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Abstract—Applications written by end-user programmers are 

hardly energy-optimized by these programmers. The end users of 

such applications thus suffer significant energy issues. In this 

paper, we propose CrowdAdaptor, a novel approach toward loca-

ting energy-efficient configurations to execute the applications 

hosted in virtual machines on handheld devices. CrowdAdaptor 

innovatively makes use of the development artifacts (test cases) 

and the very large installation base of the same application to 

distribute the test executions and performance data collection of 

the whole test suites against many different virtual machine con-

figurations among these installation bases. It synthesizes these 

data, continuously discovers better energy-efficient configura-

tions, and makes them available to all the installations of the 

same applications. We report a multi-subject case study on the 

ability of the framework to discover energy-efficient configura-

tions in three power models. The results show that Crowd-
Adaptor can achieve up to 50% of energy savings based on a 

conservative linear power model. 

Keywords—Mobile energy consumption; Test harness; Post-

deployment validation; Energy optimization; Energy saving 

I. INTRODUCTION 

Energy efficiency is a design concern when developing 

software applications. It is especially important for applica-

tions running on handheld devices such as smartphones [7]. A 

primary reason is that using a more energy-efficient version of 

an application helps a device last for a longer period without 

the need to recharge the battery. However, applications are no 

longer confined to be developed by device vendors and a 

small list of their authorized software partners. For instance, 
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an ordinary person may follow the procedure presented in an 

online video to write an original application and post the latter 

to an online repository (such as the Apple App Store, various 

Android markets, or the Windows Marketplace). End users 

may then install instances of the application on their handheld 

devices, virtual machines, personal computers, and so on. For 

ease of presentation, we refer to such an ordinary person as an 

end-user programmer. 

End-user computing is emerging, especially in developing 

macro-based spreadsheet applications [3]. However, end-user 

programmers normally do not have the technical skills and 

tools to optimize their applications with respect to energy effi-

ciency for a wide range of device models or even for a specific 

model. Indeed, there are a huge number of device models, 

some of which are only available after the applications have 

been created, resulting in suboptimal energy optimizations (if 

any). End-user programmers also do not have the resources to 

adapt the application to fit the most energy-efficient option of 

every available model. As a result, these applications are often 

posted in confounding forms (that is, without a “best-fit” 

target of energy optimization) before end users install and 

execute them. Hence, the burden of making an application 

instance operate energy-efficiently lies on individual end 

users, who nonetheless also do not have the skills to optimize 

these application instances even if they would like to do so. To 

the best of our knowledge, there is no solution proposed in the 

literature to address this challenge. 

Applications written by end-user programmers may or 

may not pose security threats to the devices. One way to 

confine security threats is to execute each application instance 

in a standalone virtual machine (VM) instance [1][5]. We 

observe that this class of VM-based solution further allows 

each application to personalize the virtual machine that hosts 

the application instance. 

In this paper, we exploit the above observation and the 

availability of multiple devices, each of which is installed with 

an instance of the same application to address the above 

challenge. We propose CrowdAdaptor, a novel framework to 
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gradually and collectively adapt the energy-aware configura-

tions of mobile applications toward increasingly more energy-

efficient configurations for execution in standalone VM 

instances on handheld devices. 

Specifically, an application instance instrumented with the 

CrowdAdaptor framework will be sampled by the framework 

to execute certain test cases under specific VM configurations. 

We exploit the presence of many devices that are installed 

with the same application instrumented with the Crowd-
Adaptor framework, to keep the sampling rate of each appli-

cation instance to an extremely low level to reduce the impact 

on the device to the minimal. CrowdAdaptor collects a record 

of profiling data of a test case executed under a specific VM 

configuration from each sample, and collects many such 

records for many test cases associating with many VM config-

urations generated from many devices. Based on the dataset, 

CrowdAdaptor computes an optimal configuration for each 

kind of VM to host an instance of the application. Moreover, 

when the application instance hosted in a VM on a device is 

not used for providing profiling data, the instance may query 

CrowdAdaptor to obtain an energy-efficient option dis-

covered up to that moment for the VM so that the application 

instance can gradually save increasingly more energy when 

executed in the native mode. 

We have evaluated CrowdAdaptor in a two-subject case 

study, in which the entire projects of two popular real-world 

applications K-9 Mail [10] and MyTracks [15] (including their 

test cases) are used as subjects. We propose and apply three 

individual algorithms to select test cases and VM configura-

tions for individual application instances to execute. The case 

study results show that the two subjects can successfully and 

gradually adapt to use more energy efficient VM options with 

an estimated energy saving of 0 to 50% in terms of processor 

energy consumption after CrowdAdaptor has been enabled in 

the first 100 test suite executions against each subject using 

the conservative linear power model [26]. If more advanced 

power models1 are used, our results show that the saving can 

be even more significant: a saving of 27 to 69% (with one 

exceptional case) when using the quadratic power model, and 

a saving of 42 to 94% (with one exceptional case) on the cubic 

power model. Our results also show that for 4 out of 6 subject 

and power model combinations in the case study, the algo-

rithms can locate the configuration with the maximum energy 

savings from all the available configurations. 

This paper makes the following contributions: (i) To the 

best of our knowledge, it presents the first technique that uses 

development artifacts (namely, test cases) in crowdsourcing 

scenarios to address the energy-efficient optimization problem 

encountered by mobile applications. (ii) We report the first 

case study to show the effect of different search strategies in 

locating energy-efficient settings for two real-world mobile 

applications. 

