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ABSTRACT
Information in many applications, such as mobile wireless systems,
social networks, and road networks, is captured by graphs. In many
cases, such information is uncertain. We study the problem of query-
ing a probabilistic graph, in which vertices are connected to each
other probabilistically. In particular, we examine “source-to-target”
queries (or ST-queries), such as computing the shortest path between
two vertices. The major difference with the deterministic setting is
that query answers are enriched with probabilistic annotations. Eval-
uating ST-queries over probabilistic graphs is #P-hard, as it requires
examining an exponential number of “possible worlds” – database
instances generated from the probabilistic graph. Existing solutions
to the ST-query problem, which sample possible worlds, have two
downsides: (i) many samples are needed for reasonable accuracy,
and (ii) a possible world can be very large. To tackle these issues,
we study the PTree, a data structure that stores a succinct, or indexed,
version of the possible worlds of the graph. Existing ST-query so-
lutions are executed on top of this structure, with the number of
samples and sizes of the possible worlds reduced. We examine loss-
less and lossy methods for generating the PTree, which reflect the
trade-off between the accuracy and efficiency of query evaluation.
We analyze the correctness and complexity of these approaches. Our
extensive experiments on real datasets show that the PTree is fast
to generate and small in size. It also enhances the accuracy and
efficiency of existing ST-query algorithms significantly.

1. INTRODUCTION
Graph data are prevalent in many important and emerging appli-

cations. In online social networks, such as LinkedIn and Facebook,
friends are interconnected to form complex social networks [17].
Mobile devices form ad-hoc networks through Wi-Fi technolo-
gies [20]. In a road network, cities are composed of streets and
are connected by highways [1]. In biological networks, proteins in-
teract with each other in a complex manner [7]. Substantial research
has been devoted to the effective processing of graph queries, includ-
ing reachability [12], shortest paths [16], frequent subgraphs [29],
and graph patterns [9].

Data uncertainty is inherent in the applications above. For exam-
ple, viral marketing techniques [30] study the purchase behavior
of users in a social network. They study influence graphs, which
depict the purchase influence among people, represented as graph
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vertices. A directed edge from Mary to John, for example, indicates
that John’s purchases are influenced by those of Mary. An edge
on the influence graph is unlikely to be a definite relationship, for
John may not always follow Mary’s purchase behavior [2]. In a
wireless network, the connection between two mobile devices may
or may not be established, as factors such as signal interference and
antenna power may affect the connection of devices [20]. Due to
hardware limitation, measurement errors also occur in biological
databases (e.g., protein-to-protein interaction [7]) and road moni-
toring systems (e.g., traffic congestion data [25]). Querying these
graphs without considering this uncertainty information can lead to
incorrect answers.

A natural way to capture graph uncertainty is to represent them
as probabilistic graphs [38, 8, 19, 26, 25]. There exist two main
representations of edge uncertainty in probabilistic graphs. In the
edge-existential model, each edge is augmented with a probability
value, which indicates the chance that the edge exists (Figure 1a).
This model captures reliability and failure in computer network
connections [19, 26], and it can also represent uncertainty in so-
cial and biological networks [7]. In the weight-distribution model,
each edge is associated with a probability distribution of weight
values [25]. For example, the traveling time between two vertices in
a road network can be represented by a normal distribution.

ST-queries. The problem of evaluating queries on a large prob-
abilistic graph has not been addressed until recently. Some rep-
resentative works include finding shortest paths and reliability es-
timation [19, 26], searching nearest neighbors [33], and mining
frequent subgraphs [41]. In this paper, we study the evaluation of
an important query class, known as the source-to-target queries, or
ST-queries, which are defined over source vertex s and target vertex
t in a probabilistic graph. In general, an ST-query is about getting
information about paths that start from s and finish at t. Example
ST-queries include reachability queries (RQ) and shortest distance
queries (SDQ). These queries provide answers with probabilistic
guarantees. For example, the answer of an RQ tells us the chance
that s can reach t; the distance between two vertices, zsh:1: aucun
fichier ou dossier de ce type: /This distances.

Evaluating an ST-query can be expensive. This is because these
queries, operated on a a probabilistic graph G, follow the possible
world semantics (PWS) [13]. Conceptually, G encodes a set of
possible worlds, each of which is a definite (non-probabilistic) graph
itself. Figure 1b shows a possible world of the probabilistic graph in
Figure 1a. Each possible world is given a probability of its existence
derived from edge probabilities. For example, the graph in Figure 1b
exists only if edges 0→ 4, 2→ 0, 2→ 6, and 6→ 4 exist, with
a probability of 0.1.1 Evaluating a query q (e.g., an SDQ) on G

1This is the product of the probabilities that edges in Figure 1b exist,
and the probabilities that other edges do not, i.e., 1×0.75×0.75×
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Figure 1: Illustrating (a) a probabilistic graph; (b) a possible world;
and (c), (d) query-efficient representations

amounts to running the deterministic version of q (e.g., computing
the shortest distance between two vertices) on every possible world.
This approach is intractable, due to the exponential number of of
possible worlds; and indeed the problem has been proved to be
#P-hard [38, 8, 13].

To improve ST-query efficiency, researchers have proposed sam-
pling solutions [19, 26, 33, 41], where possible worlds with high
existential probabilities are extracted. These algorithms, which
examine fewer possible worlds than the PWS, proved to be more
efficient. However, they suffer from two major downsides, which
can hamper query efficiency significantly:

Issue 1. A possible world can be very large. Some of the prob-
abilistic graphs used in our experiments, for example, have over
250k vertices and 2.5 million edges. If we want to run an SDQ on a
probabilistic graph, a shortest path algorithm needs to be executed
once for each sampled possible world. Since a possible world can
be a very big graph, query efficiency can be affected.

Issue 2. To achieve high accuracy, a lot of possible world sam-
ples may need to be generated. In our experiments, around 1,000
samples are required to converge to near-zero errors.

Our contributions. We improve the efficiency of ST-query eval-
uation by tackling the two issues above. The main idea is to evaluate
the query on G(q), a weight-distribution probabilistic graph derived
from G. Let q(s, t) be an ST-query with source vertex s and target
vertex t. The result of running q(s, t) on G(q) should be highly
similar (or ideally, identical) to that of q(s, t) executed on G. If
G(q) can be generated quickly, and G(q) is smaller than G, then
executing q (on G(q)) can be faster. Let us consider an RQ, q(0,4),
run on the graph in Figure 1a. There is only one path of probability 1
between vertices 0 and 4. Correspondingly, G(q) is a directed edge
0→ 4, with {1 : 1.0} denoting a unit-length path between vertices
0 and 4 of probability 1. Answering q(0,4) on G(q) is the same
as evaluating q(0,4) on G; in both cases, vertex 0 reaches vertex 4
with probability 1. Figure 1d illustrates G(q) for q(1,4). Here, edge
3→ 4 is not included, since it does not affect the result of q(1,4).
Also, the subgraph containing vertices 1, 5, and 6 is abstracted by

0.75× (1−0.5)× (1−0.25)× (1−0.75)× (1−0.5)× (1−0.5).

Table 1: Summary of the PTree Structures.

PTree Space Time Query Quality Section

SPQR linear linear lossy (with bound) 5
FWD(w = 2) linear linear lossless 6.1
LIN quadratic linear lossless 6.2

a directed edge 6→ 1. This edge represents the existence of two
paths: one with length 1 and probability 0.75, and the other with
length 2 and probability 0.06.

In the examples above, G(q) is smaller than G. The possible world
graphs sampled from G(q) become smaller than those generated
from G. If q(s, t) is executed on the possible worlds sampled from
G(q), its efficiency is less affected by Issue 1. Moreover, G(q)
contains fewer possible worlds than G does. Consequently, the
sampling error is decreased, alleviating the impact due to Issue 2.
Hence, an ST-query algorithm executed on G(q) is faster than if it
is processed on G. As we will explain, in some of our experiments,
the result of q is more accurate on G(q) than on G.

How can a small G(q) be obtained quickly then? We answer this
question by proposing PTree, an indexing framework that facilitates
ST-query execution. Given q(s, t), PTree efficiently generates the
corresponding G(q), which has a small size. In this way, the speed
of q, evaluated on G(q), can be improved. We formalise three design
requirements for PTree: (1) it should be generated efficiently; (2) it
enables G(q) to be obtained quickly; and (3) it has a size comparable
to G. We show theoretically that for these criteria to be satisfied,
PTree needs to have a tree structure.

We next investigate the construction of PTree. Specifically, we
study the SPQR tree [14, 21] and the fixed-width tree decomposition
(FWD) [34], which are query-efficient structures for traditional, non-
probabilistic graphs. By appropriately incorporating uncertainty
information into these structures, two implementations of PTree
can be obtained. We study the efficiency and accuracy of these
two structures. It turns tout that FWDs allow an ST-query to be
answered correctly. However, they are not as efficient as SPQR trees,
which on the other hand may introduce bounded error in the query
result, and we say that the SPQR tree is lossy. For both structures,
the construction and retrieval times, as well as the space overhead,
are linear to the size of G. We further show that the efficiency of
FWD can be enhanced without generating lossy query results, at
the expense of occupying more space. We call this variant of FWD
the lineage tree (or LIN). Our three solutions can be evaluated on
the two major probabilistic graph classes – i.e., edge-existential [19,
26] and weight-distribution [25]. Moreover, any existing ST-query
algorithm (e.g., [26]) can be executed on a graph retrieved from
a PTree without any modification. Table 1 summarizes the main
properties of our three approaches.

