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ABSTRACT
We address security issues in a cloud database system which
employs the DBaaS model. In such a model, a data owner
(DO) exports its data to a cloud database service provider
(SP). To provide data security, sensitive data is encrypted
by the DO before it is uploaded to the SP. Existing en-
cryption schemes, however, are only partially homomorphic
in the sense that each of them was designed to allow one
specific type of computation to be done on encrypted data.
These existing schemes cannot be integrated to answer real
practical queries that involve operations of different kinds.
We propose and analyze a secure query processing system
(SDB) on relational tables and a set of elementary operators
on encrypted data that allow data interoperability, which al-
lows a wide range of SQL queries to be processed by the SP
on encrypted information. We prove that our encryption
scheme is secure against two types of threats and that it is
practically efficient.

1. INTRODUCTION
Advances in cloud computing has recently led to much

research work on the technological development of cloud
database systems that deploy the Database-as-a-service model
(DBaaS). Commercial cloud database services, such as Ama-
zon’s RDS1 and Microsoft’s SQL Azure2, are also avail-
able. Under the DBaaS model, a data owner (DO) uploads
its database to a service provider (SP), which hosts high-
performance machines and sophisticated database software
to process queries on behalf of the DO. The SP thus provides
storage, computation and administration services. There are
numerous advantages of outsourcing database services, such
as highly scalable and elastic computation to handle bursty
workloads. Also, with multi-tenancy, cloud databases can
greatly reduce the total cost of ownership.

Most of existing works on cloud databases focus on per-

1http://aws.amazon.com/rds/
2https://sql.azure.com/

formance issues, such as live migration [13, 14], workload
consolidation [9, 35], resource management [12], and virtu-
alization [31].

However, data security has not been satisfactorily ad-
dressed so far. The goal of this paper is to design a secure
query processing system in a cloud database environment
under the DBaaS model. In particular, we propose a secret-
sharing scheme between a DO and an SP such that a wide
range of database queries can be executed on the SP without
revealing sensitive information.

The common practice to protect sensitive data in database
outsourcing is to encrypt the data before storing it at the
SP. For instance, Oracle database 11g provides Transparent
Data Encryption (TDE), which encrypts disk-resident data
using conventional encryption algorithms. The SP thus pro-
vides a reliable repository with storage and administration
services (such as backup and recovery). To process queries,
the encrypted data has to be shipped back to the DO, which
has to process the sensitive data by itself. The powerful
computation services given by the SP is mostly lost.

In order to leverage the computation resources of the SP in
query processing, we need homomorphic encryption. A fully
homomorphic encryption (FHE) scheme is one that allows
any computation to be done on ciphertext [16]. Although
FHE is of great theoretical significance, existing schemes are
very computationally expensive [17]. It is not practical to
apply FHE to even very small-scale computations, let alone
database query processing which are highly data intensive.

As a compromise, there have been many previous works [1,
30, 27, 6] on designing partially homomorphic encryption
(PHE) such that certain restricted kinds of computation
can be done on ciphertext. For example, OPES [1] is an
order-preserving encryption scheme which allows the order
of plaintext to be deduced by comparing encrypted values
and so it supports range queries. Other examples include
RSA [30] (for multiplication), Paillier’s cryptosystem [27]
(for addition), and PEKS [6] (for keyword search on en-
crypted strings). A problem with these PHE schemes is that
each of them was designed to process one particular type of
operation. Since they employ different encryption functions,
they are naturally not data interoperable. In other words,
one cannot compose complex operations by piecing together
the various simple operations these PHE schemes support.
For example, one cannot express a simple selection clause
such as “quantity × unit-price > $10,000,” which requires
both multiplication and comparison.

Considering the limitations of FHE and PHE schemes, we
take another approach to design a secure query processing
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system. Our approach is based on the secret sharing idea
of the Secure Multiparty Computation (SMC) model [36].
In secret sharing, each plain value is decomposed into sev-
eral shares and each share is kept by one of multiple par-
ties. While no party can recover the plain values by its own
shares, a protocol executed by the parties can be defined
to compute a deterministic function of the values. It has
been shown that any computation that can be expressed as
a circuit can be done under the SMC model [18].

One can consider applying SMC in a cloud database envi-
ronment by decomposing sensitive data into multiple shares,
each being kept by an independent SP. For example, Share-
Mind [4] provides secure storage based on SMC. It also pro-
vides a set of protocols for executing various elementary
operations such as addition and multiplication. Although
theoretically one can execute ShareMind’s protocols to an-
swer SQL queries on sensitive data, there are two issues:
First, ShareMind requires at least three non-colluding par-
ties (SP’s). This incurs significant costs in outsourcing the
database. Second, the protocols for computing general func-
tions are expensive, both in terms of the computations at
SP’s and the communication among them.

In this paper we propose a secure query processing system,
SDB, which shares similar flavors with SMC/ShareMind in
that sensitive data is decomposed into shares. Here we sum-
marize the distinctive features of SDB:

[Two Parties] Unlike ShareMind, SDB requires only two
parties — the DO and one SP.

[Asymmetry] SDB is asymmetric — the DO is trusted
and the SP is untrusted. As we will see later, the asymmetric
property of SDB allows us to design computation protocols
that require the DO to perform minimal works with minimal
storage, while the bulk of computations and data storage for
query processing is taken up by the SP. This characteristic
fits perfectly to the DBaaS model.

[Efficient Operators with Data Interoperability] SDB
provides a set of elementary operators that operate on secret
shares. These operators operate on data that is encrypted
using the same encryption scheme. The output of an oper-
ator can therefore be taken as input of another. We call the
feature that different operators sharing the same encryption
scheme and thus an operator can be applied on the results of
another operator “data interoperability”. With data interop-
erability, a wide range of SQL queries can be expressed and
processed in SDB. Moreover, our protocols for executing the
various operators are practically efficient.

[Plain and Encrypted Data Handling] In practice,
much of the DO’s data is not sensitive and needs not be en-
crypted. In SDB, the protocols for implementing the various
operators can be applied to both encrypted data and plain
data, or a mixture of them.

[Database System Integration] SDB can be imple-
mented as a software layer on top of any off-the-shelf DBMSs.
As our prototype illustrates, SDB can be integrated seam-
lessly with existing DBMSs and utilize many of their func-
tionality.

The rest of the paper is organized as follows. Section 2
discusses some related works. In Section 3 we describe our
system architecture, the data and query model, and the se-
curity model. Section 4 gives the basic idea of our secret
sharing scheme. Section 5 explains in details the protocols
for implementing the various data interoperable operators.
In Section 6 we present our experimental results. Finally,

Section 7 concludes the paper.

2. RELATED WORK
The DBaaS model in a cloud database environment has at-

tracted much research attention lately. Most of these works
e.g., [7, 24, 8, 11], focus on performance issues such as
query processing efficiency and scalability. For example,
techniques like database partitioning and workload assign-
ments for processing queries over an array of distributed
servers are investigated in [11]. Our encryption system is
orthogonal to those techniques and can be integrated into
existing systems.

Security in cloud databases has been studied in [19, 20, 3,
29, 32]. In [19, 20], an outsourced database is encrypted by a
deterministic encryption scheme (e.g., RSA), which supports
equality testing. However, other operations such as order-
ing comparisons are not naturally supported. CryptDB [29]
is a well-known system for processing queries on encrypted
data. It employs multiple encryption functions and encrypts
each data item under various sequences of encryption func-
tions in an onion approach. For example, CryptDB uses a
non-deterministic encryption (e.g., RSA with padding) E1,
a deterministic encryption (e.g., RSA) E2, and an order-
preserving encryption (e.g., OPES [1]) E3 for encrypting
numeric data. These encryptions provide different levels
of security strength and different levels of computational
support — E1 does not support encrypted data computa-
tion but provides the strongest security; E2 allows equality
checks on encrypted data; E3 allows both equality check and
ordering comparison but is not secure against chosen plain-
text (CPA) attack [25]. A data item x can be encrypted
as E1(E2(E3(x))) before it is stored at the SP. To perform
computation on x at SP, the encrypted value has to be de-
crypted to an appropriate level. For example, to perform
equality checking, the data owner has to send the decryp-
tion key of E1 to the SP for it to obtain E2(E3(x)). Under
CryptDB, data security is gradually relaxed to a level that
is appropriate for the required computation on the data.

MONOMI [32] is based on CryptDB with a special fo-
cus on efficient analytical query processing. It employs a
split client/server execution approach. The idea is to intelli-
gently analyze a query plan to identify the computation that
can be carried out by the SP over encrypted data and the
computation that needs to be performed by the client over
decrypted plaintext. A number of optimization techniques
are proposed in [32] to improve query performance.

Both CryptDB and MONOMI employ different encryp-
tion functions to support different operators. The supported
operators are thus not data interoperable. As a result, com-
plex queries that require piping the output of one operator to
another may not be carried out completely at the SP. For ex-
ample, the selection clause“quantity × unit-price > $10,000”
cannot be evaluated by the SP on encrypted data. Instead,
the encrypted data has to be shipped back to the owner who
will evaluate the selection clause itself. MONOMI avoids the
data interoperability issue by pre-computation. For exam-
ple, if it is known that quantity × unit-price is frequently
evaluated, one can precompute the columns’ product and
store that as an encrypted materialized column (say C) at
the SP. In this case, MONOMI can evaluate the selection
clause (C > $10, 000) by applying the ordering comparison
operator over encrypted data.

Our approach differs from that of CryptDB and MONOMI
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Figure 1: SDB’s architecture

in that we focus on designing an encryption method that
supports data interoperable operators. This allows a wider
range of computation on encrypted data to be carried out
directly at the SP, and reduces the work at the client/owner.

In [10] and [34], each tuple in the database is encrypted
as a whole. Additional encrypted indices are proposed to
support simple point and range queries. In [15], a secure
database system based on the SMC protocols is proposed.
The difference between their approach and ours is that their
system requires three non-colluding SPs to answer general
queries while SDB requires only one SP.

Trusted DB [3] and Cipherbase [2] take a hardware ap-
proach to provide data security. The SP installs secure co-
processors (SCPUs), e.g., the IBM 4764 Cryptographic Co-
processor to its machines. SCPUs are tamper-resistant and
attackers cannot inspect data stored in an SCPU’s memory.
Sensitive data is encrypted by the DO, who then distributes
the decryption key to the SCPUs via secure channels and
sends the encrypted data to the SP. To answer queries, the
SP passes the encrypted data to the SCPUs for processing
and receives encrypted results. The advantages of the hard-
ware approach are (1) it provides strong security protection
as long as the SCPUs are not compromised, and (2) it does
not limit query expressiveness. However, SCPUs are expen-
sive (e.g., the IBM 4764 costs about USD $10, 000 in 2009).
In this paper we focus on an algorithmic approach to solv-
ing the secure database problem. Since our solution does
not rely on special hardware, it can be implemented using
inexpensive off-the-shelf machines.

3. MODELS
In this section we describe our data model, the architec-

ture of SDB, two attack models, and the query model.
[Data] First, we briefly mention how data is encrypted.

We employ a secret sharing scheme between the DO and
the SP. Each sensitive data item v is split into two shares,
one kept at the DO and another at the SP. We use JvK to
denote a sensitive value (the JK symbolize that the value is
secret and should be kept in a safe). We call the share of JvK
to be kept at the DO, denoted by vk, the item key of JvK.
The share of JvK kept at the SP is denoted by ve, which is
regarded as the encrypted value of JvK. Our objective is to
prevent attackers from recovering the set of sensitive data
JvK’s given their encrypted values ve’s. Our solution is built
on the relational model and so the database consists of a set
of tables. We assume that each table column is categorized
as either sensitive or non-sensitive. So, for each column A,
either all values in A are encrypted or none is.

