
1

Postprint of article in The Symposium on Engineering Test Harness (TSETH ’13),
Proceedings of the 13th International Conference on Quality Software (QSIC ’13), IEEE Computer Society, Los Alamitos, CA (2013)

The ART of Divide and Conquer
An Innovative Approach to Improving the Efficiency of Adaptive Random Testing

Cliff Chow
The University of Hong Kong

Pokfulam, Hong Kong
cliffchow@hku.hk

Tsong Yueh Chen*
Swinburne University of Technology

Australia
tychen@swin.edu.au

T.H. Tse
The University of Hong Kong

Pokfulam, Hong Kong
thtse@cs.hku.hk

Abstract—Test case selection is a prime process in the
engineering of test harnesses. In particular, test case diversity is
an important concept. In order to achieve an even spread of test
cases across the input domain, Adaptive Random Testing (ART)
was proposed such that the history of previously executed test
cases are taken into consideration when selecting the next test
case. This was achieved through various means such as best
candidate selection, exclusion, , and diversity metrics. Empirical
studies showed that ART algorithms make good use of the
concept of even spreading and achieve 40 to 50% improvement in
test effectiveness over random testing in revealing the first
failure, which is close to the theoretical limit. However, the
computational complexity of ART algorithms may be quadratic
or higher, and hence efficiency is an issue when a large number
of previously executed test cases are involved. This paper pro-
poses an innovative divide-and-conquer approach to improve the
efficiency of ART algorithms while maintaining their perfor-
mance in effectiveness. Simulation studies have been conducted
to gauge its efficiency against two most commonly used ART
algorithms, namely, fixed size candidate set and restricted
random testing. Initial experimental results show that the divide-
and-conquer technique can provide much better efficiency while
maintaining similar, or even better, effectiveness. *

Keywords—adaptive random testing, divide and conquer, effi-
ciency, effectiveness, software testing, test harness

I. INTRODUCTION

Test case selection is a major process in the development of
test harnesses. Random testing [11] has been recognized as an
important and useful method for test case selection. On the
other hand, empirical studies have shown that failure-causing
inputs, especially in numerical programs, tend to have contigu-

© IEEE 2013. This material is presented to ensure timely dissemination of

scholarly and technical work. Personal use of this material is permitted.
Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the
terms and constraints invoked by each author's copyright. In most cases, these
works may not be reposted without the explicit permission of the copyright
holder. Permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this
work in other works must be obtained from the IEEE.

* Corresponding author.

ous failure regions [6]. Conceptually, if the current test cases
cannot detect a failure, we should select the next test case to be
far away from the test cases previously executed. Hence,
evenly spreading the test cases across the input domain should
provide a higher opportunity for revealing a failure.

Based on this intuition, Chen et al. [7] introduced the
concept of Adaptive Random Testing (ART) to enhance the
effectiveness of failure detection in random testing. The first
ART method they proposed was the Fixed Size Candidate Set
(FSCS) algorithm [6], [7], which generates a list of test cases
as potential candidates, selects the best test case with the
longest distance from a close neighborhood of previously
executed test cases. Another proposed technique is the
Restricted Random Testing (RRT), which selects the next test
case as one that lies outside all the exclusive regions of
previously executed test cases. Please refer to Section II for
more details. Empirical studies show that ART algorithms,
using the concept of even-spreading, achieve 40 to 50%
improvement in effectiveness over random testing (in terms of
the expected number of test cases required to detect the first
failure), which is close to the theoretical limit [8].

However, ART is less efficient than random testing
because of the extra task of ensuring even spreading of test
cases, where the efficiency is measured in terms of the time to
generate a test case. This extra task involves the computation
of history information from previous test cases because the
determination of the i-th test case is related to the first to the
(i–1)-th previously executed test cases. The computational
complexity of ART algorithms is generally quadratic or higher.
Hence, ART may not be more cost-effective than random
testing when efficiency is taken into consideration.

In order to enhance the efficiency of existing ART algo-
rithms, two techniques were proposed, namely, mirroring by
Kuo [12] and forgetting by Chan et al. [2]. Conceptually
speaking, both techniques can be applied to all ART methods.
In the mirroring technique, the ART algorithm is applied to
part of the input domain, and then the generated test cases are
copied like mirror images to the remaining parts. In the forget-
ting technique, not all previously executed test cases are used

Administrator
 HKU CS Tech Report TR-2013-04

2

to guide the generation of the next test case. The maximum
number of previously executed test cases to be retained is
specified by a memory parameter. On the other hand, empirical
studies show that there is a trade-off between computational
complexity and effectiveness [16]. Experimental results in the
forgetting paper [2], for instance, show that for a given
memory parameter, a similar performance in effectiveness can-
not be maintained across different failure rates.

The motivation of the present paper is to design a new and
innovative approach, known as divide-and-conquer, for reduc-
ing the cost of test case generation for ART algorithms, as well
as preserving the performance in effectiveness.

The present study serves as an introduction to an innovative
technique that improves on the efficiency of ART while
preserving its effectiveness as far as possible. We will focus
our experimental comparison with the two most commonly
used ART algorithms, namely FSCS and RRT. Evaluations
with respect to other ART algorithms will be left as future
work.

The contribution of our proposed technique is fourfold: (a)
It is an innovative enhancement of ART algorithms that greatly
improves the computational complexity from quadratic or
higher order to linear order. (b) It preserves the even spreading
property of ART and largely maintains the performance in
effectiveness. (c) It can be applied to all ART algorithms
because it is an add-on technique. (d) It is independent of the
dimension of the input domain.