We have evaluated our approaches on four real-world large datasets.
All our solutions significantly improve the performance of existing
ST-query algorithms. For instance, using SPQR trees and FWDs
in a state-of-the-art distance-constraint reachability algorithm [26]
achieves speedup of 2 to 3 times, with query accuracy improved by
up to 50%. The LIN structure achieves the highest efficiency, with
reasonable space overhead in practice.

Outline. The rest of our paper is organized as follows. We discuss
related work in Section 2. Section 3 defines probabilistic graphs,
ST-queries, and the PTree framework. We present the details of
PTree in Section 4. In Sections 5 and 6, we examine SPQR trees,
FWD, and LIN. We present our experimental results in Section 7.

2. RELATED WORK



Probabilistic graph queries. Recently, several efficient query
algorithms for probabilistic graphs have been proposed. These
techniques, which sample possible worlds, have been studied for
ST-queries (e.g., reachability [19, 26]), k-nearest neighbors [33],
and frequent subgraph discovery [41]. Our PTree index generates a
small probabilistic graph for querying purposes. This graph renders
smaller possible world sizes, as well as fewer samples. It would be
interesting to extend PTree to support k-nearest neighbor query and
frequent subgraph discovery. We remark that the issues of indexing
probabilistic graphs have only been recently studied. In [40, 32], an
indexing solution was proposed for subgraph retrieval. A pruning
and indexing framework for reliability search has been proposed
in [28]. It is not clear how they support a general ST-query, which
is studied intensively in our paper.

Tree decompositions. While tree decompositions have been
used to generate indexes for efficient shortest-path-query execu-
tion [39, 3], they are designed for “certain graphs” with no probabil-
ities. Extending their usage to probabilistic graphs is not trivial. The
triangle inequality of distances in certain graphs allows the prepro-
cessing of a large portion of the graphs. Unfortunately, this property
does not hold for distances in probabilistic graphs. In this paper,
we show how to use tree decompositions to support probabilistic
graph queries. In [27], the authors study how to use junction tree de-
compositions to evaluate queries in correlated databases [35]. They
evaluate joint probabilities on the correlation DAG. Their solution
does not address our problem, since we deal with general graphs
rather than DAGs. Moreover, we are interested in evaluating paths
over a graph, not the joint distributions in its nodes.

Graph compression. Given a probabilistic graph G and a ST-
query q, Our PTree can generate G(q), which is smaller than G.
Hence, our approach can be considered in some sense as a graph
compression algorithm. For certain graph databases, graph com-
pression is often used to reduce the size of a graph for higher
query efficiency (e.g., neighborhood, reachability, and graph pattern
queries [11, 22, 18]). However, these solutions are not designed
for probabilistic graphs. To our best knowledge, no other work has
studied how to compress a probabilistic graph. In this paper, we
examine how aprobabilistic graph can be compressed in lossless and
lossy manners.

3. INDEXING PROBABILISTIC GRAPHS
We now give the definitions for probabilistic graphs and ST-

queries. We also introduce our probabilistic graph indexing frame-
work, which we call the probabilistic indexing system.

DEFINITION 1. A probabilistic graph is a triple G = (V,E, p)
where:

(i) V is a set of vertices;
(ii) E ⊆V ×V is a set of edges;

(iii) p : E → 2Q
+×(0,1] is a function that assigns to each edge a

finite probability distribution of edge weights, i.e., each edge e
is associated with a partial mapping p(e) : Q+→ (0,1] with
finite support supp(p(e)) such that ∑w∈supp(p(e)) p(e)(w)6 1.

We denote V (G), E(G), pG the vertice set, the edge set, and the
probability assignment function of G respectively.

Note that for an edge e, the probability that it does not exist in G
is 1−∑w∈supp(p(e)) p(e)(w). Definition 1 is essentially the weight-
distribution model [25], where each edge is associated with a finite
probability distribution of weights. This definition also captures the
edge-existential model [19, 26], where an edge with existential prob-
ability p can be represented as a weight distribution {(1, p)}. Like
these previous works, we assume that the probability distributions

on different edges are independent. It would be interesting to study
how to extend our solution to support edge correlations.

DEFINITION 2. Let G = (V,E, p) be a probabilistic graph. The
(weighted) graph G=(V,EG,ω) with EG⊆V×V and ω : EG→Q+

is a possible world of G, if EG ⊆ E, and for every edge e ∈ EG,
ω(e) ∈ supp(p(e)). We write Gv G. The probability of the possible
world G is:

Pr(G) := ∏
e∈EG

p(e)(w(e))× ∏
e∈E\EG

(
1− ∑

w′∈supp(p(e))
p(e)(w′)

)
.

A probabilistic graph has an exponentially large number of possi-
ble worlds:

PROPOSITION 1. Let G be a probabilistic graph. Let PW(G) de-
note the set of non-zero probability possible worlds of G = (V,E, p);
formally, PW(G) = {G | Gv G,Pr(G)> 0}.

Then ∏e∈E |supp(p(e))| 6 |PW(G)| 6 ∏e∈E(|supp(p(e))|+ 1),
and ∑G∈PW(G) Pr[G] = 1.

ST-queries. In this paper, we study the source-target distance
query (or ST-query), which is a common query class for probabilistic
graphs. This kind of query requires two inputs: source vertex s and
target vertex t, where s, t ∈V . Typical example ST-queries include:
Reachability (RQ) [12]. Probability that t is reachable from s.
Distance-constraint reachability (d-RQ) [26]. Probability that t

is reachable from s within distance d.
Expected shortest distance (SDQ) [8]. The expected value of the

distance distribution p(s→ t) between s and t. Formally,
p(s→ t) is a set of tuples (di, pi), where pi is the probability
that the shortest distance between s and t is di.

To evaluate these queries, we can conceptually obtain p(s→ t).
Then, any of these queries can be derived from (di, pi). Unfortu-
nately, these queries are hard to evaluate, as stated below:

THEOREM 1 ([38, 8]). Evaluating RQ, d-RQ (for d > 2), and
SDQ is FP#P-complete.

Without loss of generality, in the rest of the paper we assume
that the answer of a ST-query is p(s→ t), where any ST-query is
answered from it. In fact, our solution can deal with any ST-query
that depends only on p(s→ t).

An indexing framework . We now propose an indexing frame-
work for probabilistic graphs. First, we define the notion of trans-
formation system.

DEFINITION 3. A probabilistic graph transformation system is
a pair (index, retrieve) where:
• index is a function that takes as input a probabilistic graph G

and outputs an object I = index(G) called an index;
• retrieve is an operator that, given an ST-query q(s, t) in

G, and the index I, produces a probabilistic graph G(q) =
retrieveq(I), such that s, t ⊆V (G(q)).

Essentially, a transformation encodes a probabilistic graph G into
an index structure, which can generate another probabilistic graph
G(q) for a given pair of vertices (s, t). Since s and t can be found in
G(q), q(s, t) can be evaluated on G(q).

We consider two important properties for queries evaluated on
the transformed graph G(q): (i) the loss – the difference between
the result of q evaluated on G(q) and G; and (ii) the efficiency – the
time and space cost of evaluating q on G(q). We formalize these
properties below.

DEFINITION 4. Let (index, retrieve) be a probabilistic graph
transformation system. Given a probabilistic graph G = (V,E, p),



and a class of ST-queries Q (e.g., RQs), the transformation loss of
(index, retrieve) on G for Q is:

MSEQ(G,(index, retrieve)) = 1
|V |2 ∑

q∈Q

(
qG −qG(q)

)2
.

where qG is the result of q evaluated on G. A transformation system
(index, retrieve) is lossless for Q if, for every probabilistic graph G,
MSEQ(G,(index, retrieve)) = 0; otherwise, it is lossy.

The above definition quantifies the loss of a transformation based
on the classical definition of mean squared error, and we study both
lossless and lossy transformation systems here.

A transformation system is called an indexing system, if it is
efficient for answering a given kind of query.

DEFINITION 5. A transformation system (index, retrieve) is said
to be an indexing system for query class Q if the following hold:

(i) index is a polynomial-time function;
(ii) for every probabilistic graph G, |index(G)|=O(|G|) (i.e., the

space occupied by the index is bounded by a linear function of
the space occupied by the original graph);

(iii) for every query q ∈Q retrieveq is linear-time computable.

Let us give an example transformation system that is not an
indexing system. Given query class Q, consider a system that pre-
computes all pairwise results, i.e., the index operator. This system
satisfies Property (iii), since the retrieveq builds a trivial two-vertex
graph. Evaluating q over the resulting graph is very efficient, since
this just involves looking up the distance probability distribution on
the edges of this graph, in O(1) time. However, neither Property
(i) nor (ii) hold, since indexing is intractable unless #P is tractable,
which would imply P= NP; the index is at least quadratic in size.