[Architecture] Figure 1 shows the architecture. The SP
employs a DBMS (À) to store two types of data: (1) the
plaintext of non-sensitive data and (2) the encrypted values

ve’s of sensitive data. The DO holds the item keys vk’s. As
we will explain later in Section 4, the DO does not need to
physically maintain and store all the item keys. Instead, for
each sensitive column A, the DO stores a column key ckA
from which all the item keys of the items in column A are
derived. In this way, only a small number of column keys
need to be kept at the DO’s key store (Á).

SDB is implemented as two software layers: a client layer
(Â) which resides at the DO and a server layer (Ã) which
resides at the SP. The client layer receives queries from ap-
plications and translates each query into a query execution
plan (Ä). A plan derives a sequence of operations on data.
If an operation involves only non-sensitive data, it is passed
directly to the SP, otherwise, the operation is carried out
by a secret-sharing protocol. Each such protocol consists of
a light-weight client protocol (Å) and a server protocol (Æ).
The client protocol prepares a message which includes an
identification of the data involved, the operation to be ex-
ecuted, and a hint. As we will explain in Section 4, a hint
is derived from relevant column keys and is needed for the
SP to carry out the computation on encrypted data prop-
erly. The client layer sends the instruction message to the
SP’s server layer via a secure channel. At the SP, when the
server layer receives an instruction message, it first iden-
tifies the relevant data. If the data is already residing in
memory (e.g., the data required is an intermediate result ob-
tained from previous operations), the server layer executes
the server protocol of the operation on the memory-resident
data (Ç); Otherwise, the required data is first retrieved from
the DBMS before the the server protocol is executed. If the
executed operation is the last one of the execution plan, the
computed result is shipped back to the client layer, which de-
crypts it to recover the result’s original plaintext values (È).
In our current implementation, data is stored on a DBMS
running MySQL. The server layer executes on a distributed
PC cluster (É), which is a typical setup of cloud databases.

[Security threats] We consider three kinds of knowledge
that an attacker may obtain by hacking the SP. We explain
our security levels against those attackers’ knowledge.

Database (DB) Knowledge — The attacker sees the en-
crypted values ve’s stored in the DBMS of the SP. This
happens when the attacker hacks into the DBMS and gains
accesses to the disk-resident data.

Chosen Plaintext Attack (CPA) Knowledge — The at-
tacker is able to select a set of plaintext values JvK’s and
observe their associated encrypted values ve’s. For example,
an attacker may open a few new accounts at a bank (the
DO) with different opening balances and observe the new
encrypted values inserted into the SP’s DB. We remark that
while CPA knowledge is easy to obtain for public key cryp-
tosystems, it is much harder to get under the cloud database
environment. This is because the attacker typically does not
have control on the number, order, and kinds of operations
that are submitted by other users of the system and so it is
difficult for it to associate events on plain values with the
events on the encrypted ones.

Query Result (QR) Knowledge — The attacker is able to
see the queries submitted to the SP and all the intermediate
(encrypted) results of each operator involved in the query.
QR Knowledge may be obtained in a few ways. For exam-
ple, the attacker could have compromised the SP to inspect
the instructions the client sends to the SP and the memory-
based computations carried out by the SP. Or the attacker



could intercept messages passed between the client and the
server over the communication channel. We remark that
it is typically more difficult to obtain QR Knowledge than
DB Knowledge. This is because memory-based computation
is of transient existence while data on disk persists. The
window of opportunity for an attacker to observe desired
queries and their (encrypted) results is thus limited. More-
over, there are sophisticated industrial standards to make a
communication channel highly secure.

Our security goal is to prevent an attacker from recovering
plaintext values JvK’s given that the attacker has acquired
certain combinations of knowledge listed above. First, we
argue that DB knowledge is typically easier to obtain than
the others and so we assume that the attacker has DB knowl-
edge. Second, it has been proven that no schemes are secure
against an attacker that has both CPA knowledge and QR
knowledge [5]. Therefore, we assume that the attacker does
not have both of these knowledges. Fortunately, as we have
explained, CPA and QR knowledges are typically difficult to
obtain in a cloud database environment and so the chances
of an attacker having both is small. Our system, SDB, is
designed to be secure against the following threats:

• DB+CPA Threat: The attacker has both DB knowl-
edge and CPA knowledge.

• DB+QR Threat: The attacker has both DB knowl-
edge and QR knowledge.

Besides the three types of knowledge we mentioned above,
there could be scenarios in which the attacker has acquired
other knowledge. As an example, an attacker might know
the domain of a certain column and the frequency distribu-
tion of the values in the domain. Combining this frequency
knowledge with, e.g., the results of a group-by operation
might allow an attacker to launch a frequency counting at-
tack. Additional measures need to be taken to guard against
such attacks. For example, fake tuples with carefully chosen
values could be added to tables to disturb the frequency dis-
tribution of a column’s values. In this paper we focus on DB,
CPA, and QR knowledge because these knowledges are rela-
tively easier to obtain by a malicious SP. We will prove that
SDB is secure against the two threats derived from these
knowledges. Readers are referred to [29] for a discussion
on other knowledge and how the functionality of a secure
outsourced database could be lowered to guard against at-
tackers with such additional knowledge.

[Query] We describe the range of queries that SDB sup-
ports. First, any queries that involve only non-sensitive data
are processed by the DBMS at the SP directly. In this case,
any SQL queries can be answered. SDB provides a set of
secure operators that operate on encrypted data. These op-
erators are data interoperable and so they can be combined
to formulate complex queries. Since our data encryption
scheme (see Section 4) is based on modular arithmetic, our
operators are applicable only to data values of integer do-
mains. Data values of other domains such as strings and
real numbers can be encoded as integers with limited preci-
sions. However, certain specific operators on such domains
are not natively supported by SDB and have to be imple-
mented indirectly via other means. We will elaborate on this
issue and briefly explain how to provide restricted support
on non-integer values at the end of this section. For the
moment, we assume that data values are all integers and

operator expression description

× A × B vector dot product of two columns of the same table

+ A + B vector addition/subtraction of two columns of
− A − B the same table

= A = B equality comparison on two columns of the same
table and output a binary column of ‘0’ and ‘1’

> A > B ordering comparison on two columns of the same
table and output a binary column of ‘0’ and ‘1’

π πS(R) project table R on attributes specified in an
attribute set S

⊗ R1 ⊗ R2 Cartesian product of two relations

1S R1 1S R2 equijoin of two relations on a set of join keys S

1 R1 1 R2 natural join between two relations

GroupBy GroupBy(R, A) group rows in relation R by column A’s values

Sum/Avg Sum/Avg(R, A) sum or average the values of column A in relation R

Count Count(R) count the number of rows in a relation

Table 1: List of secure primitive operators

operators take integers input and produce integers output.
Table 1 lists the secure operators provided in SDB.

The first 5 operators (×, +, −, =, >) are arithmetic and
comparison operators. Although they are defined on col-
umn operands, a constant operand can also be used by in-
terpreting it as a constant column. These operators can
be used to formulate selection clauses, such as “quantity ×
unit-price > $10,000”. More complex selection clauses such
as conjunction and disjunction of boolean expressions are
also supported by SDB. Projection (π), which does not in-
volve encrypted value manipulation, is trivially supported.
By combining Cartesian product and selection, theta-join is
supported. SDB also supports group-by, sum, average and
count and so it provides some aggregation functionality.

[Limitations] With data interoperability, SDB is able to
support a wide range of SQL queries. Comparing to existing
systems, such as CryptDB and MONOMI, which implement
various operators using different encryption functions (and
thus are not data interoperable), SDB allows much more
complex queries to be processed fully at the SP. There are,
however, certain limitations on the operators SDB supports.
In particular, SDB does not natively support operators that
output non-integer values, such as square-root (

√
A). Here,

we briefly discuss a few approaches to handle these non-
integer operators.

(1) Table lookup: If a sensitive data column A of a table R
that requires

√
is known to have values from a small integer

domain, say D, we can compute
√
A by the following trick.

We precompute a relation T (D,
√
D) with two columns, D

(which is the domain of A) and
√
D.
√
A is computed by

evaluating π√D(R 1A=D T ), which can be done with our
secure operators. (2) Query rewriting: If

√
is used in a

selection clause, the selection condition can be rewritten to
remove

√
. For example, the selection clause “

√
X + Y >

Z” is equivalent to“X+Y > Z×Z”, which can be evaluated
by our operators. (3) Split client/server execution: A third
option is to adopt MONOMI’s split client/server execution
approach. The idea is to compute as much as possible at
the SP. The execution of non-integer operators are delayed
and finally carried out at the DO. For example, if a query
requests the values of “

√
X + Y ”, the SP computes a column

C = X+Y , returns C to the DO, which then computes
√
C

after decrypting C. With the last option, query plan analysis
techniques studied in MONOMI [32] will be very useful.

SDB can also be extended to answer queries that involve
conjunctions or disjunctions of selection clauses that involve
numerical data and string data separately. For example, we
can use PEKS [6] to encrypt strings, which allows keyword
search on encrypted strings. Queries such as ‘SELECT *
WHERE Name LIKE“%John%”AND Salary > 10, 000’ can



be evaluated by combining the Boolean results obtainable
through PEKS and our secret-sharing scheme.

We remark that although there are limitations on SDB’s
operators, our design of data interoperable operators is the
first of its kind. Our goal is to support the processing of a
wide range of SQL queries on encrypted data. In particular,
we evaluated SDB over the TPC-H benchmark (Section 6)
and all queries in the benchmark are natively supported by
SDB. We leave the study of non-integer operators as future
work and focus on integer operators in this paper.

4. SECRET SHARING
In this section we describe how SDB encrypts sensitive

data using a secret-sharing method. The DO maintains two
secret numbers, g and n. The number n is generated ac-
cording to the RSA method, i.e., n is the product of two big
random prime numbers ρ1, ρ2. The number g is a positive
number that is co-prime with n.3 Define,

φ(n) = (ρ1 − 1)(ρ2 − 1). (1)

We have, based on the property of RSA,

(aed mod n = a) ∀a, e, d such that ed mod φ(n) = 1.

Consider a sensitive column A of a relational table T of
N rows t1, . . . , tN . The DO assigns to each row ti in T
a distinct random row id ri. Moreover, the DO randomly
generates a column key ckA = 〈m,x〉, which consists of a
pair of random numbers. We require 0 < ri,m, x < n.

To simplify our discussion, let us assume that the schema
of T is (row-id, A). (Additional columns of T , if any, can be
handled similarly.) The idea is to store table T encrypted
on the SP. This consists of two parts: (1) Sensitive values in
column A are encrypted using secret sharing based on the
column key ckA = 〈m,x〉 and the row ids. (2) Since the
row ids are used in encrypting column A’s values, the row
ids have to be encrypted themselves. In our implementa-
tion, row ids are encrypted using an additive homomorphic
encryption E(), e.g., SIES [28].

