%
relative error over the real values, while our model only 12%. Di↵erent from c

R

and c
S

, the values
of d

R

and d
S

besides the join selectivity are also related to the score distribution. The model of
[13] cannot deliver good results unless the scoring attributes follow a uniform distribution and/or
prior knowledge regarding the position of the operator in a k-Join hierarchy is available.

In case of CORR type scores, the estimation of [13] model is at least one order of magnitude o↵
the real value of c

R

, c
S

, d
R

and d
S

for the FLICKR and ISLES collections; note that, particularly
for ISLES, the estimated values of c

R

,c
S

and d
R

,d
S

are 3 orders of magnitude smaller than the
real values. For CITIES and READS and only for c

R

and c
S

, the [13] model provides better
estimation compared to the other collections, solely because by construction the correlation between
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collection score type depth real values [13] our model

BHOTELS-RESTS –
c
R

28,461 17,454 24,317
c
S

34,215 17,454 24,317

FLICKR

IND c
R

96 95 99
IND c

S

107 95 99
CORR c

R

62,969 96 53,352
CORR c

S

63,121 96 53,352

ISLES

IND c
R

322 262 435
IND c

S

322 262 435
CORR c

R

348,295 262 300,038
CORR c

S

348,295 262 300,038

BHOTELS-THOTELS –
c
R

22,691 1,200 22,378
c
S

27,131 1,200 22,378

CITIES

IND c
R

302 273 293
IND c

S

322 273 293
CORR c

R

1,221 270 1,185
CORR c

S

1,172 270 1,185

READS

IND c
R

7,434 6,625 6,060
IND c

S

6,594 6,625 6,060
CORR c

R

9,257 6,462 9,420
CORR c

S

10,199 6,462 9,420

Table 4: Estimation of any-k depths c
R

and c
S

.

collection score type depth real values [13] our model

BHOTELS-RESTS –
d
R

27,886 34,908 24,317
d
S

50,271 34,908 50,271

FLICKR

IND d
R

1,262 191 1,241
IND d

S

1,262 191 1,277
CORR d

R

87,582 192 76,962
CORR d

S

86,395 192 77,896

ISLES

IND d
R

5,050 523 5,653
IND d

S

6,319 523 7,208
CORR d

R

465,531 523 468,544
CORR d

S

495,041 523 470,963

BHOTELS-THOTELS –
d
R

40,733 2,400 41,206
d
S

49,231 2,400 43,615

CITIES

IND d
R

6,146 546 5,482
IND d

S

6,240 546 5,319
CORR d

R

10,057 541 10,057
CORR d

S

11,021 541 9,447

READS

IND d
R

266,878 13,250 222,411
IND d

S

256,850 13,250 215,141
CORR d

R

57,042 12,924 51,778
CORR d

S

54,394 12,924 50,481

Table 5: Estimation of top-k depths d
R

and d
S

.

the scoring and the string join attribute is not as strong as in case of spatial join attributes.
Nevertheless, the model of [13] is always less accurate than ours. On average, the relative error
introduced by [13] in case of CORR is 100% for c

R

, c
S

and 100% for d
R

, d
S

, while by our model
is only 10% and 9%, respectively. Di↵erent from IND, when objects are assigned CORR scores
a larger part of the collections is accessed to compute a k-Join query since similar objects have
similar individual scores which also results in high aggregate scores. The model in [13] is unable
to capture this behavior and, hence, the estimated values of any-k and top-k depths are almost
identical for both IND and CORR.
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Lastly, for the real datasets, the model of [13] always performs worse than ours, due to corre-
lation property of real-world ratings as we discussed in 8.1. Specifically, for BHOTELS-RESTS,
the relative error introduced by [13] is 44% for c

R

, c
S

and 28% for d
R

, d
S

, while by our model is
only 22% and 6%, respectively. For BHOTELS-THOTELS, the model of [13] has a relative error
of 95% for c

R

, c
S

and 95% for d
R

, d
S

, while our model has only 9% and 6%, respectively.

8.5 Estimating the Optimal Block Size

We first discuss how the procedure of selecting the block size � for BLP is applied in case of spatial
and string join attributes. Recall from Section 7.1 that we model this procedure as an optimization
problem, i.e., the optimal value of � minimizes the objective cost function C(�):

C(�) = |N
index

(�)| · C
index

(�) + |N
join

(�)| · C
join

(�)

The indexing (C
index

(�)) and joining (C
join

(�)) costs for two blocks are determined according to
the type of the join attribute and the methodology used to perform a block-level join. Specifically,
for the two cases studied in this analysis we have:

(i) Spatial join attributes and k-SDJoin. We perform an aR-tree based block-level join adapting
the R-tree join of [3]. Our experiments in [27] showed the advantage of this approach over
a plane-sweep based or an R-tree based join method. The cost of indexing, which involves
bulk-loading an aR-tree for each block, is dominated by the cost of sorting the two blocks,
i.e., C

index

(�) = ↵1 ·� · log �+↵2, while the joining cost for two aR-trees is linear to the block
size, C

join

(�) = ↵3 · �+ ↵4.

