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Abstract—Test case selection is a prime process in the 
engineering of test harnesses. In particular, test case diversity is 
an important concept. In order to achieve an even spread of test 
cases across the input domain, Adaptive Random Testing (ART) 
was proposed such that the history of previously executed test 
cases are taken into consideration when selecting the next test 
case. This was achieved through various means such as best 
candidate selection, exclusion, , and diversity metrics. Empirical 
studies showed that ART algorithms make good use of the 
concept of even spreading and achieve 40 to 50% improvement in 
test effectiveness over random testing in revealing the first 
failure, which is close to the theoretical limit. However, the 
computational complexity of ART algorithms may be quadratic 
or higher, and hence efficiency is an issue when a large number 
of previously executed test cases are involved. This paper pro-
poses an innovative divide-and-conquer approach to improve the 
efficiency of ART algorithms while maintaining their perfor-
mance in effectiveness. Simulation studies have been conducted 
to gauge its efficiency against two most commonly used ART 
algorithms, namely, fixed size candidate set and restricted 
random testing. Initial experimental results show that the divide-
and-conquer technique can provide much better efficiency while 
maintaining similar, or even better, effectiveness. *  

Keywords—adaptive random testing, divide and conquer, effi-
ciency, effectiveness, software testing, test harness 

I. INTRODUCTION 

Test case selection is a major process in the development of 
test harnesses. Random testing [11] has been recognized as an 
important and useful method for test case selection. On the 
other hand, empirical studies have shown that failure-causing 
inputs, especially in numerical programs, tend to have contigu-
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ous failure regions [6]. Conceptually, if the current test cases 
cannot detect a failure, we should select the next test case to be 
far away from the test cases previously executed. Hence, 
evenly spreading the test cases across the input domain should 
provide a higher opportunity for revealing a failure. 

Based on this intuition, Chen et al. [7] introduced the 
concept of Adaptive Random Testing (ART) to enhance the 
effectiveness of failure detection in random testing. The first 
ART method they proposed was the Fixed Size Candidate Set 
(FSCS) algorithm [6], [7], which generates a list of test cases 
as potential candidates, selects the best test case with the 
longest distance from a close neighborhood of previously 
executed test cases. Another proposed technique is the 
Restricted Random Testing (RRT), which selects the next test 
case as one that lies outside all the exclusive regions of 
previously executed test cases. Please refer to Section II for 
more details. Empirical studies show that ART algorithms, 
using the concept of even-spreading, achieve 40 to 50% 
improvement in effectiveness over random testing  (in terms of 
the expected number of test cases required to detect the first 
failure), which is close to the theoretical limit [8]. 

However, ART is less efficient than random testing 
because of the extra task of ensuring even spreading of test 
cases, where the efficiency is measured in terms of the time to 
generate a test case. This extra task involves the computation 
of history information from previous test cases because the 
determination of the i-th test case is related to the first to the 
(i–1)-th previously executed test cases. The computational 
complexity of ART algorithms is generally quadratic or higher. 
Hence, ART may not be more cost-effective than random 
testing when efficiency is taken into consideration. 

In order to enhance the efficiency of existing ART algo-
rithms, two techniques were proposed, namely, mirroring by 
Kuo [12] and forgetting by Chan et al. [2]. Conceptually 
speaking, both techniques can be applied to all ART methods. 
In the mirroring technique, the ART algorithm is applied to 
part of the input domain, and then the generated test cases are 
copied like mirror images to the remaining parts. In the forget-
ting technique, not all previously executed test cases are used 
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to guide the generation of the next test case. The maximum 
number of previously executed test cases to be retained is 
specified by a memory parameter. On the other hand, empirical 
studies show that there is a trade-off between computational 
complexity and effectiveness [16]. Experimental results in the 
forgetting paper [2], for instance, show that for a given 
memory parameter, a similar performance in effectiveness can-
not be maintained across different failure rates. 

The motivation of the present paper is to design a new and 
innovative approach, known as divide-and-conquer, for reduc-
ing the cost of test case generation for ART algorithms, as well 
as preserving the performance in effectiveness. 

The present study serves as an introduction to an innovative 
technique that improves on the efficiency of ART while 
preserving its effectiveness as far as possible. We will focus 
our experimental comparison with the two most commonly 
used ART algorithms, namely FSCS and RRT. Evaluations 
with respect to other ART algorithms will be left as future 
work. 

The contribution of our proposed technique is fourfold: (a) 
It is an innovative enhancement of ART algorithms that greatly 
improves the computational complexity from quadratic or 
higher order to linear order. (b) It preserves the even spreading 
property of ART and largely maintains the performance in 
effectiveness. (c) It can be applied to all ART algorithms 
because it is an add-on technique. (d) It is independent of the 
dimension of the input domain. 

The paper is organized as follows: Section II provides the 
background information on FSCS and RRT. Section III 
describes the proposed divide-and-conquer approach and 
explains the differences between the new technique and two 
existing efficiency improvement techniques. A comparison of 
the efficiency and effectiveness between selected ART algo-
rithms and the same algorithms enhanced with the divide-and-
conquer strategy is presented in Section IV. Finally, we present 
the conclusion in Section V. 

