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Abstract—Trajectory data are abundant and prevalent in
systems that monitor the locations of moving objects. In a
vehicle location-based service, the positions of vehicles are con-
tinuously monitored through GPS; each vehicle is associated
with a trajectory that describes its movement history. In species
monitoring, animals are attached with sensors, whose positions
can be frequently traced by scientists. An interesting avenue to
generate and discover new knowledge from these data is by
querying them. In this paper, we study the evaluation of the
join operator on trajectory data. Given two sets of trajectory
data, M and R, our goal is to find, for each entity in M , its k
nearest neighbors from R.

Existing solutions for this query are designed for a single
machine. Due to the abundance and size of trajectory data, such
solutions are no longer adequate. We hence examine how this
query can be evaluated in cloud environments. This problem is
not trivial, due to the complexity of the trajectory structure, as
well as the fact that both the spatial and temporal dimensions
of the data have to be handled. To facilitate this operation, we
propose a parallel solution framework using MapReduce. We also
develop a novel bounding technique, which enables trajectories
to be pruned in parallel. Our approach can be used to parallelize
single-machine-based algorithms. We further study a variant of
the join operator, which allows query efficiency to be improved.
To evaluate the efficiency and the scalability of our approaches,
we have performed extensive experiments on large real and
synthetic datasets.

I. INTRODUCTION

In emerging systems that manage moving objects, a tremen-
dous amount of trajectory data is often produced. In a
location-based service (LBS), for instance, the positions of
mobile phone users or vehicles are constantly captured by
GPS receptors and mobile base stations [1], [2]. The location
information constitutes a trajectory, which depicts the move-
ment of an entity in the past. In natural habitat monitoring,
scientists obtain location information of wild animals by
attaching sensors to them. This movement history information,
or trajectory data, facilitates the understanding of the animals’
behaviours [3]. Figure 1(a) illustrates six trajectories, each of
which is constructed by connecting three recorded locations.

Due to the increasing needs of managing trajectory data,
the study of trajectory databases has recently attracted a lot
of research attention [3]. One of the fundamental queries
for this database is the join [4]–[6]. Given two sets M and
R of trajectory objects, a join operator returns entity sets
from M and R, that exhibit proximity in space and time.
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Fig. 1. Illustrating the k-NN join (k=2, [t2, t3]).

To illustrate this query, let us consider Figure 1(a), where
two sets of trajectory objects, namely M={m1,m2,m3} and
R={r1, r2, r3}, are shown. Each trajectory is constructed by
connecting the locations collected at time instants t1, t2 and
t3, where t1 < t2 < t3. For each trajectory, the small circle
represents the position recorded at t1. The result of joining
M and R is demonstrated in Figure 1(b). For each object
mi ∈ M , the two counterparts in R that are the nearest
neighbors of mi in [t2, t3] are returned. In this paper, we adapt
the k-nearest neighbor metric [5], [6], as the joining criterion
of M and R. That is, the k objects in R that have the shortest
distances from each object in M are returned, by adopting the
closest-point-of-approach [4]. In this example, within the time
interval [t2, t3], the 2-NN of m1 is r1 and r2.

The trajectory join query can be used in a wide range of
applications, including business analysis, military applications,
celestial body relationship analysis, search and rescue mission-
s, and computer gaming [6]–[8]. Let us consider two competi-
tor companies that provide flights in the same geographical
area. Let A and B be the sets of flight routes of these two
companies. By joining A and B, we can retrieve for each route
a ∈ A, the k routes in B that were the closest to a in a specific
time interval. These results could be further analyzed by the
company that manages A and help her to answer questions
like: Is there any plane in B that flew very close to A’s
flights and cause safety concerns? Is there any route of B that
resembles a, and charges a lower fare? In military applications,
consider the two sets C and D of trajectories for military
units (e.g., soldiers, vehicles and tanks) belonging to two rival
countries. By joining C and D, the k entities in D closest to
those of C can be evaluated. This is useful for the C’s army
to study the movement patterns of D, and study whether D is
performing inspection on C, or planning a military action.

Despite the usefulness of trajectory joins, evaluating them is
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not trivial. A simple solution is to evaluate a k-NN query for
every object in M . However, since a trajectory object describes
the movement of points in space and time, its data structure can
be complex and expensive to handle. The problem is worsened
when the sizes of the trajectory object sets to be joined are
large. To evaluate joins on large trajectory datasets efficiently,
researchers have previously studied fast algorithms and data
structures [4]–[6]. However, these approaches run trajectory
joins on a single machine only, whose computation, memory,
and disk capabilities are limited. As discussed before, extreme-
ly large trajectory data have become increasingly common.
Two trajectory datasets [1], [2], for instance, consist of over
one billion location values. For evaluating joins on these large
data, a single machine is no longer sufficient. In this paper,
we study efficient trajectory join algorithms in parallel and
distributed environments. We choose the MapReduce as the
platform for our study, since it provides decent scalability and
fault tolerance for very large data processing [9].

Designing trajectory join algorithms on MapReduce is tech-
nically challenging. This is because MapReduce is a shared-
nothing architecture. Existing single-machine solutions often
rely on an index (e.g., R-tree) built on top of the whole dataset
(e.g., [5], [6]). As discussed in [10], [11], constructing and
maintaining an index in MapReduce can be costly. In this pa-
per, we develop a solution framework that exploits the shared-
nothing architecture, without using an index. We first partition
the given trajectories of M and R into “sub-trajectories”,
which are distributed to different computation units. For each
partition of sub-trajectories, we develop a bounding technique
called the time-dependent bound (or TDB in short). The TDB
is a time-dependent circular region containing the (candidate)
objects in R, which can be the k nearest neighbors of objects
in M , in the same partition. Based on the TDB, we retrieve
R’s candidates, and join them with M ’s sub-trajectories. The
join results of the partitions are finally merged.

Our solution can easily adopt single-machine join algo-
rithms in its framework. In the paper, we will study how
our approach parallelizes the execution of two single-machine
solutions. Moreover, as we will discuss, the TDB is a function
of time, and it changes according to the positions of the objects
involved. While computing a TDB is not straightforward, we
show that it is possible to develop a theoretically efficient
algorithm to evaluate the TDB’s in different partitions in
parallel. The effort of developing TDB is justified by our
experiments, which show that TDB significantly reduces the
number of candidates to be examined.

We further propose two methods to optimize our join
algorithm. First, we enhance the load balancing aspect of our
solution, by distributing the trajectory objects to computing
units in a more uniform manner. Second, we study a variant
of the k-NN join, called (h, k)-NN join, which only returns
h objects in M , together with their k-NN in R, under some
monotonic aggregate function (e.g., min, max, sum or avg).
As we will explain, this represents the h sets of “most
important” k-NNs in the join of M and R. We propose
a pruning technique for (h, k)-NN join. As shown in our

experiments for real and synthetic data, our algorithm for the
(h, k)-NN join is much faster than its k-NN join counterpart.

The rest of this paper is organized as follows. In Section
II, we review the related work. Section III discusses the back-
ground of our solution. In Section IV we study the framework
of our solution. In Sections V and VI, we present the detailed
solution of the k-NN join. In Section VII, we present an
efficient algorithm to evaluate (h, k)-NN join. Section VIII
discusses the experimental results. We conclude in Section IX.

II. RELATED WORK

A substantial amount of research on nearest neighbor query
for trajectory objects has been performed. In [5], four types of
queries have been studied, using R-trees. Our studied query is
an extension of one of these four queries, i.e., given a trajectory
object and a time interval return the nearest neighbour during
this time. The continuous version of nearest neighbour queries
has also received significant research attention. In [12], the
nearest neighbor of every point on a line segment has been
investigated, while [13] studied concurrent continuous spatio-
temporal queries and [8] studied the k nearest and reverse k
nearest neighbor queries on trajectory objects. The difference
between our work and the above is that – for a given query
trajectory object – we wish to return k trajectory objects whose
distances to the query are minimal at some particular time
instances, while the above studies focus on returning the k
nearest neighbors at every time instance.

There are also many studies on join operation for trajectory
objects. In [4], an adaptive join algorithm is proposed for
closest-point-of-approach join, which is based on sweep line
algorithm [14]. Given two trajectory objects, their minimum
distance is defined to be achieved at their closest point. Also
in [6] a broad class of trajectory join operations are studied,
including trajectory distance join and k-NN join.