(ii) String join attributes and k-SSJoin. We employ the Pass-Join algorithm to join two blocks.
Indexing involves partitioning the string attribute of the objects inside the block from col-
lection R and building an inverted index based on a hash-table with a time complexity of
O(� · (✏

SS

+ 1)) = O(�) which gives C
index

(�) = ↵1 · � + ↵2. For each object in collection
S, the joining cost is dominated by the substring selection and the verification step which,
according to [18], is also linear to the block size, i.e., C

join

(�) = ↵3 · �+ ↵4.

Before employing the above cost model to estimate the optimal �, we first need to approximate
↵1, ↵2, ↵3 and ↵4 constants for each k-Join type. To this end, we executed a series of experiments
varying the value of �, and then, employed regression analysis over the collected (�, C

index

(�)) and
(�, C

join

(�)) values.
We now investigate the e�ciency of our model for estimating optimal block size �. We run

BLP for a number of � values inside the [1,max{d
r

, d
S

}] interval for every combination of join and
scoring attribute type. Figures 13, 14 and 15 report the response time of BLP. To make the figures
readable and clear we only show the results around the optimal value �

opt

of block size and mark
value �

est

estimated by our model. Our experiments reveal the trade-o↵ between the response
time of BLP and the value of �. Recall that for � = 1 BLP operates exactly as SFP but as the
block size increases towards �

opt

the paradigm increasingly benefits from the block-wise evaluation.
However, when � increases beyond optimal value �

opt

, BLP becomes less e�cient as it resembles
an improved version of JFP which computes an increasing larger part of R ./

�

S. Although our
model is not able to find the exact �

opt

, the figures show that employing �
est

the execution time of
BLP for IND and CORR score types, and for the real datasets increases only 3%, 2% and 1% on
average, respectively. Note that this estimation procedure is very fast; our experiments show that
the time spend to compute �

est

corresponds to only the 3.3% of the total response time of BLP, on
average. Finally, we also experimented combining the model in [13] for c

R

,c
S

,d
R

and d
S

with our
model for estimating optimal block size. In this case the average relative increase in the execution
time of BLP was 5% for IND but 147% for the real datasets and 260% for CORR, indicating that
an accurate estimation of depths is crucial for selecting a good value of �.

8.6 Comparison of the Evaluation Paradigms

We next compare the Block-based Paradigm against the Score-First and the Join-First for spatial
and string join attributes. Figures 16 and 18 report the response time of each evaluation paradigm
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Figure 13: Response time of BLP varying �: scoring attributes of type IND.

for k-SDJoin and k-SSJoin, respectively, in case of IND typed scoring attributes while reducing the
join selectivity, i.e., increasing the ✏

SD

, ✏
SS

values and varying the number of results k. Similarly,
Figures 17 and 19 report the response time of the paradigms in case of CORR scoring attributes
while also varying the number of seeds |⌃|. Note that parameter |R| + |S| is fixed to its default
value in Table 2. Our experiments show that BLP outperforms both SFP and JFP in all cases. The
advantage of BLP is as expected more significant in case of CORR scoring attributes compared to
IND since a larger part of the collections is accessed for the k-Join query. It is also important to
notice that BLP is more robust to the variation of the involved parameters compared to the other
paradigms.

Regarding parameter k, we observe that all three paradigms are negatively a↵ected by its
increase as they examine and compute the aggregate score for a larger number of object pairs,
that qualify the join attribute. In other words, the paradigms compute a larger part of R ./

�

S,
and this is why the e↵ect of increasing k is more obvious in case of k-SSJoin as string join is more
expensive than the spatial join. In contrast, the evaluation paradigms are positively a↵ected by
the increase of the number of seeds |⌃| for CORR typed scores. This is expected because the value
of the scoring attribute is less correlated to the join attribute and intuitively, the object collections
resemble more to the collections of IND typed scores. Finally, to better understand the behaviour
of BLP, SFP and JFP when varying the join selectivity recall that a k-Join query intuitively comes
as a hybrid of a join and a top-k query. In practice, such a combination introduces an intersecting
trade-o↵. Specifically, while increasing either of the ✏

SD

and ✏
SS

parameters, the join component
of the query becomes less selective and thus, more expensive. Yet, as more object pairs qualify the
join predicate, the best k results can be now identified faster, sometimes even among the highly
ranked objects. In other words, the top-k component of the query becomes less expensive. In the
following, we elaborate more on each type of k-Join and discuss in detail how varying the query
selectivity a↵ects the response time of the evaluation paradigms.