II. BACKGROUND INFORMATION ON FSCS AND RRT 

The Fixed Size Candidate Set (FSCS) algorithm for 
adaptive random testing, proposed by Chen et al. [6], [7], 
makes use of the simple intuition of selecting the best choice 
out of a fixed number of candidates to generate the next test 
case. Essentially, FSCS randomly generates k candidates and 
then calculates the distance disti between each candidate ci and 
its closest previously executed test case. The candidate cbest 
with the longest distance, defined as ܿ௦௧  = ൛ܿ | ݀݅ݐݏ =max∈{ଵ,ଶ,…,} ݀݅ݐݏ} , represents the best candidate. It is 
selected as the next test case, and other candidates are 
discarded. This best candidate selection procedure is repeated 
until the first failure is revealed or the appropriate time limit 
has been reached. Since the computing operation calculates the 
distance between the candidates and all previously executed 
test cases, the computational complexity of FSCS is Θ(n2) 
[6], [7]. 

Chan et al. [3] introduced Restricted Random Testing 
(RRT), which is based on the notion of exclusion. All exclusion 
zones are circular and equal in size. Let A be the target 
exclusion zone and n be the number of previously executed test 
cases. Each exclusion area is A/n, and the radius of each exclu-
sion zone is ඥ(ߨ݊)/ܣ . For each round of test case generation, 
an exclusion zone has to be defined for every test case 
previously executed. The potential test cases are randomly 
generated until there is a potential test case outside all 
exclusion regions. It will be used as the next test case. The size 
of the exclusion zone will decrease when the number of 
previously executed test case increases. Mayer and Schnecken-
burger [15] estimated that the computational complexity of 
RRT is Θ(n2 log(n)), assuming that the number of candidate 
test cases is logarithmic in the number of previously executed 
test cases. They validated their assumption empirically for the 
situation where the exclusion zones are circular, the total areas 
of the exclusion zones is 150% of the area of the input domain, 
and the number of test cases is no more than 500. 

III. DIVIDE-AND-CONQUER APPROACH 

A. Background 

The proposed approach makes use of the standard concept 
of “divide and conquer” for breaking up a large problem into 
smaller sub-problems. It applies the exact ART algorithm to 
each of the sub-problems until the computational operation is 
too expensive for applying the ART algorithm again. It then 
further breaks up the sub-problems and repeats the procedure 
recursively until either a first failure is revealed or the time 
limit is reached. 

While the target of the proposed divide-and-conquer 
approach is in alignment with two existing techniques for 
reducing the computational complexity of ART algorithms, 
namely, mirroring and forgetting, the concept of the new 
approach is different. In mirroring [12], the input domain is 
partitioned into disjointed sub-domains, and then the process 
selects a sub-domain as a source domain while the others are 
called mirror domains. The ART algorithm will only be 
applied to the source domain, and then the process uses a 
function to map the generated test cases from the source 
domain to all mirror domains. This mirroring procedure is 
repeated until a first failure is identified. 

In forgetting [2], the researchers make use of the forgetting 
principle, which refers to “Human learning is often character-
ised by inaccurate retention or recall, termed forgetting” [2], 
to tackle the problem of the number of computational opera-
tions when the number of previously executed test cases grows. 
For a given memory parameter, the process forgets some previ-
ously executed test cases in order to improve the efficiency in 
generating the next test case. 

The proposed divide-and-conquer approach uses bisec-
tional division to break up the input domain into smaller sub-
domains, and generates a next test case from each sub-domain. 
The divide-and-conquer approach does not forget any historical 
information from previously executed test cases. It only 
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ignores test cases outside the sub-domain under consideration 
in order to improve the efficiency of ART algorithms. This is a 
new and innovative approach for efficiency improvement in 
ART. 

B. Proposed Approach 

The approach starts with any ART algorithm and a speci-
fied integer known as the threshold, denoted by λ. The 
determination of the threshold will be discussed later. Let D 
denote the input domain and T denote a set of previously 
executed test cases. After λ test cases have been generated in T 
from the input domain D, the divide-and-conquer process is 
triggered. The process bisectionally divides each dimension of 
the input domain into equal-sized sub-domains {D1, D2, …, 
Ds} such that ∪ୀଵ௦ Di = D, where s = 2dn denotes the number of 
sub-domains after each division process and dn denotes the 
dimension of the input space. The next step is to allocate test 
cases into their relevant sub-domains. This is achieved by 
putting all the sub-domains thus generated into a global queue 
and selecting the least populated sub-domain Di such that |ࢀ| 
= min{ଵ,ଶ,…,௦}  |, where |.| denotes the size of a set and Tiࢀ|
denotes the set of selected test cases in the sub-domain Di, that 
is, Ti = T ∩ Di, from which the next test case will be generated. 
The process of selecting the currently least populated sub-
domain is repeated until the numbers of test cases for all sub-
domains reach λ again. Then, the process of bisectional 
division of the sub-domains will be recursively applied. 