However, all these join algorithms are designed to be exe-
cuted on a single machine, and hence are inefficient on large
datasets. A natural way to extend them for handling large-scale
data is to use parallel computing on a cluster of machines.
There exist a few parallel computing paradigms including
MapReduce [9], Pregel, Spark and Shark [15]. Out of these,
MapReduce is one of the most widely used and performs best
for batch processing queries – such as joins – and we study
answering k-NN join queries using the MapReduce paradigm
here. As we will discuss, the naive way to extend single-
machine join algorithms for MapReduce is not scalable and
efficient enough for large-scale trajectory objects due to its
high computational cost.

Recently, many different kinds of join operations have
been studied using MapReduce. For example, in [16] the
set-similarity join is answered efficiently using MapReduce,
in [11] divide-and-conquer and branch-and-bound algorithms
are developed for answering top-k similar pairs using MapRe-
duce, and in [17] the multi-way theta-join query is studied
from a cost-effective perspective. In [18] efficient algorithms
for k-NN join are presented using MapReduce, but they mainly
returns approximate join results for sets of points, while our



k-NN join returns the exact result. [19] design an effective
mapping mechanism that exploits pruning rules for distance
filtering. However, since they do not deal with the temporal
dimension, it is not clear how they can be applied to the data
of trajectory objects.

III. PRELIMINARIES

In this section we formally introduce the data model,
problem definitions, single-machine solutions, the MapReduce
framework, and a basic parallel solution using MapReduce.

A. Data Model

For ease of presentation, we consider in the following
trajectory objects – or trajectories – in a d × d 2-D space.
Note, however, that our methods can easily be applied for
multi-dimensional space. Table I summarizes the symbols used
in this paper.

Definition 1: A trajectory tr of an object is a tu-
ple composed of the object’s id and a list of locations
(q(t1), q(t2), · · · , q(tl)). Each point q(t) is represented by a
triple (x, y, t), where x and y are the positions along x and y
coordinates, and t is the timestamp of this location.

We denote the timestamps of the first and last points of tr as
tr.s and tr.e respectively. We assume that the trajectory object
moves along the straight line segment q(ti)q(ti+1) between
any two consecutive points q(ti) and q(ti+1) with constant
speed, in line with previous work [4], [6].

To evaluate k-NN queries on such trajectories, we first
define the associated notions of distance between trajectories.

Definition 2: The minimum distance between a point p and
a line segment q(ti)q(ti+1), is defined as:

MinDist
(
p, q (ti) q (ti+1)

)
= min

q∈q(ti)q(ti+1)
|p, q|, (1)

where q is a point lying on the line segment q(ti)q(ti+1), and
|p, q| is the Euclidean distance between points p and q.

Without loss of generality, our algorithm can be easily
extended for other trajectory models [3] and distance measures
such as network distance, Manhattan distance, etc.
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Fig. 2. Examples of minimum and maximum distances

Definition 3: The minimum distance between a point p and
a trajectory tr with l points is defined as:

MinDist(p, tr) = min
16i6l−1

MinDist
(
p, tr.q (ti)tr.q (ti+1)

)
.

(2)
Similarly, we can define the maximum distance MaxDist

(p, q(ti)q(ti+1)) between a point p and a line segmen-
t q(ti)q(ti+1), and the maximum distance MaxDist(p, tr)
between a point p and a trajectory tr.

TABLE I
SUMMARY OF NOTATIONS

Notation Meaning
D a d× d data space
M(R) a set of trajectory objects
m(r) a trajectory object from M(R)

tr a trajectory
tr.id the id of the trajectory object whose trajectory is tr
tr.q(ti) a point of tr whose time instance is ti
tr.s, tr.e the start and end time instances of tr
l the total number of points in tr
T the number of temporal partitions
N the number of spatial partitions
H the number of trajectory groups after hashing
pi the central point of i-th spatial partition
TrMi trajectories in i-th grid generated by objects from M

CR
i a set of candidate trajectories from R for TrMi

GM
i a group of trajectories from M whose hash values are i

Example 1: In Figure 2(a), we can easily observe that
MinDist(p,q(t1)q(t2)) = |p, q(t′)|, MaxDist(p,q(t1)q(t2))
= |p, q(t2)|, MinDist(p,tr) = |p, q(t′)| and MaxDist(p,tr)
= |p, q(t4)|.

Now we have all the ingredients to define what nearest
neighbour means in the context of trajectories:

Definition 4: The minimum distance between two trajecto-
ries tri and trj is defined as:

MinDist(tri, trj) = min
t∈∆t
|tri.q(t)− trj .q(t)|, (3)

where ∆t = [tri.s, tri.e] ∩ [trj .s, trj .e].
In other words, the minimum distance between two trajecto-

ry objects is the minimum distance between their trajectories.
Usually, to compute the minimum distance between two
trajectory objects, we have to enumerate and compute the
minimum distance between each pair of line segments from
their trajectories, for the time intervals which intersect. Since
we assume that objects move along straight lines between
consecutive points, the distance between each pair of line
segments can be formulated as a function of time t [4], i.e.,
d(t)2=at2 + bt+c, where a, b and c are parameters dependent
on their velocities and initial positions. Thus their minimum
distance is the minimum value of this function during their in-
tersected time interval. Similarly, we can define the maximum
distance MaxDist(tr1, tr2) between two trajectories tr1, tr2.

Example 2: In Figure 2(b), we can easily observe that
MinDist(tr1, tr2) = |tr1.q(t2), tr2.q(t2)| and MaxDist(tr1,
tr2) = |tr1.q(t1), tr2.q(t1)|.

Definition 5: Given a trajectory object m and a set of
trajectory objects R, the k nearest neighbors of m are the
k objects from R, whose minimum distances with m are the
smallest.

Given a trajectory object m and the k minimum distances
dm1 , · · · , dmk to its k nearest neighbors, we can define any
monotonic aggregate function f (e.g., maximum, minimum,
sum or average of the k distance values [20]) on m. Without
loss of generality, in this paper we define f(m) as the



maximum value of these k distance values:

f(m) = max
1≤i≤k

dmi . (4)

B. Problem Definitions
We now formally define the problems studied in this paper,

i.e., k-NN and (h, k)-NN trajectory joins:
Problem 1: Given sets M and R of trajectories, an integer k

and a query time interval [ts, te], the k-NN join query returns
k nearest neighbors from R for each trajectory object in M
during the query interval.

Problem 2: Given sets M and R, two integers h, k, a
monotonic aggregation function f , and a time interval [ts, te],
the (h, k)-NN join query returns h objects of M , having the
smallest values of f on their k nearest neighbors.

A simple way to extend the methods in [18], [19] for our
k-NN join is to sample some points from trajectories and then
answer the join queries on these points using these algorithms
We call this approach Sampling-based approach. However,
this increases the time complexity significantly. For example,
consider two objects with their trajectories, each of which
has l points. To compute their minimum distance the time
complexity is O(l), since we only need to consider pairs of
line segments starting from the first points. But, if we sample
l points from each of them, we need to consider l × l pairs
of points and thus the time complexity is O(l2). Furthermore,
the answers may be wrong. Consider an extreme case where
the overall time intervals of M and R have no intersection.
If we perform k-NN join on them, the result is null. While
if we sample two sets of points from them respectively, and
then join them using spatial point join algorithms, we can find
erroneous k nearest neighbors of each object.

C. Single-machine Solutions
We now discuss two single-machine solutions for solving

k-NN joins, namely brute force (BF) and sweep line (SL).
Brute force: This basic method simply uses nested loops

to solve the join. It first selects all the sub-trajectories ap-
pearing in [ts, te]. Then it computes the minimum distance
between each pair of trajectory objects – one from M and
the other one comes from R – and selects the k nearest
neighbors for each object of M . This method is very costly,
as it potentially needs to process the entire Cartesian product
of the sets M and R.

Sweep line: The intuition behind this method is the
following: when computing the minimum distance between
two trajectory objects, their trajectories must overlap in some
time intervals. The sweep line method, e.g., [4], [14], sorts
the timestamps of all the points generated by objects from
R. For the trajectory of each object from M , it sweeps
along the temporal dimension and computes their minimum
distances using a dedicated data structure. As the sweep line
progresses, the minimum distances to all the objects from R
are computed. Finally, the k nearest neighbors are selected.
The main difference between BF and sweep SL is that, when
two trajectories do not have temporal intersection, SL will not
consider them as a potential pair.