The reason why row-id and A are encrypted differently is
that row ids are never operated on by our secure operators
(i.e., we assume row ids are not part of user queries). Hence,
a simpler encryption method suffices. As we will see later,
in order to correctly implement the secure operators, the
encryption function, E(), applied on row ids needs only be
additive homomorphic. On the other hand, sensitive data is
encrypted using secret sharing so that computational proto-
cols can be defined to implement our secure operators. The
secret sharing encryption process consists of two steps:

Step 1 (item key generation). Consider a row with
row id r and a sensitive value (of A) JvK. Under secret shar-
ing, our objective is to split JvK into an item key vk and an
encrypted value ve. Conceptually, ve is kept at the SP and
vk is kept at the DO. Since we want to minimize the storage
requirement of the DO, the item key vk is materialized on
demand and is generated from the column key ckA (which
is stored at the DO’s key store) and the row id r, which is
stored encrypted at the SP. Specifically,

3In our implementation, ρ1 and ρ2 are 512-bit numbers and
so n is 1024-bit.
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Figure 2: Encryption procedure (g = 2, n = 35).

Definition 1. (Item key generation) Given a row id r
and a column key ckA = 〈m,x〉, the item key vk is given by,

vk = gen(r, 〈m,x〉) = mg(rx mod φ(n)) mod n.

For simplicity, in the following discussion, we sometimes
omit “mod φ(n)” in various expressions with an understand-
ing that the exponent of the above formula is computed in
modular φ(n). So, we write,

vk = gen(r, 〈m,x〉) = mgrx mod n. (2)

Step 2 (Share computation). Shares of JvK are deter-
mined by a multiplicative secret sharing scheme. While vk
is one of the share, the other share ve, which is considered
the encrypted value of JvK, is computed by the following
encryption function E .

Definition 2. (Encrypted value) Given a sensitive value
JvK and its item key vk, the encrypted value ve is given by,

ve = E(JvK, vk) = JvKv−1
k mod n, (3)

where v−1
k denotes the modular multiplicative inverse of vk,

i.e., vkv
−1
k mod n = 1.

To recover JvK, one needs both shares vk and ve and compute

JvK = D(ve, vk) = vevk mod n. (4)

It has been proven in [25] that JvK cannot be determined
with only ve. Therefore, our scheme is secure against at-
tackers with DB knowledge. Also, we present the proof in
Appendix A that our scheme is secure against CPA attacks.
That is, if an attacker is given a set S of 〈JvK, ve〉 pairs, it can-
not deduce other sensitive data Jv′K that are not mentioned
in S from their encrypted values v′e. Hence, our scheme is
secure against attackers with DB+CPA knowledge.

Figure 2 summarizes the whole encryption procedure and
illustrates how sensitive data (e.g., a column A) is trans-
formed into encrypted values ve’s. It also shows that the
DO only needs to maintain a column key in its key store,
while the SP stores the bulk of the data.

Finally, after the SP has computed a query’s results, the
(encrypted) results are shipped back to the DO, which de-
crypts them to obtain plaintext results. In this process, the
SP might have to send the (encrypted) row ids back to the
DO for decryption. We will explain the result decryption
procedure in the next section, when we discuss how each
secure operator is implemented.



5. OPERATORS
In this section we discuss how the secure operators listed

in Table 1 are implemented in SDB. First a few notes.
[Protocols] Each operator is executed by a protocol, which

consists of a client protocol and a server protocol. Recall
that our data model is column-based. Each sensitive col-
umn A is transformed by our secret sharing scheme into a
column of item keys vk’s and a column of encrypted values
ve’s. Moreover, the item keys are generated by a column
key ckA = 〈mA, xA〉4, which is physically maintained by the
DO, while the encrypted values are stored at the SP. Since
an operator takes one or more columns as input and pro-
duces one or more columns as output5, the client protocol
takes column key(s) as input and produces column key(s)
as output, while the server protocol’s input and output are
column(s) of encrypted values.

[Notations] We use capital letters, e.g., A, B to represent
table columns and we use their lower case counterparts to
denote values in columns. For example, we use “a” to denote
a value (of a certain row) in column A. We use other lower
case letters, e.g., p, q to represent other scalar values. For
a sensitive value, say a, we use JaK, ak, ae to represent the
plaintext value, the item key, and the encrypted value of a,
respectively. Moreover, we use Ae to represent the column
of encrypted values ae’s stored at the SP.

[Operator Modes] A column operand of an operator
is not necessarily sensitive. For example, the “+” operator
could add a sensitive (encrypted) column A with a plain
column B. Moreover, for the arithmetic and comparison
operators, one of the operands could be a scalar (constant)
value. For example, we could multiple a column with a
constant as in the selection clause “2 × A > B”. We thus
consider three modes for the operators, namely, EE mode
(both operands are encrypted), EP mode (one operand is
encrypted, the other is plain), and EC mode (one operand
is encrypted, the other is a constant). We will first discuss
EE mode and EC mode implementation. EP mode will be
covered at the end of this section.

[Security] We show that the implementation of the op-
erators are secure against DB+QR Threat. Specifically, we
show that in the execution of an operator, even an attacker
sees the message given to the SP and the results of the opera-
tor, the attacker cannot deduce the column keys kept by the
DO based on the encrypted values stored at the SP. With-
out the column keys, the attacker cannot deduce the item
keys and thus it cannot recover sensitive values JvK’s. A
complete security proof that SDB is secure against DB+QR
threat is given in Appendix I.

[Operator Output] The output of an operator in many
cases is an intermediate result of a query and thus it is of
transient existence and may not be physically stored in the
database. For example, to evaluate the expression “A× 2 >
B”, the query processor computes a column C = A × 2
first, which is the output of “×” in EC mode. Note that the
output column C is also represented using secret sharing,
i.e., it is represented by a column key ckC (at DO) and
an encrypted column Ce (at SP). As we will see later, for
the EC mode of “×”, the output column (e.g., C) and the

4We use the subscript A here to denote that the key is as-
sociated with the column A.
5We consider a single numeric value output by an aggregate
operator as a column of one single row.
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Figure 3: Ae as a reference of Ce.

input column (e.g., A) share the same column of encrypted
values. For efficiency, the SP does not physically duplicate
Ae to obtain Ce. Instead, a reference is made to associate Ce
to Ae. Figure 3 illustrates this idea. For simplicity, in the
following discussion, we will only focus on how to compute
an operator’s output, which includes some column key(s)
and some encrypted column(s). We will omit the details of
how this data is physically stored.

[Additional Columns] To properly implement the vari-
ous secure operators, we add two columns: S and R to each
table T . Each value in S is the constant 1. Each value in
R is a positive random number. The columns S and R are
encrypted using secret sharing. In particular, their column
keys (ckS , ckR) are stored at the DO and their encrypted
columns (Se, Re) are stored at the SP.

Before we give the details of our protocols, we first list two
simple properties of our secure sharing scheme. Consider
a sensitive column A encrypted with column key ckA =
〈m,x〉. If x = 0, from Equation 2, we have

vk = gen(r, 〈m, 0〉) = mg(r·0) mod n = m. (5)

It follows that

(ckA = 〈1, 0〉)⇒ (vk = 1) . (6)

Also, from Equation 3, we have

(vk = 1)⇒
(
ve = E(JvK, 1) = JvK1−1 mod n = JvK

)
. (7)

Property 1. If ckA = 〈m, 0〉, then all values in column
A has the same item key m.

Property 2. If ckA = 〈1, 0〉, then all encrypted values
ve’s of column A are equal to their corresponding plaintext
values JvK.

Note that any column key 〈m,x〉 the DO generates to en-
crypt a column should have x > 0. However, we will show
that for some operators, our protocols will purposely con-
vert a column key to 〈m, 0〉 or even 〈1, 0〉. The latter case
is typically done to reveal the plaintext of an operator’s re-
sult, such as the result of a comparison operator specified in
a selection clause. We will show that no sensitive informa-
tion is leaked through this conversion. Next we discuss the
client/server protocols of the various operators. A list of
pseudo-codes of the operators is given in Appendix J.

5.1 Multiplication (×)
We first discuss the EE and the EC modes of “×”.
[EE Mode] Consider two sensitive columns A and B of a

table T whose column keys are ckA = 〈mA, xA〉 and ckB =
〈mB , xB〉, respectively. Let C = A×B be the output column
with column key ckC = 〈mC , xC〉. For a row t, let r be its
row-id and let a, b and c be the values of A, B, C in row
t, respectively. Our objective is to derive (1) the column
key ckC and (2) the encrypted value ce of c such that JcK =
JaK · JbK.
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Figure 4: C = A×B (g = 2, n = 35).

To achieve that, the client protocol sets ckC = 〈mC , xC〉 =
〈mAmB , xA + xB〉 and the server protocol computes ce =
ae · be for each row. By Equation (2),

ck = mC · grxC = mA ·mB · gr(xA+xB) = akbk (mod n). (8)

By Equations (3), (4), (8) we have, in modular n,

JcK = ceck = aebeck = JaKa−1
k JbKb−1

k akbk = JaKJbK.

The protocol is thus correct. Note that the client layer sends
a message to the server layer instructing it to compute ce =
ae · be for each row in table T . The message contains no in-
formation of any keys. The protocol is thus secure. Figure 4
illustrates the protocol: Given ckA = 〈2, 2〉, ckB = 〈1, 3〉,
the client protocol computes ckC = 〈2 × 1, 2 + 3〉 = 〈2, 5〉.
The server protocol computes ae × be mod n for each row,
e.g., the second row gives 22 × 29 mod 35 = 8.

[EC Mode] We compute C = A× p for a column A and
a constant p. In this case, the client protocol sets ckC =
〈pmA, xA〉 and the server protocol sets ce = ae for each row
in the table. In fact, those ce’s need not be materialized.
Instead, a reference indicating that Ce = Ae suffices. (See
Figure 3.) Note that ck = p ·mAg

rxA = p · ak. Hence,

JcK = ceck = aeck = JaKa−1
k ck = JaKa−1

k · p · ak = pJaK.

The protocol is thus correct. Also, no messages with any
key information are sent to the server layer. The protocol is
thus secure. Besides, since SP has no action at all in the
operator, it becomes an advantage of our system in terms of
security. A detailed discussion is shown in Appendix B.

5.2 Key Update
Before we continue with other secure operators, let us

first discuss a helper operator called key update, denoted
by κ. The operator, written as, κ(A, 〈mC , xC〉) takes two
operands: a column A and a target column key 〈mC , xC〉.
The output of κ is a column C such that:
(1) C and A have the same plaintext values. That is, for
each row-id r, JcK = JaK where c and a are the values of C
and A in row r, respectively.
(2) The column key of C is given by the specified target, i.e,
ckC = 〈mC , xC〉.

Recall that a column S (of plaintext JsK = 1) is added to
each table. By Equation 3, we have se = s−1

k . Given the
column key of S (ckS = 〈mS , xS〉), to execute key update,
the client protocol computes two numbers p, q:

p = x−1
S (xC − xA) mod φ(n); q = mAm

p
Sm
−1
C mod n (9)

and sends them to the server layer. The server protocol
then computes, for each row (of row-id) r, the encrypted
value of C by

ce = q · ae · spe . (10)

To prove the correctness of the protocols, we need to show
that JcK = JaK given the column key ckC = 〈mC , xC〉. In

modular arithmetic, we have,

JcK = ceck = mA ·mpS ·m
−1
C · ae · s

p
e ·mC · grxC by (2, 4, 9, 10)

= mA ·mpS · ae · (s
−1
k )p · grxC ∵ se = s−1

k

= mA ·mpS · ae · ((mS · g
rxS )−1)p · grxC by (2)

= mA · ae · (gr·xS ·x
−1
S
·(xC−xA))−1 · grxC by (9)

= ae · (mA · grxA ) = JaK by (2), (4).