The rest of the paper is organized as follows: In Section II, 

we present the CrowdAdaptor framework. In Section III, we 
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present the research questions to be studied in the case study, 

followed by the case study and its data analyses in Sections IV 

and V, respectively. We review closely related work in 

Section VI and conclude the paper in Section VII. 

II. THE CROWDADAPTOR FRAMEWORK 

An application running on a virtual machine can take 

advantage of the CrowdAdaptor framework by operating in 

one of the two modes. First, in the native mode of operation, 

an application instance may request for the best configuration 

discovered by CrowdAdaptor so far for that specific type of 

virtual machine. Second, in the testing mode, the application 

instance will execute a specific test case against a specific 

configuration informed by CrowdAdaptor. The participating 

application instance provides CrowdAdaptor with perfor-

mance data to support the discovery of the best configuration. 

A. Application and Application Instances 

A device Dz executes a virtual machine instance of type 

VMi, which hosts an instance of a mobile application P 

developed by end-user programmers. VMi can be specified in 

terms of one of the elements in a set of configuration values 

denoted by  = {C1, C2, …, Cn}. A configuration value Ck is a 

collection of settings needed to define VMi. For instance, Ck 

may include (a) the processor frequency subinterval (which 

can be set to any range of available clock frequencies, such as 

a subinterval of (384, 486, 594) MHz within an interval of 

(384, 486, 594, 702, 810) MHz), (b) the size of the memory 

allocated to the VM instance, and (c) the type of WiFi connec-

tion and its power state used (such as 802.11ad using a low 

power state). For the sake of brevity and better readability, we 

will refer to a configuration value simply as a configuration. 

We assume that one of the configurations in  is a default con-

figuration independent of the CrowdAdaptor framework. 

The mobile application P is designed to accept an input x 

from its input domain X. Under an instance of VMi configured 

by Ck, the execution of x against an instance j of P generates a 

performance vector, which is profiled and denoted by Pj(x, 

VMi, Ck). There are natural variations in performance, such as 

the execution time and the number of bytes sent or received 

via VMi configured with Ck (e.g., a wireless network config-

uration of the VM). Hence, different executions of the same 

mobile application P may produce different profiled vectors. 

Without loss of generality, we define that a larger value in 

an entry of a performance vector indicates a more inferior 

performance for the entry. For instance, a value of two 

seconds of execution time is worse than a value of one second. 

B. Device Sampling and Test Case Sampling 

We recall that a test case is an input of the application P, 

and a set of test cases constitute a test suite T. Since the same 

application P can be installed on multiple devices, we model 

the crowdsourcing scenario that there is a set  of such 

devices that are online at any moment, and each device in  

has been marked by end users to allow the executions of test 

cases against the application P. The history H of Crowd-
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Adaptor, initially empty, is a sequence of performance vectors 

Pj1(x1, VMi1, Ck1), Pj1(x2, VMi2, Ck2), .... 

The workflow of CrowdAdaptor starts with selecting a 

device to execute a test case t in T. CrowdAdaptor for the 

application P accepts a sampling rate of r% when it initializes. 

When a device Dz is made online, in the sense of a heartbeat 

message [2][9], the device periodically registers itself to , 

where the registration is associated with a virtual machine 

type VMi. Each registration triggers CrowdAdaptor to deter-

mine with a probability of r% that in the current heartbeat 

period of device Dz, the device will be used by Crowd-
Adaptor for test execution. If the device is selected, Crowd-

Adaptor further determines the set of configurations for VMi 

and uses its optimization engine (to be presented in Section 

II.D) to select one configuration Ck. 

Algorithm 1 specifies the high-level interaction between 

CrowdAdaptor and a selected device. 

Algorithm 1 (Test case and configuration selection in CrowdAdaptor) 

1: function selectTestCaseConfig(mode, VMi)  { 
2:     if mode = native  { 
3:         C_k  best configuration in  for VMi 
4:         if C_k = ø  {  C_k  default configuration in   } 
5:         return C_k 
6:     }  else if mode = testing  { 
7:         C_k  runOptEngine( for VMi) 
8:         t  randomly selected test case from T’  T 
9:         return C_k, t  }} 

  
 

For devices using the native mode, CrowdAdaptor simply 

returns the best configuration discovered so far for VMi at line 

3. If no configuration has been discovered yet, the default 

configuration is used (line 4). For devices using the testing 

mode, CrowdAdaptor randomly selects one test case t in a 

subset T' of T (line 8), such that none of the test cases in T' has 

received any performance data regarding virtual machine type 

VMi with configuration Ck since the last reset of T'. 

Specifically, the subset T' for VMi with configuration Ck is 

initialized as T, and whenever a selected test case t generates a 

performance vector, the test case t is removed from T'. If T' 

becomes empty after the removal, then T' is reset to T. Note 

that CrowdAdaptor does not assume that the device must 

eventually return a performance vector. Hence, the test suite T' 

is reduced only after the performance vector is received.  

After CrowdAdaptor has selected a test case t, it requests 

device Dz to both (1) execute t against the instance j of P 

hosted on the device’s virtual machine instance of type VMi 

with configuration Ck (line 9 of Algorithm 1), and (2) return 

the performance vector Pj(t, VMi, Ck). It updates the history H 

by appending Pj(t, VMi, Ck) to H (that is, to construct H^Pj(t, 

VMi, Ck)) whenever Pj(t, VMi, Ck) is received. If the returned 

vector Pj(t, VMi, Ck) triggers a reset of the test suite T', the 

vector is also annotated with a reset marker. 