The paper is organized as follows: Section II provides the
background information on FSCS and RRT. Section III
describes the proposed divide-and-conquer approach and
explains the differences between the new technique and two
existing efficiency improvement techniques. A comparison of
the efficiency and effectiveness between selected ART algo-
rithms and the same algorithms enhanced with the divide-and-
conquer strategy is presented in Section IV. Finally, we present
the conclusion in Section V.

II. BACKGROUND INFORMATION ON FSCS AND RRT

The Fixed Size Candidate Set (FSCS) algorithm for
adaptive random testing, proposed by Chen et al. [6], [7],
makes use of the simple intuition of selecting the best choice
out of a fixed number of candidates to generate the next test
case. Essentially, FSCS randomly generates k candidates and
then calculates the distance disti between each candidate ci and
its closest previously executed test case. The candidate cbest
with the longest distance, defined as ܿ௦௧ = ൛ܿ | ݀݅ݐݏ =max∈{ଵ,ଶ,…,} ݀݅ݐݏ} , represents the best candidate. It is
selected as the next test case, and other candidates are
discarded. This best candidate selection procedure is repeated
until the first failure is revealed or the appropriate time limit
has been reached. Since the computing operation calculates the
distance between the candidates and all previously executed
test cases, the computational complexity of FSCS is Θ(n2)
[6], [7].

Chan et al. [3] introduced Restricted Random Testing
(RRT), which is based on the notion of exclusion. All exclusion
zones are circular and equal in size. Let A be the target
exclusion zone and n be the number of previously executed test
cases. Each exclusion area is A/n, and the radius of each exclu-
sion zone is ඥ(ߨ݊)/ܣ . For each round of test case generation,
an exclusion zone has to be defined for every test case
previously executed. The potential test cases are randomly
generated until there is a potential test case outside all
exclusion regions. It will be used as the next test case. The size
of the exclusion zone will decrease when the number of
previously executed test case increases. Mayer and Schnecken-
burger [15] estimated that the computational complexity of
RRT is Θ(n2 log(n)), assuming that the number of candidate
test cases is logarithmic in the number of previously executed
test cases. They validated their assumption empirically for the
situation where the exclusion zones are circular, the total areas
of the exclusion zones is 150% of the area of the input domain,
and the number of test cases is no more than 500.

III. DIVIDE-AND-CONQUER APPROACH

A. Background

The proposed approach makes use of the standard concept
of “divide and conquer” for breaking up a large problem into
smaller sub-problems. It applies the exact ART algorithm to
each of the sub-problems until the computational operation is
too expensive for applying the ART algorithm again. It then
further breaks up the sub-problems and repeats the procedure
recursively until either a first failure is revealed or the time
limit is reached.

While the target of the proposed divide-and-conquer
approach is in alignment with two existing techniques for
reducing the computational complexity of ART algorithms,
namely, mirroring and forgetting, the concept of the new
approach is different. In mirroring [12], the input domain is
partitioned into disjointed sub-domains, and then the process
selects a sub-domain as a source domain while the others are
called mirror domains. The ART algorithm will only be
applied to the source domain, and then the process uses a
function to map the generated test cases from the source
domain to all mirror domains. This mirroring procedure is
repeated until a first failure is identified.

In forgetting [2], the researchers make use of the forgetting
principle, which refers to “Human learning is often character-
ised by inaccurate retention or recall, termed forgetting” [2],
to tackle the problem of the number of computational opera-
tions when the number of previously executed test cases grows.
For a given memory parameter, the process forgets some previ-
ously executed test cases in order to improve the efficiency in
generating the next test case.

The proposed divide-and-conquer approach uses bisec-
tional division to break up the input domain into smaller sub-
domains, and generates a next test case from each sub-domain.
The divide-and-conquer approach does not forget any historical
information from previously executed test cases. It only

3

ignores test cases outside the sub-domain under consideration
in order to improve the efficiency of ART algorithms. This is a
new and innovative approach for efficiency improvement in
ART.

B. Proposed Approach

The approach starts with any ART algorithm and a speci-
fied integer known as the threshold, denoted by λ. The
determination of the threshold will be discussed later. Let D
denote the input domain and T denote a set of previously
executed test cases. After λ test cases have been generated in T
from the input domain D, the divide-and-conquer process is
triggered. The process bisectionally divides each dimension of
the input domain into equal-sized sub-domains {D1, D2, …,
Ds} such that ∪ୀଵ௦ Di = D, where s = 2dn denotes the number of
sub-domains after each division process and dn denotes the
dimension of the input space. The next step is to allocate test
cases into their relevant sub-domains. This is achieved by
putting all the sub-domains thus generated into a global queue
and selecting the least populated sub-domain Di such that |ࢀ|
= min{ଵ,ଶ,…,௦} |, where |.| denotes the size of a set and Tiࢀ|
denotes the set of selected test cases in the sub-domain Di, that
is, Ti = T ∩ Di, from which the next test case will be generated.
The process of selecting the currently least populated sub-
domain is repeated until the numbers of test cases for all sub-
domains reach λ again. Then, the process of bisectional
division of the sub-domains will be recursively applied.

Fig. 1. The operation of ART with divide-and-conquer.

