
Postprint of article in The Symposium on Engineering Test Harness (TSETH ’13),

Proceedings of the 13th International Conference on Quality Software (QSIC ’13),

IEEE Computer Society, Los Alamitos, CA (2013)

Oracles are Hardly Attain’d, And Hardly Understood: ∗

Confessions of Software Testing Researchers

W.K. Chan

Department of Computer Science

City University of Hong Kong

Kowloon Tong, Hong Kong

Email: wkchan@cityu.edu.hk

T.H. Tse

Department of Computer Science

The University of Hong Kong

Pokfulam, Hong Kong

Email: thtse@cs.hku.hk

Abstract—In software testing, a test oracle refers to the
mechanism for determining whether the results of the software
under test agree with the expected outcomes. To achieve this, we
need a means to determine the expected outcomes, a means to
gauge the actual results, and a means to decide whether the actual
results agree with the expected outcomes. In real-life situations,
however, a test oracle may not exist owing to a missing link in any
of these aspects. In this paper, we summarize our research for the
last 15 years on selected issues related to each of these aspects.
We present the use of metamorphic testing, pattern classification,
and formal object equivalence and nonequivalence to alleviate the
problems.

Keywords—Test oracle, test harness, metamorphic testing, pat-
tern classifier, object equivalence and nonequivalence

I. INTRODUCTION

The word “oracle” is often used to mean a prophecy or
prediction revealed by a priest. In software testing, a test
oracle [29] refers to the mechanism for determining whether
the results of the software under test agree with the expected
outcomes. It is an essential component in a test harness because
the latter not only needs to execute test cases but also to
report whether the test results are failures. In theory, test
oracles can be determined by the software specification. In
practice, however, the mechanism may not exist or may be
too difficult or too costly. In such situations, we say that there

c© 2013 IEEE. This material is presented to ensure timely dissemination
of scholarly and technical work. Personal use of this material is permitted.
Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the
terms and constraints invoked by each author’s copyright. In most cases,
these works may not be reposted without the explicit permission of the
copyright holder. Permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE.

This work is supported in part by the General Research Fund of the Research
Grants Council of Hong Kong (project nos. 111410, 123512, 716612, and
717811) and a linkage grant of the Australian Research Council (project no.
LP100200208).

* William Shakespeare, Henry VI, Part II, Act I, Scene 4 (1590–91).

is a test oracle problem. Programs with a test oracle problem
are sometimes said to be non-testable [29].

There are, in fact, three assumptions behind the concept of
test oracles:

(a) There is a mechanism to determine the expected outcomes.

(b) There is a mechanism to gauge the actual results.

(c) Given (a) and (b), there is a further mechanism to de-
cide whether the actual results agree with the expected
outcomes.

We have been conducting research on the test oracle problem
and have addressed issues related to each of the three mecha-
nisms above. In this paper, we summarize our research results
for the last 15 years on selected topics.

II. SOFTWARE TESTING IN THE ABSENCE OF

EXPECTED OUTCOMES

A. Metamorphic Testing

A classic technique to test a function in the absence of a
test oracle is to check whether the function preserves some
expected mathematical identities [14], such as sin (π− x) =
sin x. In [29], the idea was generalized to the testing of
other identity relations determined from numerical or scientific
theory. When some practitioners such as accountants prepare
financial statements in spreadsheets, they may also match
summations in columns and rows to ensure that values are
not misplaced.

More recently, metamorphic testing was proposed in [11].
Intuitively, regardless of whether a test case by itself exposes
any anomaly, it still contains useful information. To harvest
such useful but hidden information for identifying program
failures, given the original test case(s) and their expected
results (if any), follow-up test case(s) can be constructed with
reference to some necessary conditions relevant to the problem
or some necessary properties of the algorithm in question.
These conditions or properties are known as metamorphic
relations.

1

Administrator
 HKU CS Tech Report TR-2013-03

Let f be a target function to be implemented. Intu-
itively, a metamorphic relation is a necessary condition over
a series of inputs x1, x2, . . . , xn and their expected results
f (x1), f (x2), . . . , f (xn) for multiple evaluations of f . Meta-
morphic testing involves the verification of metamorphic re-
lations. We adopt the definitions of metamorphic relation and
metamorphic testing from [4] as follows:

Definition 1: (Metamorphic Relation). Let x1, x2, . . . , xk,
where k ≥ 1, be a series of inputs to a target function f and
let 〈 f (x1), f (x2), . . . , f (xk)〉 be the corresponding series of
expected results. Suppose 〈 f (xi1), f (xi2), . . . , f (xim)〉 is a
sub-series, possibly an empty sub-series, of 〈 f (x1), f (x2),
. . . , f (xk)〉. Let 〈xk+1, xk+2, . . . , xn〉, where n ≥ k + 1, be
another series of inputs to f and let 〈 f (xk+1), f (xk+2),
. . . , f (xn)〉 be the corresponding series of expected results.
Suppose, further, that there exist relations r(x1, x2, . . . ,

xk, f (xi1), f (xi2), . . . , f (xim), xk+1, xk+2, . . . , xn) and
r′(x1, x2, . . . , xn, f (x1), f (x2), . . . , f (xn)) such that r′ must
be true whenever r is satisfied. We say that

MR = {(x1, x2, . . . , xn, f (x1), f (x2), . . . , f (xn))|

r(x1, x2, . . . , xk, f (xi1), f (xi2), . . . , f (xim),

xk+1, xk+2, . . . , xn)

→ r′(x1, x2, . . . , xn, f (x1), f (x2), . . . , f (xn))}

is a metamorphic relation. When there is no ambiguity, we
simply write the metamorphic relation as

MR: If r(x1, x2, . . . , xk, f (xi1), f (xi2), . . . , f (xim),

xk+1, xk+2, . . . , xn),

then r′(x1, x2, . . . , xn, f (x1), f (x2), . . . , f (xn)).

