HKU CS Tech Report TR-2013-05

Postprint of article in The Symposium on Engineering Test Harness (TSETH *13),
Proceedings of the 13th International Conference on Quality Software (QSIC ’13),

IEEE Computer Society, Los Alamitos, CA (2013)

Incremental Identification of
Categories and Choices for Test Case Generation

A Study of the Software Practitioners’ Preferences

Pak-Lok Poon
School of Accounting and Finance
The Hong Kong Polytechnic University
Hung Hom, Kowloon,
Hong Kong
Email: afplpoon@polyu.edu.hk

Abstract—Test case generation is a vital procedure in the
engineering of test harnesses. In particular, the choice relation
framework and the category-partition method play an important
role, by requiring software testers to identify categories (intu-
itively equivalent to input parameters or environment conditions)
and choices (intuitively equivalent to ranges of values) from
a specification and to systematically work on the identified
choices to generate test cases. Other specification-based test case
generation methods (such as the classification-tree method, cause-
effect graphing, and combinatorial testing) also have similar re-
quirements, although different terminology such as classifications
and classes is used in place of categories and choices. For a
large and complex specification that contains many specification
components, categories and choices may be identified separately
from various kinds of components. We call this practice an
incremental identification approach. In this paper, we discuss
our study involving 16 experienced software practitioners and
three commercial specifications. Our objectives are to determine,
from the opinions of the practitioners, (a) the popularity of an
incremental identification approach, (b) the usefulness of identi-
fying categories and choices from various kinds of specification
components, and (c) possible ways to improve the effectiveness
of the identification process.

Keywords—incremental identification; choice relation frame-
work; specification-based testing; test case generation; test harness

(©2013 IEEE. This material is presented to ensure timely dissemination
of scholarly and technical work. Personal use of this material is permitted.
Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the
terms and constraints invoked by each author’s copyright. In most cases,
these works may not be reposted without the explicit permission of the
copyright holder. Permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE.

This work is supported in part by a departmental general research fund of
The Hong Kong Polytechnic University (project no. G-UAS6), a linkage grant
of the Australian Research Council (project no. LP100200208), and grants of
the General Research Fund of the Research Grants Council of Hong Kong
(project nos. 717811 and 716612).

Tsong Yueh Chen
Faculty of Information
and Communication Technologies
Swinburne University of Technology
Hawthorn 3122, Australia
Email: tychen@swin.edu.au

T.H. Tse
Department of Computer Science
The University of Hong Kong
Pokfulam,

Hong Kong
Email: thtse@cs.hku.hk

I. INTRODUCTION

Generally speaking, software developers spend 40-50% of
predelivery development costs on testing in order to achieve
reasonable quality levels [24]. Studies by IBM and others
have shown that the cost of correcting a fault after coding
is at least 10 times as costly as that before it, and the cost
of correcting a production fault is at least 100 times [19].
Similar observations have been reported in other literature. The
cost-escalation factors range from 5x to 100x, depending on
the types and sizes of the software systems [1], [12]. Thus,
program testing should be as thorough as possible to help
software developers detect any failures so that faults will not be
propagated through to the final production software, where the
cost of removal is far greater. Among various quality assurance
techniques, testing remains a popular and important one for
improving software quality [25].

Test case generation plays a vital role in the engineering
of test harnesses. In particular, specification-based or black-
box test case generation is a mainstream approach, in which
test cases are generated according to information derived from
the specification without the need to know the implemented
code. Examples of such generation methods are the CHOiCe
reLATion framEwork (CHOC LATE) [6], [8], [20], the category-
partition method [3], [18], the CcClassification-Tree Method
(ct™) [7], [11], [13], [26], cause-effect graphing [16], and
combinatorial testing [10], [15], [27]. CHOC’LATE and the
category-partition method require software tester to identify
categories (intuitively equivalent to input parameters or en-
vironment conditions) and choices (intuitively equivalent to
ranges of values) from a specification, and to systematically
maneuver the identified choices to generate test cases. Other
specification-based test case generation methods also have sim-
ilar recommendations, although they use different terminology
such as classifications and classes. For ease of presentation,
we will use the terms categories and choices throughout the

paper.

Administrator
 HKU CS Tech Report TR-2013-05

Since test cases are generated from combinations of com-
patible choices, the identification of categories and their
associated choices is of vital importance. If, for example, a
valid choice x is missing, then all test cases containing x will
not be generated. Consequently, any failure associated with x
may not be detected. In other words, the generated fest suite
(that is, the set of test cases) will not be comprehensive.