 

Fig. 1. The operation of ART with divide-and-conquer. 

As an example for illustration, consider a 2-dimension 
input domain D. Fig. 1 shows the proposed divide-and-conquer 
approach in action. Suppose λ is 16. In Fig. 1(a), when the total 
number of test cases |T| in the input domain D reaches λ, the 
divide-and-conquer process is triggered. In Fig. 1(b), input 

domains are bisectionally divided into four equal-sized sub-
domains. After the test case reassignment process, the distribu-
tion of test cases are |T1| = 4, |T2| = 3, |T3| = 4, and |T4| = 5 in 
sub-domains D1, D2, D3, and D4 respectively. In accordance 
with the selection criterion, which chooses the least populated 
sub-domain to proceed, the next test case generation process is 
applied to sub-domain D2. After generating one test case in D2, 
the next test case should be generated from one of the three 
sub-domains {D1, D2, D3}, which have the same number of test 
cases previously executed (that is, 4). Then, the selection 
criterion is repeated until the numbers of test cases in all the 
sub-domains reach the threshold value λ again. In Fig. 1(c), the 
numbers of previously executed test cases in all sub-domains 
{D1, D2, D3, D4} reach the threshold value of 16, and the 
process starts the next bisectional division of all sub-domains. 
In Fig. 1(d), after the said bisectional division procedure, the 
process allocates all the sub-domains with a depth of 2 into a 
global queue (where depth denotes the depth of the bisectional 
division) and then repeats the selection criteria in order to find 
the least populated sub-domain D4_2 where |T4_2| is 2. 

The algorithm for adaptive random testing with divide-and-
conquer is as follows: 

Algorithm 1. Adaptive Random Testing with Divide-and-Conquer (DC) 

λ = threshold for the divide-and-conquer process; 
/* The threshold is set by the human tester */ 

D = the entire input domain; 
T = {};  /* a list to store the generated test cases in the input domain D */ 
depth = 0; 
d_queue = {D};  /* a list to store D and Di */ 
t_queue = {T};  /* a list to store T and Ti */ 
tmp_d_queue = {};  /* a temporary storage for D and Di */ 
tmp_t_queue = {};  /* a temporary storage for T and Ti */ 
while (stopping criteria not reached) 

select the least populated sub-domain Di from d_queue; 
/* that is, Di such that |ࢀ| = min{ଵ,ଶ,…,|௧_௨௨|}  /* |ࢀ|

t = ART(Di, Ti) /* generate a new test case by applying ART to Di 
with Ti as the set of all test cases previously executed */ 

test the program using t as a test case; 
if t reveals a failure 

exit; 
else 

add t to Ti; 
end if; 
if |Ti| = λ 

remove Di from d_queue; 
remove Ti from t_queue; 
start the bisectional division process on Di and create s sub-domains 

Di_j such that ∪ୀଵ௦ Di_j = Di, where s denotes the number of sub-
domains after each division process; 

create |Ti_j| lists to store the generated test cases in each sub-domain 
Di_j; 

for each tk in Ti /* test case reassignment process */ 
if tk is in Di_j 

add tk to T i_j; 
end if; 

end for; 
add all Di_j to tmp_d_queue; 
add all T i_j to tmp_t_queue; 
delete Di and Ti; 

end if; 
if t_queue is empty 

d_queue = tmp_d_queue; 
t_queue = tmp_t_queue; 
tmp_d_queue = {}; 
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tmp_t_queue = {}; 
depth ++; 

end if; 
end while; 

C. Determination of threshold 

The major concept of the proposed divide-and-conquer 
approach is to partition a large problem into smaller sub-
problems when the number of previously executed test cases 
reaches the threshold λ, in the sense that it tackles the smaller 
sub-domains individually rather than the entire input domain. If 
λ is set to be large, previously executed test cases should 
probably be evenly distributed, which is the property of ART, 
and there will be more or less the same number of test cases in 
each of the resultant sub-domains. However, the computational 
complexity will be high in this scenario. On the other hand, if λ 
is set to be too small, such as 4 in a 2-dimensional space, there 
will be a high chance that one of its 4 sub-domains may have 
no test case. This means that the next test case will be directly 
generated by a purely random generation process, thus losing 
any relationship with other previously executed test cases and 
defeating the target of even spreading. For this reason, it would 
be better to avoid too small a value for λ so as to increase the 
probability that each sub-domain contains at least one previ-
ously executed test case. 