Definition 2: (Metamorphic Testing). Let P be an imple-
mentation of the target function f . Metamorphic test-
ing of the metamorphic relation MR involves the fol-
lowing steps: (1) Given a series of original test cases
〈x1, x2, . . . , xk〉, generate a series of follow-up test cases
〈xk+1, xk+2, . . . , xn〉 according to the relation r(x1, x2,

. . . , xk, P(xi1), P(xi2), . . . , P(xim), xk+1, xk+2, . . . , xn).
(2) Check whether relation r′(x1, x2, . . . , xk, xk+1, . . . xn,

P(x1), P(x2), . . . , P(xk), P(xk+1), . . . , P(xn)) is satisfied
by the implementation P. If r′ is evaluated to be false, then
the metamorphic testing of MR reveals a failure.

It is obvious from Definition 1 that a metamorphic relation
is not limited to an identity relation. In the next section, we will
give an example of the application of metamorphic testing to
the convergence property in the solution of partial differential
equations.

We should add that the metamorphic approach is not only
applicable to numerical programs but also to non-numerical
software. For example, we have been awarded a Virtual
Earth Award by Microsoft Research, Richmond, WA, USA
for our application of metamorphic testing to Web search
engines with map-related, search-related, and route-finding-
related geographic components [33]. MT was also success-
fully applied to services computing [6]. We also find that
metamorphic relations can be usefully applied to proving and
debugging [13].

B. Application of Metamorphic Testing to Numerical Software

Although many attempts have been made to solve partial
differential equations analytically, they are successful only in a

limited number of applications. In practice, such equations are
solved by numerical computation [8]. We encounter the oracle
problem when testing programs that implement numerical
methods because, in the absence of analytical solutions, the
expected outcomes are usually not known.

In this section, we will illustrate how metamorphic testing
can be applied to a program for solving partial differential
equations despite the absence of expected outcomes. The
original program was adapted from [15]. The testing process
is adapted from [12].

We would like to determine the temperature distribution
at every point on a heated square plate, which is a practical
problem in thermodynamics. The plate is by itself a closed
system, that is, there is no heat exchange with the environment.
The heat distribution on the plate has reached a stable state.
The temperature along each edge of the plate is homogeneous
and is given.

The temperature T at any point P can be modeled by a
Laplace equation

∂2T

∂x2
(P)+

∂2T

∂y2
(P) = 0,

with fixed (or Dirichlet) boundary conditions [26]. The second
derivatives can be approximated using the central difference
technique:

∂2T

∂x2
(P) ≈

T (PL)−2T (P)+T (PR)

h2

∂2T

∂y2
(P) ≈

T (PA)−2T (P)+T (PB)

h2

where PA and PB are points at a small distance h above and
below P, and PL and PR are points at the same distance h to
the left and right of P.

We will seed a fault into the program to demonstrate the
challenge in the test oracle. Suppose we replace the statement

if fabs(uMat [i] [j]− vMat [j] [i]) > larg)

larg = fabs(uMat [i] [j]− vMat [j] [i]);

by

if fabs(uMat [i] [j]−uMat [j] [i]) > larg)

larg = fabs(uMat [i] [j]− vMat [j] [i]);

In other words, we replace the variable vMat in the predicate
by uMat .

Following common practices, we have tested the program
using special test cases with known results. They include the
following:

(a) The temperatures on all the four edges are the same. In
this case, the temperature at all points on the plate will be
identical.

(b) The boundary conditions are symmetrical with respect to
the horizontal axis or the vertical axis or both. In this case,
the resulting temperatures will also be symmetrical.

2

(a) G1: 4 × 4
Mesh Grid

(b) G2: 8 × 8
Mesh Grid

(c) G3: 16 × 16
Mesh Grid

(d) G4: 32 × 32
Mesh Grid

Fig. 1. Improving precision by refining the mesh grids.

Unfortunately, the faulty program shows no failure for such
special cases. We would like to apply metamorphic testing to
alleviate the problem.

The convergence of numerical solutions for partial differen-
tial equations has been studied extensively in numerical analy-
sis. For instance, according to the Lax-Richtmyer equivalence
theorem [26], a consistent finite difference method for linear
partial difference equations such as Laplace equations will
converge if and only if it is stable. In any case, such theoretical
analysis of the application domain is beyond the scope of the
software tester. Thus, in the thermodynamics example, we will
concentrate on the detection of failures in the implementation
in relation to the specification by the chemical engineer that the
stability condition of the Laplace equation has been satisfied
and hence the numerical solution is expected to converge.