In general, there are two types of specifications, namely
formal and informal. Formal specifications are written in a
mathematical notation such as Z [29] and Boolean predi-
cates [9], [14], whereas informal specifications are mainly
written in natural or graphic languages such as the United
Modeling Language (UML) [17]. Relatively speaking, informal
specifications are more popular than formal ones in the
commercial software industry.

Despite the popularity of informal specifications, the iden-
tification of categories and choices from these specifications is
often done in an ad hoc manner because of the absence of a
systematic technique. The quality of test cases resulting from
such an ad hoc approach is in doubt.

In view of this problem, we conducted empirical stud-
ies [5], [21] using informal commercial specifications. The
objective of these studies was to investigate the common
mistakes made by software testers involving informal spec-
ifications under an ad hoc identification approach. We then
formally defined these common mistakes under various classes
of missing/problematic categories and choices. As an interim
solution, we also developed a checklist [5] to serve as a
simple guideline for detecting missing/problematic categories
and choices. In a recent study involving large, complex,
informal specifications [6], we found that experienced software
practitioners ease the task by identifying categories, choices,
and relations from individual specification components before
refining the global relations among choices. We will call it
an incremental identification approach in this paper, and will
discuss it in more detail in Section I'V-A.

Following on our previous studies [5], [6], [21], we have
conducted a further comparative study with 16 experienced
software practitioners. The objectives of the study are:

(a) To determine the popularity of an incremental identifi-
cation approach involving informal specification compo-
nents.

(b) To determine, from the opinions of experienced software
practitioners, (i) the usefulness of various kinds of speci-
fication components for category and choice identification
and (ii) possible ways to improve the effectiveness of the
identification exercise.

II. BASIC CONCEPTS AND PROCEDURE

Before proceeding with the details of the study, let us
outline the main concepts and procedure of specification-based
test case generation in the context of CHOC’LATE [6], [8], [20].

A category is defined as a major property or characteristic
of a parameter or an environment condition of the system
under test (SUT) that affects its execution behavior. For ease
of presentation, parameters and environment conditions are
collectively known as factors in this paper. In addition, any

factor is said to be influencing if it affects the execution
behavior of the SUT. Choices are disjoint subsets of values
of a category, with the assumption that all values in the same
choice are similar in their effect on the system behavior.

Following the notation in [6] we will use variable names
(such as Q) to denote categories, and use variable names with
subscripts (such as Q,) to denote their associated choices.
When the categories are obvious from the context, we may
simply write Qy as x.

Given a category Q, all its associated choices Qy, Q», ...,
O, should cover the subset of the input domain (the set of
all possible inputs to a program) relevant to Q. Consider, for
example, an undergraduate award classification system whose
main function is to determine whether a student is eligible for
graduation. A possible category for the system is “GPA Score
(G)”, and a possible choice associated with this category is
“GPA Score (G) 35 §G§4,0”.

A set of choices is called a fest frame, denoted by B. A
test frame B is said to be complete if, whenever a single value
is selected from each choice in B, a test case is formed.

In general, test case generation involves the following five
steps:

(1) Decompose the specification into functional units that can
be tested separately.

(2) Identify categories and their associated choices from each
functional unit.

(3) Determine the relations among the identified choices as
stated or implied in each functional unit.

(4) Using the predefined algorithms, combine compatible
choices together to form complete test frames according
to the choice relations determined in (3).

(5) Generate a test case from each complete test frame by
selecting and combining a value from each choice in that
test frame.

III. EXPERIMENTAL SETTING
A. Specifications

Our study uses three commercial specifications that are
written primarily in an informal manner.

The first specification Strapg is related to the credit
sales of goods by a wholesaler to retail customers. The main
function of the system is to decide whether credit sales should
be approved for individual retail customers. Such a decision
considers several issues, such as the credit status and credit
limit of the customer and the billing amount of the transactions.

The second specification SpyrcHase is related to the
purchase of goods using credit cards issued by an international
bank. Each credit card is associated with several attributes
such as status (diamond, gold, or classic), type (corporate or
personal), and credit limit (different card statuses will have
different credit limits). The main functions of the system are
to decide whether a purchase using a credit card should be
approved, and to calculate the number of reward points to be
granted for an approved purchase. The number of reward points
further determines the type of benefit (such as free airline

tickets and shopping vouchers) that the customer is entitled
to.