For the case of pure random testing, since the sub-domains 
are in equal-sized partitions, the determination problem can be 
viewed as a dice problem [9]: “How many dice must be rolled 
to have at least a 95% chance of rolling a one, a two, a three, a 
four, a five and a six?” The approach can be extended even 
further in accordance with the inclusion-exclusion principle 
[10], which is a mathematic counting technique to obtain the 
total number of elements in the union of two or more finite sets 
(such as |A ∪ B ∪ C| = |A| + |B| + |C| – |B ∩ C| – |C ∩ A| – 
|A ∩ B| + |A ∩ B ∩ C|, where A, B, and C are finite sets). The 
probability p(n) for having at least one test case residing in 
every resultant sub-domain in 2-dimensional space is 

(݊)  = (−1)ଷ
ୀ ൬4݆൰ ൬4 − ݆4 ൰

 

= 1 − 4 ൬34൰ + 6 ൬12൰ − 4 ൬14൰
 

(1) 

This probability exceeds 0.95 when n ≥ 16. Table I shows 
some of the probabilities for various values of n. In other 
words, there is 95% chance that at least one test case falls into 
every resultant sub-domain after the 16th test case generation 
in 2-dimensional input domain. Rewriting (1) in a general form 
in dn-dimensional input space, we have 

(݊)  =  (−1)ଶିଵ
ୀ ቆ2ௗ݆ ቇ ቆ2ௗ − ݆2ௗ ቇ

 (2) 

Equation (2), however, is not applicable to adaptive random 
testing because ART does not produce independent and 
uniformly distributed random values. Having said that, (2) 
provides a rough guideline for determining the threshold for 

divide and conquer. More discussions and experimental results 
will be described in the next section. 

TABLE I.  PROBABILITIES p(n) OF GENERATING AT LEAST ONE 

TEST CASE IN EVERY SUB-DOMAIN IN 2-DIMENSIONAL SPACE 

n p(n) n p(n) n p(n) 
4 0.093750 10 0.780602 16 0.960001 
5 0.234375 11 0.833988 17 0.969978 
6 0.380859 12 0.874759 18 0.977472 
7 0.512695 13 0.905703 19 0.983098 
8 0.622925 14 0.929094 20 0.987321 
9 0.711365 15 0.946729 21 0.990489 

IV. ANALYSIS AND EXPERIMENTAL RESULTS 

A. Efficiency improvement 

The determination of the threshold is an important decision. 
On one hand, the reduction of computational complexity will 
not be significantly improved if the threshold is set to be too 
high. On the other hand, if the threshold is assigned too small a 
value, the overall process will be dominated by sub-divisions 
of the input domain. Putting it to the extreme, suppose we set 
the threshold to be 1. The bisectional division process will be 
executed whenever one test case is generated by random 
testing in the sub-domains. In other words, the ART algorithm 
is never applied in this scenario. 

It is easy to see that the computational complexity of the 
divide-and-conquer approach contains two major components: 
The first component is the operation steps of the distance 
calculation for a specific ART algorithm in all input sub-
domains, as shown in Figs. 1(a) and (c). The second is the 
process of reassigning of all the test cases into newly created 
sub-domains by the bisectional division procedure, as dis-
played in Figs. 1(b) and (d). 

Consider the example in Fig. 1 that executes the FSCS-
ART algorithm [6], [7] with divide-and-conquer technique in a 
2-dimensional space such that the threshold λ is set to a 
constant value of 16. Referring to Section II, the complexity of 
distance computation in FSCS is Θ(n2). Since divide-and-
conquer is triggered whenever that number of previously 
executed test cases has reached the threshold λ, the asymptotic 
value of n will not exceed λ, which is a constant. Hence, the 
complexity of distance computation in FSCS is also constant. 
Thus, after applying the divide-and-conquer approach, the 
computational complexity of ART algorithms becomes a linear 
order of the number of previously executed test cases. 

On the other hand, another overhead is related to the 
process of dividing a large domain into smaller sub-domains 
and the assignment of test cases to each resultant sub-domain. 
Let mfirst be the number of test cases to detect the first failure 
and s be the number of resultant sub-domains after dividing a 
domain. For instance, s = 4 in a 2-dimensional input space. The 
depth, which means the number of iterations of the division 
process, is given by ݉ϐ୧୰ୱ୲ = ݏௗ௧ିଵ. Rearranging the 
equation, we obtain: 
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ℎݐ݁݀  = ۔ۖەۖ
ۓ ቤlog(݉ϐ୧୰ୱ୲/ࣅ)log(ݏ) ቤ + 1        ݉ϐ୧୰ୱ୲ ≥ ࣅ

0                                          ݉ϐ୧୰ୱ୲ < ࣅ  (3) 

Considering the scenario in a 2-dimensional space, where s 
= 4. Let the threshold λ be 100. A depth of 0 will result when 
the number of test cases is in the range of [0, 100), a depth of 1 
will take place when the range is [100, 400), a depth of 2 will 
result when the range is [400, 1600), and so on. In general, 
since the depth can be found in (3), the overhead related to the 
bisectional division process and the assignment of test cases to 
each resultant sub-domain and the can be computed. 