We aim for indexing systems that allow efficient query evaluation
(for a query class Q) on the transformed graph: for every prob-
abilistic graph G and query q ∈ Q, the running time of retrieveq
on index(G), together with the running time of q on G(q), should
be faster than evaluating q on G. One such indexing system is the
PTree, as presented next.

4. INDEPENDENCE AND PTREE
We now address an important question: can we obtain an efficient

index for probabilistic graphs, with zero or limited loss? We show
that the answer to this question is positive, by proposing the PTree.
The PTree is a tree decomposition of the probabilistic graph G,
where independent subgraphs of G are identified and reduced. We
now introduce the concept of independent subgraphs.

Independent subgraphs. Recall that each edge in a probabilis-
tic graph, along with its associated probability distribution, is in-
dependent of probability distributions of the other edges. Thus,
one way to derive a lossless indexing system is to collapse larger
subgraphs to edges, such that independence is maintained:

DEFINITION 6. An independent subgraph of a probabilistic graph
G is a connected induced subgraph S ⊆ G with arbitrarily many
internal vertices and at most two endpoint vertices v1, v2 such that:

(i) Each internal vertex is connected only to other internal vertices
of S, or to the endpoint vertices, in an undirected manner;

(ii) the endpoint vertices can be linked to other vertices in G, to
internal vertices, and to themselves.

We can use these independent subgraphs to reduce the graph to
an equivalent subgraph by replacing S with edges v1→ v2 and v2→
v1, with corresponding probability distributions p(v1 → v2) and
p(v2→ v1) computed from S. To understand why this is possible,
let us introduce the notion of joint distance probability distributions:

DEFINITION 7. Given a probabilistic graph G = (V,E, p) and
a subset V ′ = {v1 . . .vn } of V , the joint distance distribution for V ′

in G is the probability distribution over tuples of n2 integers that
gives for every tuple (di j), where di j is a real valued distance, the

probability Pr
[∧

16i6n
16 j6n

vi→ v j has length di j

]
.

The above characterizes the semantic of the probabilistic graph in
terms of ST-queries: a query on any pair of vertices on the subset V ′

will yield the same result on any two graphs that have the same
joint distribution but different structure. A fundamental result is
the following: Independent subgraphs are exactly those that can be
removed from the graph while preserving joint distance probability
distributions for non-removed vertices.

THEOREM 2. Let G = (V,E, p) be a probabilistic graph and V ′

a non-empty subset of vertices of V that are connected in G. We
assume for each e ∈ E, ∑w∈supp(p(e)) p(e)(w)< 1.

There exists a probabilistic graph G′ = (V\V ′,E ′, p′) such that
the joint distance distributions for V\V ′ is the same in G′ as in G
if and only if V ′ is the set of internal vertices of an independent
subgraph of G.

The proof of the theorem is presented in Appendix B.
In other words, Theorem 2 states that the independent subgraph

approach is the unique manner in which a lossless indexing system
can be obtained for a probabilistic graph.

PTree. Our definition of independent subgraphs relies on vertices
in the graphs which separate the graph into two independent com-
ponents. We can decompose the graphs into the corresponding
independent subgraphs in a recursive way, by repeatedly identify-
ing endpoints and sub-dividing the subgraphs until it is not longer
possible to do so. Put aside for now the question of choosing the
independent subgraphs to decompose – we will propose different
solutions to this problem in Sections 5 and 6. Whatever the choice,
it is straightforward to verify that such a recursive decomposition –
our desired index I = index(G) – results in a tree where nodes are
independent subgraphs and edges appear between subgraphs having
common endpoints. We call such a tree decomposition a PTree.

DEFINITION 8. Let G be a probabilistic graph. A PTree for V is
a pair (T ,B) where T is a tree (i.e., a connected, acyclic, undirected
graph) and B is a function mapping each node of T to a probabilistic
graph B (called the internal graph or bag of n) with vertex set a
subset of V . We further require that for every subtree T ′ of T , the set
of vertices in bags of nodes of T ′ induces an independent subgraph
of G.

EXAMPLE 1. To understand what a PTree looks like, consider
the tree depicted in Figure 2 which is a PTree for the graph of
Figure 1. The tree T is defined by the black lines between bags;
a Greek letter identifier is given on the right of each bag. Ignore
for now the edges inside bags of the PTree and focus on vertices.
The vertices in bags of any subtree of T induce an independent
subgraph in the graph of Figure 1: for example, the subtree rooted
at node (δ ) contains vertices 1, 2, 5, and 6, which is indeed an
independent subgraph with endpoints 2 and 6. The nodes in white
represent the endpoints of the independent subgraphs induced by
the bag’s respective subtree: here, for node (δ ), these are 2 and 6.

How can we efficiently find independent subgraphs, build a PTree,
and use this PTree as an index for query answering? In the next
two sections, we present two solutions: SPQR trees (Section 5) that
provide an optimal and unique decomposition, but for which index
is intractable; tree decompositions (Section 6) that yield weaker
decompositions, but in which index is fully tractable, even linear in
the size of the original graph.
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5. SPQR TREES
We introduce in this section a first method for indexing proba-

bilistic graphs into a PTree: SPQR trees [14]. First, we need some
graph theory basics on k-connectedness [15].

For a graph G, a vertex set S⊆V (G) is called a separator for G
if the graph induced by V (G)\S is disconnected. Given an inte-
ger k, a graph G is called k-connected if V (G)\S is connected for
all S ⊆ V (G), |S| < k, i.e., there exists no separator for G of size
less than k. 0-connected graphs are connected graphs in the usual
sense, 1-connected graphs contain cut vertices which disconnect the
graph into biconnected components, and 2-connected graph have
separation pairs of vertices which separate the graph into tricon-
nected components. These definitions link directly to our desired
properties for independent subgraphs. Connected, biconnected, and
triconnected components are exactly independent subgraphs of 0,
1 and 2 endpoints, and we aim to decompose the graph into a tree
containing them.2

Tutte [37] studied the structure of the triconnected components of
a graph, and Hopcroft and Tarjan [24, 23] gave optimal algorithms
for decomposition. They showed that the triconnected components
of a graph are unique:

THEOREM 3 ([37, 24, 23]). The biconnected and triconnected
components of a graph G are unique and the inclusion relationships
among them forms a tree.

Using Theorem 2 and Theorem 3, we can derive the corollary
that decomposing the graph into its biconnected and triconnected
components is the unique manner in which we can obtain a lossless
indexing of a probabilistic graph – since biconnected and tricon-
nected components are independent subgraphs and they are unique.

Hopcroft and Tarjan’s algorithms were refined, by using SPQR
trees [14] and Gutwenger’s linear implementation of them [21]. Our
approach uses these algorithms as a first step to obtain the decompo-
sition. We go beyond simple decompositions in our approach, and
show how distance distributions on the interface edges can be com-
puted, and how they can be propagated inside a PTree. We also show
how to retrieve a query-equivalent graph from the decomposition.

In the following, we will consider the underlying deterministic

2In practice, decomposition of independent subgraphs with 0 end-
points (that is, connected components) is not of much interest, so we
will mainly consider independent subgraphs with 1 or 2 endpoints.

graph G for a probabilistic graph G, having the same edges and
vertices as G.

Indexing. Our PTree T consists of nodes corresponding to the
triconnected components of the graph. Two types of edges are
present in the bags of the PTree: real edges already existing in G,
and skeleton edges, which correspond to the reduced triconnected
components in the tree children. The decomposition of the graph
G in the resulting index I = index(G) corresponds exactly to the
construction of the SPQR tree, together with the computation of the
probability distributions for each skeleton edge in the graph.

There are three types of internal graphs in an SPQR tree, and by
extension in T [37]:

1. a cycle of at least three edges; the corresponding tree bags are
called serial or S-bags;

2. two vertices having parallel edges; the corresponding bags
are called parallel or P-bags; and

3. a triconnected graph not containing any of the above two
structures; the corresponding bags are called rigid or R-bags.

EXAMPLE 2. We present in Figure 2 the SPQR PTree resulting
from the graph in Figure 1. Note that each edge of the original graph
(shown solid, while skeleton edges are dashed) is present only in
one bag, but vertices can be repeated across bags. The SPQR PTree
is composed of three S-bags, one P-bag, and one R-bag. Each bag
contains the union of the induced subgraph of G and the skeleton
edges. Moreover, each bag contains a triconnected component.

Take bag (δ ) as an example. It consists of three vertices and
two edges of G (1,2,6 and 1→ 2, 2→ 6), and a skeleton edge
propagated from node (ε), summarizing paths from 6 to 1 in node (ε)
(there is no path from 1 to 6 in node (ε)). Vertices 2 and 6 are a
separation pair for the subgraph induced by the vertices in bags (δ )
and (ε), i.e., vertices 1,2,5,6.

Bag (β ) is an R-bag, and the bag (α) is a P-node, containing
two parallel undirected skeleton edges, corresponding to the two
branches of the SPQR tree.

Note that the original formulation of SPQR trees contained also a
fourth type of bag, the Q-bag or trivial bag, which were simply each
edge of the graph in a single tree node, for ease of abstraction. In the
most recent linear implementation [21] and in this paper, these bags
are ignored and the edges are simply copied to the nearest ancestor
in T .