Given this preamble, we will formulate convergence as a
metamorphic relation. We divide the plate uniformly using
mesh grids as follows:

G1: 4×4 mesh grid,
G2: 8×8 mesh grid,
G3: 16×16 mesh grid,
G4: 32×32 mesh grid, and
G5: 64×64 mesh grid.

(1)

The step size hi for the grid Gi is given by h1 = 2h2 = 4h3 =
8h4 = 16h5. The first four mesh grids are shown in Fig. 1. We
write G1 ≺ G2 ≺ . . . ≺ G5.

Let T (P) be the expected solution of the partial differential
equation at P. Let TGi

(P), TG j
(P), and TGk

(P) be the temper-
atures at point P determined through the mesh grids Gi, G j,
and Gk, respectively. Because of the convergence property as
determined by the chemical engineer, as the densities of the
mesh grids increase, the expected errors will decrease. Hence,
the temperatures at point P computed by the respective grids
will satisfy the following necessary condition:

If Gi ≺ G j ≺ Gk,

then
∣

∣TGk
(P)−T (P)

∣

∣ ≤
∣

∣TG j
(P)−T (P)

∣

∣ ≤
∣

∣TGi
(P)−T (P)

∣

∣.

However, the expected value of T (P) is not known in the
absence of a test oracle. To solve the problem, we have proven
in [12] that we can eliminate T (P) from the equation, giving
the following metamorphic relation:

MRPDE: If Gi ≺ G j ≺ Gk,

then TGi
(P) ≤ min{TG j

(P), TGk
(P)} or

TGi
(P) ≥ max{TG j

(P), TGk
(P)}.

TABLE I. OUTPUTS FROM PARTIAL DIFFERENTIAL EQUATION

PROGRAM.

Point TG1
TG2

TG3
TG4

TG5

P1 107.857 106.716 106.344 106.272 105.603

P2 105.893 104.789 104.376 104.298 103.357

P3 75.714 74.126 73.624 73.518 72.841

P4 175.536 174.056 173.472 173.343 172.389

P5 190.000 190.000 189.925 189.953 188.657

ActivateAt understock {

[local] void Replenish()

[within 1][priority 1] }

Compute Derived van.d

s5 qv = qv + 1;
(d 625))

Situation understock

([–3,0] (pallet.qd – pallet.ql >) (d 625))

void replenish () {

s1 int r;

s2 r = rand() % s;

// randomize the action

s3 if r == 0 {

s4 if qv < MAX {

s5 qv = qv + 1;

}}

s6 sleep(r/2);

}

Context detection and acquisition

(a) Interaction between middleware (top) and software application (right) via
SA-IDL specification (left)

Situation understock

([–3,0] (pallet.qd – pallet.ql >) (d 265))(d 265))

(b) Faulty SA-IDL specification

Fig. 2. Example interaction in context-sensitive middleware-based applica-
tion.

A failure is revealed if a set of original and follow-up test
cases do not satisfy this relation.

We have run the program over five sample points
P1, P2, . . . , P5 using the mesh grids in (1). The resulting
temperatures are shown in Table I. Consider, in particular,
the point P5. We find that, even though G3 ≺ G4 ≺ G5,
we have TG5

(P5) < TG3
(P5) < TG4

(P5). This contradicts the
metamorphic relation MRPDE. Hence, a failure is revealed.

III. SOFTWARE TESTING WHEN ACTUAL RESULTS ARE

NOT COMPLETELY OBSERVABLE

A. Testing of Ubiquitous Computing Applications

To efficiently and effectively organize factories, ware-
houses, and fleets in supply chain management, logistics
software applications that can configure smartly without hu-
man intervention play a crucial role. An essential enabling
technology is ubiquitous middleware-based sensor network
systems.

Ubiquitous computing, which means computing every-
where and at any time, is in high demand today in emerging
mobile applications. Context-sensitive concurrent middleware-
based software is an emerging hot topic in ubiquitous com-
puting [2], [3], [20], [25], [30], [31], [32]. A context is
an instantaneous attribute of the environment relevant to the
application, such as stock levels and traffic conditions. Context-
sensitive software dynamically adapts its operations according
to the changing environment in an attempt “to move from
current styles of rigid and context-free human-machine interac-
tion” [23]. In middleware-based software, the actual process of

3

accessing and updating the contexts lies with the middleware.
Whenever the contexts inscribed in the context-aware interface
are satisfied, the middleware invokes the relevant local and
remote operations of the software applications atop.

This approach not only frees applications from the tedious
need to interpret raw sensor data into contexts, but also
provides the middleware with an opportunity to optimize
available resources for each application. Nonetheless, the lack
of sensor data controls at the application level results in an
incomplete knowledge of environmental information and an
unpredictable behavior of the middleware in optimizing its
resources. This limits the ability of an application to react
to external stimuli and to coordinate its devices to achieve
desirable effects. Such intrinsic limitations of typical context-
sensitive concurrent middleware-based systems make it diffi-
cult for the software to behave correctly. At the same time,
since both correct and abnormal behaviors may be blurred
by the incomplete knowledge of environmental information,
it also makes the faults in the software more difficult to
be revealed. Thus, various researchers (such as [1]) have
emphasized the difficulties in assuring the quality of ubiquitous
computing applications.