A comparison analysis was conducted on two commonly 
used ART algorithms, namely FSCS and RRT, with and 
without enhancement by the divide-and-conquer technique. In 
FSCS, the parameter for the number of the potential candidates 
was set to a constant k = 10 after Chen et al. [6], [7]. Similarly, 
the target exclusion ratio for the RRT was assigned to 150% 
after Chan et al. [2], [3]. For the divide-and-conquer approach, 
thresholds of 10, 50, and 100 were applied. The simulation 
exercises were repeated 1,000 times and the experimental 
results of the computation times of the algorithms are reported 
in Table II. In addition to computational complexity, diversity 
measurement metrics, namely, discrepancy and dispersion [5], 
were also used to measure the effectiveness of the divide-and-
conquer technique. 

The discrepancy metric indicates whether different regions 
in the input domain D have equal densities in test cases. The 
metric is formulated as: ݀݅ݕܿ݊ܽ݁ݎܿݏ =  max{ଵ,ଶ,…,ଵ} ቤฬࢀࢀ ฬ − ฬࡰࡰ ฬቤ 
where Dr denotes a rectangular sub-domain of D whose size 
and location are randomly defined, and Tr denotes the set of 
test cases randomly selected from sub-domain Dr, that is, Ti = 
T ∩ Dr. Thus, a low discrepancy value indicates that the test 
cases are equal in densities across all the sub-domains in D. 

The dispersion metric indicates whether there is a large 
empty region in input domain D, which is reflected by the 
maximum distance of any test case from its nearest neighbor. 
The metric is formulated as: ݀݅݊݅ݏݎ݁ݏ = max{ଵ,ଶ,…,|்|}min{ଵ,ଶ,…,|்|}݀݅ݐݏ൫ݐ,  ൯ݐ

where the function dist denotes the Euclidean distance between 
two test cases. Thus, a low dispersion value indicates small 
empty regions in the input domain D. 

The empirical results in Figs. 2 and 3 demonstrate that 
significant efficiency improvements are achieved after apply-
ing the divide-and-conquer technique to either ART algorithm. 
The computational complexity is reduced. The reduction in 
computational complexity depends on the value of the 
threshold and the nature of the ART algorithm. Table II further 
shows that FSCS-DC and RRT-DC can perform better in terms 
of the discrepancy metric than the respective basic ART 

algorithms, FSCS and RRT. As expected, the dispersion diver-
sity also indicates that there are larger empty regions for FSCS-
DC and RRT-DC compared with the basic FSCS and RRT, 
respectively. 
 

TABLE II.  COMPARISONS OF COMPUTATIONAL COMPLEXITY, 
DISCREPANCY, AND DISPERSION BETWEEN FSCS AND FSCS WITH DC 

AND BETWEEN RRT AND RRT WITH DC 

Computational Complexity (in Seconds) 

n FSCS 
FSCS-

DC, 
λ = 100 

FSCS-
DC, 

λ = 50 

FSCS-
DC, 

λ = 10 
RRT 

RRT-
DC, 

λ = 100 

RRT-
DC, 

λ = 50 

RRT-
DC, 

λ = 10 
    50   0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01 

  100   0.07 0.07 0.04 0.01 0.08 0.07 0.04 0.01 

  200   0.27 0.12 0.09 0.02 0.29 0.12 0.09 0.02 
  400   1.04 0.33 0.15 0.05 1.23 0.33 0.15 0.05 
  800   4.10 0.54 0.36 0.10 5.07 0.55 0.37 0.10 
1600 16.30 1.35 0.59 0.19 20.75 1.36 0.60 0.19 

Discrepancy 
    50 0.114 0.114 0.114 0.104 0.119 0.133 0.120 0.104 

  100 0.079 0.085 0.068 0.071 0.083 0.085 0.072 0.066 

  200 0.055 0.050 0.053 0.045 0.057 0.053 0.045 0.046 
  400 0.038 0.029 0.031 0.030 0.042 0.032 0.030 0.028 

  800 0.026 0.019 0.020 0.018 0.029 0.022 0.021 0.019 

1600 0.018 0.014 0.012 0.013 0.021 0.014 0.013 0.012 

Dispersion 
    50 0.179 0.177 0.179 0.198 0.177 0.177 0.175 0.177 

  100 0.126 0.128 0.131 0.134 0.123 0.126 0.129 0.129 

  200 0.092 0.092 0.095 0.097 0.088 0.094 0.090 0.093 

  400 0.066 0.066 0.068 0.070 0.063 0.064 0.067 0.068 

  800 0.047 0.048 0.048 0.049 0.045 0.047 0.047 0.048 

1600 0.034 0.034 0.034 0.036 0.032 0.033 0.034 0.036 

B. Comparisons of Effectiveness Using F-measure 

In this paper, the expected number of test cases to detect 
the first failure, usually referred to as the F-measure, is used as 
the effectiveness measure [4], [6]. F-measure is equal to 1/θ or 
|D|/m for random testing with replacement, where m denotes 
the number of failures and θ denotes the failure rate, such that 
m = |D|θ. A lower value of the F-measure indicates a more 
effective testing approach. It is generally agreed that the F-
measure is a more appropriate effectiveness measure for 
random testing and ART compared with other effectiveness 
metrics [1], [6]. 