D. MapReduce Framework

MapReduce [9] is a popular paradigm for processing large
data on share-nothing distributed clusters. It consists of t-
wo functions map and reduce. The map function takes
a key-value pair and outputs a list of key-value pairs, i.e.,
map(k1, v1)→ list(k2, v2). The reduce function takes a list
of records with the same key as input and outputs a list of
key-value pairs, i.e., reduce(k2, list(v2)) → list(k3, v3). In
a MapReduce job, when all the map functions have finished,
all the intermediate results are grouped and shuffled to the
reduce functions. By default, each map task processes a split
of data with the size equal to the block size of its distributed
file system, HDFS. In a MapReduce job, the number of map
tasks equals to the number of splits, while number of reduce
tasks can be set by the users.

E. A Basic Parallel Solution Using MapReduce (BL)

We now introduce a basic parallel solution of k-NN join
using MapReduce, i.e., BL, which has two MapReduce jobs.
In the first job, it divides objects in M and R into a list of
disjoint subsets randomly in the map(), and then joins each
pair of subsets using a single-machine solution – e.g., BF or
SL – in the reduce(). Since the k nearest neighbors of an
object may be in several subsets of R, a second job where
the k nearest neighbors are selected, from the results of the
first MapReduce job. The main drawback of BL is its high
computational cost, since each pair of trajectories from M
and R needs to be enumerated.

IV. SOLUTION FRAMEWORK

To overcome the drawback of BL, we propose a new
solution framework, which allows pruning of trajectories dur-
ing the querying process. It consists of two phases, namely
preprocessing phase and query phase. The preprocessing
phase needs to be conducted for only once, while the query
phase is invoked once a k-NN join query arrives. Figure 3
illustrates its workflow.

In the preprocessing phase, we partition trajectories in space
using equal-sized grids. In the query phase, we propose a four
stage approach to answer a join query:

1) Sub-trajectory generation. In this stage, we find all
the sub-trajectories appearing in [ts, te]. Then we collect
relevant statistics from each spatial partition. We also
select trajectories, which serve as anchor trajectories, if
this partition of trajectories is generated by objects from
R. We denote the set of sub-trajectories generated by
objects from M(R), in the i(j)-th grid, as TrMi (TrRj ).

2) Computing bounds. In this stage, we compute the time-
dependent upper bound (TDB) of TrMi using the collect-
ed statistics and the anchor trajectories.

3) Finding candidates. For each partition TrMi , we use its
TDB to find a set, CR

i , of candidate trajectories generated
by objects from R. The candidate trajectories are sets
of trajectories – ideally, minimal in size – which must
contain all the k nearest neighbors of objects in M which
cross the i-th spatial grid.
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4) Trajectory join. For each partition TrMi , we join it with
CR

i using a single-machine algorithm, (e.g., BF or SL).
We denote the above approach as GN. Even though GN

achieves greater efficiency by using TDB, it may not able
to achieve good load balance, due to the skewness of the
distribution of the locations of the trajectory objects. By using
uniform partitioning of the space, we may encounter grids
which contain many objects while others contain very few
objects. To achieve good load balance in the query phase, we
improve the load balance of GN under the same framework,
by using a load balance strategy, which redistributes all
the objects using some hash functions. We denote this new
approach as GL.

The preprocessing phase and each stage of the query phase
are computed using a MapReduce job, in a sequential work-
flow. The purpose of the map() and reduce() for each
stage is summarized in Table II. We discuss the preprocessing
in Section V. We detail the stages of GN and explain how GL
improves the load balance in Section VI.

TABLE II
DETAILS OF EACH MAPREDUCE JOB

Phase/Stage Function Main work

Preprocessing
Map conduct temporal partition

Reduce conduct spatial partition

Stage 1
Map generate sub-trajectories

Reduce collect statistics and anchor trajectories

Stage 2
Map compute MaxDist(pi, achTr)

Reduce compute the TDB, i.e, ui(t), of TrMi

Stage 3
Map find candidates of TrMi

Reduce collect the candidates of TrMi

Stage 4
Map trajectory join

Reduce select k nearest neighbors for each object

V. THE PREPROCESSING PHASE

The preprocessing phase is mainly used to partition the data,
both temporally and spatially. Since the length of the query
time interval is usually less than the time interval of the entire
data, we propose to partition the trajectories using equal-length
time intervals. Spatially, the trajectories are partitioned using
equal-sized grids. Note that we only need to conduct temporal
partition for BL, since it does not use grid.

1. Temporal partition. Suppose the overall time domain of
the dataset is [Ts, Te] and the number of intervals is T , then
we define a list of intervals as: [Ts, Ts + ∆t], [Ts + ∆t, Ts +
2∆t], · · · , [Te–(T–1) · ∆t, Te], where ∆t=(Te–Ts)/T . Each
trajectory is then split into a list of sub-trajectories according
to these time intervals.

2. Spatial partition. Suppose the number of spatial parti-
tions is N , then the size of each grid is (d/

√
N)×(d/

√
N). To

partition a trajectory tr, we first compute its intersection points
with the grids, and then insert them into tr, if they are not
already points of tr. Finally, tr is partitioned into a group of
sub-trajectories, each of which is in its corresponding grid. To
facilitate the following queries, for each sub-trajectory subTr,
we assign it a key “M pi.x pi.y”, if it is generated by an
object from M ; otherwise we assign it a key “R pi.x pi.y”,
where pi is the central point of the grid containing subTr.

We pre-process the trajectories using a MapReduce job,
where the temporal and spatial partitions are performed in the
map() and reduce() respectively. Due to space reasons,
the detailed implementation is presented in the Appendix. In
the output of this MapReduce job, we generate trajectories and
output them into the same file if they occur in the same time in-
terval. Hence, we obtain T files f1, f2, · · · , fT , where the time
intervals of trajectories in fi are in [Ts+i·∆t, Ts+(i+1)·∆t].
The time and space complexities of map() are O(l + T ),
since a trajectory is split into at most T sub-trajectories.
Both the time and space complexities of reduce() are
O((|M |+ |R|)(l +N)).
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Fig. 4. Examples of preprocessing

Example 3: In Figures 4(a) and 4(b), the solid points rep-
resent the original points and the hollow points represent the
inserted points. Let us take tr1 from Figure 4(a) as an example.
Since q2 and q3 are in two consecutive intervals, a new point
q′ is inserted. Finally, this trajectory is split into two sub-
trajectories, where the first one contains the first 3 points while
the second one contains the last 2 points. Similarly, in Figure
4(b), the trajectories are partitioned using the grids.

VI. THE QUERY PHASE

In this section, we present details of the four MapReduce
stages: sub-trajectory generation, computing TDB, finding the
candidate trajectories, and the final trajectory join.

A. Sub-trajectory Generation

When a join query is asked, we first need to locate the files
relevant for the join operation and then launch a MapReduce
job with these files as an input. In the mapper we retrieve all
the sub-trajectories which intersect with [ts, te]. In the reducer,
we collect some statistics and select anchor trajectories, which
are used for computing the TDB for each partition.

We first discuss the sub-trajectory generation stage of GN
in Algorithm 1, and then discuss the needed modifications for
GL. We first locate files fc,fc+1, · · · , fc′ (line 2), which have
time intervals overlapping with [ts, te], where c=bts/∆tc and
c′=dte/∆te.

Map. The input of map() is a pair (k1, v1), where v1

is a trajectory and k1 is its key, i.e., “M pi.x pi.y” or



“R pj .x pj .y”. We extract the sub-trajectory which appears
in [ts, te] (line 4), and output it (line 5).

Reduce. We first parse the set label L, which can be either
M or R from k2 (line 7). Then we collect some statistic
information and anchor trajectories (line 8-11). We next detail
how the statistics and anchor trajectories are collected.

Algorithm 1 Stage 1: Sub-trajectory generation
1: procedure MAP-SETUP(ts , te)
2: locate files fc, fc+1, · · · , fc′ ;
3: procedure MAP(k1 , v1)
4: subTr ← v1.subTraj(ts, te);
5: k2 ← k1; v2 ← subTr; OUTPUT(k2 , v2);
6: procedure REDUCE(k2 , v2)
7: parse the set label L from k2; TrLi ← v2;
8: compute sT (TrLi ), eT (TrLi ), maxU(TrLi );
9: if L = “R” then

10: achList← SELECTANCHOR(TrLi , sT (TrRi ), k);
11: output maxU(TrLi ), sT (TrLi ), eT (TrLi ), achList, TrLi ;

In terms of statistics collected, we first collect the minimum
start time and maximum end time of all the trajectories in TrLi ,
as shown in Equation (5). Moreover, for all the trajectories,
we compute their maximum distances to the central point pi,
and collect their maximum value, as shown in Equation (6).

sT (TrLi ) = min
tr∈TrLi

tr.s, eT (TrLi ) = max
tr∈TrLi

tr.e (5)

maxU(TrLi ) = max
tr∈TrLi

MaxDist(pi, tr) (6)

To facilitate our computations, we now introduce a new
data structure, namely spatiotemporal-unit (abbreviated as st-
unit). A st-unit is a triple (dist, startT , endT ), where dist
is a distance value, startT and endT are the start and end
time of a time interval [startT, endT ]. For each partition TrLi ,
we can form a st-unit u=(maxU(TrLi ), sT (TrLi ), eT (TrLi )),
where maxU(TrLi ) bounds the maximum distances from pi
to all the trajectories during this time interval.