As an example for illustration, consider a 2-dimension
input domain D. Fig. 1 shows the proposed divide-and-conquer
approach in action. Suppose λ is 16. In Fig. 1(a), when the total
number of test cases |T| in the input domain D reaches λ, the
divide-and-conquer process is triggered. In Fig. 1(b), input

domains are bisectionally divided into four equal-sized sub-
domains. After the test case reassignment process, the distribu-
tion of test cases are |T1| = 4, |T2| = 3, |T3| = 4, and |T4| = 5 in
sub-domains D1, D2, D3, and D4 respectively. In accordance
with the selection criterion, which chooses the least populated
sub-domain to proceed, the next test case generation process is
applied to sub-domain D2. After generating one test case in D2,
the next test case should be generated from one of the three
sub-domains {D1, D2, D3}, which have the same number of test
cases previously executed (that is, 4). Then, the selection
criterion is repeated until the numbers of test cases in all the
sub-domains reach the threshold value λ again. In Fig. 1(c), the
numbers of previously executed test cases in all sub-domains
{D1, D2, D3, D4} reach the threshold value of 16, and the
process starts the next bisectional division of all sub-domains.
In Fig. 1(d), after the said bisectional division procedure, the
process allocates all the sub-domains with a depth of 2 into a
global queue (where depth denotes the depth of the bisectional
division) and then repeats the selection criteria in order to find
the least populated sub-domain D4_2 where |T4_2| is 2.

The algorithm for adaptive random testing with divide-and-
conquer is as follows:

Algorithm 1. Adaptive Random Testing with Divide-and-Conquer (DC)

λ = threshold for the divide-and-conquer process;
/* The threshold is set by the human tester */

D = the entire input domain;
T = {}; /* a list to store the generated test cases in the input domain D */
depth = 0;
d_queue = {D}; /* a list to store D and Di */
t_queue = {T}; /* a list to store T and Ti */
tmp_d_queue = {}; /* a temporary storage for D and Di */
tmp_t_queue = {}; /* a temporary storage for T and Ti */
while (stopping criteria not reached)

select the least populated sub-domain Di from d_queue;
/* that is, Di such that |ࢀ| = min{ଵ,ଶ,…,|௧_௨௨|} /* |ࢀ|

t = ART(Di, Ti) /* generate a new test case by applying ART to Di
with Ti as the set of all test cases previously executed */

test the program using t as a test case;
if t reveals a failure

exit;
else

add t to Ti;
end if;
if |Ti| = λ

remove Di from d_queue;
remove Ti from t_queue;
start the bisectional division process on Di and create s sub-domains

Di_j such that ∪ୀଵ௦ Di_j = Di, where s denotes the number of sub-
domains after each division process;

create |Ti_j| lists to store the generated test cases in each sub-domain
Di_j;

for each tk in Ti /* test case reassignment process */
if tk is in Di_j

add tk to T i_j;
end if;

end for;
add all Di_j to tmp_d_queue;
add all T i_j to tmp_t_queue;
delete Di and Ti;

end if;
if t_queue is empty

d_queue = tmp_d_queue;
t_queue = tmp_t_queue;
tmp_d_queue = {};

D2_4D1_4

Next Test

D2_1
D2_2

D2_3

D1_1

D1_3

D1_2

D3_4

D3_1

D3_3

D3_2

D4_4

D4_1

D4_3

D4_2

D D4

D2

D3

D1

Next Test

D4

D2

D3

D1

(a) (b)

(c) (d)

4

tmp_t_queue = {};
depth ++;

end if;
end while;

C. Determination of threshold

The major concept of the proposed divide-and-conquer
approach is to partition a large problem into smaller sub-
problems when the number of previously executed test cases
reaches the threshold λ, in the sense that it tackles the smaller
sub-domains individually rather than the entire input domain. If
λ is set to be large, previously executed test cases should
probably be evenly distributed, which is the property of ART,
and there will be more or less the same number of test cases in
each of the resultant sub-domains. However, the computational
complexity will be high in this scenario. On the other hand, if λ
is set to be too small, such as 4 in a 2-dimensional space, there
will be a high chance that one of its 4 sub-domains may have
no test case. This means that the next test case will be directly
generated by a purely random generation process, thus losing
any relationship with other previously executed test cases and
defeating the target of even spreading. For this reason, it would
be better to avoid too small a value for λ so as to increase the
probability that each sub-domain contains at least one previ-
ously executed test case.

For the case of pure random testing, since the sub-domains
are in equal-sized partitions, the determination problem can be
viewed as a dice problem [9]: “How many dice must be rolled
to have at least a 95% chance of rolling a one, a two, a three, a
four, a five and a six?” The approach can be extended even
further in accordance with the inclusion-exclusion principle
[10], which is a mathematic counting technique to obtain the
total number of elements in the union of two or more finite sets
(such as |A ∪ B ∪ C| = |A| + |B| + |C| – |B ∩ C| – |C ∩ A| –
|A ∩ B| + |A ∩ B ∩ C|, where A, B, and C are finite sets). The
probability p(n) for having at least one test case residing in
every resultant sub-domain in 2-dimensional space is

(݊) = (−1)ଷ
ୀ ൬4݆൰ ൬4 − ݆4 ൰

= 1 − 4 ൬34൰ + 6 ൬12൰ − 4 ൬14൰

(1)

This probability exceeds 0.95 when n ≥ 16. Table I shows
some of the probabilities for various values of n. In other
words, there is 95% chance that at least one test case falls into
every resultant sub-domain after the 16th test case generation
in 2-dimensional input domain. Rewriting (1) in a general form
in dn-dimensional input space, we have

(݊) = (−1)ଶିଵ
ୀ ቆ2ௗ݆ ቇ ቆ2ௗ − ݆2ௗ ቇ

 (2)

Equation (2), however, is not applicable to adaptive random
testing because ART does not produce independent and
uniformly distributed random values. Having said that, (2)
provides a rough guideline for determining the threshold for

divide and conquer. More discussions and experimental results
will be described in the next section.