Algorithm 1 details the index operator using SPQR trees. It
outputs a PTree (T ,B).

ALGORITHM 1: indexSPQR(G)
input : a probabilistic graph G, width parameter w
output : index indexSPQR(G) = (T ,B)
/* decompose the graph using SPQR trees */

1 G← undirected, unweighted graph of G;
2 (B,T )← compute-spqr(G);
3 for n node of T do
4 copy the edges of G to B(n);
/* compute edges between uncovered vertices and

propagate up */
5 for l, leaf of T do
6 root T at l;
7 for h← height(T ) to 0 do
8 for node n of T s.t. level(n) = h do
9 precompute-propagateSPQR(B(n),T );

10 root the tree at the node with largest bag;
11 return (T ,B);

The first step is the application of the SPQR tree algorithms
from [14, 21], which creates a tree T and a mapping B from bags
of T to sets of vertices of G. We omit here the details of the SPQR



algorithm, as it is not our focus, and we direct the reader to [21]
for an up-to-date description of the working of the decomposition
algorithm. Bags B(n) are then populated with the original edges
from G which are between vertices in B(n).

The second step – and most important for correct query evaluation
– is the pre-computation and upwards propagation of distance prob-
abilities of the separation pairs in T , i.e., function precompute-

propagateSPQR. We use here the observation that the distance
distributions between endpoints can be computed in two directions.
For example, take bag (β ). Edge 0→ 4 can either be computed as
coming from the independent subgraph defined by bags (α) and (γ),
or by the independent subgraph defined by bags (β ), (δ ), and (ε).
This bi-directional computation is very useful for the retrieve opera-
tor, as we shall see. We can perform this computation in an optimal
manner, by successively rooting T at each of its leaves l, and then
propagate the computation upwards.

For every node n of T , we first need to collect the computed
distributions of the separation pairs corresponding to bags of chil-
dren of n. Then the probability distribution corresponding to the
endpoints {v1,v2}, i.e., p(v1→ v2) and p(v2→ v1), is computed, if
it has not been computed previously when rooting the tree at other
leaf bags. If it has been computed previously, then we do not need
to perform the computation again, which means that each of the
two directions for each pair of endpoints in each bag will only be
computed once.

Depending on the type of bag, we have two ways of computing
the endpoint distance distributions. For S-bags and P-bags, these can
be computed exactly using convolutions of distance distributions.

The convolutions depends on the configuration of the path we
wish to pre-compute. In the case of a P-bag – equivalent to sev-
eral parallel edges between the same endpoints – the final distance
distribution between endpoints can be computed using a MIN con-
volution – denoted in the following as� – of all the parallel edges in
the bag. In other words, we compute the distribution of the minimal
distance between the two endpoints. The MIN convolution is linear
in the maximum distance of the input distributions. In the case
of an S-bag – or a serial path between the endpoints with a direct
edge between the endpoints – the distribution can be computed by
applying a SUM convolution of the serial path between v1 and v2 –
denoted as ⊕ – followed by a MIN convolution with the direct edge
distribution. The SUM convolution is the distribution of the sum of
the distances in the serial path. Its computation is quadratic in the
maximum distance of the input distributions. Figure 3 illustrates the
� and⊕ operators on distance distributions. For more details on the
computation of convolutions of probability distributions, we refer
the reader to [6].

For R-bags, it is expensive to compute exactly the endpoint distri-
bution in the general case, as the graph present in the bag can have
an arbitrary configuration. In this case, we can compute the end-
point distribution using sampling, choosing the number of samples
by applying the Chernoff and Hoeffding inequalities, to obtain an
(ε,δ ) multiplicative guarantee [33]. We can then use the per-bag
guarantees to compute the overall guarantees on the distributions in
the root bag, in the spirit of [36].

Finally, to increase the chances that an ST-query does not need
any retrieve operation, we root T at the bag which contains the
largest number of vertices.

EXAMPLE 3. Returning to the SPQR tree in Figure 2, we illus-
trate how the exact computation would work for bag (ε) in the tree,
an S-bag. For the 6→ 1 direction, we first have to compute the
SUM convolution of p(6→ 5) and p(5→ 1):

p′(6→ 1)= p(6→ 5)⊕ p(5→ 1)= {(d = 2, p= 0.5×0.5= 0.25)}.

A BX

A B

A B

A B

⊕

⊙

p(first) p(second) p(combined)

p(combined)

p(direct)''

p(direct)'

SUM p(first),p(second)

MIN p(direct)',p(direct)''

Figure 3: Probability compositions of simple paths.

Then, the final pc(6→ 1) is computed as the MIN convolution of
the existing p(6→ 1) and the computed p′(6→ 1):

p(6→ 1) = p(6→ 1)� p′(6→ 1)
= {(d = 1, p = 0.75),(d = 2, p = (1−0.75)×0.25 = 0.0625)}.

There is no configuration in which 1→ 6 has a finite distance, hence
pc(1→ 6) = /0. The two distributions will be propagated up in the
tree, to bag (δ ), where they will serve for the computation of the
distribution between endpoints 2 and 6.

Algorithm 2 details the pre-computation step. Note that for P-
bags, we do not need to do anything in the second step, as the
collection of children nodes will already take care of the MIN con-
volution of the parallel edges.

ALGORITHM 2: precompute-propagateSPQR(B,T )

input :bag B, tree T
/* propagating computations from children */

1 for distribution pc(u→ v) in children of B do
2 p(u→ v)← p(u→ v)� pc(u→ v) ;
/* computing pairwise distributions */

3 for edge v1→ v2 between endpoints v1,v2 do
4 if pc(v1→ v2) 6∈ computed(B) then
5 if type(B) = R then
6 pc(v1→ v2)← sample(v1,v2,B) ;
7 else if type(B) = S then
8 p′(v1→ v2)← p(v1→ u1)⊕·· ·⊕ p(u j → v2) ;
9 pc(v1→ v2)← p(v1→ v2)� p′(v1→ v2) ;

10 add pc(v1→ v2) to computed(B);

Retrieval. When answering (s, t) ST-queries on the PTree we
have two main cases. First, when both s and t are present in the
root node, we only need to query the root bag with no need to look
in the decomposition. The second case is the most interesting one:
when at least one of s, t are not in the root, but are vertices in the
decomposition bags. In this case, the query vertices need to be
propagated to the root node.

The bi-directional property of computed new edges means that
we can simply assume that the root of the tree is located at one of
the bags containing s or t, and then propagate only the edges corre-
sponding to the other query vertex. It is not important which node
is chosen – it is easy to verify that the number of edges propagated
will be the same – so we will assume we root the tree at the node
whose bag contains t in the following.

The original edges in ancestors of the bags containing the query
vertices are propagated up, all the way to the new root, in a bottom-
up manner. The previous pre-computations of edges in areas of the
graphs not containing the query vertices and in the subtree of the
bags containing the query vertices are not affected by this change.
Recomputing the edges on these parts of the tree is not necessary,
and this ensures that only a fraction of the bags in the tree is affected
by the retrieval. Algorithm 3 details this operation.

EXAMPLE 4. Let us return to the decomposition in Figure 2,
and exemplify how a retrieval for the query pair (1,4) proceeds.
Figure 4 illustrates the execution of Algorithm 3 for this pair.



ALGORITHM 3: retrieveSPQR(T ,B,s, t)
input :PTree (T ,B), source s, target t
output :probabilistic graph G

1 root the tree at one of the bags containing t;
/* propagate edges up the new tree */

2 for h← height(T ) to 0 do
3 for node n of T s.t. level(n) = h do
4 B← B(n);
5 if V (B)∩{s} 6= /0 then
6 delete pc in parent(B) resulting from B;
7 E(parent(B))← E(parent(B))∪E(B);
8 V (parent(B))←V (parent(B))∪V (B);
9 return B(root(T ))
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Figure 4: Retrieval for the pair (1,4).

First, since 1 and 4 are on the same branch of T , we can root the
tree at bag (β ). Moreover, one can notice that there is no need to
recompute endpoint distributions on bags (α), (γ), and (ε). Hence,
the computed edge 6→ 1 will be used from bag (ε) and 0→ 4 from
(α). However, the computed edges 6→ 2 and 2→ 6 will not be
propagated from bag (δ ) to bag (β ), as their computation involves
a query vertex, in this case vertex 1. Hence, all vertices and edges
from bag (δ ) will be propagated to bag (β ), and joined by the
original edge in (α), 0→ 4. The resulting graph in the new root
– bag (β ) – is a graph which will output equivalent results for the
query on (1,4) as the original graph in Figure 1a.

Properties. It is easy to check that the index and retrieve op-
erators define an indexing system where queries run faster on the
retrieved graph than on the original graph. Theorem 2 ensures the va-
lidity of the approach. The implementation of SPQR trees of [21] is
linear in the size of G. The precompute-propagate function only
pre-computes endpoint distributions once per bag. The computation
itself is polynomial, either the MIN and SUM convolutions, or the
sampling of the R-bags using a set number of sampling rounds. The
above two results verify Property (i) of Definition 5. Moreover, it is
a known result that the number of skeleton edges added in the tricon-
nected components tree is O(E) (more precisely, it is upper-bounded
by 3|E|−6, as shown in [37]), thus verifying Property (ii).