Note that the client layer sends a message with the values
of p and q to the server layer. Since the two numbers are
derived from A, C, and S’s column keys, we need to ensure
that an attacker knowing p and q cannot deduce any key in-
formation. In particular, we prove the following properties:

Property 3. An attacker with DB knowledge cannot re-
cover ckA or ckS even if he observes p, q and knows ckC .

Property 4. An attacker with DB knowledge cannot re-
cover ckC or ckS even if he observes p, q and knows ckA.

The proofs of the above properties are shown in Appendix
C. Properties 3 and 4 will be used to prove the security of
other operators to be discussed next.

5.3 Addition/Subtraction (+/−)
We describe the protocol for “+”. The protocol for “−” is

very similar so it is omitted.
[EE Mode] Given two sensitive columns A and B, we

compute a column C = A + B. Consider a row for which
the (plaintext value, item key) of A, B, C are (JaK, ak),
(JbK, bk), (JcK, ck), respectively. Our objective is to encrypt
JcK = JaK + JbK without revealing JaK or JbK. We observe
that if ak = bk = ck = k (i.e., if all the values are associated
with the same item key k), then our encryption function is
additive isomorphic, i.e.,

ae + be = E(JaK, k) + E(JbK, k) = JaKk−1 + JbKk−1

= (JaK + JbK)k−1 = E(JaK + JbK, k) (mod n).

Hence to implement “+”, the server protocol only needs
to set ce = ae + be for each row in the table because then
ce = E(JaK + JbK, k), which is the desired encrypted value of
JcK. By giving A, B, C the same column key, their item keys
in the same row will be the same. This can be achieved by
applying key update on the columns.

Specifically, to compute C = A + B, the client protocol
first generates a column key ckC = 〈mC , xC〉. Then it exe-
cutes the protocol of key update to get A′ = κ(A, 〈mC , xC〉)
and B′ = κ(B, 〈mC , xC〉). This gives A′ = A, B′ = B,
and the columns keys of A′, B′, C are all ckC . After that,
the client layer sends a message to the server layer instruct-
ing it to add the encrypted values of A′ and B′ to get the
encrypted values of C, i.e., ce = a′e + b′e.

In executing the protocol, two key updates are done. Al-
though each execution of key update is secure, two related
key updates may reveal more information than two indepen-
dent ones. Here, we show that even an attacker relates the
key updates, he cannot obtain any information of the keys.

First, an attacker may observe the (p, q) pair (see Equa-
tion 9) submitted to the server layer in a key update oper-
ation. Let (pA, qA) and (pB , qB) be the pairs for executing
κ on A and on B, respectively. From Equation 9 we have,

xA + pAxS = xC ; xB + pBxS = xC (mod φ(n)),

⇒ xA = xB + (pB − pA)xS (mod φ(n)),

⇒ xA = xB + pAB · xS (mod φ(n)),



where pAB = pB − pA. The attacker can thus relate xA, xB
and xS , which are parts of A, B, S’s column keys. Suppose
there are h columns A1, . . . , Ah of a table on which we may
apply the addition operator. Let x1, . . . , xh be the “x parts”
of these columns’ column keys (as in ckAi = 〈mi, xi〉). Over
time, an attacker may collect equations of the form xi =
xj + pij · xS (mod φ(n)), for which pij ’s are known. The
following theorem says that it is infeasible to recover the
keys (xi’s, xS) from the system of linear equations.

Theorem 1. Given a set of h+1 variables {x1, x2, ..., xh}
and xS, and a system of equations of the form xi = xj +
pij · xS (mod φ(n)) with known p′ijs, there are at least φ(n)
solutions of the variables that satisfy the system of equations.

The proof of Theorem 1 is presented in Appendix E. Since
φ(n) is a 1024-bit number, the solution space is huge. The
attacker therefore cannot recover the“x parts”of the column
keys. We can also prove that relating qA and qB does not
allow the attacker to recover the “m parts” of the column
keys either. Our protocol is thus safe.

[EC Mode] Computing C = A+u, where u is a constant,
can be done by computing A + (S × u), where S is the
constant column (of 1’s) of the table. This is done by first
executing an EC multiplication followed by an EE addition.

5.4 Comparison (= / >)
We consider two comparison operators, namely, equality

(=) and ordering (>). Given two columns A and B, the
objective is to compute a plaintext column C such that, for
each row, c = 1 if the comparison is “true” and c = 0 oth-
erwise. Note that we do not encrypt the output column C
because the comparison operators are mostly used in selec-
tion clauses and the server layer needs to know the truth
value of each selection in processing queries.

To compute C, our protocol first computes Z = R× (A−
B), where R is the random column of the table Next, we
perform a key update to obtain Z′ = κ(Z, 〈1, 0〉). Hence,
Z′ is equal to Z but with the column key ckZ′ = 〈1, 0〉.
By Property 2, the plaintext values of Z′ are all revealed
to the server. Hence, the server observes the plain values of
R× (A−B). Note that the values of A−B are randomized
by the column R, the server therefore cannot observe A−B.
On the other hand, the server protocol can deduce, for each
row, (1) if z′ = 0, then JaK = JbK, and (2) if z′ is positive,
then JaK > JbK. With these observations, the server protocol
can construct the plain output column C accordingly.

Note that sign information is lost in modular arithmetic.
The details of how we address this issue is in Appendix D.

5.5 Projection (π)
The projection operator does not manipulate values in a

table. It is supported by instructing the server protocol to
return the desired encrypted columns. The client protocol
then decrypts the values with its column keys using Eq. 4.

5.6 Cartesian Product (⊗) and Joins (1)
We compute the Cartesian product T ′ = T1 ⊗ T2 of two

tables T1 and T2. Readers are referred to Figure 5, which
illustrates Cartesian product and the various symbols we use
in the following discussion. For simplicity, let us assume that
T1 has only one column A and T2 has only one column B.
(Additional columns can be handled similarly.) Recall that
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Figure 5: T ′ = T1 ⊗ T2

a constant column S is added to each table. Let S1 and S2

be the constant columns of T1 and T2, respectively. Consider
a row in Table T1 with row-id r1 and a row in Table T2 with
row-id r2. Let the values of A and B in these rows be JaK
and JbK, respectively. Furthermore, let (plaintext, item key,
encrypted value) of S1 in row r1 and those of S2 in row r2
be (Js1K, s1k, s1e) and (Js2K, s2k, s2e), respectively. Finally,
recall that S1 and S2 are columns of 1’s. So,

Js1K = Js2K = 1. (11)

The output of “⊗” is a table T ′ with two columns A′ and
B′. For each pair of rows (r1 ∈ T1, r2 ∈ T2), a row r′ in T ′

is created. Let the values of A′ and B′ in row r′ be Ja′K and
Jb′K. We want Ja′K = JaK and Jb′K = JbK.

Recall that tables are encrypted using secret sharing, our
protocol needs to compute T ′ in our secret-sharing format
based on the column keys, the (encrypted) row-ids, and the
encrypted column values of T1 and T2. We illustrate the
computation by describing the client and server protocols
for computing the followings:
(1) [The column key of A′]. Given the column keys ckA =
〈mA, xA〉 and ckS2 = 〈mS2 , xS2〉, the client protocol first
computes p = x−1

S2
xA mod φ(n). It then sets

ckA′ = 〈mA′ , xA′〉 = 〈mA(mS2)p, xA〉. (12)

(2) [The encrypted row-id of r′]. The server protocol sets
E(r′) = E(r1) + E(r2). Recall that row-ids are encrypted
using SIES (see Section 4), which is additive homomorphic:

E(r′) = E(r1) + E(r2) = E(r1 + r2). So,

r′ = r1 + r2.
(13)

(3) [The encrypted value a′e of Ja′K]. The client protocol
sends p to the server protocol, which sets

a′e = ae · (s2e)p. (14)

By symmetry, other computations, such as the column key
of B′ and the encrypted values of B′ can be similarly done.

To prove that the protocol is correct, we need to show
that Ja′K = JaK. Let a′k be the item key of a′. We have, in



modular arithmetic,

a′k = gen(r′, ckA′ ) = gen(r′, 〈mA(mS2 )
p, xA〉) (by (12))

= mA(mS2 )
pgr
′·xA (by (2))

Ja′K = a′ea
′
k = (ae(s2e)

p)
(
mA(mS2

)pg(r1+r2)xA
)

(by (4, 13, 14))

= (ae(s2e)
p)

(
mA(mS2 )

pgr1xA+r2pxS2

)
(∵ p = x−1

S2
xA)

= (mAg
r1xAae)

(
(mS2

)pgr2pxS2 (s2e)
p
)

= (akae)(s2ks2e)
p (by (2))

= JaKJs2Kp = JaK1p = JaK. (by (11))

Note that the client protocol sends p = (xS2)−1xA to the
server protocol. This information is similar to that sent in
the key update operation (see Equation 9). The security for
the protocol is discussed in Appendix I. Joins are basically
Cartesian product with selection. Therefore, joins with se-
lection clauses that are expressible with our arithmetic and
comparison operators are supported. Note that equi-join
is not efficient if we first compute the Cartesian product.
To make query processing faster, we have an operator for
equi-join which is discussed in Appendix F.

5.7 Sum, Count, Average and Group-By
Consider a column A of N values a1, ..., aN . We want to

compute the sum, σA =
∑N
i=1JaiK from encrypted values.

To do so, we generate a random number mZ and transform
A into a column Z by a key update: Z = κ(A, 〈mZ , 0〉).

We have the plain values of Z equal to those of A and the
column key of Z is ckZ = 〈mZ , 0〉. Let the values in Z be
z1, . . . , zN . By Property 1, all zi’s share the same item key
mZ . Let σZ be the sum of the encrypted values of column
Z, we have,

σZ =

N∑
i=1

(zi)e =

N∑
i=1

(E(JziK,mZ) =

N∑
i=1

(JziK(mZ)−1)

= (mZ)−1
N∑
i=1

JziK = (mZ)−1
N∑
i=1

JaiK = (mZ)−1σA. (15)

Hence, σA = mZ · σZ . In other words, to compute the
sum, the server protocol adds all encrypted values of col-
umn Z and returns that sum (σZ) to the client protocol,
which “decrypts” the value by multiplying it with the se-
cretly generated mZ .

The COUNT operator can be implemented by having a
server protocol that counts the number of rows of a column.
With SUM and COUNT, Average can be trivially done.

Group-By can be done by using the column Z. Since
values in Z share the same item keys, two values JziK, JzjK
are the same if their encrypted values are the same (i.e., if
(zi)e = (zj)e). By inspecting the encrypted values of Z, the
server can partition the rows of A into groups such that the
rows in each group share the same value. The security of
the group-by operator is discussed in Appendix I.

5.8 EP Mode of operations
Our secure operators can be applied to a mix of sensitive

and non-sensitive columns. This is because, by Property 2,
we can treat a plain column A as a sensitive one with the
column key 〈1, 0〉. However, in our proofs of operators’ secu-
rity, we assumed that the server does not know the column

keys of the operands. Having the secure operator operates
on a column with known column key (〈1, 0〉) could invali-
date our security proofs. To avoid this problem, whenever a
plain column A is involved in any secure operation, we first
apply a key update on A and transform it into a column
C = κ(A, ckC), where ckC = 〈mC , xC〉 is a secret column
key that the client layer picks. Any subsequent operations
on A will be applied on C instead. Note that by Property 4,
even if an attacker knows ckA = 〈1, 0〉, he cannot deduce
ckC or any other column keys by observing the key update
messagesl. Hence, subsequent operators on C are secure.