The third specification Sypg is related to a meal ordering
system (MOS), which is being used by an international com-
pany (denoted by AIR-FOOD) providing catering service for
many different airlines. The main function of MOS is to help
AIR-FOOD determine the types (such as normal, child, and
vegetarian) and numbers of meals to be prepared and loaded
onto each flight served by AIR-FOOD.

Since MOS contains numerous modules and is fairly
complex in logic, we decompose Syps into several functional
units that can be tested independently. For example, there is
a functional unit Upygap directly related to the generation of
daily meal schedules and other units related to the maintenance
of airline codes and city codes. We do not apply such decom-
position to Strape and SpyrcHase because the corresponding
systems are less complex and can be tested in their entirety.
Thus, we treat Strape and SpyrcHase themselves as func-
tional units, denoted by Utgape and UpyrcHase, respectively.

B. Subjects

We recruited 16 experienced software practitioners as
subjects of our study. The minimum qualifications were an
undergraduate degree related to IT and five years of relevant
commercial experience. After the recruitment exercise, we
found that the subjects have 8 to 20 years of commercial
experience in software development and testing, with a mean
of 11.9 years. Each of them has an undergraduate and/or
postgraduate degree in information technology, information
systems, business computing, computer science, computing
studies, or computer engineering. Some of them also have
other non-IT academic qualifications such as MBA degrees.

Before commencing our study, we prepared the subjects by
giving them a one-hour introduction of CHOC’LATE (and also
CTM, which is another specification-based test case generation
method). We also issued them with the relevant supporting
documents. The introduction was followed by a one-hour
discussion in which some examples of CHOC’LATE and CTM
were used to reinforce the subjects’ understanding of these
techniques. A hands-on exercise was given to the subjects
to assess whether they were properly trained in applying the
techniques.

C. Category and Choice ldentification

As introduced in Section II, categories are the major
properties or characteristics of influencing factors of the SUT.
For every category Q proposed by the subjects, it may either be
identified according to the definition, or incorrectly identified
with something else in mind. In view of this situation, we
will refer to any Q identified by the subjects as a potential
category. Similarly, any Q. identified by the subjects is called
a potential choice.

Any potential category Q is said to be relevant if it is
defined with respect to an influencing factor. Otherwise, it is
said to be irrelevant. Only relevant categories are useful for
test case generation. In the rest of the paper, relevant categories
are simply referred to as “categories” unless otherwise stated.

TABLE 1. NUMBERS AND PERCENTAGES OF SUBJECTS USING AN

INCREMENTAL IDENTIFICATION APPROACH.

Functional Unit | Number (Percentage) of Subjects

UTRADE 7 (44%)
UPURCHASE 8 (50%)
UMEAL 16 (100%)

After the subjects had learned CHOC’LATE and CTM, we
asked each of them to identify potential categories and their as-
sociated potential choices from each of Urgrape, UpuRcHASE
and UpgaL in an ad hoc manner. Furthermore, for each
identified potential category and potential choice, the reason
of its identification had to be stated.

IV. RESPONSES FROM SUBIJECTS

After the identification exercises, we organized a meeting
with the 16 subjects, with a view to finding out their answers
to the following three research questions:

(RQ1) How many subjects use an incremental identification
approach?

(RQ2) Which kinds of components in a specification are more
useful for identifying categories and choices?

(RQ3) In what ways can the effectiveness of the identification
process be improved?

These three issues will be discussed in Sections IV-A, IV-B,
and I'V-C below.

A. Popularity of an Incremental Identification Approach (RQ1)

Unlike specifications that are written in formal languages
such as Z [29] and Boolean predicates [9], [14], informal
specifications are often expressed in many different styles
and formats, and contain a large variety of components [6].
Examples of these components are narrative descriptions, use
cases, activity diagrams, swimlane diagrams, state machines,
data flow diagrams (DFD), and data dictionaries. For a com-
plex informal specification with many different components,
software testers may find it difficult to identify categories
and choices from the entire specification in one single round.
Rather, testers may be inclined to decompose the identification
process into several steps, each step focusing on only one
specification component. We call this practice an incremental
identification approach.

Table I shows the number and percentage of subjects who
used an incremental identification approach for each functional
unit. Note that, among the three functional units, UygaL is the
most complex in terms of the system logic and the number of
specification components, and Utgapg is the least complex.
Thus, Table I shows that the subjects are more inclined to
use an incremental identification approach for a more complex
functional unit.