In addition, if L is R, we need to collect some anchor
trajectories from TrRj (line 9-10). For any time instance, if
there are more than k trajectory objects in the grid of this
partition, then we only collect k anchor trajectories; otherwise,
all of them are collected. Even though any k trajectories can
be selected as anchor trajectories, we found it is better to
select trajectories which are closest to the central points of the
grids. We propose a heuristic algorithm to select the anchor
trajectories. We discuss the details in the Appendix.

Example 4: Figure 5 gives an example of computing
maxU(TrMi ) of TrMi , which contains 2 trajectories. Figure 6
gives an example of 6 trajectories in TrRj (k=2). For each
trajectory tr, we form a st-unit (MaxDist(pj , tr), tr.s, tr.e).
We can observe that at any time instance, there are at least 2
trajectory objects in the j-th grid. We collect the trajectories
which correspond to the wide lines in the figure as anchor
trajectories.

GL. To balance the workload for the subsequent jobs in
the workflow, we use a hash function to redistribute all the
objects in M and R each into H disjoin groups, where H
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can be set as the integer multiple of the maximum number of
parallel map tasks running in a cluster. The details of setting
H are discussed in the Appendix In general, any hash function
(e.g., [21]) which can partition objects into groups that keep
the same distribution of objects as the overall distribution can
be adopted here. In our experiments, since the identifiers of
trajectory objects in the dataset are uniformly distributed, we
simply hash the objects according to their identifiers, i.e., the
hash function is a simple modulo function hash(tr)=tr.id%H .
After hashing, each group has the same expected number of
objects. We denote the trajectories of objects from M (R) in
the i(j)-th group as GM

i (GR
j ).

In the sub-trajectory generation stage of GL, all the steps
are the same with Algorithm 1, except we need to redistribute
the trajectories using the hash function in the reduce().
Specifically, we hash each tr ∈ TrLi and assign it a key,
which is a combination of its set label L and hash value
hash(tr). In the output of this MapReduce job, we output
trajectories according to their keys, hence obtaining 2×H
files, corresponding to GM

1 , · · · , GM
H , G

R
1 , · · · , GR

H . Note that
in each file, trajectories from a same reduce() are collected
together and stored in a single line.

The time and space complexities of map() are O(log l) and
O(l) respectively, since we can use binary search to find the
sub-trajectory. The computation of sT (TrLi ), eT (TrLi ) and
maxU(TrLi ) can be performed linearly by scanning all the
trajectories. The time complexity of finding anchor trajectories
is O(|TrLi |2l), since we need to find one from TrRj each time.
Thus, the overall time and space complexities of reduce() are
O(|TrLi |2l) and O(|TrLi |l) respectively.

B. Computing TDB

We first introduce the intuitions behind the time-dependent
bound, which is the most important part for the efficiency of
the algorithms. For objects whose sub-trajectories are in TrMi ,
we want to compute an upper bound on the area containing
all their k nearest neighbors. However, since the objects may
move arbitrarily, the area containing their k nearest neighbors
may be large in some time intervals, and small in other time
intervals. So it is nontrivial to compute a tight upper bound
which holds in all time intervals.

Example 5: Figure 7 gives an example (k=2). The hollow
points denote the objects from M and the solid points denote
the objects from R. Let us consider the upper bound of the
central grid partition. At time instance t in Figure 7(a), the k
nearest neighbors of objects, i.e., m1 and m2, in this partition
are in a small area. But at another time instance t′ in Figure
7(b), the k nearest neighbors of objects, i.e., m1 and m3, in



this partition are in a large area.
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Fig. 7. The upper bound changes with time

To alleviate this issue, we propose to compute a TDB for
each partition TrMi , which has the property that its value
varies with time. For any object at t, with sub-trajectory
tr ∈ TrMi (t ∈ [trs, tre]), the distances to its k nearest
neighbors must be less than this bound. To compute the TDB
of TrMi , we first compute the upper bound distance of the
central point of the i-th grid, hereafter denoted as pi, to its
k nearest neighbors from R. It is easy to see that this also
constitutes a TDB. Then, since the grid of TrMi bounds the
area containing all the objects whose sub-trajectories are in
TrMi , we can compute the TDB of TrMi by considering the
TDB of pi and the area of this grid.

For a given time instance, in order to compute the upper
bound distances from pi to its k nearest neighbors, we can
use spatial indexes for fast access, e.g., R-trees. As discussed
before, however, is is difficult to maintain such indexes using
MapReduce [10], [11], which is a share-nothing framework.
Another way is to enumerate all the distances between pi and
all the objects in R, and then compute a bound. However, the
computational cost is very high, since |R| can be very large.

To address these problems, we propose to choose only k
trajectories for each time instance from each partition TrRj ,
called anchor trajectories. Then we can compute the TDB of
pi using these anchor trajectories. In summary, the steps of
computing the TDB of TrMi are as follows.

1) We first compute TDB of pi, i.e., vi(t), by using the
maximum distances from pi to all the anchor trajectories.

2) We compute the TDB of TrMi by using the TDB of pi
and maxU(TrMi ).

In the corresponding MapReduce job, the map() computes
the maximum distance from each anchor trajectory to each
central point of the partitions, and the reduce() computes
the TDB of TrMi based on the maximum distances. Algorith-
m 2 gives the details of computing TDB of GN and GL.

Map. The input of map() is an anchor trajectory achTr.
For each partition TrMi , we first find achTr’s sub-trajectory
in [sT (TrMi ), eT (TrMi )] (line 4-5). Then we compute its
maximum distance to pi (line 6), and output a pair, where
the key is “M pi.x pi.y” and the value is a st-unit (line 7-8).

Reduce. After shuffling, st-units with the same key are sent
to the same reduce(). We first compute the TDB of pi
using these st-units (line 11), resulting in a list of st-units
sorted chronologically. Then we compute the TDB of TrMi
(line 12-13). To reduce the number of st-units in the TDB,
we merge consecutive st-units if the lengths of their time
intervals are too small (line 14). Specifically, we check each

st-unit u, and if |u.endT -u.startT |≤ α, where α is a small
predefined parameter, then we merge it with its next st-unit u′.
We update u=(max(u.dist, u′.dist),u.startT ,u′.endT ) and
delete u′ from the list. This process is iterated until the length
of time interval of each st-unit is larger than α.

Algorithm 2 Stage 2: Computing TDB
1: procedure MAP(k1 , v1)
2: achTr ← v1, start← 0, end←∞;
3: for i←1 to N do
4: [start, end]← [achTr.s, achTr.e] ∩ [sT (TrMi ), eT (TrMi )];
5: subTr ← achTr.subTraj(start, end);
6: maxDist← MAXDIST(subTr, pi);
7: k2←M pi.x pi.y, v2← (maxDist, start, end);
8: OUTPUT(k2, v2);
9: procedure REDUCE(k2 , v2)

10: pi ← k2, unitList← v2;
11: boundList← COMPTDB(unitList, k);
12: for each unit ∈ boundList do
13: unit.dist← unit.dist + maxU(TrMi );
14: boundList← COMBINE(boundList, α);
15: k3 ← k2, v3 ← boundList;
16: OUTPUT(k3 , v3);

Given a list of st-units, we now discuss the intuition to com-
pute vi(t). For any time instance t ∈ [sT (TrMi ), eT (TrMi )],
we first locate the st-units, whose time intervals contain t,
and then rank these st-units based on their dist values in
ascending order. Then we select k st-units, whose dist values
are minimal. Since these k st-units correspond to k objects
from R, the maximum value of these k dist values is thus an
upper bound of pi at t. To make this process more efficient,
we propose an efficient algorithm for computing vi(t) by
dynamically maintaining a balanced binary tree [22], which
is detailed in the Appendix.