In the above design, any reset of the test suite T' with 

respect to virtual machine type VMi with configuration Ck 

indicates that every test case has been executed at least once 

against a virtual machine instance of type VMi with configura-

tion Ck. Thus, during the reset operation, CrowdAdaptor also 

extracts those performance vectors that belong to VMi config-

ured with Ck, right after the last reset and up to the current 

reset, to construct a dataset PD of performance vectors. It uses 

PD to conduct an energy consumption assessment, which will 

be presented in the next subsection. 

C. Energy Consumption Assessment 

Some research work has been proposed to compute (or 

estimate) the energy consumptions based on a performance 

dataset [12][14][26]. Energy consumption may be computed 

from performance statistics based on an energy model. In the 

case of the processor, for instance, the relationship between 

the operating voltage or frequency of the processor and its 

energy consumption may range from linear [26], to quadratic 

[4][24], to cubic [12][22]. It is also possible for a device 

manufacturer to provide customized power profiles that 

directly correlate power states to energy consumption [21]. 

CrowdAdaptor does not invent its own proposal in this 

aspect. Rather, it builds on top of existing work. To preserve 

generality, we model an energy consumption estimation tech-

nique as a couple PV, g, where PV is the vector of perform-

ance metrics needed by the existing technique g. 

We recall we have presented in Section II.A that Crowd-
Adaptor profiles performance vectors. Specifically, Crowd-

Adaptor accepts such a couple PV, g as input to compute 

energy consumption with respect to PV. 

We have presented in Section II.B that each reset of a test 

suite triggers CrowdAdaptor to generate a dataset PD with 

respect to a virtual machine type VMi with configuration Ck. If 

there are multiple vectors in PD such that each is associated 

with the same test case, CrowdAdaptor computes a corres-

ponding mean performance vector from the former vectors, 

drop all the former vectors and add the newly computed vector 

to PD. As such, each test case in T is associated with one 

vector in PD. 

CrowdAdaptor then applies g to each vector in PD to 

compute the corresponding energy consumption values, and 

accumulate these consumption values to give one total value 

v1. Finally, CrowdAdaptor associates v1 with virtual machines 

of type VMi with configuration Ck, represented by the triple 

VMi, Ck, v1. To mask out natural variations in performance 

metrics, CrowdAdaptor collects multiple instances of such 

triples associated with virtual machines of type VMi with con-

figuration Ck. It then computes the mean of these consumption 

values, and uses the mean value as an energy consumption 

indicator Ek for this virtual machine type and configuration. 

D. Optimization Engine 

We have presented in the last subsection how Crowd-
Adaptor associates an energy consumption indicator Ek with 

virtual machine type VMi having configuration Ck. In this sec-

tion, we present how CrowdAdaptor finds a configuration Ck 

needed to configure a VM instance running on a device. In 

general, a configuration specifies a range of feasible values for 

each option, and such a range can be reduced into a constant. 

We first use the policy governors for processor frequency 

control in Android to illustrate the context of the problem. 
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For ease of reader understanding, in the sequel, we will use 

frequency control to present our strategies. Nonetheless, we 

note that these strategies are generally applicable beyond 

frequency control. 

1) ondemand CPU Frequency Policy Governor 

Each policy governor implements its own algorithm to 

determine which processor frequency should be used based on 

historical processor utilization and other factors such as user 

interface activity. An app with root access can configure the 

behavior of a policy governor by passing parameters to the 

governor. 

The ondemand CPU frequency policy governor [18] is the 

de facto policy governor used by many Android device manu-

facturers as the default governor. It considers a subinterval 

Freq' on the sequence of discrete processor frequencies 

(denoted by Freq) supported by the VM type. Initially, the 

subinterval Freq' spans from the minimum to the maximum 

frequency in Freq. ondemand increases the current processor 

frequency f to the maximum frequency in Freq' if the proces-

sor utilization exceeds a predefined threshold kept by the 

variable up_threshold. On the other hand, if the processor uti-

lization drops below a predefined threshold kept by the 

variable down_threshold, it decreases f by 20%, rounded to 

the nearest frequency in Freq'. By writing to the special 

operating system files sampling_rate_min and sampling_rate_

max, respectively, one can control the subintervals of proces-

sor frequencies used by a VM instance. 

2) Naïve Search-Based Optimization Strategy 

Consider, for example, a virtual machine type such that all 

the available processor frequencies fi are given by Freq = (f1, 

f2, f3, f4), where f1 < f2 < f3 < f4. Fig. 1 shows a directed graph 

of all the subintervals of Freq acceptable to ondemand. In 

general, the number of nodes in the directed graph is exactly 

|Freq| (|Freq| + 1) / 2, which means that the search space is in 

the order of O(|Freq|2). For VM types supporting many 

frequencies, an exhaustive search of this type of graph may 

require too many executions of the same test suite even if 

there are many devices available to run the test cases. Thus, a 

naïve search-based optimization strategy is not quite a 

solution. In the next three subsections, we formulate two 

improved search-based strategies and a simple strategy to 

address this problem. 

 

Fig. 1. A virtual processor with possible frequencies Freq = (f1, f2, f3, f4). 

3) Single-step Top-Down Search (STDS) Strategy 

Algorithm 2 shows the Single-step Top-Down Search 

(STDS) optimization engine (called by line 7 of Algorithm 1) 

for a specific virtual machine type that supports the sequence 

of frequencies Freq. The operations on Ck can be adapted for 

other factors of optimization in addition to processor fre-

quency control. 