B. Usefulness of Various Kinds of Specification Components
(RQ2)

Inspired by the observation in Table I, we asked the
subjects which kinds of specification components they would

Get Information
from Master
Flight Schedule

Change

Estimated Time
of Departure

[EFS is Defined]

[EFS is Not Defined]

Fig. 1. Part of an activity diagram for the generation of daily meal schedules.

consider more useful for the identification of categories and
choices.

1) Activity Diagrams and Swimlane Diagrams: In response
to this question, 15 subjects (94%) considered activity dia-
grams and swimlane diagrams to be very useful for category
and choice identification.

Basically, an activity diagram or a swimlane diagram rep-
resents the actions and decisions that occur as some function is
performed. The diagrams use rounded rectangles to denote ac-
tivities, arrows to represent control flows of activities, diamond
icons (corresponding to decision points) to depict branching
decisions, and solid thick bars to indicate the occurrence
of parallel activities. Arrows are used to indicate alternative
threads that emerge from every decision point depending on
the guard conditions enclosed in square brackets. The diamond
icon can also be used to show where the alternative threads
merge again.

The swimlane diagram is a useful variation of the activity
diagram. Both types of diagrams contain decision points
and their associated guard conditions. A swimlane diagram,
however, can also indicate which actor (if there are multiple
actors involved in a specific function) or analysis class is
responsible for the action described by an activity rectangle.
Responsibilities are represented as parallel segments that di-
vide the diagram into swimlanes, like the lanes in a swimming
pool [23].

Intuitively, the decision points and the guard conditions
in an activity diagram or a swimlane diagram indicate where
and how a software system behaves differently. (Readers may
recall that a category corresponds to an influencing factor of
the SUT.) Thus, about 94% of the subjects consider that this
characteristic makes activity diagrams and swimlane diagrams
very useful for identifying categories and choices.

The following Example 1 further illustrates the usefulness
of activity diagrams. We note that the usefulness of activity
diagrams in the example applies also to swimlane diagrams.

Example 1 (Generation of Daily Meal Schedules). In
UmeaL of MOS, there are many master flight schedules,
each of which corresponds to a flight served by AIR-FOOD.
The information captured in master flight schedules will
be used by MOS to generate the corresponding daily meal
schedules. These daily meal schedules contain important
information to help AIR-FOOD determine the types and
numbers of meals to be prepared and loaded onto the flights.
During the generation process for daily meal schedules,
some information in master flight schedules (MFS) can be
overridden by the corresponding exceptional flight sched-
ules (EFS), if the latter are defined. Basically, an EFS allows
users to change the estimated time of departure of a flight
on a particular date after the MFS of this flight has been
defined.

Consider the partial activity diagram in Fig. 1, which shows
part of the generation process of daily meal schedules. The
upper diamond icon represents a decision point associated
with two guard conditions, “EFS is Defined” and “EFS is
Not Defined”. Because these two guard conditions corre-
spond to different flows of control and, in turn, different
execution behavior (or influencing factors) of MOS, the
category “Defined EFS” should be identified, with two

associated choices “Defined EFSy.s” and “Defined EFS,”.

2) Sample Input Screens and Data Dictionaries: One half
(50%) of the subjects also reported that sample input screens
and data dictionaries are useful for the identification task,
although these specification components were not considered
to be as useful as activity diagrams and swimlane diagrams.

Consider sample input screens first. Eight subjects reported
that, by showing the input parameters explicitly, sample input
screens represent a good repository in which input parameters
corresponding to influencing factors can be identified as
categories. Suppose there is a parameter £ on a sample input
screen corresponding to an influencing factor of the SUT, and
QF is the category corresponding to E. If the input screen also
shows different values (or ranges of values) of E, then these
values or ranges may correspond to the choices associated
with E.

Consider, for instance, the sample input screen in Fig. 2
for the maintenance of master flight schedules (MFS) in MOS,
in which the inputs are entered inside square brackets []. It
indicates that the input parameter “Frequency of Departure”
has two possible values: “daily” and “non-daily”. The screen
also shows that for a non-daily flight, users need to enter
its “Weekly Flight Pattern”, which shows the day(s) of the
flight within a week. This is because MOS will check the
weekly flight pattern for a non-daily flight when generating
the corresponding daily meal schedule from an MFS. Because
of this reason, “Frequency of Departure” is an influencing
factor and, hence, should be identified as a category with two
associated choices “daily” and “non-daily”.