According to Rosenblum et al. [24], we published the
first work [28] on testing techniques for ubiquitous systems.
We noted that the contexts being used or updated by such
systems are observable and possess specific properties in the
context spaces surrounding the applications. Thus, the usages
of and changes in contexts provide invaluable sources for test
adequacy and test oracle information to assure the correctness
of ubiquitous software applications. We will concentrate on
the test oracle issue on ubiquitous computing applications in
the remaining parts of this section. 1

B. Unit Testing in Ubiquitous Computing

Context detections and function activations are conducted
by the middleware. Even for unit testing, it is not sufficient to
consider only the source code of the application (such as when
constructing test cases for “all-du-paths” coverage in white-box
testing), or to use the contexts registered in the middleware as
activation conditions. Furthermore, it is an extremely difficult
task to work out a precise oracle for testing the application.

Consider an example from [28] regarding a smart delivery
system in a supermarket chain. Every pallet (or tray) is
configured to store a particular kind of product at a desired
stock level. When the stock level is high, no replenishment
is required. When the level is low, the smart pallet will
automatically request delivery vans to replenish the products.

Every delivery van handles a type of product. The effective
delivery distance by any van to any pallet is at most 1 km. A
smart pallet will detect a suitable delivery van when it moves
within the effective distance, and will request for replenishment
if the desired stock level is not met. The replenishment signal
may also be sensed by any other delivery vans nearby. The
latter will not take replenishment actions if the closest van
acknowledges the replenishment request. Unfortunately, this
van may not be able to deliver the requested quantity to

1 Readers may refer to [16], [17], [18], [19], [21], [22] for our research on
the test adequacy issue in general.

a particular pallet if other neighboring pallets also ask for
replenishment at the same time.

In particular, the situation understock represents that a
smart pallet is within the effective delivery zone at time t and
that the current ledger amount ql of the pallet is short of the
desired quantity of qd for more than a tolerance level of ε in
the past 3 seconds. When this happens, the application will
replenish the product items on the pallet. This is achieved by
calling the local function replenish(). The situation overstock
is specified in the same manner.

The interface between an application and the middleware
is defined in the reconfigurable context-sensitive middleware
framework [31] by means of a formal SA-IDL specification,
as illustrated in the supermarket example in Fig. 2(a). The
specification is automatically translated into code by a SA-IDL
compiler. Suppose there is a fault in the SA-IDL specification
of the detection device in delivery vans. In the situation
expression understock, the predicate d ≤ 625 as shown in
Fig. 2(a) has been mistakenly coded as d ≤ 265 as in Fig. 2(b).
As a result, the fault in the specification is also carried forward
to the program code. There are several challenges in testing the
application in the presence of interactions with the middleware:

(a) Since the middleware is continuously interacting with
the application according to changing contexts in the
environment, it is difficult to determine an appropriate time
for checking the “final” result of a test case.

(b) Since the activity replenish() is non-deterministically in-
voked, it will take an indefinite number of invocations
before the situation understock is no longer applicable.
Thus, it is very difficult to tell the difference between a
successful and a failed execution.

(c) At the unit testing level, because of the simplicity of
replenish module, we can easily construct two simple
test cases to fulfil the all-branches criterion for control-
flow coverage, the all-du-paths criterion for data-flow
coverage and the all-predicate-use criterion for predicate-
based testing. However, no failure can be revealed.

On the other hand, our studies [28] showed that meta-
morphic relations are an effective means to overcome these
challenges. Owing to the contention among smart pallets and
delivery vans within the neighborhood, the actual stock in
a pallet may differ a great deal from its desired level. It
would, therefore, be too restrictive to use the desired level as
a test oracle to check against the final stock level attained.
We proposed to use isotropic properties of environmental
contexts as metamorphic relations for unit testing of context-
sensitive software. Relations among multiple input/outputs of
the applications and environmental variables were used as the
correctness criteria.

For instance, the application should provide consistent
stock levels to different pallets in similar situations throughout
the supermarket chain. The following, therefore, is an intuitive
and yet effective metamorphic relation for identifying the
failure due to the faulty program above:

MRSuperMkt1: Let TC be an original test case and TC′ be
a follow-up test case. If the distance between the pallet and
the van for TC is comparable to that for TC′, the ledger
quantities ql for both test cases should be comparable.

4

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The i-th context update

C
o
n
te

x
tu

a
l v

a
lu

e
 a

ft
e
r

th
e
 i-

th
 c

o
n
te

x
t
u
p
d
a
te

0

50

100

150

200

250

300

350

qd qv

qp d

(a) Expected outcomes

1

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14

The i-th context update

C
o
n
te

x
tu

a
l v

a
lu

e
 a

ft
e
r

th
e
 i-

th
 c

o
n
te

x
t
u
p
d
a
te

0

50

100

150

200

250

300

350

qd qv

ql d

(b) Observed results

Fig. 3. Spot the difference: Challenge of obscured failures in integration
testing of ubiquitous computing applications.

C. Integration Testing in Ubiquitous Computing

During integration testing of conventional software, even
though various components may interact with one another,
the behavior and outcomes of the application are determined
within the implemented system. On the other hand, con-
text detections and function activations of a context-sensitive
middleware-based application are the responsibilities of the
middleware.