At line 2, STDS retrieves the best configuration discovered 

so far for VMi. Initially, in lines 3–4, it asks all the devices 

registered to  to execute the test cases in T' using the default 

configuration (which is the root node f1–f4 in Fig. 1 in our 

example). The algorithm then considers the next set of config-

urations by updating the from/to frequency indices one step at 

a time (lines 15 & 17). Referring to Fig. 1, the next set of 

configurations are the two lower-level nodes. 

During the search, devices registered to  will be asked to 

supply performance vectors for different configurations (lines 

6 and 8) in order to construct the performance dataset PD. 

When sufficient performance data have been collected for the 

entire test suite and a more energy-efficient configuration is 

found, STDS updates the running best configuration (lines 11–

12) for other devices executing in native mode. 

The search terminates when either the frequency indices 

converge (line 4), or if a better configuration cannot be found 

(line 9). The algorithm has been designed with a margin of 

improvement to prevent the strategy from being trapped in 

local minima. This margin threshold may vary according to 

the VM type. (In our experiment, we find that 10% is a good 

indicator as a tunable resource for processors.) 

Once the algorithm ends, the search for the best 

configuration (frequency subinterval in this case) is complete. 

In this way, a set of configurations for the same test suite has 

been profiled with energy consumption values, and the best 

configuration for the specific VM type is determined. All 

subsequent executions of the same application P on the 

profiled VM type can use this best-found configuration. 

Algorithm 2 (STDS strategy to search for a VM configuration). 

1: function runOptEngine()  { 
2:     C_k  best configuration in  

3:     if C_k = ø  {  C_k  {from   1, to   |Freq|}  } 
4:     if C_k.from = C_k.to or E_k = ø  {  return C_k  } 
5:     C_left  updateTo(C_k) 
6:     if E_left = ø  {  return C_left  } 
7:     C_right  updateFrom(C_k) 
8:     if E_right = ø  {  return C_right  } 
9:     if E_k is smaller than E_left and E_right by some margin  { 
10:         return C_k  } 
11:     if E_left < E_right  {  best configuration in   C_left  } 
12:     else  {  best configuration in   C_right  } 
13:     return best configuration in   } 
14: function updateFrom(C_k)  { 
15:     return {from   C_k.from + 1, to   C_k}  } 
16: function updateTo(C_k)  { 
17:     return {from   C_k.from, to   C_k.to –1}  } 

 

Algorithm 3 (BTDS strategy to search for a VM configuration) 
1–13: (same as STDS) 
14: function updateFrom(C_k)  { 
15:     return {from   (C_k.from + C_k.to)/2, to   C_k.to}  } 
16: function updateTo(C_k)  { 
17:     return {from   C_k.from, to   (C_k.from + C_k.to)/2}  } 

 

4) Binary Top-Down Search (BTDS) Strategy 

Algorithm 3 shows the algorithm for the Binary Top-Down 

Search (BTDS) strategy, which is identical to STDS except for 

f1 – f4 

f1 – f3 f2 – f4 

f1 – f2 f2 – f3 f3 – f4 

f1 – f1 f2 – f2 f3 – f3 f4 – f4 
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how it searches for the next set of configurations (lines 14–

17). Instead of reducing the subinterval by one step, BTDS 

shrinks it by half. The idea is to try the subintervals that are 

further away from the current subinterval so that more diverse 

subintervals are tried with fewer test executions. 

5) Incremental Random Search (IRS) 

We further propose a randomizing strategy called Incre-

mental Random Search (IRS), as shown in Algorithm 4. It 

keeps track of a randomly selected configuration Cirs, and asks 

participating devices to execute test cases against this config-

uration until the energy consumption indicator is computed 

(line 9). If the indicator shows improvement over the running 

best configuration, the latter is updated (line 11), and Cirs is 

reset to another configuration in ’ that has no PD (lines 3–6). 

The algorithm also keeps track of the number of configura-

tions already tried (using the variable trials at line 7), and 

accepts a parameter max that limits the number of configura-

tions to be tried across multiple calls to runOptEngine (line 5). 

The variable trials is initialized to zero when at the beginning 

of the process of finding maximum energy savings. 

Algorithm 4 (IRS strategy to search for a VM configuration) 

1: // C_irs is set to ø and trials is set to 0 at the beginning of the 
process of finding maximum energy saving. 

2: function runOptEngine(, max)  { 
3:    if C_irs = ø  { 
4:         '  {C_i ∈  | E_i = ø} 
5:         if ' = ø or trials ≥ max  {  return best configuration in   } 
6:         C_irs  randomly selected configuration from ' 
7:         trials  trials + 1 
8:         return C_irs 

     } 
9:     if E_irs = ø  {  return C_irs  } 
10:     C_k  best configuration in  

11:     if C_k = ø or E_irs < E_k  {  best configuration in   C_irs  } 
12:     C_irs  ø  
13:     return best configuration in   } 

 

III. RESEARCH QUESTIONS 

Through the case study to be presented in the next section, 

we would like to ask the following research questions in the 

context of energy savings in processors. 

RQ1: To what extent can the application adaptively save 

energy through CrowdAdaptor with the most con-

servative (linear) power model, compared with the 

default configuration of ondemand using the entire 

frequency interval? 

RQ2: What effect does the use of different processor power 

models have on CrowdAdaptor? 

The two research questions evaluate, with respect to the 

default parameter setting, the three proposed strategies that 

leverage crowd-based effort to search for a best configuration. 