For similar reasons, the eight subjects also considered data
dictionaries to be useful for category and choice identification,
but not as useful as sample input screens. This was because,
unlike sample input screens, the elements in a data dictionary
do not necessarily correspond to input parameters. For exam-
ple, some elements in a data dictionary may correspond to

Maintenance of Master Flight Schedules

Airline [JJ] Flight Number [701]

Flight Sector [HKG/TPE/HKG]
Aircraft Type: (1) Boeing—747 (2) Boeing-737 (3) Airbus—340 (4) Airbus—-330

[1]

Estimated Time of Departure [15:45]
Effective Period [15/Nov/2010] to [30/Apr/2011]
Frequency of Departure: Daily [1 Non-daily [XI]
Weekly Flight Pattern: Mon [X] TuelX] Wed[] Thul]l Fril]l Sat[X] Sun]]
(for non—daily flights only)
Save [X] Delete [1 Exit [1]
Fig. 2. Sample input screen for the function “Maintenance of Master Flight Schedules”.
Exceptional flight
schedules (EFS) -
Exceptional crew
User configuration records (ECCR)
EFS data
ECCR data
Departure date
Master flight
Get schedules (MFS)
exceptional \/
MES dat
schedules =
or records
Exceptions MFS data
Generate
daily
meal
schedules
Daily meal
schedules
Daily meal
schedules
Fig. 3. A level-1 data flow diagram for the generation of daily meal schedules.

intermediate attributes or system outputs. Obviously, categories
should not be identified from such elements. Thus, the subjects
need to spend extra effort to identify a proper subset of the
elements in a data dictionary that correspond only to input
parameters.

The eight subjects also gave the two reasons why they
considered sample input screens and data dictionaries less
useful than activity diagrams and swimlane diagrams. First,
the usefulness of activity diagrams and swimlane diagrams is
largely due to the decision points and the guard conditions,
which do not exist in sample input screens and data dictionar-
ies. Second, as illustrated in Example 1, the guard conditions

largely ease the identification of choices for each category
(which corresponds to a decision point in an activity diagram
or swimlane diagram). On the other hand, in the sample input
screens and data dictionaries, even though software testers
can determine which input parameters should be used for
category identification, relatively little information is provided
for identifying the choices for each category.

3) Data Flow Diagrams: Finally, six subjects (38%)
pointed out that lower-level data flow diagrams are useful for
identifying categories and choices. In short, the DFD takes an
input-process-output view of a system [23]. That is, data flow
into the software and are transformed by processing elements

into useful information that flows out of the software. The
flows of data are indicated by labeled arrows, transformations
are represented by bubbles, and data stores are denoted by
double lines. Data flow diagrams are arranged in levels.
The highest level data flow model (also called a level-0
DFD or context diagram) represents the system as a whole.
Lower-level data flow diagrams refine higher-level data flow
diagrams, providing more details. Some software practitioners
argue that although data flow diagrams are not a formal part
of UML, they can be used to complement UML diagrams
and provide additional insight into system requirements and
flows [23].

The usefulness of lower-level data flow diagrams for identi-
fying categories and choices is mainly contributed by their data
stores. Fig. 3, for instance, shows a level-1 DFD for generating
daily meal schedules in UygaL of MOS. There are four data
stores in this DFD. Let us consider the data store “Master
Flight Schedules (MFS)”. Intuitively, an MFS indicates an
environment condition of Uygal with three possible statuses
(namely, an undefined MFS, a defined but empty MFS, and
a defined and nonempty MFS), each of which will result
in a different execution behavior of the system. Thus, the
data store “Master Flight Schedules (MFS)” corresponds to an
influencing factor and, hence, the category “Status of MFS”
should be identified with three associated choices “Status of
MFS 10t defined”’s “Status of MFES gefined but empty”’» and “Status
of MFS gefined and nonempty”- The first two choices are identified
to test how the system behaves under abnormal situations.
Categories can also be identified for influencing environ-
ment conditions corresponding to the data stores “Exceptional
Flight Schedules (EFS)” and “Exceptional Crew Configuration
Records (ECCR)” in a similar manner. We should point out
that, for any data store D that serves as an input to a process in
a DFD and for the corresponding category QP, the three stan-

. « D » «AD »
dard choices “O%ot defined. € defined but empty > and

“oP defined and nonempty” are always applicable.

Readers should note that, although data flow diagrams (by
virtue of the data stores) are useful for identifying influenc-
ing environment conditions from which their corresponding
categories and choices can be defined, they provide little
information for identifying influencing parameters (and their
corresponding categories and choices). Although some data
flows in a DFD may potentially correspond to parameters, we
do not know whether they are “influencing” by inspecting the
DFD alone. In addition, instead of representing individual data
items, such data flows may correspond to groups of data items,
some of which may correspond to influencing parameters while
the others may not.