Figure 8 gives an example (k=2) of computing vi(t). We can
observe that for any time instance t ∈ [sT (TrMi ), eT (TrMi )],
there are at least 3 st-units whose time intervals contain t.
Then, our goal is to output some st-units as the TDB, which
correspond to the border lines as shown in the figure. It is
easy to observe that, given a time instance t, if there are many
anchor trajectories close to pi, then its upper bound distance
tends to be small.

Since the TDB of pi is represented by a list of st-units, it
can also be rewritten as a piecewise function as follows:

vi(t) =


di,1,

di,2,

· · · ,
di,B ,

t ∈ [sT (TrMi ), ti,2)

t ∈ [ti,2, ti,3)

t ∈ [· · · , · · · )
t ∈ [ti,B , eT (TrMi )]

(7)

where B is the number of st-units, di,b is the upper bound
distance, a constant value, when t ∈ [ti,b, ti,(b+1))(1 ≤ b ≤
B). We call the time instances sT (TrMi ), ti,2, · · · , eT (TrMi )
breakpoints.

Lemma 1: Given a partition of trajectories TrMi and the
TDB of the central point pi, vi(t), the TDB for all objects
having sub-trajectories in TrMi , to their k nearest neighbors
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from R at time instance t is

ui(t) = maxU(TrMi ) + vi(t), t ∈ [sT (TrMi ), eT (TrMi )].
(8)

Proof: (Sketch) Figure 9 illustrates the geometric intu-
ition. We compute ui(t) by linking maxU(TrMi ) with vi(t)
using triangle inequality. The details are in the Appendix.

Since vi(t) is a piece-wise function, ui(t) is also a piece-
wise function, whose value changes with time. We denote the
maximum and minimum values of ui(t) as max(ui(t)) and
min(ui(t)) respectively.

The time and space complexities of map() are O(Nl) and
O(l) respectively, since we need to enumerate all the central
points and anchor trajectories, which can consist of the entirety
of R in worst case. The operations on the balanced binary
tree including insert, delete and query can be completed in
O(log |R|) and combing st-units can be completed linearly
without extra space cost. Thus, the time and space complexi-
ties of reduce() are O(|R|log|R|) and O(|R|) respectively.

C. Finding Candidates

We now study how to find a set of candidate trajectories for
join, CR

i , for each partition TrMi , i.e., to list all trajectories
which may be in the k-NN of trajectories of M crossing TrMi .
Given two partitions TrRj and TrMi , we check whether the
trajectories of TrRj are the candidates of TrRi in two sequential
steps: partition check and trajectory check.
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Fig. 10. Join candidate cases
Partition check. Given two trajectory partitions, TrMi and
TrRj , we need to check whether the whole set of trajectories
in TrRj is the candidate of Tri, by checking three cases:

1) none of the them are join candidates of TrMi ,
2) all of them are join candidates of TrMi , and
3) a part of them are join candidates of TrMi .
Lemma 2: Given two partitions TrMi and TrRj , if

maxU(TrMi ) +max(ui(t)) 6 |pi, pj | −maxU(TrRj ), (9)

then all the trajectories in TrRj belong to case 1, else if

maxU(TrMi ) +min(ui(t)) > |pi, pj |+maxU(TrRj ), (10)

then all trajectories in TrRj belong to case 2. Otherwise, the
trajectories belong to case 3.

Proof: (Sketch) In Figure 10, the cases between TrRj with
TrMx , TrMy and TrMz are case 1, 2 and 3 respectively. We can
prove each case using triangle inequality in the Appendix.

We use the above lemma to check cases 1 and 2 first. If
none of them holds, we need to perform individual trajectory
check as follows.
Trajectory check. To explain the trajectory check, we first
introduce two supporting lemmas.

Lemma 3: Given a partition TrMi and a trajectory object
r ∈ R whose trajectory is tr, the lower bound distance from
r to objects which cross the partition TrMi is:

wi(tr) = max{0,MinDist(pi, tr)−maxU(TrMi )}. (11)

Proof: (Sketch) We consider the minimum distance be-
tween r and an arbitrary object crossing TrMi , and then claim
it is larger than wi(tr). The details are in the Appendix.

Lemma 4: Given a partition TrMi and its TDB ui(t), for
any trajectory object r ∈ R, whose sub-trajectory tr appears
in [ti,b, ti,(b+1)), where ti,b and ti,(b+1) are two consecutive
breakpoints of ui(t), if the wi(tr) < ui(t), then tr is among
the candidates of TrMi .

The lemma follows directly from the bound in Lemma 3.
In the trajectory check step, we check each trajectory in

TrRj , and perform the following steps. We first collect all
the breakpoints ti,1, ti,2, · · · , ti,B of ui(t). Then, for each
trajectory of TrRj , we split it into a list of sub-trajectories
according to the breakpoints, each of which appears in one
time interval [ti,b,ti,(b+1)](1 ≤ b ≤ B). For each sub-trajectory
tr, we compute its lower bound distance to objects of TrMi ,
i.e., wi(tr), using Lemma 3. Finally, by using Lemma 4, we
can easily check whether it is a candidate of TrMi .

We now detail the corresponding MapReduce job of GN,
and then discuss the needed modifications for GL. The detailed
corresponding pseudocode listings of GN are in the Appendix.

Map. The map() takes a partition of trajectories TrRj as
input. It enumerates each partition TrMi , and checks which
case they belong to. If they belong to case 2, then all the
trajectories of TrRj are candidates of TrMi . Otherwise, for case
3, we split each trajectory of TrRj into a list sub-trajectories
according to the breakpoints of ui(t), and then check them
one by one using Lemma 4.

Reduce. In the reduce(), we simply output the candi-
dates of TrMi , i.e., CR

i .
The output of this MapReduce job is a list of files containing

trajectories, one for each key (partition), for a total of N files.
GL. Each map task handles a single group GR

j , in which
each map() handles a subset Tr of trajectories from GR

j ,
belonging to the same spatial partition. The MapReduce im-
plementation principle is the same as that for GN, except the
input of map() is Tr. Since different groups have the same
expected size, GL achieves better load balance than GN.

We denote the input of map() as Tr, i.e., TrRj or a subset
of GR

j . In the map(), we first need to enumerate all the
partitions and check the cases. If none holds, we need to



consider trajectories one by one. Thus, the overall time and
space complexities of map() are O(|Tr|Nl) and O(|Tr|l)
respectively. Since we only need to output the input directly,
the time and space complexities of reduce() are O(1) and
O(|CR

i |l) respectively.

D. Trajectory Join

Since we have found the set, CR
i , of candidates for each

partition TrMi , we join it with CR
i and then output the k

nearest neighbors of each object crossing TrMi . But the result
is incomplete since an object may cross several grids. So for
each object, we need to reselect k nearest neighbors finally.

We now detail the corresponding MapReduce job of GN,
and then discuss the needed modifications for GL. The detailed
pseudocode listings of GN are presented in the Appendix.

Map. The input of map() is a partition TrMi . It joins TrMi
with the set CR

i of corresponding generated candidates, using
a single-machine algorithm. In this paper, we use BF or SL
as discussed before, but any other single-machine trajectory
join algorithms can be incorporated. Finally, we output a list
of pairs, where the key is the object id and the value is a list
of its k nearest neighbors with their minimum distances.

Reduce. The input of reduce() is an object with its
k nearest neighbors computed from different partitions. We
output k objects whose minimum distances are the smallest.

GL. The principle and implementation of GL is the same
as in the finding candidates stage, i.e., each map() handles a
subset of trajectories from GM

i .
We denote the input of map() as Tr, i.e., TrMi or a subset

of GM
i . Since we need to enumerate each pair of trajectories

without extra space cost, the time and space complexities of
map() are O(|Tr||CR

i |l). The time and space complexities
of reduce() are O(kN), since an object may go across at
most N grids.

VII. THE (h, k)-NN JOIN ALGORITHM

In this section, we study a variant of the k-NN join, the
(h, k)-NN join and the needed adaptations to our framework.

A. Main Intuition

In the (h, k)-NN join, we wish to return h objects of
M , having the smallest values of the function f on their
their k nearest neighbors from R. We call these h objects
target objects. We assume, without loss of generality that the
aggregate function is max, i.e., Equation (4).

We propose to compute a new time-dependent upper bound,
which is tighter than that of k-NN join. Recall that Equa-
tion (8) gives the TDB of TrMi , which bounds the minimum
distance for all the objects, crossing partition TrMi , to their
k nearest neighbors. In this equation, the left summand is
maxU(TrMi ) and the right summand is vi(t). Now since we
only need to return h objects from M , the intuition is to try
to make maxU(TrMi ) smaller, so that the upper bound will
be tighter and thus we achieve higher efficiency in pruning.
Figure 11 shows the geometrical intuition.