TABLE I. PROBABILITIES p(n) OF GENERATING AT LEAST ONE

TEST CASE IN EVERY SUB-DOMAIN IN 2-DIMENSIONAL SPACE

n p(n) n p(n) n p(n)
4 0.093750 10 0.780602 16 0.960001
5 0.234375 11 0.833988 17 0.969978
6 0.380859 12 0.874759 18 0.977472
7 0.512695 13 0.905703 19 0.983098
8 0.622925 14 0.929094 20 0.987321
9 0.711365 15 0.946729 21 0.990489

IV. ANALYSIS AND EXPERIMENTAL RESULTS

A. Efficiency improvement

The determination of the threshold is an important decision.
On one hand, the reduction of computational complexity will
not be significantly improved if the threshold is set to be too
high. On the other hand, if the threshold is assigned too small a
value, the overall process will be dominated by sub-divisions
of the input domain. Putting it to the extreme, suppose we set
the threshold to be 1. The bisectional division process will be
executed whenever one test case is generated by random
testing in the sub-domains. In other words, the ART algorithm
is never applied in this scenario.

It is easy to see that the computational complexity of the
divide-and-conquer approach contains two major components:
The first component is the operation steps of the distance
calculation for a specific ART algorithm in all input sub-
domains, as shown in Figs. 1(a) and (c). The second is the
process of reassigning of all the test cases into newly created
sub-domains by the bisectional division procedure, as dis-
played in Figs. 1(b) and (d).

Consider the example in Fig. 1 that executes the FSCS-
ART algorithm [6], [7] with divide-and-conquer technique in a
2-dimensional space such that the threshold λ is set to a
constant value of 16. Referring to Section II, the complexity of
distance computation in FSCS is Θ(n2). Since divide-and-
conquer is triggered whenever that number of previously
executed test cases has reached the threshold λ, the asymptotic
value of n will not exceed λ, which is a constant. Hence, the
complexity of distance computation in FSCS is also constant.
Thus, after applying the divide-and-conquer approach, the
computational complexity of ART algorithms becomes a linear
order of the number of previously executed test cases.

On the other hand, another overhead is related to the
process of dividing a large domain into smaller sub-domains
and the assignment of test cases to each resultant sub-domain.
Let mfirst be the number of test cases to detect the first failure
and s be the number of resultant sub-domains after dividing a
domain. For instance, s = 4 in a 2-dimensional input space. The
depth, which means the number of iterations of the division
process, is given by ݉ϐ୧୰ୱ୲ = ݏௗ௧ିଵ. Rearranging the
equation, we obtain:

5

ℎݐ݁݀ = ۔ۖەۖ
ۓ ቤlog(݉ϐ୧୰ୱ୲/ࣅ)log(ݏ) ቤ + 1 ݉ϐ୧୰ୱ୲ ≥ ࣅ

0 ݉ϐ୧୰ୱ୲ < ࣅ (3)

Considering the scenario in a 2-dimensional space, where s
= 4. Let the threshold λ be 100. A depth of 0 will result when
the number of test cases is in the range of [0, 100), a depth of 1
will take place when the range is [100, 400), a depth of 2 will
result when the range is [400, 1600), and so on. In general,
since the depth can be found in (3), the overhead related to the
bisectional division process and the assignment of test cases to
each resultant sub-domain and the can be computed.

A comparison analysis was conducted on two commonly
used ART algorithms, namely FSCS and RRT, with and
without enhancement by the divide-and-conquer technique. In
FSCS, the parameter for the number of the potential candidates
was set to a constant k = 10 after Chen et al. [6], [7]. Similarly,
the target exclusion ratio for the RRT was assigned to 150%
after Chan et al. [2], [3]. For the divide-and-conquer approach,
thresholds of 10, 50, and 100 were applied. The simulation
exercises were repeated 1,000 times and the experimental
results of the computation times of the algorithms are reported
in Table II. In addition to computational complexity, diversity
measurement metrics, namely, discrepancy and dispersion [5],
were also used to measure the effectiveness of the divide-and-
conquer technique.

The discrepancy metric indicates whether different regions
in the input domain D have equal densities in test cases. The
metric is formulated as: ݀݅ݕܿ݊ܽ݁ݎܿݏ = max{ଵ,ଶ,…,ଵ} ቤฬࢀࢀ ฬ − ฬࡰࡰ ฬቤ
where Dr denotes a rectangular sub-domain of D whose size
and location are randomly defined, and Tr denotes the set of
test cases randomly selected from sub-domain Dr, that is, Ti =
T ∩ Dr. Thus, a low discrepancy value indicates that the test
cases are equal in densities across all the sub-domains in D.

The dispersion metric indicates whether there is a large
empty region in input domain D, which is reflected by the
maximum distance of any test case from its nearest neighbor.
The metric is formulated as: ݀݅݊݅ݏݎ݁ݏ = max{ଵ,ଶ,…,|்|}min{ଵ,ଶ,…,|்|}݀݅ݐݏ൫ݐ, ൯ݐ

where the function dist denotes the Euclidean distance between
two test cases. Thus, a low dispersion value indicates small
empty regions in the input domain D.

The empirical results in Figs. 2 and 3 demonstrate that
significant efficiency improvements are achieved after apply-
ing the divide-and-conquer technique to either ART algorithm.
The computational complexity is reduced. The reduction in
computational complexity depends on the value of the
threshold and the nature of the ART algorithm. Table II further
shows that FSCS-DC and RRT-DC can perform better in terms
of the discrepancy metric than the respective basic ART

algorithms, FSCS and RRT. As expected, the dispersion diver-
sity also indicates that there are larger empty regions for FSCS-
DC and RRT-DC compared with the basic FSCS and RRT,
respectively.