5.9 Optimization
We end this section with a brief note on performance opti-

mization. First, we note that our encrypt/decrypt functions
involve computing modular exponentials, which are typically
expensive. There are various methods to speed up such com-
putation, e.g., by using Garner’s algorithm [25]. A detailed
discussion on optimization techniques is shown in Appendix
G. Second, there are studies on secure indexing techniques,
e.g., [21]. The general idea is to partition the range of a col-
umn’s values into coarse ranges. Tuples whose values fall
into the same range are grouped together. Such an index
helps filter away irrelevant rows (those whose values do not
fall in the desired ranges) of a query. Our study is orthog-
onal to secure indexing. In particular, index filtering can
be applied before we process a query using our secure op-
erators. A more detailed discussion is shown in Appendix
H.

6. EXPERIMENT
We evaluate the performance of SDB by conducting exper-

iments on our prototype. The prototype was built based on
the architecture shown in Figure 1. We use MySQL 5.6.10
as the underlying DBMS. The client layer is running on one
machine while the server layer is running on a cluster of 8
machines. So, the server has 8 times more computing power
than the client. Each machine has an Intel Core i7-3770
CPU@3.4GHz with 16GB RAM and is running Ubuntu.
Both layers are written in C++ using the GMP library6.

Our experiment is designed to address two questions. First,
a focus of SDB is data interoperability. So, Q1: “Just how
important it is for the secure database operators to be data
interoperable in a cloud database environment?” Second,
protecting sensitive data by means of encryption always in-
curs overheads, e.g., ciphertext is typically larger than plain-
text. Also, as we mentioned in the introduction, process-
ing data using a fully homomorphic encryption scheme (to
achieve data interoperability) is many orders of magnitude
slower than plaintext processing, which makes it infeasible
for data-intensive applications. So, Q2: “Is our SDB ap-
proach practical in terms of query-processing efficiency?”

We answerQ1 by comparing the performance of SDB with
the Decrypt-Before-Query (DBQ) model and MONOMI [32]
(Section 6.1). Both DBQ and MONOMI are implemented
on the same platform as that of SDB. In particular, they
use the same machine configurations for the client and the
server as those of SDB, as well as the same DBMS for stor-
ing data. For DBQ, since no computation on encrypted
data is carried out by the SP, sensitive data is encrypted

6The GNU Multiple Precision Arithmetic Library.
http://gmplib.org



using RSA encryption. For MONOMI, data is encrypted
using various encryption schemes to support different types
of operations (see [32]). For DBQ, the server only serves to
retrieve relevant (encrypted) columns from the DBMS and
to ship them back to the client, which decrypts the data and
processes the query to obtain results by itself. CryptDB [29]
and ODB [19, 20], for example, have to resort to the DBQ
model to process complex queries unless some extensive pre-
computation is done (see Section 2). MONOMI adopts a
split client/server execution approach. The SP computes
as much as possible of the query. For the parts that can’t
be computed by the SP, they will be passed to the DO. In
this case, the DO decrypts all the intermediate results and
continue the query computation on plain values. We imple-
mented MONOMI’s protocols as detailed in [32].

To answer Q2, we evaluate SDB using the TPC-H bench-
mark and compare SDB’s performance against pure plain-
text processing as a reference (Section 6.2). The TPC-H
benchmark queries are mostly aggregation queries. They
thus amplify the issue of data-intensive query processing.
The benchmark is therefore a good stress test of our ap-
proach.

6.1 Comparing SDB, DBQ and MONOMI
We compare SDB with an implementation of the DBQ

model (or simply DBQ) and MONOMI database (denoted
as MDB) using a simple synthetic dataset on which a range
of queries are executed. The dataset is a table T with three
sensitive columns A, B, C. The values in each column are in-
tegers randomly generated with a uniform distribution over
the range [0, 1M]. We execute 4 queries which cover the
various secure operators of SDB:
[Range]: SELECT A,B,C from T WHERE A+B < q.
[Count]: SELECT COUNT(*) from T WHERE A+B < q.
[Sum]: SELECT SUM(A ∗B) from T WHERE A+B < q.
[Join]: SELECT SUM(t1.B ∗ t2.A) FROM T as t1, T as t2
WHERE t1.A = t2.B.

The parameter q controls the queries’ selectivity. A smaller
q gives a more selective query and a smaller query result.
In our baseline setting, we have q set to a value such that
the selection clauses of the range, count, sum queries return
1% of the table’s rows. All the implemented methods em-
ploy the domain partitioning indexing technique [21] men-
tioned in Section 5.9. Specifically, each domain is divided
into 50 equal-sized partitions. The index helps us reduce
the amount of data retrieved from the DBMS. For example,
for the range query, the index filters away any rows in T
whose A or B values are larger than q because these rows
are guaranteed to fail the selection criterion.

We compare the execution times of SDB, DBQ and MDB.
The cost of each is divided into three components: (1) DB
Access: the time taken by the DBMS in processing queries
and retrieving data for the server layer. (2) Server cost:
the time taken by the server layer in executing server pro-
tocols. (3) Client cost: the time taken by the client layer in
executing client protocols, result decryption and any post-
decryption processing. Note that under the DBQ model,
there are no secret-sharing protocols and the client com-
putes query results by itself. So, for DBQ, the server cost
is null and the client cost includes those for data decryption
and query execution on plain data. With encrypted data
processing, the server cost and the client cost are mostly
dominated by modular arithmetic computation.
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Figure 7: Execution times vs. selectivity

Figure 6 shows the results for the four queries as the ta-
ble size increases from 100K to 500K rows. Execution times
are shown as stacked bars, each with three components (al-
though in most cases, one component dominates all others
in the figures shown).

From Figure 6, we make a few observations. (1) DB access
times are very small (almost unnoticeable in the figures).
This is because with a 1% selectivity, the secure index is
quite effective in filtering away many irrelevant rows. Data
accesses by the DBMS are thus efficient. (2) The server cost
of MDB is much lower than that of SDB. There are two
reasons for that: (a) For MDB, the server is only comput-
ing parts of a query. For example, consider the range query
‘A + B < q’. The SP can only perform the addition. To
complete the query, the encrypted results of the addition
operation have to be transferred to the client, which will de-
crypt the results and evaluate the comparison operation. On
the other hand, for SDB, the SP evaluates the query com-
pletely. (b) MDB employs various homomorphic encryption
schemes that allow computation on encrypted data to be
done more efficiently. On the other hand, SDB uses secret
sharing to encrypt data. Computation based on secret shar-
ing encryption is generally slower than other homomorphic
schemes. (3) The client cost of MDB is much higher than
that of SDB for the first three queries. This is because much
of the computation involved in evaluating a query has to be
carried out by the client under MDB. We observe that the
client cost of MDB is even higher than that of DBQ. This
is because some of the homomorphic encryption functions,
e.g., Paillier cryptosystem employed by MDB are more ex-
pensive to decrypt than the simple RSA encryption we used
for DBQ. (4) For SDB, the cost is predominately server cost
(about 93% of total execution time). This is because queries
are computed by the server protocols, which deal with the
bulk of the data. The client, on the other hand, only has to
decrypt the result. (5) For the join query, MDB and SDB
show comparable total costs. Moreover, MDB’s client cost
is lower than that of DBQ, which is in contrast to the results
of the first three queries. This is because the join query re-
quires only a single operation (equality comparison), which
can be handled efficiently by the server under MDB. The
client only has to decrypt the join result. While most of
that cost for MDB is on the client side, for SDB, it is the
server that bears most of the cost. In a cloud database en-
vironment, however, our objective is to minimize the client
cost. So, based on the experimental results, we see that SDB
compares very favorably against DBQ and MDB.

Figure 7 shows the execution times of SDB, DBQ and
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Figure 6: Execution times of SDB and DBQ for the 4 sample queries

MDB for the range query as we change the selectivity of
the query (by adjusting the parameter q) from 0.01% (very
selective) to 2% (less selective). The relative costs of the
three components remain similar to those we have observed
in Figure 6. In particular, SDB gives much smaller query
execution times and that most of the costs under SDB are
borne by the server.

6.2 Benchmark
Data processing on encrypted data in intrinsically slower

than plaintext processing. After all, ciphertext is generally
bigger than plain values. Fully homomorphic encryption
(FHE), which supports full-fledged data interoperability, is
of theoretical interest only because there are no practically
efficient implementations of it. With SDB, we aim at design-
ing a data interoperable system that is practically efficient.
The tradeoff is that we have to impose certain restrictions
on the data model (SDB is limited to values of integral do-
mains) and on the operators (SDB is limited to operators
with integral outputs). In this section, we look at how SDB
performs in practice.

We apply the TPC-H benchmark7 on SDB. We use the
sample database of the benchmark at scale 1, which contains
8 tables. The database size is around 1GB, which contains
details of suppliers, customers, and orders. There are 22
decision-support queries named Q1 to Q22. Most of these
queries involve multiple operators and these queries can be
answered completely by the server only if those operators
are data interoperable. For example, one query requires the
evaluation of an expression A × (1 − B) on columns A, B.
This requires multiplication be done on the output of a sub-
traction. Note that many of the TPC-H queries are aggre-
gate queries. They are thus highly data-intensive. In this
experiment, secure index is not applied. We remark that
all queries in the benchmark can be implemented by SDB’s
secure operators.

In practice, not all data is sensitive. We inspected the
benchmark data and identified 7 columns as sensitive infor-
mation. These columns contain information on account bal-
ances, pricings, or orders8. The 7 columns are encrypted us-
ing our secret-sharing scheme while other columns are stored
as plaintext. Among the 22 queries, 6 of them (Q4, Q11,

7http://www.tpc.org/tpch/
8The seven columns are S ACCTBAL, C ACCTBAL,
O TOTALPRICE, L QUANTITY, L EXTENDEDPRICE,
L DISCOUNT, L TAX.
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Figure 8: α of 16 TPC-H queries

Q12, Q13, Q16, Q21) do not involve any sensitive columns.
These 6 queries can be handled directly by the DBMS (run-
ning MySQL) on plaintext. So, we omit them in the exper-
iment.

We evaluate SDB by executing the other 16 queries on
our prototype. SDB analyzes a query and “pushes” as much
work as possible to the DBMS, as long as the work does not
involve sensitive data. For example, consider the query Q:
“SELECT A × B ... WHERE C > D”. If columns C and
D are not sensitive, then the selection can be done by the
DBMS. The server protocol has to compute A×B only for
those rows that satisfy the selection clause.

The execution time of SDB (TSDB) for each query is noted.
We then execute the queries on the DBMS directly with
all columns stored as plaintext data, bypassing all the se-
cure operator protocols. The execution time under this
scenario (TDBMS) for each query is also noted. The ratio
α = TSDB/TDBMS captures the slow-down of SDB compared
with plaintext processing if that were performed by the client
itself. The larger α is, the higher is the price we pay for pro-
viding data security on a cloud database.

Table 2 shows TDBMS for all 16 queries tested. Figure 8
shows the α ratios of the queries. Again the bars are shown
as stacked bars with the three components of execution times
displayed.