Thus, in integration testing, the middleware may repeatedly
invoke various software components according to the interface
contexts, until the triggering conditions inscribed in the mid-
dleware are no longer satisfied. In this way, the middleware
may remain active and continue to trigger further actions
according to the renewed situations, so that the termination
of test cases may not be determined. Furthermore, a failure
caused by an invoked function may immediately be superseded
by a subsequent correct action, so that the former cannot be
observed by testers. Interested readers may compare Figs. 3(a)
and 3(b) to appreciate the challenge due to obscured failures.

We propose to exploit a special kind of situation, which we
call checkpoints, during which the middleware is temporarily
not activating any function under test. Testers should generate
test cases that start at one checkpoint and end at another. This
would free the termination of the test cases from being affected
by the middleware. On the other hand, various functions are
still being invoked during the period between two checkpoints,
so that the integration testing can be reasonably conducted.
Testers may propose metamorphic relations that associate
different operation sequences of a test case between two
checkpoints, with a view to detecting whether such relations
are infringed by the application under test.

For integration testing of the supermarket example in the
last section, the following metamorphic relation may be used:

MRSuperMkt2: Let TC be an original test case and TC′ be a
follow-up test case that share the same checkpoint, known
as an initial checkpoint. If we apply withdraw() to the
initial checkpoint before executing TC′, then the number of
invocations of the replenish() function for TC′ is expected
to be more than that of TC. If we apply replenish() to the
initial checkpoint before executing TC′, then the number of
invocations of the withdraw() function for TC′ is expected
to more be than that of TC.

Readers may refer to [4] for details.

Robotic arm after

handling problem die

Home

afresh
Expected

Home

afresh
Actual

Simple concept

in specification

Complex

implementation

(a) Object equivalence at two levels of abstraction

Equivalent

Expected relation

Equivalent

Actual relation

Robotic arm after

handling standard die

Home

afresh
Expected

Home

afresh
Actual

Robotic arm after

handling problem die

Home

afresh
Expected

Home

afresh
Actual

(b) Object equivalence at same level of abstraction

Fig. 4. Challenge of object equivalence at different levels of abstraction.

IV. SOFTWARE TESTING WITHOUT A STRAIGHTFORWARD

NOTION OF EQUIVALENCE

A. Testing of Object-Oriented Software

Object-oriented programming is considered to be the most
popular programming paradigm because of the close resem-
blance of the data and program structures with the real world
being modeled. Object-oriented software typically consists of
classes of objects with their own properties, behaviors, and
interactions with one another. The fundamental notions such
as abstraction, encapsulation, inheritance, and polymorphism
enable object-oriented software to be more flexible, main-
tainable, and reusable. On the other hand, object-oriented
programming poses challenges to testing, since the classes
of objects may interact with one another with unforeseen
combinations, possibly with hidden attributes and methods.
They are much more complex to simulate and test than the
hierarchy of modules in conventional programs.

In particular, in program testing, we check whether the
actual result produced by the software is the same as the
expected outcome. What exactly is meant by “the same”? This
is no easy question to answer when testing object-oriented
software.

Consider, for instance, a robotic arm R1 in an automatic
assembly system for semiconductor chips. Suppose it encoun-
ters a problem when handling a chip. It is expected to discard
the die and return to the home position. If the software that
controls the arm is correct, the actual arm should do exactly
the same thing. This is exactly what we need to test: Is the
actual behavior of the robotic arm object “the same” as that
of that of the expected behavior?

We note, however, that a real-life specification may only
describe object behavior at a high level and does not include all
the implementation details. In other words, the expected object
may involve abstract concepts at the specification level while
the actual object involves complex implementation issues, as
illustrated in Fig. 4(a). Hence, it is not feasible to compare the
equivalence of these two objects.

5

Confessions of Software
Testing Researchers

Chan and Tse

I. Introduction
. . .
V. Conclusion

(a) Document O.

Confessions of Software
Testing Researchers

I. Introduction
. . .
V. Conclusion

(b) Document C with authors cut.

Confessions of Software
Testing Researchers

Chan and Tse

I. Introduction
. . .
V. Conclusion

(c) Document P with authors pasted.

Confessions of Software
Testing Researchers

I. Introduction
. . .
V. Conclusion

(d) Document H with authors hidden.

Fig. 5. Examples of equivalence of objects.

We would like to mimic metamorphic testing in the pre-
vious sections. Consider a second robotic arm R2 that has not
encountered a problem when handling a chip. After completing
the processing of the chip, it should also return to the home
position. In other words, both robotic arms R1 and R2 should
exhibit the same behavior as soon as they have returned to
their home positions. They should forget about whether they
were successful in processing the last chip. This is summarized
diagrammatically in Fig. 4(b). We say that two objects are
Observationally Equivalent (OE) if they exhibit exactly the
same behavior, that is, they show the same visible results when
subjected to the same sequence of operations. Otherwise, we
say that they are Observationally Nonequivalent (OE ′).

An implementation is consistent with the specification if
and only if both of the following criteria are satisfied:

Equivalence Criterion. For any two sequences of op-
erations that are OE according to the specification, the
resulting objects in the implementation must be OE.

Non-Equivalence Criterion. For any two sequences of
operations that are OE′ according to the specification, the
resulting objects in the implementation must be OE′.