Each retrieve will output a graph that is at most as big as the
original graph, and hence the standard shortest-path algorithms [16]
would execute in less time for each sample3. Moreover, the retrieval
is linear in the number of tree bags, which is itself linear in the size
of G, verifying Property (iii). Hence (indexSPQR, retrieveSPQR) is
an indexing system.

SPQR PTrees display a lot of the advantages we desire for our in-
dexing systems, i.e., their optimality and their linear space and time
costs. They, however, also have a big disadvantage. The presence
of R-bags, along with the fact that we cannot trivially remove them
from the structure, makes them lossy in the general case, even if
this loss can be controlled by approximation guarantees. Yet, as we
shall explore in the next section, we can achieve lossless indexing by

3We assume that the sampling from a distance probability distribu-
tion on an edge incurs constant-time cost.

applying another classical graph decomposition technique, namely
fixed-width tree decompositions (FWDs).

6. FIXED-WIDTH DECOMPOSITIONS
Tree decomposition [34] of graphs is a classic technique to

solve NP-hard problems in linear time [5], on graphs of bounded
treewidth.

Tree decompositions. Following the original definitions in [34],
we start by defining a tree decomposition:

DEFINITION 9 (TREE DECOMPOSITION). Given an undirected
graph G = (V,E), its tree decomposition is a pair (T,B) where
T = (I,F) is a tree and B : I→ 2V is a labeling of the nodes of T
by subsets of V , with the following properties: (i)

⋃
i∈I B(i) = V ;

(ii) ∀(u,v) ∈ E, ∃i ∈ I s.t. u,v ∈ B(i); and (iii) ∀v ∈ V , {i ∈ I | v ∈
B(i)} induces a subtree of T .

Intuitively, a tree decomposition groups the vertices of a graph
into bags so that they form a tree-like structure, where a link between
bags is established when there exists common vertices in both bags.
Based on the number of vertices in a bag, we can define the concept
of treewidth:

DEFINITION 10 (TREEWIDTH). For a graph G = (V,E) the
width of a tree decomposition (T,B) is equal to maxi∈I(|B(i)|−1).
The treewidth of G, w(G) is equal to the minimal width of all tree
decompositions of G.

Given a width, a tree decomposition can be constructed in linear
time [10]. However, determining the treewidth of a given graph
is NP-complete [4]. This means that determining if a graph has a
bounded treewidth, and thus being able to create its tree decomposi-
tion, cannot be reasonably performed on large-scale graphs.

Note that algorithms which solve NP-hard problems in linear
time when restricted to graphs of bounded treewidth – including
k-terminal reliability – have been proposed in [5]. They have two
main disadvantages: (i) they use bottom-up dynamic programming
for the computation of optimal values, but they retain an exponential
dependence on the treewidth w; and (ii) the practical appeal is
limited, as the computation of the query answers is made at the
same time as the construction of the decompositions. Our solution,
in contrast, is linear in the size of the graph, and is computed only
once to be used for any query.

In real-world graphs or complex networks, it has been observed
that graphs have a dense core together with a tree-like fringe struc-
ture [31]. It is consequently possible to decompose the fringe, and
finally to place the rest of the graph in a “root” node. Based on
this, indexes for faster exact shortest path query answering have
been proposed using fixed-width decompositions [39, 3] (FWDs) in
the context of exact graphs: the idea is to fix a given treewidth and
decompose the graph as much as possible to obtain a relaxed tree
decomposition where only the root node may have a large number
of nodes. Note that these indexes can be used for shortest paths
by exploiting the triangle inequality property in definite graphs and
thus any width can be used as a parameter. This is not possible in
probabilistic graphs, and thus the algorithms cannot be readily used.
In the following, we adapt the approaches presented in these works
to the setting of probabilistic graphs, building a FWD PTree.

6.1 General Approach
Indexing. The adaptation of existing FWD algorithms to proba-
bilistic graphs is straightforward. We transform the probabilistic
graph G into its undirected, deterministic, variant G. Then we apply
FWD to generate the list of bags and the resulting tree. When each



ALGORITHM 4: indexFWD(G)
input : a probabilistic graph G, width parameter w
output : index indexFWD(G) = (T ,B)
/* decompose the graph into bags of size 6 w */

1 G← undirected, unweighted graph of G;
2 S = /0, T = /0;
3 for d← 1 to w do
4 while there exists a vertex v with degree d in G do
5 create new bag B;
6 V (B)← v and all its neighbors;
7 for all unmarked edge e in G between vertices of V (B) do
8 E(B)← E(B)∪{e}; mark e;
9 covered (B)←{v};

10 remove v from G and add to G a (d−1)-clique between v’s
neighbors;

11 S← S ∪{B};
/* create the root graph and the bag tree */

12 V (R)← all vertices in G not in covered(B);
13 E(R)← all unmarked edges in G;
14 for bag B in S do
15 mark B;
16 if ∃ an unmarked bag B′ s.t. V (B)\covered(B)⊆ B′ then
17 update (T ,B) so that B′ is parent of B;
18 else update (T ,B) so that R is parent of B

/* compute edges between uncovered vertices and
propagate up */

19 for h← height(T ) to 0 do
20 for bag B s.t. level(B) = h do
21 precompute-propagateFWD(B);
22 root T at R;
23 return (T ,B);

bag is generated, we copy the probabilistic edges from G to it, in
a manner similar to SPQR. After the decomposition process has
ended, the remaining edges and vertices are copied to the root graph
R along with new edges computed from the tree decomposition.
The resulting index indexFWD(G) will be a PTree (T ,B).

Algorithm 4 presents the index operator. It consists of three
stages: the main decomposition, the building of the FWD PTree and
the pre-computation of paths.

As for the SPQR decomposition, the first stage of Algorithm 4
(lines 1–14) is the adaptation of the algorithms in [39, 3], which
build the decomposition tree. At each step, a vertex having a degree
at most w is chosen, marked as covered, and its neighbors are added
into the bag, along with the probabilistic edges from G. Then, the
covered vertex is removed form the undirected graph G and a clique
between the neighbors is created. This process repeats until there
are no such vertices left. Finally, the rest of the uncovered vertices
and the remaining edges are copied in the root graph R.

The second stage is the creation of the tree T . We visit in creation
order each bag and define as their parent the bag which includes
completely in their vertex set the uncovered vertices of the visited
bag. If no such bag exists, the parent of the bag will be the root
graph.

The final stage is similar to the SPQR tree approach. In each
bag B, and for each pair (v1,v2), we need to compute p(v1→ v2) by
using the information about the link configuration between v1,v2 and
the covered vertex v, using MIN and SUM convolutions. More pre-
cisely: p(v1→ v2) = p(v1→ v2)� (p(v1→ v)⊕ p(v→ v2)) . This
is followed by the bottom-up propagation of computed probabilities,
in a manner similar to SPQR. At each step pairwise probabilities
are computed among the vertices which are not the covered vertex v
of the respective bag. In order to compute these probabilities, for
each bag B, the first step is to “collect” the computed edges from
B’s children and combine them using the � operator. Then, for each
pair (v1,v2) we compute distances using the ⊕ operator between
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Figure 5: The w = 2 decomposition of the example graph. Vertices
in white are the vertices covered by each bag, and dashed red edges
are edges which are computed from children. Each edge has a
distribution of distance probabilities associated to it.

the edges v1 → v and v→ v2. Finally, the direct edge v1 → v2 is
combined to get the final probability distribution. At the final level –
the root bag R – the computed pairwise distance distributions are
simply copied to the edge set of R. Note that we do not compute
the distance distributions by using other possible paths between
endpoints, and we restrict the computations only between the direct
endpoint edge and the unique path going through the covered node.
We do this to allow tractability of the convolution computations and
allow the same semantics of the edges in R, i.e., each resulting edge
between endpoints can be independently sampled.

Unlike the SPQR tree approach, we cannot compute the bi-
directional edges, at least for w > 2. Hence, only a single bottom-
up propagation is made, from the leaves to R. The resulting
precompute-propagateFWD is similar to the SPQR version, and
we omit it here.

EXAMPLE 5. We give in Figure 5 the result of applying Algo-
rithm 4 on the graph in Figure 1, for w = 2. The resulting decom-
position consists of five bags in B and a root graph of two vertices,
6 and 0. Originally, the root graph does not contain any original
edges, but it will have computed edges resulting from the bottom-up
propagation. In the figure, the dashed red edges represent the edges
which have been computed from the children.

The left-hand side of the tree, bags (γ) and (ε) do not propagate
any edges up the tree, as they either do not have 2 endpoints, as is
the case of bag (ε), or there exist no paths between the endpoints, as
is the case of bag (ε). On the right-hand side, bag (ζ ) will provide
a 6→ 1 edge to bag (δ ). Bag (δ ) also propagates edges 6→ 2 and
2→ 6 to bag (β ). Finally, bag (β ) propagates edge 6→ 0 to the
root bag (α).