IV. A MULTI-SUBJECT CASE STUDY 

A. Review of Processor Power Model 

Dynamic Frequency and Voltage Scaling (DVFS) [24] is a 

feature present in most modern mobile and desktop processors 

that allow program control of their operating frequency. When 

the operating frequency is lowered, the operating voltage may 

also be lowered accordingly in order to achieve energy sav-

ings. Suppose Freq is a sequence of clock frequencies sup-

ported by a processor. Using a similar processor power model 

as in Xu et al. [25] and Zhang et al. [26], the computation 

energy consumed by a processor (in an active state) operating 

at clock frequency f can be modeled as follows: 

   (     +   ),   ∈ Freq  (1) 

where t is the computation time,  f is a frequency-dependent 

power coefficient, u is the processor utilization resulting from 

the execution during time t, and  c represents the power 

difference between the active and idle states of the processor. 

The varying beliefs in the relationship between energy con-

sumption and f as stated in the previous section, namely, 

linear, quadratic, and cubic, can be captured by the value of  f 

with respect to f. Owing to page limit, for brevity, we refer the 

readers about the three models to the work of Kan et al. [12]. 

B. Subject Apps 

To ensure that our results bear real-world significance, we 

have experimented with two real-life open-source Android 

products K-9 Mail [10] and MyTracks [15]. A summary of the 

subjects is shown in Table 1. 

K-9 Mail [10] is a popular email client with more than 

70,000+ lines of code and 40 test cases in its test suite (version 

4.508). As shown in Google Play Store, the application has at 

least five million installs as at January 27, 2014. 

MyTracks [15] is another popular app that tracks user acti-

vity using GPS sensors. It records movement statistics such as 

path, speed, and distance. The version used in our experiment 

(version 2.0.5) consists of 35,000+ lines of code and 347 test 

cases. These projects have also been used in the experiment in 

Li et al. [13] to evaluate energy-aware testing strategies. As 

shown in Google Play Store, the application has at least ten 

million installs as at January 30, 2014. 

TABLE 1. DESCRIPTIVE STATISTICS OF THE SUBJECTS 

Subject 
Real-life 

version 
SLOC 

# of test 

cases 
# of installs 

K-9 Mail [10] 4.508 >70,000 40 5 million 

MyTracks [15] 2.0.5 > 35,000 347 10 million 

C. Preparation 

Both subject apps utilize the standard Android test API 

which is based on JUnit. The test suites can be executed using 

the activity manager (“am”) command via the Android Debug 

Bridge (ADB). For the experiments conducted in this paper, 

the subject apps have been preinstalled on the device under 

test. Our prototype implementation of CrowdAdaptor is split 

between an external Java app (external controller) and a pre-

installed power management app (controller app). The exter-

nal controller installs and controls the test suite executions, 

whereas the controller app adjusts the processor frequency 

range according to the external app, and records the energy 

consumption attributed to the test execution OS process. 
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To ensure compatibility across heterogeneous Android 

devices, the controller app has been adapted from two open-

source Android projects PowerTutor [26] and No-frills CPU 

Control [16]. PowerTutor determines process-level energy 

consumption by periodically polling the processor utilization 

attributed to a process, and then translates it into energy values 

based on predefined power models represented by (1). No-

frills CPU Control adjusts the frequency parameters passed to 

the CPU frequency policy governor as previously explained. 

The source code related to the required features has been 

identified and adapted to build the controller app. 

D. Experimental Environment and Procedure 

The sample device that we use for experimentation is a 

commercially available Sony Xperia SP smartphone equipped 

with a 1.7 GHz Qualcomm® (Snapdragon™ S4) MSM8980T 

Dual Core CPU running on Android 4.1.2. This family of 

smartphones has also been used in other energy-related studies 

[19]. We assume that a virtual machine of the same config-

uration is running on the device. The processor supports 14 

operating frequencies from f1 = 384 MHz to f14 = 1728 MHz. 

The firmware of the device has been updated to allow opera-

tions that require root access, namely, controlling the on-

demand policy governor. ondemand is initially configured to 

use the entire interval of frequencies (that is, it can select any 

processor frequency between f1 and f14, inclusive). To avoid 

connectivity issues not directly related to the experimentation, 

we have opted to issue testing commands using ADB over a 

direct USB connection to a desktop computer. We note that 

remote execution is also supported by ADB over TCP/IP. 

In order to evaluate the effects of different power models 

represented by (1), we have configured three separate executa-

bles of the controller app that compute linear, quadratic, and 

cubic relations of    with respect to f. Specifically, we have 

set    = (f / f1)
m, where m = {1, 2, 3}, and set that  c = 0 to 

focus our attention on the energy effects related to frequency 

selections as opposed to the power difference when a 

processor goes into a sleep state [26]. We note that these 

values may not represent the actual power model of a physical 

device. As a result, we will only report on relative energy con-

sumptions rather than absolute values. As we have stated 

earlier in this paper, the actual values are likely to be some-

where among the three curves. For research purpose, since our 

target is to examine critically the energy saving potential of 

our proposed framework, we mainly look at the conservative 

side, which is the linear power model. 

For each subject app, we have programmed the external 

controller to execute the test suite under the configuration for 

each power model and all the valid frequency subintervals. 

This allows us to compare the consumption values of any 

frequency range in the search space, and to simulate the STDS, 

BTDS, and IRS strategies. 