TABLE II. COMPARISONS OF COMPUTATIONAL COMPLEXITY,
DISCREPANCY, AND DISPERSION BETWEEN FSCS AND FSCS WITH DC

AND BETWEEN RRT AND RRT WITH DC

Computational Complexity (in Seconds)

n FSCS
FSCS-

DC,
λ = 100

FSCS-
DC,

λ = 50

FSCS-
DC,

λ = 10
RRT

RRT-
DC,

λ = 100

RRT-
DC,

λ = 50

RRT-
DC,

λ = 10
 50 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01

 100 0.07 0.07 0.04 0.01 0.08 0.07 0.04 0.01

 200 0.27 0.12 0.09 0.02 0.29 0.12 0.09 0.02
 400 1.04 0.33 0.15 0.05 1.23 0.33 0.15 0.05
 800 4.10 0.54 0.36 0.10 5.07 0.55 0.37 0.10
1600 16.30 1.35 0.59 0.19 20.75 1.36 0.60 0.19

Discrepancy
 50 0.114 0.114 0.114 0.104 0.119 0.133 0.120 0.104

 100 0.079 0.085 0.068 0.071 0.083 0.085 0.072 0.066

 200 0.055 0.050 0.053 0.045 0.057 0.053 0.045 0.046
 400 0.038 0.029 0.031 0.030 0.042 0.032 0.030 0.028

 800 0.026 0.019 0.020 0.018 0.029 0.022 0.021 0.019

1600 0.018 0.014 0.012 0.013 0.021 0.014 0.013 0.012

Dispersion
 50 0.179 0.177 0.179 0.198 0.177 0.177 0.175 0.177

 100 0.126 0.128 0.131 0.134 0.123 0.126 0.129 0.129

 200 0.092 0.092 0.095 0.097 0.088 0.094 0.090 0.093

 400 0.066 0.066 0.068 0.070 0.063 0.064 0.067 0.068

 800 0.047 0.048 0.048 0.049 0.045 0.047 0.047 0.048

1600 0.034 0.034 0.034 0.036 0.032 0.033 0.034 0.036

B. Comparisons of Effectiveness Using F-measure

In this paper, the expected number of test cases to detect
the first failure, usually referred to as the F-measure, is used as
the effectiveness measure [4], [6]. F-measure is equal to 1/θ or
|D|/m for random testing with replacement, where m denotes
the number of failures and θ denotes the failure rate, such that
m = |D|θ. A lower value of the F-measure indicates a more
effective testing approach. It is generally agreed that the F-
measure is a more appropriate effectiveness measure for
random testing and ART compared with other effectiveness
metrics [1], [6].

There are three most typical failure patterns [4], [13], [14],
namely, block, strip, and point patterns, as illustrated in
Figs. 4a to 4c, respectively. In these figures, the bounding box
indicates the input domain, and the colored block, strip, and
dots represent the locations of failure-causing inputs.

The effectiveness for applying divide-and-conquer tech-
nique with respect to these typical failure patterns was studied
via simulation. A 2-dimensional input domain was used, with
randomly generated failure patterns. For the block pattern, a
square was randomly chosen within the input domain such that
its size yields the desired failure rate. For the strip pattern, two
points on adjacent sides were picked, and a strip connecting the
two points determined the failure region. For the point pattern,
50 non-overlapping circular regions were randomly chosen
with equal radii.

6

TABLE III. COMPARISONS OF F-MEASURES BETWEEN FSCS AND FSCS WITH DIVIDE-AND-CONQUER FOR BLOCK, STRIP, AND POINT PATTERNS

Block Pattern

Failure
rate

Expected F-
measure

of random
testing (Frt)

FSCS FSCS-DC (λ = 100) FSCS-DC (λ = 50) FSCS-DC (λ = 10) FSCS-DC (λ = 4)
Mean of

FSCS
(Ffscs)

(Ffscs/Frt)
Mean of

FSCS-DC
(Ffscs-dc)

(Ffscs-dc/Frt)
Mean of

FSCS-DC
(Ffscs-dc)

(Ffscs-dc/Frt)
Mean of

FSCS-DC
(Ffscs-dc)

(Ffscs-dc/Frt)
Mean of

FSCS-DC
(Ffscs-dc)

(Ffscs-dc/Frt)

 0.01 100 68.4 68.43% 69.3 69.32% 69.2 69.16% 73.3 73.26% 79.7 79.70%
 0.005 200 134.6 67.30% 137.5 68.77% 136.3 68.15% 146.5 73.26% 161.4 80.72%
 0.002 500 325.1 65.01% 335.5 67.11% 334.7 66.95% 351.7 70.35% 388.2 77.63%
 0.001 1000 650.2 65.02% 661.5 66.15% 665.5 66.55% 715.4 71.54% 781.4 78.14%
0.0005 2000 1290.4 64.52% 1309.3 65.46% 1324.5 66.23% 1398.5 69.92% 1517.8 75.89%

Strip Pattern
 0.01 100 92.1 92.13% 93.6 93.56% 94.1 94.14% 95.7 95.73% 104.4 104.41%
 0.005 200 188.2 94.09% 190.1 95.07% 189.8 94.92% 192.3 96.17% 209.6 104.82%
 0.002 500 475.3 95.06% 486.0 97.21% 484.7 96.93% 488.7 97.73% 522.7 104.54%
 0.001 1000 944.9 94.49% 952.1 95.21% 976.0 97.60% 963.2 96.32% 1037.0 103.70%
0.0005 2000 1932.5 96.63% 1922.4 96.12% 1901.8 95.09% 1928.6 96.43% 2043.2 102.16%