To adapt the framework of k-NN join for the (h, k)-NN
join, we need to perform the following adaptations. In the

sub-trajectory generation stage, for all trajectory objects whose
trajectories are in TrMi , we select h nearest objects to pi. In the
computing TDB stage, we use the computed statistics on these
h objects from each partition to derive a new TDB. Note that
the new TDB only ensures that we can find h target objects
with their k nearest neighbors, but it cannot ensure that we can
return the k nearest neighbors of every object of M correctly.
The finding candidates and trajectory join stages are the same
with that of k-NN join. Finally, we select and output h target
objects with their k nearest neighbors. The size of the results
returned by a (h, k)-NN join query is h× k, which is smaller
than that of a k-NN join query, i.e., |M | × k.
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B. Implementation

Sub-trajectory generation. The map() is the same with that
of k-NN join. The first steps of reduce() are the same
with that of k-NN join. Then, if a partition of trajectories
is generated by objects from M , i.e., TrMi , we compute
MinDist(tr, pi) for each tr ∈ TrMi , and select h objects
whose minimum distances are the smallest. For each of them,
we form a triple (id, dist, time), where id is its identifier,
time is the time instance when the minimum distance dist is
achieved. Finally, we output these h triples.
Computing TDB. The map() is the same with that of k-
NN join. In the reduce(), we first compute the TDB of pi,
i.e., vi(t), as that in k-NN join. By using triangle inequality,
we can easily conclude that the distance from the object
whose identifier is id to its k nearest neighbors is at most
dist+vi(time). Thus, for each triple (id, dist, time) collected
in previous stage, we update its dist value to dist+vi(time).
Finally, we output a list of h updated triples in the reduce().
Figure 12 gives an example, where vi(t) is a piece-wise
function, and the collected triples are represented by black
points at t1 and t2.

We collect the output triples of this MapReduce job and
select h triples with different ids, having minimal dist values.
We denote these h triples as tp1, tp2, · · · , tph. Then the
minimum distance from h target objects to their k nearest
neighbors is bounded by max

1≤j≤h
tpj .dist. Hence, the TDB of

each partition TrMi is:

ui(t) = max
1≤j≤h

tpj .dist, t ∈ [sT (TrMi ), eT (TrMi )]. (12)

In the k-NN join case, the maximum distances from all
the objects to the central points are used for computing TDB.
While in the (h, k)-NN join case, it only uses the minimum
distances of h objects from each partition.
Finding candidates and trajectory join. The map() and
reduce() are the same with that of k-NN join.



Finally, for each object of M , we compute the value of the
aggregate function on the distances to its k nearest neighbors.
Then we output h objects – which have the h smallest values
of the aggregate function – with their k nearest neighbors.
The time and space complexities of map() and reduce()
in each stage are the same with that of k-NN join.

VIII. RESULTS

We now present the experiment setting, results on k-NN
joins and (h, k)-NN joins in the following three sections.

A. Setup

Cluster: We perform experiments on a MapReduce clus-
ter consisting of a master node and 60 slave nodes. Each node
has a quad-core Intel i7-3770 3.40GHz processor, 16GB of
memory, and 1TB of hard disk. All the nodes are connected via
Gigabit Ethernet, and each node has Hadoop-2.2.0 installed.
To run our experiments, we used the following Hadoop con-
figuration: 1) the block size of the distributed file system is
128MB, 2) the replication factor is 3, and 3) each node is
configured to run 4 map and 4 reduce tasks. By default, we
use 60 slave nodes, and the number of reduce tasks in each
MapReduce job is set as 60× 4× 0.95=2281.

Data: We conduct our experiments on both synthetic and
real datasets. To generate the synthetic data, we use the well-
known GTSD data simulator [23]. All the objects are initially
distributed within a 104× 104 2D domain, and their positions
in x and y dimensions follow a Gaussian distribution with
parameters N (5000, 40002). The average speed is 30 units
per minute and the average time between two consecutive
points is 1 minute. Two synthetic datasets i.e., DS1 and DS2,
are generated, each of which has two sets i.e., M and R, of
trajectory objects. In DS1, each set has 104 objects and their
positions are monitored for 25 hours in total. In DS2, each
set has 106 objects, each of which is monitored for 10 hours
in total. The total numbers of points in DS1 and DS2 are 30
million and 1.2 billion respectively.

For real data, we use Beijing taxi data [1], which contains
the trajectories of 10,357 taxis in the Beijing metropolitan area.
Their locations were monitored for a week by on-board GPS
devices. After throwing away points that are not in Beijing
city, it consists of 12.4 million total coordinate points. The
average number of points collected from each taxi is 1,260.
The trajectory of each taxi is split into a list of sub-trajectories,
so that time interval of each pair of consecutive points is less
than 10 minutes. We conduct self-join on the entire dataset,
i.e., the sets M and R are the same.

B. Results for k-NN Joins

We first evaluate the sampling-based approach discussed in
Section III. Then, we evaluate the algorithms’ performance by
varying different parameters: N , k, tq=te–ts, i.e., the length of
query time interval, on DS1 and Beijing taxi data. We evaluate
the effect of the number of nodes on the DS1 and Beijing
datasets. We also evaluate the scalability of the algorithms by

1http://wiki.apache.org/hadoop/HowManyMapsAndReduces/

TABLE III
DEFAULT PARAMETER SETTINGS

Dataset Default parameters
DS1 T=10, N=400, H=240, α=1 minute, k=10, tq=6 hours
DS2 T=10, N=400, H=240, α=1 minute, k=10, tq=2 hours

Beijing taxi T=10, N=400, H=240, α=3 minute, k=10, tq=1 day

varying the sizes of M and R on DS2. The default parameter
settings are shown in Table III. For the purpose of reducing
the number of st-units in the TDB, we simply set the value
of α on each dataset as the average time between any two
consecutive points. The start time ts of the query time interval
is chosen randomly. By default, we use SL as the single-
machine trajectory join algorithm.

1. Sampling-based approach. We evaluate the quality of
k-NN join result returned by the sampling-based approach
discussed in Section III. We randomly choose two subsets of
trajectories from Beijing taxi data, each of which has 1,000
taxis. We join them using the sampling-based approach. Then
for each object, we use the k nearest neighbors returned by
SL as the ground truth, and compute the precision and recall
of the results returned by the sampling-based approach. Our
results show that the average precision and recall values are
0.15 and 0.16 respectively. This shows that the quality of the
results returned via sampling is quite poor, mainly because this
algorithm overlooks the temporal dimension of the trajectories.

2. Effect of N . Figure 13 shows how the running time
of the algorithms is influenced by the value of N . We also
illustrate the breakdown of the running time in each of the
four stages. When the value of N increases, the data space
is split into more, smaller, grids. Since computing the TDB
of a partition is based on the information collected from its
nearby partitions, more partitions result in a tighter TDB,
which increases pruning power and increases the efficiency.
But on the other hand, more partitions increase the number
of inserted points lying on the borders of grids, and hence
it may create more sub-trajectories. Also, the time cost of
computing TDB increases as the value of N increases, since
we need to deal with more partitions. Let us take N=1,225 in
Figure 14(a) as an example. The running time of computing
TDB accounts for 22% of the overall running time. The reason
is that, when N=1,225, each grid contains less than 9 objects
on average, since |R|=104. All of them are selected as anchor
trajectories since k=10. This demonstrates that the time cost
of computing TDB is very large if we use all the trajectories
from R to compute the TDB, as discussed in Section IV.

Therefore, the overall time cost becomes larger when N
is either very small or very large. On balance, in our experi-
ments, the overall time of these algorithms is minimized when
N=400 on each dataset. Hence, we set N=400 in subsequent
experiments. Among all the 4 stages, the trajectory join stage
running time still takes the largest proportion of the time cost,
while the sub-trajectory generation and candidate generation
stage take a small proportion of the running time.