We say there is a failure in the implementation if it is not
consistent with the specification.

OE appears to be the most intuitive means of verifying
whether two objects are equivalent. It is not practical in real
life, however, because OE cannot be checked easily. Infinitely
many operation sequences may be applied to an object, so
that it will be impossible for testers to confirm the OE of even
one pair of objects. We would like, therefore, to explore other
forms of equivalence.

Consider an example of a Microsoft Word Document O
as shown in Fig. 5(a). The authors thought that double-blind
reviews were necessary. Hence, they cut their author names,
producing Document C as shown in Fig. 5(b). They were
then advised that single-blind would be used, so that they
pasted back their names, producing Document P as shown in
Fig. 5(c). The question is, are Documents O and P equivalent?
We give a dump of both documents and found that they are
not identical objects. However, we find they exhibit exactly
the same behavior, producing exactly the same visible results
under the same sequence of operations.

Alternatively, instead of using “cut”, the authors may use
the “hidden” option in the font menu to hide their names.
Document H will result, as shown in Fig. 5(d). Are Documents
C and H equivalent? We find that they appear the same on
the screen and when printed. However, they exhibit different
behaviors. For example, we can paste the name back to
Document C, but there is nothing to be pasted for Document
H. On the other hand, we may press the “show” button to see
the hidden text in H but not in C.

In summary, we may have three levels of equivalence: The
concept of identical objects is very easy to check, but is gener-
ally too strong to be useful in object-oriented program testing.
It does not take into account the notion of encapsulation in
object-oriented software, where some of the attributes and
behavior may be hidden and should not be used as a basis for
verifying the equivalence. Attribute Equivalence (AE), which
compares only the visible attributes of two objects like C and
H above, is generally very easy to check but is too weak to
be useful in testing. Observational Equivalence (OE) is what
we need in object-oriented software testing, but it is generally
too difficult to check.

We have three corresponding levels of equivalence among
sequences of operations in software specifications: Like iden-
tical objects, Normal Equivalence (NE) of two sequences of
operations is very easy to check but is generally too strong
to be useful in specification-based testing of object-oriented
programs because it does not take into account the concept
of encapsulation. Attribute Equivalence (AE) is generally very
easy to check but is too weak to be useful in testing. Observa-
tional Equivalence (OE) is what we need in specification-based
testing, but it is generally too difficult to check.

We attempted to find solutions to this serious practi-
cal problem. We discovered and proved the following two
important theorems for specifications and implementations
that satisfy specific fundamental conditions, namely, that the
algebraic specification of the classes is canonical with proper
imports and the implementation is complete. In this way, the
difficult tasks of checking OE and OE′ in the general situation
can be alleviated.

Theorem 1: (Equivalence Criteria) (adopted from [10]).
Given a canonical specification of a class with proper
imports, suppose its implementation is complete. The
following statements imply one another:

(a) For any two sequences of operations that are OE
according to the specification, the corresponding
objects in the implementation must be OE.

(b) For any two sequences of operations that are NE
according to the specification, the corresponding
objects in the implementation must be OE.

(c) For any two sequences of operations that are NE
according to the specification, the corresponding
objects in the implementation must be AE.

(d) For any two sequences of operations that are AE
according to the specification, the corresponding
objects in the implementation must be AE.

(e) For any two sequences of operations that are OE
according to the specification, the corresponding
objects in the implementation must be AE.

6

(a) 100% (b) 70% (c) 30%

(d) 100% (e) 70% (f) 30%

Fig. 6. Mesh simplification of polygonal models of a properly rendered apple
and a badly rendered apple (from [5].)

Theorem 2: (Non-Equivalence Criteria) (adopted from
[10]). Given a canonical specification of a class with
proper imports, suppose its implementation is complete.
The following statements imply one another:

(a) For any two sequences of operations that are
OE′ according to the specification, the resulting
objects in the implementation must be OE′.

(b) For any two sequences of operations that are
AE′ according to the specification, the resulting
objects in the implementation must be AE′.

(c) For any two sequences of operations that are
AE′ according to the specification, the resulting
objects in the implementation must be OE′.

In this way, we can make use of the straightforward AE and
AE′ to replace the impossible task of checking OE and OE′

in object-oriented software testing. Based on the theoretical
results, we have developed approaches to generate equivalent
and nonequivalent objects as test cases. The results turn out to
be practically viable [9], [10], [27].

B. Testing of Graphics Applications

During the testing of multimedia and graphics rendering
applications, it is also challenging to compare actual graphics
outputs with expected results. Since the expected outcome may
not be precisely defined, automatic pixel-by-pixel comparison
is out of the question. Testers usually resolve to manual
checking, which is labour-intensive and error-prone. See Fig. 6,
for example. It would be useful if an automatic pseudo-oracle
would be found.

We propose the use of reference model, which is an existing
program that serves the same purpose and/or specification
as the software under test, but not necessarily implemented
using the same algorithm. We then train a pattern classifier to
recognize the black-box features of samples from the reference
model and its fault-based variations.

We also pipe the test cases marked as “passed” by the
pattern classifier to a second metamorphic testing component.
Simple graphics properties are used as metamorphic relations

to look for missed failures. For example, if the input points
are flipped or scaled, the output image should be flipped or
scaled accordingly.