Point Pattern
 0.01 100 100.6 100.57% 99.7 99.74% 100.4 100.45% 100.9 100.85% 108.3 108.33%
 0.005 200 200.3 100.17% 199.9 99.93% 201.6 100.78% 201.8 100.89% 218.8 109.42%
 0.002 500 496.8 99.37% 495.9 99.18% 494.7 98.95% 501.2 100.25% 525.8 105.17%
 0.001 1000 991.7 99.17% 978.7 97.87% 993.9 99.39% 995.4 99.54% 1070.5 107.05%
0.0005 2000 1978.7 98.94% 1965.7 98.29% 1982.6 99.13% 1973.9 98.69% 2124.6 106.23%

TABLE IV. COMPARISONS OF F-MEASURES BETWEEN RRT AND RRT WITH DIVIDE-AND-CONQUER FOR BLOCK, STRIP, AND POINT PATTERNS

Block Pattern

Failure
rate

Expected F-
measure

of random
testing (Frt)

RRT RRT-DC (λ = 100) RRT-DC (λ = 50) RRT-DC (λ = 10) RRT-DC (λ = 4)
Mean of

RRT
(Frrt)

(Frrt/Frt)
Mean of
RRT-DC
(Frrt -dc)

(Frrt-dc /Frt)
Mean of
RRT-DC
(Frrt-dc)

(Frrt-dc /Frt)
Mean of
RRT-DC
(Frrt-dc)

(Frrt-dc /Frt)
Mean of
RRT-DC
(Frrt-dc)

(Frrt-dc /Frt)

0.01 100 66.1 66.14% 67.7 67.68% 68.0 68.01% 70.9 70.94% 72.8 72.79%
0.005 200 127.6 63.78% 133.1 66.56% 135.1 67.57% 141.6 70.82% 146.0 73.02%
0.002 500 310.0 62.00% 323.0 64.59% 330.0 66.00% 346.1 69.22% 360.3 72.07%
0.001 1000 614.9 61.49% 645.4 64.54% 659.1 65.91% 698.5 69.85% 727.2 72.72%
0.0005 2000 1218.1 60.91% 1289.2 64.46% 1289.7 64.49% 1365.2 68.26% 1440.5 72.03%

Strip Pattern
0.01 100 91.4 91.36% 92.9 92.91% 93.6 93.63% 94.1 94.09% 95.0 94.99%
0.005 200 184.6 92.28% 190.7 95.35% 189.9 94.93% 189.8 94.91% 192.2 96.11%
0.002 500 479.1 95.81% 479.3 95.86% 482.4 96.47% 479.8 95.96% 484.3 96.85%
0.001 1000 947.6 94.76% 971.1 97.11% 960.5 96.05% 948.7 94.87% 962.6 96.26%
0.0005 2000 1906.8 95.34% 1898.6 94.93% 1939.0 96.95% 1933.0 96.65% 1933.0 96.65%

Point Pattern
0.01 100 102.5 102.55% 101.1 101.13% 100.9 100.87% 100.0 99.96% 112.1 112.13%
0.005 200 201.9 100.96% 200.7 100.35% 202.3 101.13% 198.8 99.41% 225.3 112.67%
0.002 500 502.2 100.44% 496.3 99.26% 499.7 99.95% 496.9 99.38% 554.1 110.83%
0.001 1000 995.5 99.55% 987.9 98.79% 997.9 99.79% 1004.0 100.40% 1111.3 111.13%
0.0005 2000 1974.6 98.73% 1975.0 98.75% 1990.4 99.52% 2010.0 100.50% 2227.6 111.38%

TABLE V. COMPARISONS OF F-MEASURES BETWEEN RANDOM TESTING (RT) AND RANDOM TESTING WITH DIVIDE-AND-CONQUER (RT-DC)

FOR BLOCK, STRIP, POINT PATTERNS

Block Pattern

Failure rate
Expected F-

measure
of RT (Frt)

RT-DC (λ = 100) RT-DC (λ = 50) RT-DC (λ = 10) RT-DC (λ = 4)
Mean of
RT-DC
(Frt-dc)

(Frt-dc/Frt)
Mean of
RT-DC
(Frt-dc)

(Frt-dc/Frt)
Mean of
RT-DC
(Frt-dc)

(Frt-dc/Frt)
Mean of
RT-DC
(Frt-dc)

(Frt-dc/Frt)

 0.01 100 98.5 98.54% 98.0 98.01% 90.0 90.04% 83.9 83.91%
 0.005 200 195.7 97.87% 192.3 96.15% 179.8 89.90% 166.7 83.33%
 0.002 500 491.1 98.22% 482.6 96.51% 449.9 89.97% 421.4 84.28%
 0.001 1000 978.1 97.81% 978.6 97.86% 899.8 89.98% 834.9 83.49%
0.0005 2000 1942.2 97.11% 1950.5 97.53% 1789.5 89.47% 1688.3 84.41%

Strip Pattern
 0.01 100 106.0 106.01% 102.9 102.88% 99.9 99.89% 99.5 99.46%
 0.005 200 204.3 102.15% 201.3 100.64% 197.5 98.76% 197.6 98.81%
 0.002 500 492.7 98.54% 499.5 99.90% 488.1 97.62% 487.0 97.40%
 0.001 1000 1003.3 100.33% 998.5 99.85% 986.4 98.64% 978.8 97.88%
0.0005 2000 1976.8 98.84% 1994.0 99.70% 1965.2 98.26% 1972.9 98.64%

Point Pattern
 0.01 100 100.0 99.95% 99.3 99.28% 99.7 99.72% 98.2 98.20%
 0.005 200 201.6 100.78% 199.0 99.48% 197.3 98.66% 199.7 99.83%
 0.002 500 502.1 100.42% 502.3 100.45% 497.6 99.52% 498.5 99.69%
 0.001 1000 1004.4 100.44% 1011.4 101.14% 1007.8 100.78% 990.4 99.04%
0.0005 2000 2001.7 100.09% 2006.7 100.34% 1977.9 98.90% 1988.1 99.41%

7

Fig. 2. Comparisons of computational complexity (in seconds) between
FSCS and FSCS with divide-and-conquer with thresholds of 10, 50, and
100.