C. Improvement to the Ad Hoc Identification Process (RQ3)

In the discussion meeting with the 16 subjects, we found
that 11 (69%) of them also constructed choice relation tables
(for CHOC’LATE) or classification trees (for CTM), even though
they were not asked to do so. Basically, the construction of
such tables or trees represents the next step in CHOC LATE
and CTM after the identification of categories and choices. The
main purpose of the tables and trees is to capture the relations
among choices (in CHOC’LATE) (see step (3) of CHOC’LATE
in Section II) or categories (in CTM), through which complete

test frames can be subsequently generated (see step (4) of
CHOC’LATE in Section II).

These 11 subjects argued that the identification of cate-
gories and choices is closely related to the identification of
their relations and, hence, these two steps should not be totally
separate. More specifically, the subjects need to consider the
relations when identifying categories and choices. Otherwise,
the identification task may not be well executed. This point is
illustrated in the following example:

Example 2 (Exceptional Schedules and Records). In the
functional unit UpgaL of MOS, the information captured in
master flight schedules (MFS) will be used to generate the
corresponding daily meal schedules. During the generation
process, some information in master flight schedules can
be overridden by exceptional flight schedules (EFS) and
exceptional crew configuration records (ECCR). Some de-
tails of exceptional flight schedules have been provided in
Example 1 and will not be repeated here.

Let us focus on exceptional crew configuration records.
They allow users to change the number of crewmembers
in a flight on a particular date after the MFS of this flight
has been defined. Such records are necessary since AIR-
FOOD needs to prepare meals for the crews as well as for
passengers.

In view of the possible definition of exceptional flight
schedules and exceptional crew configuration records, any
MES will fall into one of the following situations:

(a) it is associated with an EFS but not an ECCR;
(b) it is associated with an ECCR but not an EFS;
(c) it is associated with an EFS and an ECCR; and
(d) it is not associated with any EFS or ECCR.

There are two approaches to identifying categories and
choices:

e Approach 1: Intuitively, in order to cater for all the above
situations, two categories should be identified: “Defined
EFS” and “Defined ECCR”. The first category should
have two associated choices: “Defined EFSye” and
“Defined EFS,,”. Similarly, the second category should
have two associated choices: “Defined ECCRye;” and
“Defined ECCR,,”. With these categories and choices,
each of the above four situations can be tested separately
by selecting one choice in “Defined EFS” and one in
“Defined ECCR”. For example, the selection of both
“Defined EFS;,” and “Defined ECCRye” will cover
situation (b).

e Approach 2: Some software testers, however, may argue
that we do not need two categories and four choices.
The rationale is that such an approach will increase the
number of complete test frames (and in turn the number
of test cases) generated and, hence, will require more
testing effort. Instead, these testers propose that only
one category “Exceptional Schedules/Records Defined”,
with “Exceptional Schedules/Records Definedyes” and
“Exceptional Schedules/Records Defined,,” as its two
associated choices, should be identified. Note that
the choice “Exceptional Schedules/Records Definedy.s”

caters for situations (a), (b), and (c) collectively; whereas
“Exceptional Schedules/Records Defined,,” caters for
situation (d) only. On one hand, the new proposal will
result in fewer complete test frames and test cases, and
some test effort can be saved. On the other hand, the
resulting test suite will be less “refined”, in the sense that
test cases cannot be generated to cater for situations (a),
(b), and (c) on an individual basis.

In order to judge which identification approach should be
adopted, the subjects needed to consider a question: Which
approach will generate a test suite with a better coverage
and, hence, a higher chance of revealing failures? The
question could only be answered if the subjects knew:

e What are the other categories and their associated choices
to be identified?

e What are the relations among the identified categories/
choices? These relations determine how choices are
combined to form part of any complete test frame.

e Suppose B, B5, and BS are any complete test frames
containing the following three pairs of choices:

(“Defined EFSyes” and “Defined ECCR,,"),
(“Defined EFS,,” and “Defined ECCR y¢,”), and
(“Defined EFSye,” and “Defined ECCR yes”),

respectively. Suppose, further, that B{, BS, and B5 only
differ in the above choice pairs; all the other choices
contained in these three complete test frames are identical
(that is, B \ {Defined EFS ¢, Defined ECCR o} = B \
{Defined EFS,,, Defined ECCRyc} = BS \ {Defined
EFS e, Defined ECCRy}). In this case, are B, B,
and B§ associated with different execution behavior
of MOS? If yes, then approach 1 should be used to
generate a test suite with a better coverage. Otherwise,
approach 2 should be used to generate a smaller test
suite (that is, with fewer test cases) without jeopardizing
its effectiveness of revealing failures.