In the case of K-9 Mail, each test suite execution com-

pletes within one second with negligible power dissipation. In 

order to reduce measurement errors and to obtain more accu-

rate results, we have the external controller to construct a 

performance dataset PD for each frequency subinterval (line 

13 of Algorithm 1) with 25 executions of the test suite (that is, 

T' has been reset 25 times in each configuration). In short, we 

have executed 387 (which is the sum of 40 and 347 for the 

two apps) test cases for each of 105 possible frequency 

subintervals, resulting in 141,435 sets of performance data. 

After completing all the executions for a frequency 

interval, such statistics including execution duration, operating 

processor frequency, CPU utilization, and energy consumption 

estimations are written in log files stored locally on the device. 

The ADB interface is used to manually download the files for 

analysis. We have also built a data analysis tool to simulate 

STDS, BTDS, and IRS using the consumption values collected 

in the experiments. Specifically, we let each device complete 

the execution of a test case before a new test case is simulated. 

In summary, the globally minimal energy consumptions 

achieved in our experiments with K-9 Mail are 50.5%, 32.1%, 

and 17.4% of the energy consumed by the default 

configuration for linear, quadratic, and cubic power models, 

respectively. In the case of MyTracks, the global minima are 

55.3%, 31.2%, and 6.2% of the energy consumed by the 

default configuration for each of the respective models. The 

results of each algorithm with respect to these global minima 

are evaluated in the next section. 

E. Threats to Validity 

Due to limited resources and the combinatorial effect of 

power models, frequency configurations, and subject apps, we 

are unable to expand the scale of the experiment, for instance, 

to support remote execution of more apps on multiple mobile 

devices with diverse VM types. On the other hand, we try to 

compensate by (a) ensuring that the prototype can be extended 

to support remote execution, (b) experimenting with Android, 

an open-source mobile platform that commands the market 

share of smartphones, and the same set of real-life subject 

apps used in a similar study [13], and (c) simulating heteroge-

neity in energy consumption by various power models pre-

viously used by other researchers. We have also spent our best 

effort to avoid program faults in our prototype implementa-

tion. Where possible, publicly tested third-party source code is 

adapted to implement the required features in the controller. 

The subjects used in the case study may not be completely 

developed by end-user programmers. A study of more relevant 

subjects should be conducted to generalize the result further. 

Our framework allows concurrent executions of test cases on 

different devices, and individual devices may query the 

configurations for their native execution. In the case study, we 

have not evaluated these aspects. We only measure the savings 

from the processor aspect while keeping other factors fixed or 

not monitoring them. Savings on non-virtualized components 

require further experimentation. We used PowerTutor and No-

frills CPU Control to measure the energy and performance 

data. However, both of them only provide approximate data. 

Hence, our analysis results are affected by the accuracy 

offered by these two tools. 

V. DATA ANALYSES 

Fig. 2 shows the energy consumptions of the three strat-

egies expressed as a percentage of the default DVFS setting 

(that is, f1–f14 for our case study). Since the algorithms have 
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different terminating conditions, for fair and effective compa-

rison, we plot the performance of the algorithms against the 

number of configurations compared. In the case of IRS, each 

data point reported in Fig. 2 corresponds to the average con-

sumption after repeating the experiment 1000 times to average 

out the random factor at line 6 of Algorithm 4. The values on 

the x-axis (scaled to emphasize the trend of the first 20 config-

urations) correspond to the value of the parameter max. In 

Table 2, we show the performance of the algorithms and the 

minimum number of configurations compared to achieve the 

maximum savings. For instance, the cell for the STDS row of 

K-9 Mail shows that the maximum energy savings achieved 

by STDS is 3% after comparing 5 configurations. This corres-

ponds to the point (5, 97) on the line of STDS in Fig. 2(a). The 

mean performance of each strategy (and each power model) is 

shown in the last sub-column of each major column (and in 

the last row, respectively). 

Since both STDS and BTDS start the search from the 

default frequency subinterval (that is, all the available fre-

quencies), it is clear that their results will not exceed 100%. 

We find from Table 2 that in four out of 18 cases (the cells 

that are not shaded in gray), the strategies do not discover 

significantly more energy-efficient configurations than the 

default ondemand policy governor. In particular, three of them 

belong to the STDS strategy. From subfigures (a), (c), and (e) 

of Fig. 2, we observe that in each of the four cases, the curves 

are quite straight and short. The poor performance of these 

cases may be explained by the application behavior that only a 

limited number of frequency usages can result in significant 

energy savings. However, these two algorithms require an 

improvement in energy savings for every other configuration 

tested. If the margins of comparisons are set too large, the 

algorithms may terminate early even though there are better 

configurations. This result indicates that when exploring the 

energy-efficient configuration space, an algorithm using a 

search-based strategy should consider its level of sensitivity. 

We now focus our discussion on the conservative power 

model (that is, the linear model) to assess the impacts of 

CrowdAdaptor on energy savings. 

 

 

TABLE 2. THE MAXIMAL PERFORMANCE OF THE THREE STRATEGIES OF CrowdAdaptor IN THE CASE STUDY 

 
Max. saving achieved in % Min. # of configurations compared 

Linear Quadratic Cubic Mean Linear Quadratic Cubic Mean 

K-9 Mail 

STDS 3 27 1 10.3 5 9 5 6.3 

BTDS 0 68 42 36.7 3 11 7 7.0 

IRS 50 68 83 67.0 87 105 105 99.0 

MyTracks 

STDS 45 0 48 31.0 11 5 9 8.3 

BTDS 36 69 94 66.3 11 11 10 10.7 

IRS 45 69 94 69.0 105 105 105 105.0 

 Mean 29.7 50.2 60.3 46.7 37.0 41.0 40.2 39.4 

 

  
(a) K-9 Mail with linear power model (b) K-9 Mail with quadratic power model (c) K-9 Mail with cubic power model 

   

(d) MyTracks with linear power model (e) MyTracks with quadratic model (f) MyTracks with cubic power model 

Fig. 2.  Energy consumption and number of configurations compared. 
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As shown in Table 2, when max = 105 for IRS, Crowd-
Adaptor achieves a saving of 0–50% on K-9 Mail and 36–

45% on MyTracks. The average saving is 29.7%, which is 

significant. 