Fig. 3. Comparisons of computational complexity (in seconds) between
RRT and RRT with divide-and-conquer with thresholds of 10, 50, and 100.

Fig. 4. Block, Strip, and Point failure patterns in 2-dimensional space.

The simulations were conducted with the following
variables and values:

• Failure rates: 0.01, 0.005, 0.002, 0.001, and 0.0005
• Failure patterns: block, strip, and point
• Algorithms: FSCS, RRT, and random testing
• Thresholds: 100, 50, 10, and 4

For each combination of failure rate, failure pattern,
algorithms, and threshold, 20,000 test runs were executed.
The average F-measure for each exercise was collected. The
same parameters for both the FSCS and RRT algorithms
were used as per Section IV-A.

The experimental results in Tables III to IV demonstrate
that the divide-and-conquer technique on top of ART
performs similar, or even better, effectiveness than the origi-

nal ART algorithms for the point failure pattern. The results
also show that there is only a slight decline of 1–3% in
effectiveness of the divide-and-conquer approach for the
block and strip failure patterns.

Figs. 2 and 3 show that the F-measure slightly increases
with efficiency improvement by reducing the threshold from
100 to 10. Tables III to IV show that the F-measure further
increases if a small value of threshold such as 4 is assigned.
These results imply that the effectiveness in FSCS-DC and
RRT-DC becomes slightly poorer for smaller threshold
values.

We also have studied the effect of divide-and-conquer
technique to random testing. Table V illustrates that
improvements in the F-measure for conducting random
testing with divide-and-conquer can be significant. Future
careful review will be required to verify whether divide-and-
conquer can be used as a technique for improving the even
spread of random test cases without the use of basic ART
algorithms.

C. Threats to Validity

1) Internal validity.
This paper mainly serves to introduce an innovative

efficiency improvement technique, namely divide-and-
conquer. The experiments focus on simulations and may not
represent a full variety of possible execution patterns of real-
life faulty programs. However, in order to provide an
“unbiased” cover, the experimental evaluations have been
conducted on the three typical failure patterns, namely,
block, strip, and point patterns, with wide ranges of failure
rates. Various previous studies [3], [7], [16] have demon-
strated that simulations of the three classic failure patterns
can provide an objective validation of comparative merits.

Another threat to internal validity of the experiment is
the choice of basic ART algorithms for the evaluation
exercise. Since the two ART algorithms, namely Fixed Size
Candidate Set (FSCS) and Restricted Random Testing
(RRT), are commonly used and most involved in the com-
parisons of various random testing techniques [15], [16],
they stand a representative position.

A further study covering real-life faulty programs and
including other ART algorithms will alleviate the threats to
internal validity.

2) External validity
There is one issue that may affect the external validity of

the experiment. The Math::Random module, which is the
Perl port of the C version of Randlib, is applied as the
pseudorandom number generator to produce for the experi-
ment a sequence of numbers that are approximately random.
Randlib has been chosen because it comprises a large library
of C routines for generating random numbers with uniform
distribution under the UNIX and Linux environments. The
use of other pseudorandom number generators may produce
slightly different results.

0

5

10

15

20

25

30

35

40

45

50

0
50

0
1,
00

0
1,
50

0
2,
00

0
2,
50

0
3,
00

0
3,
50

0
4,
00

0
4,
50

0
5,
00

0
5,
50

0
6,
00

0
6,
50

0
7,
00

0
7,
50

0
8,
00

0
8,
50

0
9,
00

0
9,
50

0
10

,0
00

10
,5
00

11
,0
00

11
,5
00

12
,0
00

12
,5
00

13
,0
00

13
,5
00

14
,0
00

14
,5
00

15
,0
00

15
,5
00

16
,0
00

16
,5
00

17
,0
00

17
,5
00

18
,0
00

18
,5
00

19
,0
00

19
,5
00

20
,0
00

FSCS FSCS-DC
(threshold=100)

FSCS-DC
(threshold=50)

FSCS-DC
(threshold=10)

Ti
m

e
(S

ec
on

d)

Number of test cases

0

5

10

15

20

25

30

35

40

45

50

0
50

0
1,
00

0
1,
50

0
2,
00

0
2,
50

0
3,
00

0
3,
50

0
4,
00

0
4,
50

0
5,
00

0
5,
50

0
6,
00

0
6,
50

0
7,
00

0
7,
50

0
8,
00

0
8,
50

0
9,
00

0
9,
50

0
10

,0
00

10
,5
00

11
,0
00

11
,5
00

12
,0
00

12
,5
00

13
,0
00

13
,5
00

14
,0
00

14
,5
00

15
,0
00

15
,5
00

16
,0
00

16
,5
00

17
,0
00

17
,5
00

18
,0
00

18
,5
00

19
,0
00

19
,5
00

20
,0
00

RRT RRT-DC
(threshold=100)

RRT-DC
(threshold=50)

RRT-DC
(threshold=10)

Ti
m

e
(S

ec
on

d)

Number of test cases

(a) (b) (c)

8

3) Construct validity
There are two commonly used metrics to evaluate the

effectiveness performance of testing algorithms, namely F-
measure and P-measure, which refer to the expected number
of test cases to detect the first failure and the probability of
detecting at least one failure, respectively. To serve the
purpose of introducing an innovative technique in this paper,
F-measure is more appropriate as an effectiveness perfor-
mance metric in order to synchronize and compare with
various previous studies [3], [7], [15]. Furthermore, empiri-
cal studies [1], [16] have consistently shown that ART
outperforms RT with respect to the P-measure. For these
reasons, F-measure rather than P-measure has been used for
the effectiveness performance metric in the experimental
evaluation.