In addition, we compare the efficiency of BF and SL single-
machine algorithms, when used in combination with GL. We
denote these 2 algorithms as GL-BF and GL-SL respectively.
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Fig. 13. Effect of the number of spatial partitions

The running time of the trajectory join stage with different
values of N is shown in Figure 14. We can observe that GL-
SL is consistently more efficient than GL-BF, which indicates
that SL is a better choice for our framework.
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Fig. 14. Comparison between BF and SL

3. Effect of k. We now investigate how the value of
k affects the performance of the k-NN join, in Figure 15.
When the value k increases, the running time and shuffling
cost of each algorithm increases, because it has to spend
more effort on querying more nearest neighbors. BL performs
consistently slower than GN and GL, which indicates that our
proposed TDB indeed reduces significantly the computational
cost. Moreover, GN performs consistently slower than SL. The
reason is that – after partitioning the trajectories using grids –
some grids contain many trajectories while other grids contain
few trajectories. In GN, since we join each partition with its
candidates in parallel, the running time of different partitions
may vary greatly, hence increasing the overall running time.
In GL, the redistribution of objects into groups according to
the hash function allows to have a better balance and thus an
optimized running time. The results show that GL performs
at least twice faster than GN. For example, on the Beijing
dataset, we found that uniform partitioning – on GN – leaves
some grids having taxis thousands of times larger than others,
while GL achieves better load balance using the hash function.

We observed that the shuffling cost of GN and GL is larger
than that of BL, and that the largest proportion in this cost
is the computation of the TDB. In this stage, for each anchor
trajectory, GN and GL need to transmit the maximum distances
to all the central points. When data becomes larger, however,
the number of such anchor trajectories is a small proportion of
the trajectories generated by objects in R, since k is usually
much smaller than |R|. Hence, the shuffling cost scales quite
well, as we will show later in the scalability experiment.

4. Effect of tq . Figure 16 shows the performance of queries
with different tq . A noticeable effect is the linear dependence
of the running time on tq , as an increase in tq usually involves
more points on the trajectory to process. These results are
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Fig. 15. Effect of k

similar to what we have observed in the case of varying k,
i.e., GL performs consistently faster than BL and GN and that
the TDB pruning and load balancing are highly effective.
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Fig. 16. Effect of the length of query time interval

5. Effect of number of nodes. Figure 17 shows the
performance of queries with various numbers of computing
nodes. As can be observed, the trend is similar on DS1 and
Beijing dataset. The running time decreases as the number of
nodes increases. Comparing the running time on only 1 slave –
equivalent to a single-machine execution – is 22 times slower
than the running time on 60 machines. This happens because
the number of reduce tasks which run in parallel increases with
the number of slave nodes, increasing the computing power.
Even on a single machine, we can also see that the running
time of GN and GL is still smaller than BL. This shows that
our proposed bound is very effective also for pruning on a
single machine. When the number of machines increases, the
gap in running time between the various algorithms decreases.
Moreover, the increase in efficiency displays a slow rate of
change. We conjecture this is for two reasons: 1) the shuffling
cost increases with the number of machines, and 2) the time
cost of the I/O operations on the HDFS increases also.

6. Scalability. Figure 18 shows the results of the algo-
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Fig. 17. Effect of the number of slave nodes

rithms’ scalability by varying the sizes of M and R (When
|M |=|R|=106, we stop GN and BL after running for 3 days).
The running time and shuffling cost increases as |M | and |R|
increase, due to the fact that more objects are involved in the
join operation. The time cost of BL grows quadratically and
shuffling cost of BL grows linearly. The running time and
shuffling cost of GN and GL grows slower than that of BL.
For example, when |M |=|R|=104, the running time of BL is 6
times larger than that of GL, while the shuffling cost remains
roughly the same. When |M |=|R|=105, however, the time cost
of BL increases to 18 times larger than that of GL, and the
shuffling cost also increases to 2 times over GL. This indicates
our algorithms have high scalability potential compared to the
basic algorithms.

0.5 1 5 10 100
10

2

10
3

10
4

10
5

the number of objects in each set

tim
e 

(s
)

 

 

GL
GN
BL

104

(a) Running time

0.5 1 5 10 100
0

5

10

15

20

the number of objects in each set

sh
uf

fli
ng

 c
os

t (
G

B
)

 

 
GL
GN
BL

104

(b) Shuffling cost

Fig. 18. Scalability on DS2

C. Results for (h, k)-NN Joins

We evaluate (h, k)-NN joins by comparing it with the
following baseline, which first runs the k-NN joins, then
evaluates the function f on objects in M and selects h target
objects with their k nearest neighbors finally. We extend GN
and GL to HGN and HGL respectively, by using the new TDB
proposed in Section VII.
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Fig. 19. Effect of h on (h, k)-NN join

Figure 19 shows the performance gains of our modifications
tailored to (h, k)-NN join with various values of h. The default
parameter settings on each dataset are the same as in the case
of k-NN join. The running time of HGL and HGN increases
as the value of h increases. Let us take HGL’s performance on
Beijing taxi data as an example. The running time increases by
6% when the value of h increases from 50 to 400. As expected,
the running time of BL is the largest, since it does not use

any pruning technique. HGL and HGN consistently perform
at least twice faster than GL and GN respectively. This shows
that the new TDB proposed in Section VII is indeed tighter
than the TDB designed only for the k-NN join, thus reducing
the computational cost.

IX. CONCLUSIONS

In this paper, we address the k-NN join on large-scale
trajectory data. We present an efficient framework for an-
swering k-NN join queries using MapReduce. It partitions
the trajectories using spatial grids, and then computes a time-
dependent upper bound (TDB), whose values vary with time,
increasing significantly the efficiency of the join operations.
We extend k-NN join to (h, k)-NN join, and propose a new
tight TDB and an approach under the same solution framework
of k-NN join. In the future, we will evaluate our algorithms
on more real large-scale data, and study how to answer other
complex join queries efficiently using MapReduce.
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APPENDIX

A. Implementation of Preprocessing Using MapReduce

The detailed implementation of preprocessing using
MapReduce is as follows.

Algorithm 3 Preprocessing
1: procedure MAP(k1 , v1)
2: trList← TEMPORALPARTITION(v1);
3: for each tr ∈ trList do
4: k2 ← tr.InterIndex, v2 ← tr;
5: OUTPUT(k2 , v2);
6: procedure REDUCE(k2 , v2)
7: for each tr ∈ v2 do
8: subTrList← SPATIALPARTITION(tr);
9: for each subTr ∈ subTrList do

10: k3 ← k2, v3 ← (subTr.spatioKey, subTr);
11: OUTPUT(k3 , v3);

Map. The input of map() is a trajectory. Then it is split
into a list of sub-trajectories according to the predefined time
intervals (line 2). The output is list of (key, vlaue) pairs (line
3-5), where the key is the index of the time interval and the
value is a sub-trajectory.

Reduce. After shuffling, trajectories with a same key are
sent to a same reduce(). We do spatial partition for each
trajectory and obtain a ist of sub-trajectories (line 7-8). To
facilitate the following queries, for each sub-trajectory subTr,
we assign it a key (line 9) “M pi.x pi.y” if the corresponding
object is from M ; Otherwise we assign it a key “R pi.x pi.y”,
where pi is the central point of the grid containing subTr.

B. Anchor Trajectory Selection

The algorithm to find the anchor trajectories is shown
in Algorithm 4. It initializes a priority queue Q (line 2),
in which trajectories are sorted based on the end time in
ascending order. k anchor trajectories are selected by calling
FINDNEXT(startT ) (line 3-5). Then we dequeue an anchor
trajectory from Q (line 7) and update startT (line 8). A new
anchor trajectory is selected and enqueued into Q (line 9-
10). This process (line 7-10) is iterated until all the anchor
trajectories are dequeued. In FINDNEXT(startT ), for each tr,
we first compute the gap between its start time and startT
(line 14-15). We select the trajectory whose start time is closest
to startT (line 16-17). If there exists more than one trajectory
having this minimal gap, we select the one whose maximum
distance to the central point is the minimum (line 18-20).
Finally, the anchor trajectory is selected (line 21-23).

C. Computing the Value of H

Suppose the block size of HDFS is S, the storage cost for a
point in a trajectory is s, the maximum number of map tasks
that can be run in parallel in a cluster as Mp, which can be set
as the number of slave nodes times the maximum number of
map tasks run in a single node. Suppose the average number
of points in a unit time interval is n.

For a specific k-NN join query with time interval length tq ,
the expected total storage space for points generated by objects
from M , which should be involved in the query processing, is

Algorithm 4 Selecting anchor trajectories
1: procedure SELECTANCHOR(TrRj , startT , k)
2: init Q, achList;
3: while Q.size < k do
4: tr ← FINDNEXT(TrRj , startT );
5: Q.add(tr);
6: while Q.size > 0 do
7: achTr ← Q.pop; achList.add(achTr);
8: startT ← achTr.e;
9: tr ← FINDNEXT(TrRj , startT );

10: if tr!=null then Q.add(tr);
return achList;

11: procedure FINDNEXT(TrRj , startT )
12: minT ←∞, achTr ← null;
13: for tr ∈ TrRj do
14: t′ ← tr.s− startT ;
15: if t′ < 0 then t′ ← 0;
16: if t′ < minT then
17: achTr ← tr, minT ← t′;
18: else if t′ = minT then
19: d←MaxDist(achTr, pj), d′ ←MaxDist(tr, pj);
20: if d < d′ then achTr ← tr;
21: if achTr!=null then
22: TrRj .remove(achTr);
23: achTr ← achTr.subTraj(startT +minT , achTr.e);

return achTr;

|M | × tq × n× s. So the minimum number of blocks to store
these data in HDFS is |M |×tq×n×sS .