There are three most typical failure patterns [4], [13], [14], 
namely, block, strip, and point patterns, as illustrated in 
Figs. 4a to 4c, respectively. In these figures, the bounding box 
indicates the input domain, and the colored block, strip, and 
dots represent the locations of failure-causing inputs. 

The effectiveness for applying divide-and-conquer tech-
nique with respect to these typical failure patterns was studied 
via simulation. A 2-dimensional input domain was used, with 
randomly generated failure patterns. For the block pattern, a 
square was randomly chosen within the input domain such that 
its size yields the desired failure rate. For the strip pattern, two 
points on adjacent sides were picked, and a strip connecting the 
two points determined the failure region. For the point pattern, 
50 non-overlapping circular regions were randomly chosen 
with equal radii.  
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TABLE III.  COMPARISONS OF F-MEASURES BETWEEN FSCS AND FSCS WITH DIVIDE-AND-CONQUER FOR BLOCK, STRIP, AND POINT PATTERNS 

Block Pattern 

Failure 
rate 

Expected F-
measure 

of random 
testing (Frt) 

FSCS FSCS-DC (λ = 100) FSCS-DC (λ = 50) FSCS-DC (λ = 10) FSCS-DC (λ = 4) 
Mean of 

FSCS 
(Ffscs) 

(Ffscs/Frt) 
Mean of 

FSCS-DC 
(Ffscs-dc) 

(Ffscs-dc/Frt) 
Mean of 

FSCS-DC 
(Ffscs-dc) 

(Ffscs-dc/Frt) 
Mean of 

FSCS-DC 
(Ffscs-dc) 

(Ffscs-dc/Frt) 
Mean of 

FSCS-DC 
(Ffscs-dc) 

(Ffscs-dc/Frt) 

    0.01   100     68.4 68.43%     69.3 69.32%     69.2 69.16%     73.3 73.26%     79.7 79.70% 
  0.005   200   134.6 67.30%   137.5 68.77%   136.3 68.15%   146.5 73.26%   161.4 80.72% 
  0.002   500   325.1 65.01%   335.5 67.11%   334.7 66.95%   351.7 70.35%   388.2 77.63% 
  0.001 1000   650.2 65.02%   661.5 66.15%   665.5 66.55%   715.4 71.54%   781.4 78.14% 
0.0005 2000 1290.4 64.52% 1309.3 65.46% 1324.5 66.23% 1398.5 69.92% 1517.8 75.89% 

Strip Pattern 
    0.01   100     92.1 92.13%     93.6 93.56%     94.1 94.14%     95.7 95.73%   104.4 104.41% 
  0.005   200   188.2 94.09%   190.1 95.07%   189.8 94.92%   192.3 96.17%   209.6 104.82% 
  0.002   500   475.3 95.06%   486.0 97.21%   484.7 96.93%   488.7 97.73%   522.7 104.54% 
  0.001 1000   944.9 94.49%   952.1 95.21%   976.0 97.60%   963.2 96.32% 1037.0 103.70% 
0.0005 2000 1932.5 96.63% 1922.4 96.12% 1901.8 95.09% 1928.6 96.43% 2043.2 102.16% 

Point Pattern 
    0.01   100   100.6 100.57%     99.7 99.74%   100.4 100.45%   100.9 100.85%   108.3 108.33% 
  0.005   200   200.3 100.17%   199.9 99.93%   201.6 100.78%   201.8 100.89%   218.8 109.42% 
  0.002   500   496.8   99.37%   495.9 99.18%   494.7   98.95%   501.2 100.25%   525.8 105.17% 
  0.001 1000   991.7   99.17%   978.7 97.87%   993.9   99.39%   995.4   99.54% 1070.5 107.05% 
0.0005 2000 1978.7   98.94% 1965.7 98.29% 1982.6   99.13% 1973.9   98.69% 2124.6 106.23% 

TABLE IV.  COMPARISONS OF F-MEASURES BETWEEN RRT AND RRT WITH DIVIDE-AND-CONQUER FOR BLOCK, STRIP, AND POINT PATTERNS 

Block Pattern 

Failure 
rate 

Expected F-
measure 

of random 
testing (Frt) 

RRT RRT-DC (λ = 100) RRT-DC (λ = 50) RRT-DC (λ = 10) RRT-DC (λ = 4) 
Mean of 

RRT 
(Frrt) 

(Frrt/Frt) 
Mean of 
RRT-DC 
(Frrt -dc) 

(Frrt-dc /Frt) 
Mean of 
RRT-DC 
(Frrt-dc) 

(Frrt-dc /Frt) 
Mean of 
RRT-DC 
(Frrt-dc) 

(Frrt-dc /Frt) 
Mean of 
RRT-DC 
(Frrt-dc) 

(Frrt-dc /Frt) 