Our experiments on spatial join attributes are consistent with our analysis in [27]. Still, there
exist two important di↵erences. First, in this paper we also experiment with IND typed scoring
attributes, and second, we do not set the block size for BLP by hand; instead we employ the
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Figure 14: Response time of BLP varying �: scoring attributes of type CORR.
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Figure 15: Response time of BLP varying �: real object collections.

model presented in Section 7.1 and evaluated in Section 8.5. We observe that BLP is always the
most e�cient approach for k-SDJoin while being very robust to the variation of the ✏

SD

, k, |⌃|
parameters. Due to examining the objects in decreasing order of their score, both BLP and SFP
are positively a↵ected by the decrease of the join selectivity, i.e., the increase of ✏

SD

, although
the benefit is more significant for SFP. It is also important to notice that SFP is faster than JFP
for IND scoring attributes but slower for CORR. This is because the insert and update strategy
employed by SFP to build the aR-trees over the already examined objects is in practice slower
than the bulk loading used by JFP and BLP when a large part of the collections is accessed and
indexed, i.e., the case of CORR attributes.

In case of strings as join attributes, we primarily observe that the join selectivity a↵ects di↵er-
ently the evaluation paradigms on each collection. Specifically, as ✏

SS

increases the response times
of SFP and BLP drop for CITIES while it increases in the case of READS. With the READS
collection containing more in number and longer in length strings drawn from a very small dictio-
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Figure 16: Comparison of evaluation paradigms for k-SDJoin: scoring attributes of type IND.

nary compared to CITIES, the join component of k-SSJoin is far more expensive than the top-k
and becomes naturally even more expensive as ✏

SS

increases. In addition, due to the nature of
the string join, we also notice that JFP can be e�cient only for small values of ✏

SS

(0 and 1 for
CITIES and 0, 4 and 8 for READS) where the execution time of the join component is low.

We also compare BLP against SFP and JFP on real collections varying the number of results k
and the join selectivity (thresholds ✏

SD

for BHOTELS-RESTS and ✏
SS

for BHOTELS-THOTELS).
Figure 20 backs up our previous observations; BLP always outperforms SFP and JFP.

Finally, we perform scalability and cardinality tests varying the |R|+ |S| and |R| : |S| param-
eters, respectively, for the FLICKR and READS based object collections and for both IND and
CORR types of scoring attributes. Figure 21 and 22 report the response time of each evaluation
paradigm. We observe that BLP always outperforms SFP and JFP with the advantage being more
obvious in case of CORR scoring attributes. It is also important to notice that BLP scales always
better than JFP and in most of setups also than SFP.

8.7 Discussion

As BLP already operates in a block-wise fashion, three minor changes are required when the
available memory is limited.First, indices only for the top blocks of the inputs are stored in memory.
These blocks contain the highest scored objects and are the most frequently accessed in practice.
The remaining blocks are kept on disk and accessed only if necessary. Second, to select a block size,
at least two input blocks must fit inside the available memory. Third, the objective cost function
C(�) is extended to also consider the I/O cost for (i) reading the blocks, (ii) storing their indices,
and (iii) joining them. SFP and JFP can be also extended, e.g., using disk-based aR-tree for
k-SDJoin. However, since both paradigms use a single large index per input, additional updating
and accessing costs may incur.
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Figure 17: Comparison of evaluation paradigms for k-SDJoin: scoring attributes of type CORR.

9 Conclusions

In this paper, we studied the generalization of top-k joins for non-equijoin predicates on complex
data typed join attributes. We first reviewed existing paradigms that can be applied for generalized
top-k joins; the Score-First Paradigm (SFP) is a direct generalization of the algorithm in [12],
while the intuitive Join-First Paradigm (JFP) primarily deals with the join component of the
query. Then, we proposed a novel evaluation paradigm called the Block-based Paradigm (BLP),
which applies SFP in a block-wise fashion and joins blocks of the input collections similar to JFP
but without computing their entire join. Further, we established the instance optimality of BLP
and devised a model for estimating an appropriate block size. As a side contribution, we also
proposed a depth estimation model which is much more accurate than the model of [13], because it
considers arbitrary score distributions and correlations between the score and join attributes. Next,
we showed how the three paradigms can be applied for the cases of spatial joins and string joins
between object collections and proposed special optimizations that greatly improve the e�ciency
of the paradigms. We conducted experiments using real and synthetic data which confirm (i) the
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Figure 18: Comparison of evaluation paradigms for k-SSJoin: scoring attributes of type IND.

accuracy of our estimation models for the depth of top-k search and the optimal value of the block
size in BLP, and (ii) the superiority of BLP over SFP and JFP under a wide range of parameter
settings. In the future, we plan to study the application of BLP in additional cases of join predicates
(e.g., overlap joins in temporal databases [9]) and investigate the e�cient computation of k-Join in
distributed environments.
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