From subfigures (a) and (d) of Fig. 2, we also find that the 

numbers of configurations considered by STDS and BTDS 

before they terminate only differ by a small margin. In con-

trast, IRS can be instructed to search more configurations, but 

its effectiveness is realizable only if the participating devices 

can enumerate these configurations within reasonable time. 

Next, we discuss the similarities and differences in terms 

of energy savings among the three power models on the three 

algorithms. We find from Table 2 that the savings on linear, 

quadratic, and cubic power models are 29.7, 50.2, and 60.5%, 

respectively, which are significant. 

Across the rows, we find that BTDS achieves more savings 

than STDS. The minimum number of configuration trials 

needed to achieve the corresponding maximum savings also 

follows this relative order. For all the subfigures in Fig. 2 

except subfigure (d), BTDS is the steepest, followed by STDS 

and then IRS. Therefore, BTDS is superior to STDS if fast 

convergence is required. In contrast, IRS needs to search an 

arbitrary number of configurations (or even enumerating all 

the available configurations) with slower convergence. 

As a whole, the results show that each strategy and each 

power model exhibit significant impact on energy savings. 

However, we also observe that they exhibit significant differ-

ences in effectiveness. We thus further analyze the data to 

look into the variations in the dataset. 

Fig. 3 shows the energy consumption for all 105 possible 

frequency subintervals on each subject using each power 

model. The horizontal bars span their represented frequency 

subinterval. Configurations that attribute to a fixed frequency 

(such as f1–f1) are represented by “□” markers and denoted by 

“Singleton” in the figure. The figure also shows the results of 

STDS and BTDS using “” and “O” markers, respectively. 

As seen in the figure, energy consumptions can vary 

greatly across frequency ranges. Even for singleton subinter-

vals, the energy consumption may not have a definite correla-

tion with the frequency, which means that the search for a 

good frequency subinterval, even with a limited subinterval 

length, is a nontrivial task. The minimum and maximum 

consumptions exhibit the smallest difference in subfigure (d), 

which range from 55 to 102% of the default configuration. 

STDS and BTDS perform better than half of the frequency sub-

intervals, and achieve the global minima presented in Section 

IV.D in 4 out of 6 cases. For the purpose of baseline 

comparison, the global minima are identified by enumerating 

the energy consumptions of all the configurations. 

In response to RQ1, the case study shows that even in the 

conservative (linear) power model, CrowdAdaptor is able to 

provide significant savings in processor energy consumption 

by an average of 29.7%. 

In response to RQ2, the case study reveals that a higher 

order power model can result in more energy savings. The 

  

 

 
(a) K-9 Mail with linear power model (b) K-9 Mail with quadratic power model (c) K-9 Mail with cubic power model 

  
(d) MyTracks with linear power model (e) MyTracks with quadratic model (f) MyTracks with cubic power model 

Fig. 3 Energy consumption and number of executions compared. 
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number of test executions does not seem to be significantly 

different. We do not observe significant differences in the 

trend of energy savings as more executions are used to locate 

better configurations, particularly between the curves for the 

quadratic and cubic power models. 

VI. RELATED WORK 

The framework proposed in this paper and its application 

covers a number of research areas that are purely software 

(such as testing) or involve software/hardware integration. In 

this section, we review the results of some of the research 

work from each area. 

A. Virtualization on Mobile Devices 

Traditionally, the use of virtualization focus mainly on 

high end servers and data centers. Recent advancements in 

mobile computing resources have made system virtualization 

possible on tablets and smartphones [1][5]. Barr et al. [1] 

discuss the design and implementation of VMware’s Mobile 

Virtualization Platform, and a use case to facilitate the Bring 

Your Own Device (BYOD) business policy [23]. The hosted 

(Type 2) mobile hypervisor is built on top ARMv7 processors 

for the virtualization of the Android OS. To cater for the secu-

rity aspect of the business use case, an enterprise VM environ-

ment (maintained by corporate IT) is created on the mobile 

device with VPN tunnels formed in an isolated network name-

space. Passwords and encryption are used to control access to 

the VM and local file storage. We believe that there will be 

increasing need for energy optimization of executions in VM 

as the technology for mobile virtualization matures. 

B. Collection of Field Data from Deployed Software 

Modern software systems are expected to deploy and 

operate in highly heterogeneous environments. Therefore, it 

can be very difficult to assess the quality and behavior in an 

in-house development environment. Orso [17] discusses the 

collection and analysis of field data from deployed software to 

tackle the problem. They propose a framework to augment in-

house development tasks with field data. Using a remote agent 

and repository that reside in the deployment site, runtime field 

data are collected and transferred back to the developers for 

software maintenance and evolution. One of the usage scenar-

ios is to leverage the large number of similar installations so 

that the burden of collecting field data can be shared by many 

groups of users, each responsible for monitoring a certain 

subsystem. The data collected can be used in software mainte-

nance tasks and runtime improvements such as debugging, 

regression testing, performance tuning, and online failure 

recovery. The technique proposed in our paper shares a very 

similar vision as the one described in Orso [17]. In our paper, 

the field performance data collected from crowdsourcing are 

used by the CrowdAdaptor framework to gradually and 

automatically improve energy efficiency of all end users. 