Retrieval. The retrieve operator is similar to the one applied for
SPQR trees, with a single major difference. Since the bi-directional
distance probabilities are not computed in the decomposition phase,
we will not root T at a bag containing t. Instead, the edges from the
bags containing s and t will always be propagated to R, if they do
not already belong to R. Looking at Figure 5 and for query (1,4),
we would have to propagate the edges of bags (γ), (δ ) and (β ) to
(α), resulting in the same equivalent graph as in Figure 1.

Properties. We can show that FWD for w 6 2 are lossless, but,
unfortunately, decompositions for w > 2 are not lossless, due to
the correlations induced by pre-computing the distributions in bags,



as witnessed by the following counter-example. It is sufficient for
us to imagine a bag resulting from a w > 2 decomposition having
covered vertex v and neighbor vertices v1,v2,v3, . . . ,vw with the
following edges: v1 → v and v → v2, . . . ,v → vw. In this case,
the computable edges would be v1 → v2, . . . ,v1 → vw. For every
1 < i 6 w, p(v1→ vi) = p(v1→ v)⊕ p(v→ vi). p(v1→ v) appears
in all equations, meaning that the computed edges would not be
maintaining their independence, hence leading to lossy indexing.
No guarantees can be obtained for them either, unlike SPQR.

For w 6 2 the decomposition defines a tree of independent sub-
graphs, i.e., a PTree. It follows that every computed edge in the root
graph R corresponds to an independent subgraph.

In terms of time complexity, we know that the FWD itself is
linear in the number of vertices in the graph [39, 3]; however the
computation of pairwise probability distributions is quadratic in w
for each bag.

While it is conceivable that a possible world exists in which a
shortest distance path between two vertices visits all edges in a graph
thus having d =O(E), this does not occur in practice. Moreover, for
w 6 2, i.e, the lossless cases, there are only 2 pairs to generate, and
each bag is visited only once by Algorithm 4. Hence, in practical
settings, the complexity of propagating computations is linear in the
number of vertices in the graph.

The complexity of the retrieval for tree decompositions is the
same as in the case of SPQR PTrees. Hence (indexFWD, retrieveFWD)
is also an indexing system, lossless for w 6 2.

The proofs of these properties can be found in Appendix C.
For w 6 2 the decompositions are lossless – albeit not optimal –

and all pre-computed edges can be efficiently evaluated. As we shall
see, their gains in efficiency approach those of the SPQR indexes.
In some cases – such as denser networks – their efficiency is still
not fully satisfactory. As we shall show in the next section, we
can improve on time efficiency at the cost of an increase in space
requirements, by devising extensions to FWDs dealing with the
correlations introduced with higher treewidths.

6.2 Handling Higher Treewidths
As we have seen previously, for FWDs with w > 2, it is not

generally possible to pre-compute the edges between endpoints in
the decompositions bags, due to the correlations possibly introduced.
This means that sampling directly the pre-computed edges is error-
prone. Hence, sampling the pre-computed distance distributions
directly from R or the graph returned by retrieve is not advisable.

Instead, we can compute the full lineage of the distance distribu-
tions between endpoints at pre-processing, and leave the handling
of the correlations at query time. For this, we compute the lineage
at tree decomposition time and build a lineage tree, i.e., a parse tree
of the path between endpoints.

A lineage tree is a binary tree where the intermediary nodes are
either ⊕ or �, depending on the convolution of the subtrees, and
the leaves are edges from G. Such lineage trees can be efficiently
computed at decomposition time by adding tree nodes “on top” of
existing tree pointers, coming from previous bags. To enable ef-
ficient evaluation of edges which introduce correlations – hereby
named dependency edges – we annotate each tree node T with a
little information: (i) the set of dependency edges dependent(T ),
i.e., the edges which introduce correlations in the entire subtree
T ; (ii) the pre-computed distance distribution, T.dst, i.e., the dis-
tance distribution computed as if dependent(T ) = /0; and (iii) the
edge being pre-computed, T.edge. Both T.edge and T.dst can be
computed directly at decomposition time, just as in the previous
decompositions, SPQR and FWD.

The dependent(T ) computation goes on as follows. We first
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compute T with the dependency annotations. For each subtree
t that originates from a previous bag in the tree decompositions,
we set union its dependent(t) to the current dependent(T ). Then,
for each bag processed in precompute-propagateFWD and for
each distance distribution between endpoints, we keep the set of
its lineage edges only from the current bag, linedges(T ). Finally,
for each pair of computed endpoint trees T1 and T2, we compute
linedges(T1)∩ linedges(T2) and add it to both dependent(T1) and
dependent(T2), by set union. This ensures that each subtree will
contain the correct set of dependency edges.

EXAMPLE 6. Let us take the graph in Figure 6a. Say we cover
nodes 1 and 2 and wish to pre-compute 3→ 4 to 3→ 5. Figure 6b
shows the resulting lineage trees for edges 3→ 4 (left) and 3→ 5
(right). 3→ 4 is rooted at t2, and 3→ 5 at t5. Edge 3→ 1 introduces
correlations between t2 and t5, but also between the subtrees t1 and
t4. For t5, dependent(t5) = /0 so the pre-computed distance for edge
1→ 5, {2 : 0.75}, does not have any correlations.

ALGORITHM 5: propagate-dependent(T )
input : tree pointer T
output :distance distribution d

1 if dependent(T ) = /0 then
/* subtree does not contain dependencies */

2 d← T.dst;
3 else if T is a leaf then

/* reached a leaf, sample the edge */
4 if T.edge is dependent then
5 if 6 ∃sampled(T.edge) then
6 sampled(T.edge)← sample(T.edge);
7 d← sampled(T.edge);
8 else d← dist(T.edge);
9 else

/* evaluate branches */
10 dl← propagate-dependent(T.le f t);
11 dr← propagate-dependent(T.right);

/* compute convolutions */
12 if T.oper =⊕ then d← dl⊕dr else d← dl�dr
13 return d;

The lineage trees described above can be added to computed
edges of FWDs. Note that there is no need for lineage trees for



Table 2: Dataset summary

graph vertices edges

WIKIPEDIA 252,335 2,544,312
COMMUNICATION 62,651 147,878

NH 115,055 260,394
CA 1,595,577 3,919,162

FWDs with w 6 2, as bags are always independent of other parts in
the graph. Then, at sampling time, each time a computed edge is
encountered we evaluate the lineage tree corresponding to its tree.

Given such a lineage tree, evaluating the distance distribution
from a tree pointer T is done as in Algorithm 5. This algorithm is
called at sample-time for a tree pointer T . If the tree pointed by T
does not contain any dependency edges, then we simply return the
distance distribution T.dst. If, on the other hand, the pointer points
to a leaf of the tree – which points to a graph edge – and this edge is
a dependency edge, we need to sample it in this possible world. To
ensure that we keep the correlation in all other possible trees which
have this edge as a dependency edge, we need to ensure that the
sampled distance is the same in all trees. For this we keep a map
sampled which contains the sampled edges in the current possible
world, ensuring no sampling of a dependency edge is repeated. If the
edge is not a dependency edge, we can return its distance distribution.
Finally, for intermediary tree nodes, we recursively evaluate the left
and right branches and then compute the convolution indicated by
the node, either ⊕ or �. The returned distance distribution d can be
sampled by our sampler of choice.

EXAMPLE 7. Let us return to the tree t5 in Figure 6b. At sam-
pling time, edge 3→ 1 needs to be sampled because it is a depen-
dency edge, i.e., it introduces a correlation with tree t2. When t2
needs to be evaluated, we need to use this sampled distance for
3→ 1. Edge 3→ 5 and t3 can use their distributions without sam-
pling, as they do not have correlations anywhere else.

The problem with this lineage-based method, that we call LIN
in what follows, is that it is not generally space efficient. On each
bag of width w, we only potentially remove 2w edges – two for
each endpoint covered node pair –, while we can introduce w(w−1)
edges to the graph – one edge for all possible pairs of the w endpoints.
For w > 2, this can add edges to the graph, breaking the linear
size requirement for it to be an indexing system. Note that the
computation of LIN is still linear in the graph size, so it is still
extremely efficient to compute time-wise.

As we shall show in experiments, the number of computed edges
added to R has a direct influence on query evaluation. Yet, LIN can
achieve considerable increases in efficiency, especially for dense
graphs, where SPQR and FWD fare relatively poorly, meaning it
still has good practical applicability.

7. EXPERIMENTAL EVALUATION
We now report on our experimental evaluation showing the ef-

ficiency of SPQR decompositions, FWDs, and LINs for ST-query
evaluation over probabilistic graphs. Our experiments were per-
formed on the graph datasets shown in Table 2. The details of their
construction and of the PTree implementation are presented in Ap-
pendix D. The implementation code and the datasets used in this
paper are available at http://bit.ly/1vL7QQo.

We first present the results for the approaches that are indexing
systems, SPQR and FWD. Then we proceed to evaluate the lossless
extension for higher w, LIN, which has more practical appeal for
cases where space is not an issue.
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Figure 7: PTree properties (log y scale)

PTree properties. For each dataset, we have generated both the
lossless FWD, i.e., w ∈ {1,2}, the SPQR PTrees, and, for compar-
ison purposes, the lossy FWD for w ∈ {3,5}. For the R-bags of
the resulting SPQR tree, we have computed the probabilities of the
separation pairs by using 1,000 rounds of sampling. We have also
generated SPQR PTrees using a different number of sampling round
in the R-bags, but have noticed that the loss incurred by the samples
remains relatively constant, for values over 100 samples.