In summary, the subjects suggested that identifying
categories and choices and identifying relations among
categories /choices should not be viewed as two totally
distinct processes.

V. THREATS TO VALIDITY

Our current empirical study had two limitations owing to
various settings. First, our study involved only 16 experienced
subjects. The study would certainly be better if more experi-
enced subjects participated. It was not easy, however, to find
a large group of experienced software testers willing to par-
ticipate in the study (with or without remuneration). Second,
only three specifications were used in the study. Nevertheless,
we believe that even with 16 experienced subjects and three
specifications, our findings still provide an inspiring insight
into the answers to the three research questions RQ1, RQ2,
and RQ3 stated at the beginning of Section IV.

One may argue that our study largely involves observations
of human performance and, hence, the contribution of the
findings to the software community is in question. In this

regard, Tichy [28] argues that “observation and experimen-
tation can lead to new, useful, and unexpected insights and
open whole new areas of investigation.” In addition, Briand [2]
argues that the training and skills of testers have a strong
impact on the cost-effectiveness of testing techniques because
these techniques are often not entirely automated and require
at the very least human inputs. This is particularly the case
for CHOC’LATE and CTM because they are partly based on
human intuition and understanding of the system behavior (for
example, the ad hoc identification of categories and choices).
Thus, we argue that observations of human performance do
play an important role in software engineering research. Our
argument is supported by numerous publications, primarily
involving human subjects, in leading software engineering
journals, including the work by Carver et al. [4] and Porter
and Johnson [22].

VI. SUMMARY AND CONCLUSION

Our study has confirmed that an incremental identification
of categories and choices for the engineering of test harnesses
is very popular when the specification is large and complex
(RQ1). In terms of the usefulness of various kinds of specifica-
tion components in identifying categories and choices (RQ2),
the experienced tester subjects favored activity diagrams,
swimlane diagrams, sample input screens, and data dictionaries
in various extents. Furthermore, the subjects suggested that, in
order to improve the effectiveness of an ad hoc approach, the
identification of categories, choices, and the relations among
categories /choices should not be considered separately (RQ3).

We end this paper with two final reminders. First, our study
results are not restricted to CHOC’LATE [6], [8], [20] and the
category-partition method [3], [18] only. As pointed out in
Section I, the identification of categories and choices (or their
equivalents) is also needed in other specification-based test
case generation methods such as cT™ [7], [11], [13], [26],
cause-effect graphing [16], and combinatorial testing [10],
[15], [27]. Second, in line with the thoughts of the software
community [2], [4], [22], [28], the observation of human
behavior is an essential element in software engineering,
including the development of effective test harnesses. In this
regard, our results should play a part in the contributions to
software engineering research.

ACKNOWLEDGMENT

We are grateful to the 16 anonymous software practitioners
for their invaluable time and effort in participating in the study.

REFERENCES

[1] B.W. Boehm and V.R. Basili, “Software defect reduction top 10 list,”
IEEE Computer, vol. 34, no. 1, pp. 135-137, 2001.

[2] L.C. Briand, “A critical analysis of empirical research in software
testing,” Proceedings of the Ist International Symposium on Empirical
Software Engineering and Measurement (ESEM 07), IEEE Computer
Society, 2007, pp. 1-8.

[3] L.C. Briand, Y. Labiche, Z. Bawar, and N.T. Spido, “Using machine
learning to refine category-partition test specifications and test suites,”
Information and Software Technology, vol. 51, no. 11, pp. 1551-1564,
20009.

[4] J.C. Carver, N. Nagappan, and A. Page, “The impact of educational
background on the effectiveness of requirements inspections: an empir-
ical study,” IEEE Transactions on Software Engineering, vol. 34, no. 6,
pp. 800-812, 2008.

[5]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

T.Y. Chen, P-L. Poon, S.-F. Tang, and T.H. Tse, “On the identification
of categories and choices for specification-based test case generation,”
Information and Software Technology, vol. 46, no. 13, pp. 887-898,
2004.

T.Y. Chen, P-L. Poon, S.-F. Tang, and T.H. Tse, “DESSERT: a
divide-and-conquer methodology for identifying categories, choices,
and choice relations for test case generation,” IEEE Transactions on
Software Engineering, vol. 38, no. 4, pp. 794-809, 2012.