0.01 100 66.1 66.14% 67.7 67.68% 68.0 68.01% 70.9 70.94% 72.8 72.79% 
0.005 200 127.6 63.78% 133.1 66.56% 135.1 67.57% 141.6 70.82% 146.0 73.02% 
0.002 500 310.0 62.00% 323.0 64.59% 330.0 66.00% 346.1 69.22% 360.3 72.07% 
0.001 1000 614.9 61.49% 645.4 64.54% 659.1 65.91% 698.5 69.85% 727.2 72.72% 
0.0005 2000 1218.1 60.91% 1289.2 64.46% 1289.7 64.49% 1365.2 68.26% 1440.5 72.03% 

Strip Pattern 
0.01 100 91.4 91.36% 92.9 92.91% 93.6 93.63% 94.1 94.09% 95.0 94.99% 
0.005 200 184.6 92.28% 190.7 95.35% 189.9 94.93% 189.8 94.91% 192.2 96.11% 
0.002 500 479.1 95.81% 479.3 95.86% 482.4 96.47% 479.8 95.96% 484.3 96.85% 
0.001 1000 947.6 94.76% 971.1 97.11% 960.5 96.05% 948.7 94.87% 962.6 96.26% 
0.0005 2000 1906.8 95.34% 1898.6 94.93% 1939.0 96.95% 1933.0 96.65% 1933.0 96.65% 

Point Pattern 
0.01 100 102.5 102.55% 101.1 101.13% 100.9 100.87% 100.0 99.96% 112.1 112.13% 
0.005 200 201.9 100.96% 200.7 100.35% 202.3 101.13% 198.8 99.41% 225.3 112.67% 
0.002 500 502.2 100.44% 496.3 99.26% 499.7 99.95% 496.9 99.38% 554.1 110.83% 
0.001 1000 995.5 99.55% 987.9 98.79% 997.9 99.79% 1004.0 100.40% 1111.3 111.13% 
0.0005 2000 1974.6 98.73% 1975.0 98.75% 1990.4 99.52% 2010.0 100.50% 2227.6 111.38% 

TABLE V.  COMPARISONS OF F-MEASURES BETWEEN RANDOM TESTING (RT) AND RANDOM TESTING WITH DIVIDE-AND-CONQUER (RT-DC) 

FOR BLOCK, STRIP, POINT PATTERNS 

Block Pattern 

Failure rate 
Expected F-

measure 
of RT (Frt) 

RT-DC (λ = 100) RT-DC (λ = 50) RT-DC (λ = 10) RT-DC (λ = 4) 
Mean of 
RT-DC 
(Frt-dc) 

(Frt-dc/Frt) 
Mean of 
RT-DC 
(Frt-dc) 

(Frt-dc/Frt) 
Mean of 
RT-DC 
(Frt-dc) 

(Frt-dc/Frt) 
Mean of 
RT-DC 
(Frt-dc) 

(Frt-dc/Frt) 

    0.01   100     98.5 98.54%     98.0 98.01%     90.0 90.04%     83.9 83.91% 
  0.005   200   195.7 97.87%   192.3 96.15%   179.8 89.90%   166.7 83.33% 
  0.002   500   491.1 98.22%   482.6 96.51%   449.9 89.97%   421.4 84.28% 
  0.001 1000   978.1 97.81%   978.6 97.86%   899.8 89.98%   834.9 83.49% 
0.0005 2000 1942.2 97.11% 1950.5 97.53% 1789.5 89.47% 1688.3 84.41% 

Strip Pattern 
    0.01   100   106.0 106.01%   102.9 102.88%     99.9 99.89%     99.5 99.46% 
  0.005   200   204.3 102.15%   201.3 100.64%   197.5 98.76%   197.6 98.81% 
  0.002   500   492.7   98.54%   499.5   99.90%   488.1 97.62%   487.0 97.40% 
  0.001 1000 1003.3 100.33%   998.5   99.85%   986.4 98.64%   978.8 97.88% 
0.0005 2000 1976.8   98.84% 1994.0   99.70% 1965.2 98.26% 1972.9 98.64% 

Point Pattern 
    0.01   100   100.0   99.95%     99.3   99.28%     99.7   99.72%     98.2 98.20% 
  0.005   200   201.6 100.78%   199.0   99.48%   197.3   98.66%   199.7 99.83% 
  0.002   500   502.1 100.42%   502.3 100.45%   497.6   99.52%   498.5 99.69% 
  0.001 1000 1004.4 100.44% 1011.4 101.14% 1007.8 100.78%   990.4 99.04% 
0.0005 2000 2001.7 100.09% 2006.7 100.34% 1977.9   98.90% 1988.1 99.41% 
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Fig. 2. Comparisons of computational complexity (in seconds) between 
FSCS and FSCS with divide-and-conquer with thresholds of 10, 50, and 
100. 

 

Fig. 3. Comparisons of computational complexity (in seconds) between 
RRT and RRT with divide-and-conquer with thresholds of 10, 50, and 100. 

 
Fig. 4. Block, Strip, and Point failure patterns in 2-dimensional space. 