V. CONCLUSION

Previous empirical studies demonstrated that ART makes
better use of the even-spreading concept than random testing
and needs fewer test cases to reveal the first failure. In
contrast, the computation cost for generating test cases in
ART has been reported to be high. We propose a divide-and-
conquer technique to address this problem. We make use of
the intuition of breaking up a large problem into smaller sub-
problems and specify a threshold to limit the computational
growth when a large number of previously executed test
cases are involved in an ART algorithm. On the other hand,
although the use of the threshold hides some of the history
information from previously executed test cases, the sub-
domains after the bisectional division process can be treated
as temporary space to store the past history and further build
up an even spreading of test cases. In addition, the divide-
and-conquer technique has an equal-number-equal-size char-
acteristic to ensure that each sub-domain is equal in size and
contains the same number of test cases, so that every sub-
domain has the same probability in revealing the first failure.
Consequently, the divide-and-conquer technique can signifi-
cantly reduce the computational complexity of common
ART algorithms such as FSCS and RRT while largely
maintaining the effectiveness.

For future work, real-life programs will be utilized to
enrich the evaluation. A more comprehensive comparison
analysis between divide-and-conquer and other efficiency
improvement techniques will also be conducted.

ACKNOWLEDGMENT

This work is supported in part by a linkage grant of the
Australian Research Council (project no. LP100200208) and
grants of the General Research Fund of the Research Grants
Council of Hong Kong (project nos. 717811 and 716612).

REFERENCES
[1] S. Anand, E. Burke, T.Y. Chen, J. Clark, M.B. Cohen, W. Grieskamp,

M. Harman, M.J. Harrold, and P. McMinn, “An orchestrated survey
on automated software test case generation,” A. Bertolino, J.J. Li, and
H. Zhu, editors/orchestrators, Journal of Systems and Software, 2013,
doi: 10.1016/j.jss.2013.02.061.

[2] K.P. Chan, T.Y. Chen, and D.P. Towey, “Forgetting test cases,”
Proceedings of the 30th Annual International Computer Software and
Applications Conference (COMPSAC 06), vol. 1, IEEE Computer
Society, 2006, pp. 485–494.

[3] K.P. Chan, T.Y. Chen, and D.P. Towey, “Restricted random testing:
adaptive random testing by exclusion,” International Journal of
Software Engineering and Knowledge Engineering, vol. 16, no. 4, pp.
553–584, 2006.

[4] T.Y. Chen, G. Eddy, R.G. Merkel, and P.K. Wong, “Adaptive
random testing through dynamic partitioning,” Proceedings of the 4th
International Conference on Quality Software (QSIC 04), IEEE
Computer Society, 2004, pp. 79–86.

[5] T.Y. Chen, F.-C. Kuo, and H. Liu, “Adaptive random testing based
on distribution metrics,” Journal of Systems and Software, vol. 82,
no. 9, pp. 1419–1433, 2009.

[6] T.Y. Chen, F.-C. Kuo, R.G. Merkel, and T.H. Tse, “Adaptive random
testing: the ART of test case diversity,” Journal of Systems and
Software, vol. 83, no. 1, pp. 60–66, 2010.

[7] T.Y. Chen, H. Leung, and I.K. Mak, “Adaptive random testing,”
Advances in Computer Science: Proceedings of the 9th Asian
Computing Science Conference (ASIAN 04), Lecture Notes in
Computer Science, vol. 3321, Springer, 2004, pp. 320–329.

[8] T.Y. Chen and R.G. Merkel, “An upper bound on software testing
effectiveness,” ACM Transactions on Software Engineering and
Methodology, vol. 17, no. 3, article no. 16, 2008.

[9] M.M. Conroy, A collection of dice problems with solutions and
useful appendices, 2013, http://www.matthewconroy.com.

[10] R. Fernndez, J. Frohlich, and A.D. Sokal, Random Walks, Critical
Phenomena, and Triviality in Quantum Field Theory, Springer-
Verlag, 1992.

[11] R. Hamlet, “Random testing,” Encyclopedia of Software Engineering,
J.J. Marciniak, ed., John Wiley, 2002.

[12] F.-C. Kuo, “An indepth study of mirror adaptive random testing,”
Proceedings of the 9th International Conference on Quality Software
(QSIC 09), IEEE Computer Society, 2009, pp. 51–58.

[13] J. Mayer, “Adaptive random testing by bisection with restriction,”
Proceedings of the 7th International Conference on Formal Methods
and Software Engineering (ICFEM 05), Springer, 2005, pp. 251–263.

[14] J. Mayer, “Adaptive random testing by bisection and localization,”
Proceedings of the 5th International Conference on Formal
Approaches to Software Testing (FATES 05), Springer, 2006, pp. 72–
86.

[15] J. Mayer and C. Schneckenburger, “An empirical analysis and
comparison of random testing techniques,” Proceedings of the 2006
ACM/IEEE International Symposium on Empirical Software
Engineering (ISESE 06), ACM, 2006, pp. 105–114.

[16] A. Shahbazi, A.F. Tappenden, and J. Miller, “Centroidal voronoi
tessellations: a new approach to random testing,” IEEE Transactions
on Software Engineering, vol. 39, no. 2, pp. 163–183, 2013.