From Figure 8, we see that α is below 5 for 11 out of
the 16 queries. The worst slow-down is observed in Q18,
which is about 23. Furthermore, we observe that: (1) For
some queries (e.g., Q5, Q19), the execution times are domi-
nated by DB Access times, and these queries generally have
small slow-downs. We find that the selection clauses of these
queries are mostly on non-sensitive columns. As we have dis-
cussed, SDB pushes these (non-sensitive) selections to the
DBMS. In these cases, the DBMS returns a small set of rel-



Q1 Q2 Q3 Q5 Q6 Q7 Q8 Q9 Q10 Q14 Q15 Q17 Q18 Q19 Q20 Q22
5.38 1643.18 10.82 23.58 5.19 9.20 25.18 41.66 7.63 5.51 10.86 13.77 35.71 10.00 11.28 0.27

Table 2: TDBMS. Execution times of 16 TPC-H queries processed on plaintext data (in sec.)

evant rows, which are further processed by the secure server
protocols (e.g., to compute a SUM over a sensitive column).
Since the sets of rows processed by secure protocols in these
queries are small, the server costs are relatively small. (2)
For some queries (e.g. Q1, Q18), the server costs are very
significant. These cases are opposite to those discussed in
observation (1). They tend to have selection clauses that
involve mostly sensitive columns. In these cases, the DBMS
cannot perform effective filtering. Instead, all rows of rel-
evant columns have to be retrieved and submitted to the
server layer by which the secure protocols are executed. This
leads to a high server cost. (3) For all 16 queries, the client
costs are minimal. This is because the SP takes care of most
of the query processing. The client protocols only need to
manipulate column keys and to decrypt small summarized
results computed by the server.

7. CONCLUSIONS
In this paper we gave a comprehensive description and

analysis of SDB, which supports secure query processing on
cloud databases with a set of secure, data-interoperable op-
erators. By employing an asymmetric secret-sharing scheme,
SDB allows complex SQL queries to be processed entirely by
the server (SP). Client’s (DO’s) computation is mostly lim-
ited to result decryption. By experiment, we showed that
SDB is applicable to many real-life queries and applications
(e.g., the whole TPC-H benchmark can be executed on it).
SDB is also practically efficient. This is in sharp contrast to
existing FHE schemes, which are many orders of magnitude
slower than plaintext processing. We believe that the abil-
ity of SDB in offloading secure computation to servers rep-
resents a significant advancement in secure cloud database
systems.
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APPENDIX
A. SECURITY AGAINST DB+CPA THREAT

In this section, we present a security proof of our encryp-
tion scheme w.r.t. DB+CPA Threat. With CPA knowl-
edge, the attacker is able to observe the encrypted value
ve = E(JvK, vk) = JvKv−1

k mod n of some plaintext JvK where
vk denotes the item key. The attacker can thus observe
vk = JvKv−1

e mod n. Recall that vk = gen(r, 〈m,x〉) =
mgrx mod n where r and 〈m,x〉 are the row-id and column
key of value JvK. As we will show below, even the attacker is
able to observe advanced knowledge of the value of gr, it is
still hard for the attacker to derive other secret parameters.

Theorem 2. Let 〈m,x〉 be the column key of a column X.
Given a set of item keys on X and the set of corresponding
values of gr of each row, it is computationally hard to find
x.

Proof. We show that the above can be reduced to RSA.
In RSA, the attacker obtains the public key 〈e, n〉. This
allows the attacker to generate the encrypted value y′ =
ye mod n for any plaintext y. The attacker aims to obtain
the private key 〈d, n〉 s.t. y = y′d mod n. To achieve the
goal, the attacker prepares a set of item keys as follows: (i)
artificially set a random value ĝ; (ii) choose random r̂ and
compute y = ĝr̂; (iii) compute y′ = ye and pretend that y
is the item key and the value of gr is y′; (iv) repeat step
(ii) and (iii) until the attacker gets enough pairs to make a
successful attack to our scheme. Note that the above steps
allow the attacker to simulate the knowledge to attack our
scheme with a column key 〈m = 1, x = d〉 with different
row-ids r = r̂ and system parameter g = ĝe. (So, we have
(i) gen(r̂, 〈1, d〉) = ĝr̂ed = ĝr̂ = y and (ii) gr = ĝer̂ = y′.)

If our scheme is not secure, i.e., an attacker can find 〈m =
1, x = d〉, the attacker recovers the private key in RSA.
Thus, our encryption scheme is as strong as RSA.

Theorem 2 shows that our item key generation is secure
w.r.t. CPA even if some parameters are leaked. The above
also applies to the case when the roles of row and columns,
i.e., r and x in item key generation function, are swapped.
So, the secret parameters r, x are strongly protected in our
scheme. (r may also be leaked as an encrypted copy E(r)
is sent to SP. Recall that E can be any off-the-shelf addi-
tive homomorphic encryption function. So, we assume the
attacker cannot observe r from E(r).) The attacker cannot
generate the item keys of other unknown values in the ta-
ble as the secret key parameters in item key generation are
unknown. We remark that CPA may not be actually possi-
ble in our system, as no key is made public in our system.
However, this provides a strong security guarantee to our
system.

B. SECURITY ADVANTAGE FROM EC MUL-
TIPLICATION

In Section 5.1, we presented a protocol in handling EC
multiplication C = p×A. In particular, the server protocol
has no real action apart from copying an encrypted column
A as the resulted encrypted column C. As we discussed in
Sec. 5.1 , the above copying is not necessary. The client
layer just keeps a reference indicating that C’s encrypted
column at SP is in fact A’s encrypted column. Thus, the
server has no action at all in server protocol (see Algorithm
2). The advantage of this is that SP does not even know
if there is any EC multiplication executed. For instance,
consider the operations of A + B and 2A + 3B. The for-
mer operation requires SP to execute the protocol for EE
addition on the encrypted columns Ae, Be. The latter op-
eration first requires the client layer computes A′ = 2A and
B′ = 3B. These are done solely by the client layer. Then, an
EE addition is computed on A′ and B′. Since the encrypted
columns of A′ and B′ are still Ae and Be. SP is instructed
to perform EE addition using the encrypted columns Ae and
Be. Note that SP views the same instructions in both op-
erations. SP cannot distinguish which operation is actually
being executed. In general, SP cannot distinguish whether
an operation is done on A or pA for any value of p. For
example, if SP receives an instruction to execute EE addi-
tion on encrypted columns Ae and Be, SP infers that the
operation is in the form of pA+ qB with p, q unknown. Let
ckA = 〈mA, xA〉 be the column key of A. For the column
C = pA, the m-part of ckC is pmA while x-part is xA. Even
if the column key of C is leaked, the m-part of ckA is un-
known because p is unknown. Thus, all operations in our
scheme do not leak the m-part of any column key.

C. PROOF OF SECURITY PROPERTIES OF
KEY UPDATE

In this section, we provide a proof for property 3 and
property 4 of key update. Property 3 is discussed below.

Theorem 3. Let ckA = 〈mA, xA〉, ckC = 〈mC , xC〉, ckS =
〈mS , xS〉 be the column keys of A, C, S where S is a constant
column. Let p = x−1

S (xC−xA) mod φ(n), q = mAm
p
Sm
−1
C mod

n. Given p, q, ckA, there exists at least φ(φ(n)) solutions of
ckC and ckS where φ denotes Euler’s totient function.

Proof. First, we discuss on the x-part of column keys.
The attacker can establish an equation p = x−1

S (xC−xA) mod
φ(n). ∀x̂S ∈ [1, φ(n)) s.t. gcd(x̂S , φ(n)) = 1, ∃x̂C =
xA + px̂S mod φ(n) s.t. x̂C , x̂S satisfy the above equa-
tion. Since there are φ(φ(n)) values of xS that are co-prime
to φ(n), there are at least φ(φ(n)) pairs of solutions. For
the analysis on m-part, please refer to Appendix B.

The size of φ(n) is 1024-bit and the value of φ(φ(n)), which
is the number of values that are co-prime to φ(n), is large.
Besides, the above cryptanalysis requires the knowledge of
φ(n) in setting up the equations. However, the value of
φ(n) requires the knowledge of factorizing n = ρ1ρ2 (See
equation 1). This is assumed to be a hard problem and
so it is not feasible for a practical attacker to perform the
above analysis. On the other hand, property 4 can be proved
similarly.

Theorem 4. Let ckA = 〈mA, xA〉, ckC = 〈mC , xC〉, ckS =
〈mS , xS〉 be the column keys of A, C, S where S is a constant
column. Let p = x−1

S (xC−xA) mod φ(n), q = mAm
p
Sm
−1
C mod



n. Given p, q, ckC , there exists at least φ(φ(n)) solutions of
ckA and ckS where φ denotes Euler’s totient function.

Proof. By setting x′A = −xC and x′C = −xA, the equa-
tion concerning p becomes p = x−1

S (x′C − x′A) with x′A and
p known by the attacker. Thus, the remaining analysis be-
comes the same as the one in Theorem 3.

D. MANAGING SIGN ON ENCRYPTED VALUE
SPACE FOR COMPARISON

A necessary property in our comparison is that R×(A−B)
preserves the same sign as A−B. However, sign information
is lost in modular arithmetic, e.g., −3 = 2 (mod 5). Now,
the domain of encrypted values is [0, n − 1]. We separate
positive values and negative values by dividing the domain
into two regions. The first half of the domain is denoted as
positive, i.e., the positive region R+ contains [1, (n− 1)/2].
The other half is denoted as negative, i.e., the negative re-
gion R− contains [n+1/2, n−1]. For example, with n = 35,
R+ = [1, 17] and R− = [18 (represents −17), 34 ((represents
−1)]. By defining the above regions, overflow may happen
if the magnitude of a value is larger than (n − 1)/2. So, it
is important for our system to control the above overflow
problem. Note that both R+, R− has a size of 1023-bit.
With R being a random 80-bit number, A − B can be as
large as 923-bit numbers without overflow. Then, by check-
ing whether an encrypted value ze is positive, it means we
compare ze and (n− 1)/2. If ze < (n− 1)/2, ze is regarded
as positive. If ze ≥ (n− 1)/2, ze is regarded as negative.

E. PROOF OF THEOREM 1
Let 〈x1 = x̂1, x2 = x̂2, ..., xh = x̂h, xS = x̂S〉 be the

true values of the secret parameters, i.e., x̂i = x̂j + pij x̂S
mod φ(n). We can construct another valid solution as 〈x1 =
αx̂1, x2 = αx̂2, ..., αxh, αxS〉 for any positive α < φ(n). By
putting the solution into the equations, we obtain: (i) LHS
= xi = αx̂i; and (ii) RHS = xj + pijxS = α(x̂j + pij x̂S) =
αx̂i. Thus, LHS = RHS. This confirms the validity of the
above solution. Since there are φ(n) different possible values
of α, there are at least φ(n) solutions to the system of equa-
tions. Since φ(n) = (ρ1 − 1)(ρ2 − 1) and ρ1, ρ2 are 512-bit
numbers, φ(n) is a 1024-bit number. So, the solution space
is huge.

F. SHORTHAND OPERATOR: EQUI-JOIN
To compute equi-join, one option is to use Cartesian prod-

uct and then comparison operator. However, this is not effi-
cient as it generates a large number of tuples from Cartesian
product. Another option is to use a similar idea as Group-
By. Suppose the join operation is computed on A = B where
A is an attribute on table T1 and B is an attribute from an-
other table T2. We perform key updates A′ = κ(A, 〈mZ , 0〉)
and B′ = κ(B, 〈mZ , 0〉) so that all items keys on A′, B′ are
the same. This allows SP to compute equi-join by comparing
encrypted values of A′ and that of B′.

G. OPTIMIZATION TECHNIQUES
In our system, the query processing cost at user is in-

significant as the user always operate on column key level
and the cost is independent from database size. The encryp-
tion/decryption cost at user is relatively more expensive.