T.Y. Chen, P.-L. Poon, and T.H. Tse, “An integrated classification-tree
methodology for test case generation,” International Journal of Software
Engineering and Knowledge Engineering, vol. 10, no. 6, pp. 647-679,
2000.

T.Y. Chen, P.-L. Poon, and T.H. Tse, “A choice relation framework for
supporting category-partition test case generation,” IEEE Transactions
on Software Engineering, vol. 29, no. 7, pp. 577-593, 2003.

Z. Chen, T.Y. Chen, and B. Xu, “A revisit of fault class hierarchies
in general Boolean specifications,” ACM Transactions on Software
Engineering and Methodology, vol. 20, no. 3, article no. 13, 2011.

D.M. Cohen, S.R. Dalal, M.L. Fredman, and G.C. Patton, “The AETG
system: an approach to testing based on combinatorial design,” IEEE
Transactions on Software Engineering, vol. 23, no. 7, pp. 437444,
1997.

M. Grochtmann and K. Grimm, “Classification trees for partition
testing,” Software Testing, Verification and Reliability, vol. 3, no. 2,
pp. 63-82, 1993.

M. Grottke and K.S. Trivedi, “Fighting bugs: remove, retry, replicate,
and rejuvenate,” IEEE Computer, vol. 40, no. 2, pp. 107-109, 2007.

R.M. Hierons, M. Harman, and H. Singh, “Automatically generating
information from a Z specification to support the classification tree
method,” Proceedings of the 3rd International Conference of B and Z
Users, Lecture Notes in Computer Science, vol. 2651, Springer, 2003,
pp. 388-407.

M.F. Lau and Y.T. Yu, “An extended fault class hierarchy for
specification-based testing,” ACM Transactions on Software Engineer-
ing and Methodology, vol. 14, no. 3, pp. 247-276, 2005.

Y. Lei, R.H. Carver, R. Kacker, and D. Kung, “A combinatorial testing

strategy for concurrent programs,” Software Testing, Verification and
Reliability, vol. 17, no. 4, pp. 207-225, 2007.

[16]

[17]

(18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

G.J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing,
John Wiley, 2011.

OMG Unified Modeling Language (OMG UML):
structure, Version 2.4.1, Object Management Group,
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/.

T.J. Ostrand and M.J. Balcer, “The category-partition method for
specifying and generating functional tests,” Communications of the
ACM, vol. 31, no. 6, pp. 676-686, 1988.

W.E. Perry, Effective Methods for Software Testing, John Wiley, 2006.

P-L. Poon, S.-F. Tang, T.H. Tse, and T.Y. Chen, “CHOC’LATE:
a framework for specification-based testing,” Communications of the
ACM, vol. 53, no. 4, pp. 113-118, 2010.

P.-L. Poon, T.H. Tse, S.-F. Tang, and F.-C. Kuo, “Contributions of tester
experience and a checklist guideline to the identification of categories
and choices for software testing,” Software Quality Journal, vol. 19,
no. 1, pp. 141-163, 2011.

A.A. Porter and P.M. Johnson, “Assessing software review meetings:
results of a comparative analysis of two experimental studies,” IEEE
Transactions on Software Engineering, vol. 23, no. 3, pp. 129-145,
1997.

R.S. Pressman, Software Engineering: a Practitioner’s Approach,
McGraw-Hill, 2010.

J.W. Sanders and E. Curran, Software Quality: a Framework for Success
in Software Development and Support, Addison-Wesley, 1994.

T. Shepard, M. Lamb, and D. Kelly, “More testing should be taught,”
Communications of the ACM, vol. 44, no. 6, pp. 103-108, 2001.

H. Singh, M. Conrad, and S. Sadeghipour, “Test case design based
on Z and the classification-tree method,” Proceedings of the 1st IEEE
International Conference on Formal Engineering Methods (ICFEM 97),
IEEE Computer Society, 1997, pp. 81-90.

K.-C. Tai and Y. Lei, “A test generation strategy for pairwise testing,”
IEEE Transactions on Software Engineering, vol. 28, no. 1, pp. 109—
111, 2002.

W.E. Tichy, “Should computer scientists experiment more?” [EEE
Computer, vol. 31, no. 5, pp. 3240, 1998.

J.B. Wordsworth, Software Development with Z: a Practical Approach
to Formal Methods in Software Engineering, Addison-Wesley, 1992.

Super-
2011,