Our experiments [5], [7] show that this approach signifi-
cantly enhances the failure detection effectiveness of pattern
classification.

V. CONCLUSION

A test oracle is an essential component in a test harness
because the latter not only needs to execute test cases but
also to report whether the test results are failures. This paper
summarizes our work published in journals and conferences for
the last 15 years on selected issues related to software testing
in the absence of a precise test oracle. We have addressed three
aspects of the problem:

(a) Testing without a Mechanism to Determine the Expected
Outcomes.

We introduced the concept of metamorphic testing and il-
lustrated our approach through a numerical application for
the solution of partial differential equations. The technique
may also be applicable to non-numerical situations such
as Web search engines with geographic components.

(b) Testing without a Mechanism to Gauge the Actual
Results.

Ubiquitous context-sensitive middleware-based software
applications are difficult to test because the changing
oracles are too short-lived to be verified manually or auto-
matically using conventional techniques. We have adopted
the metamorphic testing approach to handle these systems.

(c) Testing without a Mechanism to Decide Whether the
Actual Results Agree with the Expected Outcomes.

In object-oriented testing, testers often need to verify
whether the actual object produced by the software is
the same as the expected test oracle. Since an infinite
combination of operations may affect the behavior of an
object, checking the outputs of the object at each state
for all such operation sequences is too complex. We
have developed practical criteria for identifying failures
in the equivalence and nonequivalence of objects. We
have also tackled a similar problem in graphics rendering
software using pattern classifiers, and integrated them with
metamorphic testing.

ACKNOWLEDGEMENTS

We are grateful to our project partners F.T. Chan, H.Y.
Chen, T.Y. Chen, S.C. Cheung, J. Feng, M. Hagenbuch-
ner, J.C.F. Ho, B. Jiang, F.-C. Kuo, Z. Lai, F.C.M. Lau,
K.R.P.H. Leung, P.C.K. Liu, H. Lu, C.K.F. Luk, L. Mei, B.
Xu, C. Xu, S.S. Yau, C. Ye, K. Zhai, S. Zhang, Z. Zhang, and
Z.Q. Zhou for their excellent contributions to our research.

REFERENCES

[1] G. Banavar and A. Bernstein, “Software infrastructure and design
challenges for ubiquitous computing applications,” Communications of

the ACM, vol. 45, no. 12, pp. 92–96, 2002.

7

[2] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli, “Context-
aware middleware for resource management in the wireless Internet,”
IEEE Transactions on Software Engineering, vol. 29, no. 12, pp. 1086–
1099, 2003.

[3] A.T.S. Chan and S.-N. Chuang, “MobiPADS: a reflective middleware
for context-aware mobile computing,” IEEE Transactions on Software

Engineering, vol. 29, no. 12, pp. 1072–1085, 2003.

[4] W.K. Chan, T.Y. Chen, H. Lu, T.H. Tse, and S.S. Yau, “Integration
testing of context-sensitive middleware-based applications: a metamor-
phic approach,” International Journal of Software Engineering and

Knowledge Engineering, vol. 16, no. 5, pp. 677–703, 2006.

[5] W.K. Chan, S.C. Cheung, J.C.F. Ho, and T.H. Tse, “PAT: a pattern
classification approach to automatic reference oracles for the testing
of mesh simplification programs,” Journal of Systems and Software,
vol. 82, no. 3, pp. 422–434, 2009.

[6] W.K. Chan, S.C. Cheung, and K.R.P.H. Leung, “A metamorphic testing
approach for online testing of service-oriented software applications,”
International Journal of Web Services Research, vol. 4, no. 2, pp. 60–
80, 2007.

[7] W.K. Chan, J.C.F. Ho, and T.H. Tse, “Finding failures from passed
test cases: improving the pattern classification approach to the testing
of mesh simplification programs,” Software Testing, Verification and

Reliability, vol. 20, no. 2, pp. 89–120, 2010.

[8] S.C. Chapra and R.P. Canale, Numerical Methods for Engineers,
McGraw-Hill, 2006.

[9] H.Y. Chen, T.H. Tse, F.T. Chan, and T.Y. Chen, “In black and white: an
integrated approach to class-level testing of object-oriented programs,”
ACM Transactions on Software Engineering and Methodology, vol. 7,
no. 3, pp. 250–295, 1998.

[10] H.Y. Chen, T.H. Tse, and T.Y. Chen, “TACCLE: a methodology for
object-oriented software testing at the class and cluster levels,” ACM

Transactions on Software Engineering and Methodology, vol. 10, no. 1,
pp. 56–109, 2001.

[11] T.Y. Chen, S.C. Cheung, and S.M. Yiu, “Metamorphic testing: a new
approach for generating next test cases,” Department of Computer
Science, Hong Kong University of Science and Technology, Hong Kong,
Technical Report HKUST-CS98–01, 1998.

[12] T.Y. Chen, J. Feng, and T.H. Tse, “Metamorphic testing of programs
on partial differential equations: a case study,” Proceedings of the 26th

Annual International Computer Software and Applications Conference

(COMPSAC 02), IEEE Computer Society, 2002, pp. 327–333.