C. Energy Optimization in Testing 

While optimization in energy consumption has been a 

popular topic of research, particularly in the field of mobile 

and pervasive computing, little effort has been spent to save 

energy in the context of software testing. One of the first 

efforts in this direction has recently been proposed by Li et al. 

[13]. In their work that addresses the problem of energy con-

sumption in post-deployment testing, they propose a technique 

to eliminate test cases in the test suite such that the test 

coverage of the reduced test suite remains the same while 

energy consumption is minimized. Their work assumes that 

the number of test cases in the test suite can be reduced (and 

reduction is desirable) without compromising its effectiveness. 

Their approach is based on formulating test suite minimization 

as an integer linear programming (ILP) problem with the 

constraint that the coverage must not be reduced after the 

minimization. After collecting the coverage and energy con-

sumption values, the problem is encoded and solved using an 

ILP solver. Their experimental results show that the technique 

can realize energy savings of up to 90%. Our paper tries to 

achieve a similar goal as Li et al., but our approach does not 

alter the test suite. On the other hand, our framework attempts 

to extract energy savings by switching power states, and does 

not make changes to the native computations. 

Kan et al. [11] also address energy efficiency in testing 

and regression testing. The work investigates general and app-

specific processor frequency assignment algorithms and their 

effectiveness in testing and regression testing. Two non-

intrusive algorithms (that is, without changing the execution) 

are proposed for test suite execution. Since test suites are often 

executed many times in the process of software development, 

by setting different processor frequencies for the executions, 

an energy-efficient frequency can be determined per test case 

or per test suite. A software simulator-based experiment has 

been carried out to compare the effectiveness of using this 

frequency versus DVFS techniques proposed by other re-

searchers. The paper reports that the single-frequency solution 

outperforms other techniques in energy savings, and is also 

efficient if carried forward to execute future versions of the 

same software in a regression testing scenario. The current 

paper is a generalization of this work and builds on top of the 

default ondemand Android CPU frequency policy governor. It 

considers not only single frequencies, but all the valid fre-

quency ranges supported by the governor. Another improve-

ment is that the empirical results are based on experimentation 

on a real mobile device rather than using a simulator. 

D. Mobile Energy Optimization 

Most of current research related to software energy con-

sumption is in the area of mobile computing. Recent work by 

Hao et al. [8] focuses on estimating the energy consumption of 

mobile apps using program analysis. They propose a software-

driven approach that measures energy usage of mobile apps at 

method, path, and source line granularities. The proposed 

technique assumes that there is an input workload to a mobile 

app for which an estimation of the energy consumption is 

required. The workload is then executed against an instrumen-

ted version of the app, which records path information and 

execution statistics, and computes the energy costs based on 

an instruction-level energy profile. Estimates are annotated in 

the source code for future visualization by the developer. It is 

reported from their experimentation results that the energy 
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estimates are within 10% of the hardware-measured ground 

truth. Unlike this paper, the proposed methodology does not 

directly optimize the app or its executions. However, it can 

serve as a valuable tool allowing energy-aware developers to 

gain insights into the power consumption behavior, and make 

necessary energy optimizations prior to deployment. 

Pathak et al. [20] presents another piece of work on energy 

profiling for mobile devices at process, thread, subroutine, and 

system call granularities. Similar to Hao et al. [8], the 

proposed technique requires instrumentation in addition to 

native routing and system-call tracing. The work proposes an 

accounting scheme for the energy consumed by wakelock-

based components and concurrent access. In a case study, they 

found that 65–75% of energy consumed by free apps is 

accountable to third-party advertisements. Using the proposed 

profiler, they were able to identify several wakelock bugs and 

I/O energy bundles (I/O intensive periods), which add up to a 

significant amount of energy consumed. By visualizing the 

consumption in the context of bundles, the authors were able 

to rearrange and consolidate the energy consuming source 

code, and achieved 20–65% energy savings. The in-depth case 

study conducted in this work shows that energy optimization 

is of critical importance to mobile computing and requires 

substantial research effort. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we have proposed the CrowdAdaptor frame-

work. It is based on the provision of a number of factors: a 

large application installation base, the success of crowd-

sourcing systems and their contributors [6], and the availa-

bility of test cases during application development. It models a 

collection of energy efficiency settings as a configuration of a 

virtual machine that hosts an instance of the application. By 

leveraging the sheer size of the installation base, it spreads out 

the execution of the test cases to different configurations 

among all the devices willing to contribute. The paper also 

presents three strategies to explore the configuration space to 

locate configurations that are more energy efficient. The paper 

has presented a multi-subject case study to evaluate Crowd-
Adaptor. The results show that CrowdAdaptor is able to 

create additional power savings over the default CPU gover-

nor setting. To gain more insights into the effectiveness of 

CrowdAdaptor, we would like to expand the scale of the 

experimentation to include more complex apps and mobile 

devices with more diversified hardware specifications. In view 

of the recent trend of cloud-based mobile testing as a service, 

it will be interesting to apply the proposed framework to a 

cloud-based environment in order to study its feasibility and 

energy savings in a commercial environment. Another direc-

tion is to extend the usage scenario to other hardware compo-

nents, and compare the effectiveness in energy savings with 

the existing power management techniques. 
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