In a MapReduce job, the number of map tasks equals to
the number of blocks of the input data. Since only Mp map
tasks can be run in parallel, to achieve good load balance for
handling set M , we can set the number of groups of M for
hashing, i.e., HM , as follows:

H =

⌈
|M | × tq × n× s

S ×Mp

⌉
×Mp. (13)

Similarly, we can compute HR for points generated
by objects from R. For simplicity, in this paper, we set
H=max {HM , HR}.

D. Computing the TDB of pi
We propose a binary search tree (BST) algorithm to com-

pute the TDB of a central point. We first introduce a new
data structure, namely, spatiotemporal-event (abbreviated as
st-event). A st-event is a triple (time, dist, operator), where
time is a time instance, dist is a distance value and operator
is an operation, e.g., add or remove. For each st-unit u,
we can create two st-events: e1=(u.startT , u.dist, add) and
e2=(u.endT , u.dist, remove). The balanced binary tree [22]
we used is TreeMap, which an implementation of the balanced
binary tree. In TreeMap, the key is a dist value and the value
is a counter, which counts the times of keys. We dynamically
maintain a TreeMap of st-events according to their operators,
and find the st-units that we need, as shown in Algorithm 5.

We first create a list of st-events using the st-units, then sort
the list by time in ascending order (line 13-19). We sweep
from the earliest time instance (line 4-5). If the next st-event
has a strictly larger time value, we query the k-th dist from
treeMap, form a st-unit and add it to the bound list (lines



6-9). Then, we continue updating the treeMap using the st-
events according to their operators (lines 10-11). Finally, we
obtain a list of sorted st-units, i.e., vi(t).

Algorithm 5 Computing the TDB of the central point
1: procedure COMPTDB(stunitList, k)
2: treeMap← INITTREEMAP<DIST, COUNTER>;
3: eventList← CREATESTEVENT(stunitList);
4: startT ← eventList[0].time; TDB ← INITLIST;
5: for each event ∈ eventList do
6: if event.time > startT then
7: kthDist← treeMap.FINDKTH(k);
8: TDB.addStUnit(startT , event.time, kthDist);
9: startT ← event.time;

10: if event.operator=“add” then treeMap[event.dist] += 1;
11: else treeMap[event.dist] -= 1;
12: return TDB;
13: procedure CREATESTEVENT(stunitList)
14: eventList← null;
15: for each unit ∈ stunitList do
16: eventList.addEvent(unit.startT , unit.dist, “add”);
17: eventList.addEvent(unit.endT , unit.dist, “remove”);
18: SORTBYTIME(eventList);
19: return eventList;

E. Proof of Lemma 1

Proof: Figure 9 illustrates the geometric intuition of
the lemma. Consider an arbitrary time instance t ∈
[st(TrMi ), et(TrMi )). Suppose the k nearest neighbors of pi
are rj(1 6 j 6 k) ∈ R. Then |pi, rj | 6 vi(t).

Now let us consider an arbitrary object m at t, whose sub-
trajectory subTr is in TrMi . By using triangle inequality, the
distance from m to rj is

|m, rj | 6 |m, pi|+ |pi, rj | (14)

Since |m, pi| 6MaxDist(pi, subTr) 6 maxU(TrMi ), we
have

|m, rj | 6 maxU(TrMi ) + vi(t) (15)

The above equation implies that the distances from m
to these k objects are bounded by maxU(TrMi ) + vi(t).
Hence, for all objects having sub-trajectories in TrMi at t,
the upper bound distance to its k nearest neighbors from R is
ui(t)=maxU(TrMi ) + vi(t).

F. Proof of Lemma 2

Proof: Consider two arbitrary trajectories, one from TrMi
and one from TrRj . Then consider two points pMi and pRj on
the two trajectories, occurring at the same time instance. Using
triangle inequality, we have:

|pMi , pRj | > |pi, pRj | − |pi, pMi |
> |pi, pj | − |pj , pRj | − |pi, pMi |
> |pi, pj | −maxU(TrRj )−maxU(TrMi )

(16)

|pMi , pRj | 6 |pi, pRj |+ |pi, pMi |
6 |pi, pj |+ |pj , pRj |+ |pi, pMi |
6 |pi, pj |+maxU(TrRj ) +maxU(TrMi )

(17)

If their minimum distance is larger than max(ui(t)), then
none of the trajectories in TrRj are candidates. If their max-
imum distance is larger than min(ui(t)), then all of the
trajectories in TrRj are candidates. For other cases, a part of
them are the candidates. Hence, Lemma 2 holds.

G. Proof of Lemma 3

Proof: Consider an arbitrary object m whose sub-
trajectory is in TrMi , and the time instance tmin ∈ [tr.s, tr.e)
when the minimum distance between m and r occurs. Denote
m and r’s positions at tmin as pmi and prj respectively. Using
the triangle inequality, we have:

|pmi , prj | > |pi, prj | − |pi, pmi |
>MinDist(pi, tr)−maxU(TrMi )

(18)

For other time instance t ∈ [trs, tre], their distance must be
larger than |pmi , prj |. Also, we know that |pmi , prj | > 0. Hence,
the lower bound distance from r to objects whose trajectories
are in TrMi is max{0,MinDist(pi, tr)−maxU(TrMi )}.

H. Implementation of Finding Candidates Using MapReduce

Algorithm 6 gives the detailed implementation of this
MapReduce job in GN.

Map. The map() takes a partition of trajectories TrRj as
input. It enumerates each partition TrMi , and checks which
case they belong to (line 3-4). If they belong to case 2, then
all the trajectories of TrRj are candidates of TrMi (line 6-8).
Otherwise, for case 3, we split each trajectory of TrRj into a
list sub-trajectories according to the breakpoints of ui(t), and
then check them one by one using Lemma 4 (line 9-14).

Reduce. In the reduce(), we simply output the candi-
dates of TrMi , i.e., CR

i .

Algorithm 6 Stage 3: Finding candidates
1: procedure MAP(k1 , v1)
2: TrRj ← v1;
3: for i←1 to N do
4: case← CHECK(pi , ui(t), maxU(TrMi ), maxU(TrRj ));
5: k2 ← pi.x pi.y;
6: if case=2 then //Partition check
7: for tr ∈ Tr do
8: v2 ← tr; OUTPUT(k2 , v2);
9: else if case=3 then //Trajectory check

10: for tr ∈ Tr do
11: subTrList← SPLIT(tr, ui(t));
12: for subTr ∈ subTrList do
13: if subTr is a candidate then //Use Lemma 4
14: v2 ← tr; OUTPUT(k2 , v2);
15: procedure REDUCE(k2 , v2)
16: OUTPUT(k2 , v2);

I. Implementation of Trajectory Join Using MapReduce

Algorithm 7 gives the detailed implementation of this
MapReduce job in GN.

Map. The input of map() is a partition TrMi (line 2).
It joins TrMi with the set CR

i of corresponding generated
candidates, using a single-machine algorithm (line 3-4). In this
paper, we use BF or SL as discussed before, but any other



single-machine trajectory join algorithms can be incorporated.
Finally, we output a list of pairs (line 5-6), where the key is
the object id and the value is a list of its k nearest neighbors
with their minimum distances.

Reduce. The input of reduce() is an object with its
k nearest neighbors computed from different partitions. We
output k objects whose minimum distances are the smallest
(line 8-9).

Algorithm 7 Stage 4: Trajectory join
1: procedure MAP(k1 , v1)
2: TrMi ← v1;
3: read CR

i from Distributed Cache (or HDFS);
4: kNNList← JOIN(TrMi , CR

i , k); // Use BF or SL
5: for each tr ∈ TrMi do
6: OUTPUT(tr.id, kNN ); //k nearest neighbors
7: procedure REDUCE(k2 , v2)
8: kNN ← reselect k nearest neighbors from v2;
9: OUTPUT(tr.id, kNN ); //final k nearest neighbors