[13] T.Y. Chen, T.H. Tse, and Z.Q. Zhou, “Semi-proving: an integrated
method for program proving, testing, and debugging,” IEEE Transac-

tions on Software Engineering, vol. 37, no. 1, pp. 109–125, 2011.

[14] W.J. Cody, Jr. and W. Waite, Software Manual for the Elementary

Functions, Prentice Hall, 1980.

[15] C.F. Gerald and P.O. Wheatley, Applied Numerical Analysis, Addison-
Wesley, 1999.

[16] B. Jiang, K. Zhai, W.K. Chan, T.H. Tse, and Z. Zhang, “On the
adoption of MC/DC and control-flow adequacy for a tight integration
of program testing and statistical fault localization,” Information and

Software Technology, vol. 55, no. 5, pp. 897–917, 2013.

[17] Z. Lai, S.C. Cheung, and W.K. Chan, “Inter-context control-flow and
data-flow test adequacy criteria for nesC applications,” Proceedings of

the 16th ACM SIGSOFT International Symposium on Foundations of

Software Engineering (SIGSOFT 08/FSE-16), ACM, 2008, pp. 94–104.

[18] H. Lu, W.K. Chan, and T.H. Tse, “Testing context-aware middleware-
centric programs: a data flow approach and an RFID-based experimenta-
tion,” Proceedings of the 14th ACM SIGSOFT International Symposium

on Foundations of Software Engineering (SIGSOFT 06/FSE-14), ACM,
2006, pp. 242–252.

[19] H. Lu, W.K. Chan, and T.H. Tse, “Testing pervasive software in the
presence of context inconsistency resolution services,” Proceedings of

the 30th International Conference on Software Engineering (ICSE 08),
ACM, 2008, pp. 61–70.

[20] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich, “Xmiddle:
a data-sharing middleware for mobile computing,” Wireless Personal

Communications, vol. 21, no. 1, pp. 77–103, 2002.

[21] L. Mei, W.K. Chan, and T.H. Tse, “Data flow testing of service-
oriented workflow applications,” Proceedings of the 30th International

Conference on Software Engineering (ICSE 08), ACM, 2008, pp. 371–
380.

[22] L. Mei, W.K. Chan, and T.H. Tse, “Data flow testing of service
choreography,” Proceedings of the 7th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT International

Symposium on Foundations of Software Engineering (ESEC 09/FSE-

17), ACM, 2009, pp. 151–160.

[23] H.J. Nock, G. Iyengar, and C. Neti, “Multimodal interfaces that flex,
adapt, and persist: multimodal processing by finding common cause,”
Communications of the ACM, vol. 47, no. 1, pp. 51–56, 2004.

[24] D.S. Rosenblum, C. Mascolo, M.Z. Kwiatkowska, D. Ghica, M. Ryan,
N. Dulay, and E. Lupu, “UbiVal: fundamental approaches to validation
of ubiquitous computing applications and infrastructures,” University of
Birmingham, University College London and Imperial College London,
UK, Project Proposal, EPSRC Project GR/D076625/01, 2006–2010.

[25] M. Sama, D.S. Rosenblum, Z. Wang, and S.G. Elbaum, “Model-based
fault detection in context-aware adaptive applications,” Proceedings

of the 16th ACM SIGSOFT International Symposium on Founda-

tions of Software Engineering (SIGSOFT 08/FSE-16), ACM, 2008,
pp. 261–271.

[26] J.C. Strikwerda, Finite Difference Schemes And Partial Differential

Equations, Society for Industrial and Applied Mathematics, 2004.

[27] T.H. Tse, F.C.M. Lau, W.K. Chan, P.C.K. Liu, and C.K.F. Luk, “Testing
object-oriented industrial software without precise oracles or results,”
Communications of the ACM, vol. 50, no. 8, pp. 78–85, 2007.

[28] T.H. Tse, S.S. Yau, W.K. Chan, H. Lu, and T.Y. Chen, “Testing
context-sensitive middleware-based software applications,” Proceedings

of the 28th Annual International Computer Software and Applications

Conference (COMPSAC 04), vol. 1, IEEE Computer Society, 2004,
pp. 458–465.

[29] E.J. Weyuker, “On testing non-testable programs,” The Computer Jour-

nal, vol. 25, no. 4, pp. 465–470, 1982.

[30] C. Xu, S.C. Cheung, W.K. Chan, and C. Ye, “Partial constraint checking
for context consistency in pervasive computing,” ACM Transactions on

Software Engineering and Methodology, vol. 19, no. 3, p. article no. 9,
2010.

[31] S.S. Yau, F. Karim, Y. Wang, B. Wang, and S.K.S. Gupta, “Recon-
figurable context-sensitive middleware for pervasive computing,” IEEE

Pervasive Computing, vol. 1, no. 3, pp. 33–40, 2002.

[32] F. Zambonelli, N.R. Jennings, and M. Wooldridge, “Developing multi-
agent systems: the Gaia methodology,” ACM Transactions on Software

Engineering and Methodology, vol. 12, no. 3, pp. 317–370, 2003.

[33] Z.Q. Zhou, S. Zhang, M. Hagenbuchner, T.H. Tse, F.-C. Kuo, and
T.Y. Chen, “Automated functional testing of online search services,”
Software Testing, Verification and Reliability, vol. 22, no. 4, pp. 221–
243, 2012.

8