Figure 7a-c illustrates the sizes of the resulting R graph, from
applying PTree on the four graphs. We show here the number of
nodes, the number of original edges retained and the number of
computed edges added to the root. Ideally, we wish that the sum of
the original edges and the computed edges is less than the original
graph size, since the sampling procedures directly depend on the
number of edges. It can be seen that the number of vertices in
the root decreases significantly with w, which can be explained
by the fact that the graph degrees show long-tail distributions. A
less pronounced effect is seen for the number of edges removed,
especially in the case of the WIKIPEDIA graph. This is also expected
since even removing the long tail of the degrees retains the high-
degree nodes, where most of the edges are concentrated. They,
however, are always significantly lower than the original graph size.
For the SPQR decomposition, it can be seen that is is better than
the largest lossless FWD decomposition, w = 2. In all cases, w = 0
consists only of the root bag, containing the original graph. Note
that in the SPQR case we define the root as the largest bag in the
tree. Interestingly – for the road graphs, NH and CA – in the case
of SPQR, the root does not retain any original edges and it is fully
populated by computed edges. We conjecture that this is due to
the relative sparseness of road networks as compared to social or

http://bit.ly/1vL7QQo


Table 3: PTree ∆PW

Graph FWD, w = 1 FWD, w = 2 SPQR

WIKIPEDIA 220710 272440 2881506

COMMUNICATION 219922.4 232621.1 212856.1

NH 2720 265006.7 231104.1

CA 29930 2762300 2497820

communication networks.
Figure 7d-f shows the preprocessing execution time and space

overhead properties of PTree. As can be noticed, the index is very
efficient, running in the order of seconds even on large graphs.
The same observations holds for the pre-computation and propaga-
tion of distance distributions for the fixed-width decompositions.
However, due to the overhead of sampling the R-bags, the SPQR
pre-computation takes significant more time than FWD, but still tak-
ing only on the order of second on the larges graphs. The exception
to this behaviour are the lossy decompositions of the road networks,
where the distance propagation can take a few hours.

The space overhead of I is also reasonable. Generally, PTree
FWD w 6 2 and SPQR only incur between 10% (WIKIPEDIA)
and double (NH) space overhead compared to the space cost of
the original graph. Again the lossy FWDs for the road networks
increase significantly in size compared to their original graph size,
even reaching a few gigabytes in the case of CA. Since the higher
widths of the tree decompositions no longer retain the linear size
increase property, this is indeed theoretically possible to happen.
Nevertheless, the query time savings of the lossless decompositions
of NH and CA are important enough for even w = 2, as we shall see
next.

Possible worlds. The size of the R graph can directly result
into a significant decrease in possible worlds, as shown in Table 3.
We track the coefficient ∆PW = |PW(G)|/|PW(G(q))|, where G is
the original graph and G(q) is the result of applying retrieve on
I (FWD or SPQR) for a query q. The results were aggregated by
averaging over a workload of 1,000 random pairs. As can be seen,
the size of the root R directly affects the number of possible worlds
saved. Moreover, it is a clear indication that pre-computing distance
distribution on edges has an effect of “collapsing” the possible
worlds. Note that LIN has the same potential of collapsing the
possible world as FWD does.

Running time. For evaluating the execution time, we used the
following experimental setup. For each dataset, a randomly gener-
ated query workload of 1,000 vertex pairs from the original graphs
were generated. For each query workload, we generated the ground
truth probabilities via 10,000 rounds of sampling. Please note that
for each query pair we generated the actual distance distribution
between the vertices, by applying Dijkstra’s shortest path algorithm
on every sampling round. For testing, we executed the workloads
for a number of samples between 10 and 1,000.

As Figure 8 shows, the efficiency gains are important when
queries are executed on PTree indexes. The gains on the lossless
decompositions are up to 5 times in the case of NH. In most cases,
SPQR is more efficient that the lossless FWDs, but only marginally
so. Denser networks, such as WIKIPEDIA, do not have such an
important increase in efficiency, and we will show later how this can
be alleviated by using LIN for higher treewidths.

We turn to showing how the retrieve operator time influences
the execution of the queries, in Figure 9 (log scale). In terms of
execution time, the retrieval of equivalent graphs does not take a
significant time out of the total execution time. In the worst case,
SPQR for WIKIPEDIA, it is roughly 1% of the execution time for
1,000 samples. Hence, the sampling time greatly dominates the
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query time and applying retrieve is highly efficient.

Error vs. time. The question we wish to answer now is the
following: Can such approaches beat sampling algorithms? That
is, is the error vs. time trade-off – especially for SPQR and the
lossy FWD, w > 2 – enough to justify using our algorithms, and
not simply more sampling rounds? To check this, we have plotted
the running time of applying sampling on PTree versus its error –
expressed in terms of the mean squared error as compared to the
ground truth results. For brevity, we only track the results for the
reachability – or 2-terminal reliability – queries. As query answers
are derived directly from the distance distribution, results for other
types of queries have equivalent relative error results.

Figure 10 presents the results for the COMMUNICATION and
WIKIPEDIA graphs (note the log-log axes). The black dots represent
the results on sampling the original graph, for a number of sample
rounds between 10 and 1,000. Intuitively, we want the points corre-
sponding to PTree variants (drawn for the same amount of samples)
to lie “below” the line induced by the black points, meaning that
they yield a better time-accuracy trade-off. As seen before, the gains
in execution time when using the decompositions are important.
The results also show that the relative error can be even slightly
improved when using PTree. For instance, note that the white dots
in the COMMUNICATION graph are slightly lower than the corre-
sponding black dots, suggesting an increase in accuracy. The results
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Figure 11: Computing time for LIN and high treewidths (solid:
lineage, dashed: baseline) and number of edges in R (red)

are replicated for the case of the WIKIPEDIA graph.
It can also be seen that the lossy FWD variants have error rates

comparable to the error rates of the lossless variants, for a greater
increase in running time. This suggests that the number of correla-
tions introduced by the distribution pre-computation is not as large
in practice, and that this kind of decompositions can be effectively
used for query answering. However, we have no bound of the error
introduced and hence we cannot control the error. This can be allevi-
ated by the lineage sampling we presented in the previous sections,
as we shall show next.

Using lineage for higher widths. We show, in Figure 11,
how the LIN decompositions fare for higher treewidths. Note that
in this case, all query processing is lossless as we take care of the
correlations at sample time. We compare the query processing time
(black lines) with the number of edges (red line) in the root bag R,
for widths w∈ {3,4,5,7,10,20} and for the COMMUNICATION and
WIKIPEDIA graphs.

In terms of running time, we compare with a baseline in which ev-
ery edge in the lineage tree is sampled, even if it is not a dependency
edge. This can mean that potentially we will sample the same num-
ber of edges as in the original G. This can still lead to reasonable
gains in efficiency, as the Dijsktra algorithms – even implemented
with optimized Fibonacci heaps – can still cause significant over-
head due to the processing and updating of the vertex heaps. The
dashed black line shows the execution time for this baseline. It can
be seen that this baseline can achieve a two-fold increase in effi-
ciency in COMMUNICATION, and around 20% for WIKIPEDIA, and
that its minimal running time is achieved for decompositions under
w = 10. In COMMUNICATION, this is the moment in which we be-
gin adding more edges than removing in R, but not in WIKIPEDIA.
The optimized processing of lineage trees described in Algorithm 5
– illustrated by the black line – performs even better. In COMMU-
NICATION, it achieves a three-fold increase in efficiency, but the
execution time plateaus for w > 10, as the number of edges in R
begins to increase. As the number of edges in R still decreases even

Table 4: Distance-constraint reachability running time (sec) and
error ratios (in parentheses) for three d-RQ estimators

Decomp. RHH RHT Dagger

original 0.095 (0.122) 0.123 (0.109) 0.631 (0.225)
FWD w = 2 0.069 (0.056) 0.113 (0.057) 0.185 (0.146)

SPQR 0.050 (0.071) 0.061 (0.073) 0.338 (0.129)

for w = 20 for WIKIPEDIA, the best efficiency is achieved at w = 20,
a two-fold time reduction. This is much more efficient than either
SPQR or FWD. Interestingly, the increase in efficiency is greater
than the relative number of edges in R, suggesting that the structure
of the graph is just as important as its size. In terms of space, the
decomposition is still efficient for these datasets. For WIKIPEDIA
LIN w = 20, the size of the index is around 1 GB, which can be
easily handled in-memory on any modern desktop computer.

Comparison with other algorithms. One of our arguments
in using PTree as a pre-computed index is that it can be applied
directly to existing solutions. To check this, we apply the distance-
constraint reachability (d-RQ) estimators studied in [26] to the
FWD and SPQR versions of the NH graph. We use the RHH,
RHT and the Dagger sampling estimator and apply directly the
authors’ implementation. We also track the error ratio, defined as
E =

∣∣R̂−R
∣∣/R, where R̂ is the result of an estimator and R is the

result of the exact computation. We use the same experimental setup
as [26], and we transform the G(q) versions of the input graphs
into their edge-existential versions to serve as direct input to d-RQ
algorithms.