These actions and the majority of work at SP are comput-
ing modular exponentials, which are much more expensive
than other operations, e.g., modular multiplication. So, it is
important for our system to optimize modular exponential
computations.

One way to reduce the cost is to use Garner’s algorithm
[25]. The basic idea is to use Chinese Remainder Theo-
rem: computing b = xe mod pq is equivalent to comput-
ing b = [(xe mod q − xe mod p)× (p−1 mod q) mod q]× p+
(xe mod p). This reduces the computation of a 1024-bit
modular exponentiation to two 512-bit modular exponen-
tiations with some cheaper additions and multiplications.
Besides, modular exponentials are commonly computed by
exponential squaring. For example, to compute x7 mod n,
we may compute x2 = xx mod n, x4 = x2x2 mod n and
finally compute x7 = xx2x4 mod n. So, we need 4 multi-
plications only instead of 6 in trivial multiplications of x it-
self. If multiple exponential operations are having the same
base, i.e., we are computing be1 , be2 , ... for the same b,
the above preparation of exponents of squares can be saved.
For example, if we need to further compute x5 mod n after
computing x7 mod n, we just need 1 more multiplication
x5 mod n = x4x mod n instead of restarting from scratch.
In our scheme, the item key with column key 〈m,x〉 and row
key r can be computed as mgrx mod n. It can be rephrased
as mbr mod n with b = gx. Thus, to compute the item keys
of the same column but different rows, the item key genera-
tion is in fact a list of modular exponentials with the same
base. This can significantly reduce the number of multipli-
cations required to compute modular exponential for large
exponents.

Furthermore, a careful choice of parameters can also help
to reduce the cost. Note that the cost of modular exponen-
tial depends heavily on the size of exponent. If the exponent
is small, modular exponentials can be computed efficiently.
(In practice, the public exponent e in RSA (where the en-
cryption function is xe mod n for plain data x) is usually
set to a small value, e.g., 65537.) As we discussed above,
the encryption/decryption process is a list of modular ex-
ponentials with different exponents as row-id. So, if row-ids
are small, the encryption/decryption cost can be further re-
duced. In our system, we set row-id r as a random 32-bit
number. It reduces the encryption/decryption cost while
SP can’t easily guess the correct value of r as there are 232

possible values of r.

H. INDEXING
Indexing is an important feature in database system. The

objective of index is to speed up query processing at SP.
Indexing is essential as any query will incur at least O(N)
cost without using index where N is the number of tuples in
the database. The processing cost is then not acceptable in
large database, which may contain millions of tuples. It is
then important to develop indexing techniques for our secure
database system. On the other hand, this index has to be
secure.

Note that indexing is by nature a security compromise.
If SP skips processing certain tuples and the queries are
known, SP can obtain some information about the original
data. For example, if the query is to retrieve tuples with
SALARY < 1000, SP can know that tuples pruned by the
index are with SALARY ≥ 1000. This is the same scenario
as comparison operator. So, the user has to balance between



indexing effectiveness and security compromises.
[21] is a ‘secure’ (with user-controlled security strength)

indexing scheme developed for querying on encrypted data.
The general idea is to transform the original plain data into
uncertain data. For example, in [21], data values 1, 5, 10
may be grouped into the same partition with range 0− 10.
The partition is assigned an ID, say 1. Thus, instead of in-
dexing on exact values 1, 5, 10, these values are indexed on
the partition ID in the index. SP cannot observe the exact
values of the data but the index can help to prune certain
tuples on the index. The user can choose the granularity of
uncertainty which controls the security compromises and the
effectiveness of the index. If the uncertainty range is larger,
it provides a better security protection but the index is less
effective. The index here works independently with our en-
cryption method. Before we use our operators to process
the query, the database is first filtered by the index. This
gives us a smaller number of tuples to be processed. Then,
we will use our operators to find out the exact answer.

I. A COMPLETE PROOF FOR OUR SYS-
TEM W.R.T. DB+QR THREAT

In this section, we present a complete proof of security of
our system w.r.t. DB+QR Threat. First, we discuss how
the security analysis of our system as a whole can be broken
down into individual analysis on each protocols. In secure
multiparty computation (SMC), a protocol is secure if the
protocol can be simulated (by a probabilistic polynomial-
time algorithm) by the attacker alone with its own input,
the computation result [26]. (In the simulation, the attacker
randomly selects values to be the unknown inputs from other
parties (DO in our case), and tries to see if the same mes-
sages in the protocol can be observed in the simulation.)
The above ensures that the parties involved in the protocol
cannot observe any information except its own input and
the computation result. The general composition theorem
in [26] states that if f , g are two secure protocols, the com-
position of f and g is also secure. In our system, we use an
alternative and relaxed way for proving the security, which is
used in [33, 22]. Each protocol may reveal some additional
well-defined information I but not any other information.
The information of a protocol revealed can be defined and
bounded by the simulation technique (as we regard the in-
formation revealed in a protocol as part of the output of the
protocol). The composition theorem can be still applied: if
f is a protocol revealing If and g is a protocol revealing Ig,
the composition of f and g reveals at most If

⋃
Ig. Then,

any compositions of protocols is secure if If
⋃
Ig does not

leak sensitive information. To conclude, to prove the secu-
rity of our system, we need to (i) define and bound clearly
what each of our operator reveals by simulation; and (ii)
prove that the union of information revealed in all operators
do not lead to security breach in our case, i.e., an attacker
with DB+QR knowledge cannot derive the column keys and
thus cannot derive the plain values of encrypted columns.

From now on, we assume the attacker obtains DB+QR
knowledge. We refer to the pseudo codes of the operators
listed in Appendix J for discussing the security of the system.
Before we define the information revealed in each operator,
all operators in our system will let SP know which columns
are the operands of the operators. This type of information
is necessary so that SP can properly compute the queries and

is deemed not sensitive in our system. So, we will ignore the
above revealed information in our analysis. In the followings,
we formally bound the revealed information in each protocol
one by one.

[Multiplication] (Algorithm 1 and Algorithm 2)
Apart from the message from DO telling SP which columns
are the operands of the multiplication, there is no other mes-
sage. So, multiplication reveals no information.

[Key update] (Algorithm 3) The key update C =
κ(A, 〈mC , xC〉) aims to compute a column C which has the
same plain values as A when decrypted while C has a col-
umn key 〈mC , xC〉 randomly selected by DO. The following
theorem bounds the information revealed in the key update.

Theorem 5. The key update protocol κ(A, ckC) reveals
only the following relationship: xC = xA + pxS mod φ(n)
where xA, xC , xS are the x-part of column keys of A, C and
constant column S.

Proof. Recall that, from the view of the attacker, the
operation can be generalized as κ(αA, ckC) since the at-
tacker does not know if there is an EC multiplication before
the key update. So, the attacker views there is an unknown
α in the query. The attacker observes two messages (p, q).
The simulation completes if the attacker simulates a random
input of DO and gets the same messages p′ = p, q′ = q in
its own simulation.

Based on the attacker’s knowledge, i.e., xC = xA+pxS mod
φ(n), the attacker picks a random x̂A and a random x̂S
and derives x̂C = x̂A + px̂S . On the other hand, the at-
tacker picks random m̂A, m̂C , m̂S . The above constitutes
the input of DO. Besides, the attacker picks the query pa-
rameter as α = qm̂A

−1m̂S
−pm̂C . Thus, the column key of

the column αA in the key update operator is 〈αm̂A, x̂A〉 =
〈qm̂S

−pm̂C , x̂A〉. Then, the attacker starts the simulation.
As from Eq. 9, the observed messages (p′, q′) are as fol-

lows:

p′ = x̂S
−1(x̂C − x̂A) mod φ(n)

= x̂S
−1(x̂A + pAx̂S − x̂A) mod φ(n)

= pA

q′ = qm̂S
−pm̂Cm̂S

pm̂C
−1 mod n

= q

Thus all messages are the same as those observed in the
protocol and hence the theorem is proved.

[Addition] (Algorithm 4) In Sec. 5.3, we showed that
the attacker can see the relationship between some column
keys. For an addition between A, B, the attacker may ob-
serve xA = xB + (pB − pA)xS mod φ(n) where xA, xB , xS
are the x-part of column keys of A, B and constant column
S, and pA, pB are the messages sent to SP in facilitating the
addition. In the following, we show by simulation that the
above is the only information that is revealed in the addition
protocol.

Theorem 6. The addition protocol on C = A+B reveals
only xA = xB + (pB − pA)xS mod φ(n) where xA, xB, xS
are the x-part of column keys of A, B and constant column
S.

Proof. Recall that, from the view of the attacker, the
operation can be generalized as α1A + α2B where α1, α2



are two unknown values. The attacker observes two pairs of
messages (pA, qA) and (pB , qB) sent from DO. We show that
an attacker can simulate the above protocol using a prob-
abilistic polynomial-time algorithm. The simulation starts
by the attacker picking random m̂A and x̂A and sets A’s
column key as 〈m̂A, x̂A〉. A random column key for S is gen-
erated similarly as 〈m̂S , x̂S〉. From the known information,
the attacker computes x̂B = x̂A + (pA − pB)x̂S mod φ(n)
and sets 〈m̂B , x̂B〉 as the column key of B where mB is
randomly generated. Then, the attacker computes x̂C as
x̂A + pAx̂S and sets 〈m̂C , x̂C〉 as the column key of C where
m̂C is randomly generated. Finally, the attacker sets α1 =

qAm̂A
−1m̂S

−pAm̂C and α2 = qBB̂A
−1
m̂S
−pB m̂C . Thus the

columns keys of α1A and α2B are 〈qAm̂S
−pAm̂C , x̂A〉 and

〈qBm̂S
−pB m̂C , x̂B〉 respectively. Now, the attacker is ready

to do the simulation.
As from Eq. 9, the observed messages (p′A, q

′
A) and (p′B , q

′
B)

are as follows:

p′A = x̂S
−1(x̂C − x̂A) mod φ(n)

= x̂S
−1(x̂A + pAx̂S − x̂A) mod φ(n)

= pA

q′A = qAm̂S
−pAm̂Cm̂S

pAm̂C
−1 mod n

= qA

p′B = x̂S
−1(x̂C − x̂B) mod φ(n)

= x̂S
−1(x̂A + pAx̂S − x̂A − (pA − pB)x̂S) mod φ(n)

= x̂S
−1(pB x̂S) mod φ(n)

= pB

q′B = qBm̂S
−pB m̂Cm̂S

pB m̂C
−1 mod n

= qB

Thus all messages are the same as those observed in the
protocol and hence the theorem is proved.

[Comparison] (Algorithm 5) Let Y = A − B; Here,
we ignore the computation of Y since it is an addition op-
erator, which we have discussed above. From the view of
the attacker, the operation is αY > 0 or αY = 0. The
steps include (i) EE multiplication with R; and (ii) a key
update κ(αRY, 〈1, 0〉). Since the first operation has no mes-
sage exchange, we simply discuss the second operation as
κ(αZ, 〈1, 0〉) for some column Z = RY .

Theorem 7. The comparison protocol on Y > 0 or Y =
0 reveals only xZ = −pxS mod φ(n) where xZ , xS are the
x-part of column keys of Z = RY and constant column S.
R is the random column.