The simulations were conducted with the following 
variables and values: 

• Failure rates: 0.01, 0.005, 0.002, 0.001, and 0.0005 
• Failure patterns: block, strip, and point 
• Algorithms: FSCS, RRT, and random testing 
• Thresholds: 100, 50, 10, and 4 

For each combination of failure rate, failure pattern, 
algorithms, and threshold, 20,000 test runs were executed. 
The average F-measure for each exercise was collected. The 
same parameters for both the FSCS and RRT algorithms 
were used as per Section IV-A. 

The experimental results in Tables III to IV demonstrate 
that the divide-and-conquer technique on top of ART 
performs similar, or even better, effectiveness than the origi-

nal ART algorithms for the point failure pattern. The results 
also show that there is only a slight decline of 1–3% in 
effectiveness of the divide-and-conquer approach for the 
block and strip failure patterns. 

Figs. 2 and 3 show that the F-measure slightly increases 
with efficiency improvement by reducing the threshold from 
100 to 10. Tables III to IV show that the F-measure further 
increases if a small value of threshold such as 4 is assigned. 
These results imply that the effectiveness in FSCS-DC and 
RRT-DC becomes slightly poorer for smaller threshold 
values. 

We also have studied the effect of divide-and-conquer 
technique to random testing. Table V illustrates that 
improvements in the F-measure for conducting random 
testing with divide-and-conquer can be significant. Future 
careful review will be required to verify whether divide-and-
conquer can be used as a technique for improving the even 
spread of random test cases without the use of basic ART 
algorithms. 

C. Threats to Validity 

1) Internal validity.  
This paper mainly serves to introduce an innovative 

efficiency improvement technique, namely divide-and-
conquer. The experiments focus on simulations and may not 
represent a full variety of possible execution patterns of real-
life faulty programs. However, in order to provide an 
“unbiased” cover, the experimental evaluations have been 
conducted on the three typical failure patterns, namely, 
block, strip, and point patterns, with wide ranges of failure 
rates. Various previous studies [3], [7], [16] have demon-
strated that simulations of the three classic failure patterns 
can provide an objective validation of comparative merits. 

Another threat to internal validity of the experiment is 
the choice of basic ART algorithms for the evaluation 
exercise. Since the two ART algorithms, namely Fixed Size 
Candidate Set (FSCS) and Restricted Random Testing 
(RRT), are commonly used and most involved in the com-
parisons of various random testing techniques [15], [16], 
they stand a representative position. 

A further study covering real-life faulty programs and 
including other ART algorithms will alleviate the threats to 
internal validity. 

2) External validity 
There is one issue that may affect the external validity of 

the experiment. The Math::Random module, which is the 
Perl port of the C version of Randlib, is applied as the 
pseudorandom number generator to produce for the experi-
ment a sequence of numbers that are approximately random. 
Randlib has been chosen because it comprises a large library 
of C routines for generating random numbers with uniform 
distribution under the UNIX and Linux environments. The 
use of other pseudorandom number generators may produce 
slightly different results. 
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3) Construct validity 
There are two commonly used metrics to evaluate the 

effectiveness performance of testing algorithms, namely F-
measure and P-measure, which refer to the expected number 
of test cases to detect the first failure and the probability of 
detecting at least one failure, respectively. To serve the 
purpose of introducing an innovative technique in this paper, 
F-measure is more appropriate as an effectiveness perfor-
mance metric in order to synchronize and compare with 
various previous studies [3], [7], [15]. Furthermore, empiri-
cal studies [1], [16] have consistently shown that ART 
outperforms RT with respect to the P-measure. For these 
reasons, F-measure rather than P-measure has been used for 
the effectiveness performance metric in the experimental 
evaluation. 

V. CONCLUSION 

Previous empirical studies demonstrated that ART makes 
better use of the even-spreading concept than random testing 
and needs fewer test cases to reveal the first failure. In 
contrast, the computation cost for generating test cases in 
ART has been reported to be high. We propose a divide-and-
conquer technique to address this problem. We make use of 
the intuition of breaking up a large problem into smaller sub-
problems and specify a threshold to limit the computational 
growth when a large number of previously executed test 
cases are involved in an ART algorithm. On the other hand, 
although the use of the threshold hides some of the history 
information from previously executed test cases, the sub-
domains after the bisectional division process can be treated 
as temporary space to store the past history and further build 
up an even spreading of test cases. In addition, the divide-
and-conquer technique has an equal-number-equal-size char-
acteristic to ensure that each sub-domain is equal in size and 
contains the same number of test cases, so that every sub-
domain has the same probability in revealing the first failure. 
Consequently, the divide-and-conquer technique can signifi-
cantly reduce the computational complexity of common 
ART algorithms such as FSCS and RRT while largely 
maintaining the effectiveness. 

For future work, real-life programs will be utilized to 
enrich the evaluation. A more comprehensive comparison 
analysis between divide-and-conquer and other efficiency 
improvement techniques will also be conducted. 
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