Table 4 summarizes the results. First of all, it can be easily noted
that, indeed, applying PTree decompositions directly affects the
running time of any of the three estimators, up to a 3-times increase
in efficiency. Applying PTree also increases accuracy – in terms of
the error ratio – for all three estimators. The best accuracy increase
for RHH and RHT is achieved by the FWDs, while for Dagger
sampling the SPQR decomposition performs best. These results
complement the results in Figure 10 and suggest that the fact some
edges are already pre-computed minimizes the chance of sampling
error. The difference in behaviour of FWD and SPQR between
the baseline Dagger and RHT/RHH suggests that the denser graph
structure resulting from SPQR helps in its execution on advanced
estimators. Hence, our decompositions can be readily used for
state-of-the art estimators in a pre-computations step, since the
retrieve operator is very efficient and they can potentially increase
the accuracy (or at the very least, keep it at the same level) over
using the original graphs.

8. CONCLUSIONS
In this paper, we studied efficient ST-query evaluation in prob-

abilistic graphs. We formally define an indexing framework on
such graphs, and propose the PTree, with two variants: the SPQR
tree and the FWD. SPQR trees have the advantage of an optimal
decomposition, and therefore more potential for efficiency, at the
cost of being lossy; FWDs, with w = 2, are lossless, and achieve
good performance on real-world datasets, especially when graphs
are sparse. To achieve further efficiency, we show how FWDs can
be enriched with lineage information to return sound query results;
the downside is a theoretical quadratic blow-up, which in practice
rarely happens. The graphs produced can also be easily used by
existing query algorithms, and we show how pre-processing based
on PTree can increase efficiency and accuracy in state-of-the art
probabilistic query processing algorithms. In the future, we will de-
velop query-efficient representations for other kinds of queries (e.g.,
k-nearest neighbors [33] and frequent subgraph discovery [41]).
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B. PROOF OF THEOREM 2
PROOF. Let us first show that such a G ′ exists if V ′ is the set

of internal vertices of an independent set S. If there are zero or
one endpoint vertex in S, we do not modify the graph: indeed, no
shortest distance between vertices of V\V ′ can be realized through
vertices of V ′. Assume there are two endpoints v1 and v2. We add
(or replace if they already existed) edges v1→ v2 and v2→ v1 whose
distance distribution is given by the distance distribution from v1
to v2 and v2 to v1 either directly or through vertices of V ′. Then
shortest paths in G between vertices in G ′ that went through V ′ now
go through v1→ v2 or v2→ v1 and result in the same shortest path
distribution. Note that for this direction we do not use the fact that
all edges are probabilistic.

For the other direction, assume by way of contradiction that V ′

is not the set of internal vertices of an independent subgraph, and
that there is such a G ′. This means that vertices of V ′ are linked in
G′ to at least three vertices outside of V ′, v1, v2, and v3. Since the
vertices of V ′ are connected in G ′, there is a simple path p21 from
v2 to v1 going through vertices of V ′ and a simple path p13 from v1
to v3 going through vertices of V ′ such that p21 and p13 share an



edge e. Since all edges may be missing, there is a world where the
only path between v2 and v1 (resp., between v1 and v3) is achieved
by paths formed of edges of p21 and p13. We denote by i→G j
the probabilistic event “there is a path from i to j in G”, by i 6→G j
its complement, and by XG the event: “for all pairs of vertices
(i, j)∈ (V\V ′)2 with i 6= j and either i or j not in {v1,v2,v3}, i 6→G j.
This event is realizable jointly with v2 →G v1 and v1 →G v3 by
considering the world where all edges not connecting to V ′ are
removed. Since the joint distance distributions of G and G ′ are the
same, we have:

Pr
[
v2→G v1∧ v1→G v3

∣∣∣v2→G v3∧XG
]

=Pr
[
v2→G′ v1∧ v1→G′ v3

∣∣∣v2→G′ v3∧XG′
]
.

Now, observe that

Pr
[
v2→G′ v1∧ v1→G′ v3

∣∣∣v2→G′ v3∧XG′
]

=Pr
[
v2→G′ v1

∣∣∣v2→G′ v3∧XG′
]

Pr
[
v1→G′ v3

∣∣∣v2→G′ v3∧XG′
]

=Pr
[
v2→G v1

∣∣∣v2→G v3∧XG
]

Pr
[
v1→G v3

∣∣∣v2→G v3∧XG
]

since in G ′, v2→G′ v1 and v1→G′ v3 are conditionally independent
given XG′ and v2 →G′ v3 (in G ′ the only possible worlds where X
is realized are those where only v1, v2, v3 may be connected to
each other). But v2 →G v1 and v1 →G v3 are not conditionally
independent given XG and v2 →G v3 since they are correlated by
the presence of the edge e. Contradiction.

C. PROPERTIES OF FWD
PROPOSITION 2. precompute-propagateFWD computes correct

probability distributions, i.e., does not induce any error, for decom-
positions of w 6 2.

PROOF. A bag of size at most 2 has at most three vertices, the
endpoints v1,v2 and the covered vertex v. p(v1→ v2) is uniquely
defined by two paths: v1 → v2 and v1 → v → v2, resulting in
p(v1 → v2)

new = p(v1 → v2)� (p(v1 → v)⊕ (p(v→ v2)). Simi-
larly, p(v2→ v1)

new = p(v2→ v1)� (p(v2→ v)⊕ (v→ v2)). This
can be computed exactly and efficiently, hence no error due to ap-
plying sampling or equivalent methods is induced.

Since we assume that all previous edges are independent, and
none of the terms appear in both equations, it follows that v1 →
v2 and v2 → v1 are independent. Their propagation to the parent
maintains their independence and that of already present edges in the
parent bag, their computed edges will also be independent. Hence
no error is induced by not maintaining the independence property
of edges.

Finally, the root bag R will only have already existing edges
(which are independent by definition) or computed edges, which
are independent, as shown above. It follows that all computed
probabilities in the decomposition are exact.

PROPOSITION 3. Let (T ,B) be a FWD PTree of w 6 2. Then
every bag B in B(T ) defines an independent subgraph, having as
endpoints its uncovered vertices and as internal vertices all covered
vertices in the subtree of T rooted at B.

PROOF. A decomposition of w 6 2 can only have at most 2
uncovered vertices in each bag. By definition, a covered vertex of a
bag can only have links with the uncovered vertices of a bag, and
hence the leaf bags in T define independent subgraphs of size 1.

For the bag above leaf vertices, we know again that the covered
vertices can only have links with the uncovered vertices. These links
can be from the original graph G or computed from children. The
computed edges from children correspond to independent subgraphs
themselves. Hence the covered vertex can only have links with other
covered vertices or endpoints and thus is an internal vertex of an
independent subgraph.

PROPOSITION 4. The complexity of precompute-propagateFWD

is O(w2d), where d is the maximum distance having non-zero prob-
ability in the graph.

PROOF. The number of endpoint pairs in a bag is O(w2). The
computation of the SUM convolutions is quadratic in the maximum
distance of each distribution, but cannot exceed d, which is bounded
in connected graphs. The computation of the MIN convolution is
linear in the maximum distance in the two distributions, and is upper
bounded by d. The proposition follows.

D. DATASETS AND IMPLEMENTATIONS
We used four probabilistic graphs datasets, from different appli-

cation domains:
1. The WIKIPEDIA dataset, representing Wikipedia4 text inter-

actions between contributors. Each probabilistic edge has distance
1 and the probability proportional to the number of positive inter-
actions over the number of total interactions. Positive interactions
represent text interactions which do not involve the deletion or re-
placement of another contributor’s text, and edges in the graphs
represent the probability that two authors agree on a topic. The
graph has 252,335 vertices and 2,544,312 edges.

2. The COMMUNICATION dataset, obtained from the SNAP web-
site5 representing the P2P connections between Gnutella hosts. Each
edge is uniformly assigned a probability from {0.25,0.5,0.75,1},
representing the probability that two hosts will establish a P2P con-
nection. The graph has 62,561 vertices and 147,878 edges.

3. The United States road network graphs6, in which the edges
represent roads between geographic locations, and have weights
representing the average driving time. We have attached to each
edge the probability of driving occurring without incident, chosen
uniformly in the interval [0.95,1]. We have experimented on two
graphs, corresponding to roads of two US states: the NH road
network of 115,055 vertices and 260,394 edges, and the CA road
network of 1,595,577 vertices and 3,919,162 edges.

Our PTree framework was implemented in C++, and all experi-
ments were run on a Linux machine with a quad-core 3.6GHz CPU
and 48 GB of RAM. The fixed-width decomposition algorithm was
implemented by us, while the deterministic part of the SPQR de-
composition was done using the implementation in the Open Graph
Drawing Framework library7. This implementation is an efficient
implementation of the linear decomposition algorithm presented
in [21].

4http://en.wikipedia.org/
5http://snap.stanford.edu/data/p2p-Gnutella31.html
6http://www.dis.uniroma.it/challenge9/data/tiger
7http://ogdf.net/

http://en.wikipedia.org/
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