Proof. The attacker observes one pair of messages (p, q)
sent from DO. Again, we use simulation to prove the the-
orem. The attackers generates random m̂S , x̂S and set
〈m̂S , x̂S〉 as the column key of S. Then, compute x̂Z =
−px̂S mod φ(n). Generate a random m̂Z and set 〈m̂Z , x̂Z〉
as the column key of Z. Select α = qm−1

Z m̂S
−p. So, the

column key of αRZ is 〈qm̂S
−p, x̂Z〉 Note that the key up-

date operator targets to give the column key 〈1, 0〉. In the

simulation, the attacker observes (p′, q′) as follows:

p′ = x̂S
−1(0− x̂A) mod φ(n)

= x̂S
−1(px̂S) mod φ(n)

= p

q′ = qm̂S
−pm̂S

p1−1 mod φ(n)

= q

Thus all messages are the same as those observed in the
protocol and hence the theorem is proved.

[Cartesian product] (Algorithm 6) The Cartesian prod-
uct requires the SP to do the same computation for each
column. In the following, we provide the security proof for
the process on one column and it can be applied to other
columns.

Theorem 8. The Cartesian product protocol of two ta-
bles T1, T2 reveals only 2 sets of equations: (i) xA = pxS mod
φ(n) where xA, xS are the x-part of column keys of A in ei-
ther T1 or T2 and constant column S in the other table, i.e.,
if A is in T1, S is in T2.

Proof. There is only 1 message p per column in the
operation. We just discussion the simulation on one col-
umn and the simulations on remaining columns are simi-
lar. Similar to the above proofs, the attacker selects a ran-
dom column key for S as 〈m̂S , x̂S〉. The column key of
A is 〈m̂A, x̂A〉 with x̂A = px̂S mod φ(n) and mA is a ran-
dom value. In the simulation, the attacker observe p′ as
x̂S
−1x̂A mod φ(n) = x̂S

−1(px̂S) mod φ(n) = p. The simu-
lation is done.

[Aggregate] (Algorithm 7) Count is the the same as
selection. So, we focus on SUM here. The major operation
is the key update operation κ(αA, 〈mZ , 0〉) where αA is the
column to be summed. Security of SUM is proved as follows.

Theorem 9. The SUM protocol on αA reveals only: xA =
−pxS mod φ(n) where xA, xS are the x-part of column keys
of A and constant column S.

Proof. The attacker observes one pair of messages (p, q)
sent from DO. Note that the above setting is the same as
comparison and so can be proved in the same way. We will
skip the details here.

[EP operations] (Algorithm 8) To handle EP opera-
tion with a plain column A, a key update κ(A, 〈mC , xC〉) is
executed where 〈mC , xC〉) is randomly determined by DO.
Security of this key update is proved as follows.

Theorem 10. The key update protocol on αA reveals only:
xA = −pxS mod φ(n) where xA, xS are the x-part of column
keys of A and constant column S.

Proof. The attacker observes one pair of messages (p, q)
sent from DO. Note that the above setting is the same as
comparison and so can be proved in the same way. We will
skip the details here.

In the above discussion, we have completed the first task
to bound the information revealed in each operator. Basi-
cally, the attacker can set up different linear equations to
connect different column keys together. Then, we will go



on to show that the above revealed information cannot help
the attacker to recover the column keys stored at DO and
hence cannot breach the security. In particular, we show
that there are a large number of different possible column
keys that satisfy the above revealed information and hence
the attacker cannot distinguish the true one from the others.

Theorem 11. Let I be the set of equations revealed in all
the operators listed in Theorem 5 - 10 with the variables xA’s
(the x-part of column keys at DO). If {xA = x̂A} is a valid
solution satisfying the above set of equations, {xA = λx̂A}
is another valid solution where λ is an integer.

Proof. To sum up, there are two types of equations in
I. One is in the form of (i) xA = xB + αxS where xA, xB ,
xC are the x-part of column key of columns A, B, C and
α is a constant known to the attacker. xA, xB , xC are the
variables in the system of equations. Type (i) equation can
be observed in Key Update (Theorem 5), Addition (Theo-
rem 6). The other is in the form of (ii) xA = βxB where
xA, xB are two variables and β is a known value to the at-
tacker. Type (ii) equation can be observed in Comparison
(Theorem 7), Cartesian product (Theorem 8), Sum (Theo-
rem 9), and EP operation (Theorem 10). Suppose xA = x̂A
for all column A is a solution, we test on the other solution
with xA = λx̂A for all columns A as follows. Type (i): LHS
= λx̂A; RHS = λx̂B + αλx̂S = λ(x̂B + αx̂S) = λx̂A = LHS.
Type (ii): RHS = λx̂A; RHS = βλx̂B = λ(βx̂B) = λx̂A =
LHS. Thus, {xA = λx̂A} is a valid to I.

In the above, we obtain a valid solution for all λ < φ(n).
Note that the multiplicative inverse of xA (mod φ(n)) exists
if and only if gcd(xA, φ(n)) = 1. Thus, gcd(λ, φ(n)) = 1.
This leaves φ(φ(n)) possible sets of solutions to the system
of equations. Note that φ is the Euler’s totient function
where φ(x) means the number of positive integers ≤ x that
are co-prime with x. Here, φ(n) = (ρ1 − 1)(ρ2 − 1) is a
1024-bit number (since ρ1, ρ2 are 512-bit numbers) and so

φ(φ(n)) is at least 680-bit number (since φ(x) ≥ x2/3 [23]).
The solution space is too big for an attacker to recover the
true column keys.

J. PSEUDO CODES OF PROTOCOLS
In this section, we list the pseudo codes of all operators

from Algorithm 1 to 8.

Data: Column A, B with column key 〈mA, xA〉 and
〈mB , xB〉

Result: C = AB with C’s column key 〈mC , xC〉
Client-protocol:
xC = xA + xB mod φ(n);
mC = mAmB mod n;

Server-protocol:
for each row r do

Let ae, be be the encrypted values on A, B;
Set encrypted value of C ce = aebe mod n;

end
Algorithm 1: EE multiplication

Data: Column A with column key 〈mA, xA〉 and a
constant p

Result: C = pA with C’s column key 〈mC , xC〉
Client-protocol:
xC = xA;
mC = pmA mod n;
Indicate that C’s encrypted column is A’s encrypted
column;

Server-protocol:
Nil

Algorithm 2: EC multiplication

Data: (i) Column A with column key 〈mA, xA〉; (ii)
target column key 〈mC , xC〉

Result: C = A with C’s column key 〈mC , xC〉
Client-protocol:
Let 〈mS , xS〉 be the column key of S;

p = x−1
S (xC − xA) mod φ(n);

q = mAm
p
Sm
−1
c mod n;

Send p, q to SP;
Set C’s column key as 〈mC , xC〉;
Server-protocol:
Obtain p, q from DO;
for each row r do

Let ae, se be the encrypted values on A, S;
Set encrypted value of C ce = qaes

p
e mod n;

end
Algorithm 3: Key udpate

Data: Column A, B with column key 〈mA, xA〉 and
〈mB , xB〉

Result: C = A+B with C’s column key
ckC = 〈mC , xC〉

Client-protocol:
Generate random mC , xC
A′ = κ(A, ckC); // DO executes client-protocol

B′ = κ(B, ckC); // of key update.

Set C’s column key as 〈mC , xC〉;
Server-protocol:
A′ = κ(A, ckC); // SP executes server-protocol

B′ = κ(B, ckC); // of key update.

for each row r do
Let a′e, b

′
e be the encrypted values on A′, B′;

Set encrypted value of C ce = a′e + b′e mod n;

end
Algorithm 4: EE addition/subtraction



Data: Column A, B with column key 〈mA, xA〉 and
〈mB , xB〉

Result: A column of comparison results C: = 0 if
A = B; = 1 if A > B; return = −1 if A < B

Client-protocol:
Z = R(A−B); // EE addition, EE multiplication

Z′ = κ(Z, 〈1, 0〉); // DO executes client-protocol

Server-protocol:
Z = R(A−B); // Corresponding server protocol

Z′ = κ(Z, 〈1, 0〉); // Corresponding server protocol

for each row r do
Let z′e be the values on Z′;
switch z′e do

case = 0
ce = 0; // ce is the result of this row

end
case > 0

ce = 1;
end
case < 0

ce = −1;
end

endsw

end
Algorithm 5: Comparison

Data: Relation T1(row-id, A1, A2, ..., Ah, S1, R1);
Relation T2(row-id, B1, B2, ..., Bg, S2, R2)

Result: T ′ = T1 ⊗ T2. T ′ has a schema (row-id, A′1, ...
A′h, B′1, ... B′g, S

′, R′).

Client-protocol:
Let 〈mS2 , xS2〉 be the column key of S2 in T2;
// The column S′ and R′ comes from T1

for each column A in (A1, A2, ..., Ah, S1, R1) from T1

do
Let 〈mA, xA〉 be the column key of A;

p = x−1
S2
xA mod φ(n);

Send p to SP;
ckA′ = 〈mA(mS2)p, xA〉;

end
Let 〈mS1 , xS1〉 be the column key of S1 in T1;
// S2 and R2 are not needed as we get S′ and R′

from T1 already

for each column B in (B1, B2, ..., Bg) from T2 do
Let 〈mB , xB〉 be the column key of B;

p = x−1
S1
xB mod φ(n);

Send p to SP;
ckB′ = 〈mB(mS1)p, xB〉;

end

Server-protocol:
// First generate the encrypted row-id of all

tuples in T ′

for each row r1 in T1 do
for each row r2 in T2 do

Set the encrypted row-id of the joined tuple as
E(r1) + E(r2);

end

end
// Compute the encrypted values of columns

originated from T1

for each column A in (A1, A2, ..., Ah, S1, R1) from T1

do
Obtain p from DO
for each row r1 in T1 do

for each row r2 in T2 do
Let ae be the encrypted value on A in T1;
Let s2e be the encrypted value on S2 in T2;
Set the encrypted value a′e for the row
r1 + r2 as ae(s2e)

p mod n;

end

end

end
// Compute the encrypted values of columns

originated from T2

for each column B in (B1, B2, ..., Bg) from T2 do
Obtain p from DO
for each row r1 in T1 do

for each row r2 in T2 do
Let s1e be the encrypted value on S1 in T1;
Let be be the encrypted value on B in T2;
Set the encrypted value b′e for the row
r1 + r2 as be(s1e)

p mod n;

end

end

end
Algorithm 6: Procedure of transformation of one column
in Cartesian product



Data: Column A with column key 〈mA, xA〉
Result: The encrypted sum σZ of all values on A.

Note that this encrypted sum is viewed as a
relation T with 1 column Z and 1 row only.

Client-protocol:
Z = κ(A, 〈mZ , 0〉); // DO executes client-protocol

// Note that Z’s column key is 〈mZ , 0〉
Server-protocol
Z = κ(A, 〈mZ , 0〉); // SP executes server-protocol

σZ = 0;
for each row r do

Let ze be the encrypted value on Z;
σZ+ = ze mod n;

end
// σZ is the encrypted sum w.r.t. row-id = 0.

Algorithm 7: SUM

Data: A column A
Result: T ′ = T1 ⊗ t2. T ′ has a schema (row-id, A′). A′

in T ′ are the values from A in T1.

Client-protocol:

p = x−1
S2
xA mod φ(n);

Send p to SP;
ckA′ = 〈mA(mS2)p, xA〉;
Server-protocol:
Obtain p from DO;
for each tuple (E(r1), ae) from T1(row-id, A) do

for each tuple (E(r2), s2e) from T2(row-id, S2) do
Insert the values (E(r1) + E(r2), ae(s2e)

p ) to
T ′(row-id, A′);

end

end
Algorithm 8: EP transformation




