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Abstract

Many semantic datasets or RDF datasets are very large but have no pre-defined data structures. Triple stores
are commonly used as RDF databases yet they cannot achieve good query performance for large datasets
owing to excessive self-joins. Recent research work proposed to store RDF data in column-based databases.
Yet, some study has shown that such an approach is not scalable to the number of predicates. The third
common approach is to organize an RDF data set in different tables in a relational database. Multiple
“correlated” predicates are maintained in the same table called property table so that table-joins are not
needed for queries that involve only the predicates within the table. The main challenge for the property
table approach is that it is infeasible to manually design good schemas for the property tables of a very large
RDF dataset. We propose a novel data-mining technique called Attribute Clustering by Table Load (ACTL)
that clusters a given set of attributes into correlated groups, so as to automatically generate the property
table schemas. While ACTL is an NP-complete problem, we propose an agglomerative clustering algorithm
with several effective pruning techniques to approximate the optimal solution. Experiments show that our
algorithm can efficiently mine huge datasets (e.g., Wikipedia Infobox data) to generate good property table
schemas, with which queries generally run faster than with triple stores and column-based databases.
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1. Introduction

In conventional information systems, data are
usually very structured and can be organized neatly
in pre-designed tables. Simply speaking, a database
consists of a set of transactions. A transaction has
a set of attributes and an attribute can be asso-
ciated with a value. Generally, transactions that
represent the same kind of objects or concepts are
regarded as in the same class. For example, teacher
and course data are two different classes of transac-
tions. Transactions in the same class tend to share
the same set of attributes, e.g., code and teacher
attributes for course transactions. Considering the
attributes for the same transaction class being “cor-
related,” a database designer seeks to group them in
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the same table. Since a query typically involves the
attributes in only one or a few classes, storing cor-
related attributes in the same table can often avoid
excessive table-joins. To design a good database
schema, the designer must have a priori domain
knowledge on the structure of the data and the pat-
tern of the queries. However, many semantic web
datasets have neither well-defined data structures
nor well-known query patterns. Some datasets are
so huge that it is not feasible to manually design a
good database schema by analyzing the data pat-
terns. This makes conventional database design
methodologies not applicable in these cases.

Semantic web data are commonly represented by
RDF[1] triplets, each comprising a subject, a pred-
icate, and an object, i.e., (s p o). Although storing
RDF data in a single 3-column table, a.k.a. triple
store, is straightforward and flexible, this structure
is not optimized for query processing. A typical
query involving multiple predicates requires expen-
sive self-joins of the triplet table. This makes query
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processing on a huge RDF dataset slow. To address
this performance problem, the vertical or column-
based approach was introduced.[2] This approach
splits the large triplet table into many smaller 2-
column tables, each storing the subjects and ob-
jects only for a single predicate. This way, self-joins
of a large 3-column table are translated into table-
joins between multiple small 2-column tables. How-
ever, some study[3] has shown that a column-based
database sometimes performs even slower than a
triple store when the number of predicates is large.

To avoid expensive table joins, property tables
can be used.[4] In this approach, a database is orga-
nized as different property tables, each storing the
objects for a distinct group of correlated predicates.
Suppose p1, p2, p3 are correlated predicates main-
tained in property table C. C has four columns,
one for the subjects, and the others for the objects
of p1, p2, p3. If an query involves only the predi-
cates among p1, p2, p3, no table-join is needed. To
store the triplets (s p1 o1) and (s p3 o3), a row is
created in C where the subject cell stores s, the p1

and p3 cells store o1 and o3 respectively while the p2

cell is null. In general, subjects semantically in the
same class (e.g., course) often share the same pred-
icates (e.g., course code and teacher). However, not
many RDF datasets contain the class information.
Therefore, it is crucial to have an effective auto-
mated schema design technique in order to make
the property table approach useful for huge loosely
structured RDF datasets.

1.1. Our Contributions
In this paper, we propose a new clustering

problem called Attribute Clustering by Table Load
(ACTL) to automate schema design of property ta-
bles. Intuitively, given a set of predicates, which we
call attributes in this paper, ACTL aims to cluster
them into disjoint clusters of attributes; each at-
tribute cluster is used to create a property table.
Intuitively, if the attributes maintained in table C
are highly correlated, then the subjects, which we
call transactions in this paper, stored in the table
should share most of the attributes maintained in
C. Hence, most of the cells in the table should be
non-null. Conversely, when a large portion of the
cells in C are null, we know that the correlation
of some attributes is low. Therefore, C should be
further split into sub-tables so that each maintains
only the attributes with sufficient degree of correla-
tion. We use the proportion of non-null cells in a ta-
ble, which we call load factor, to measure the degree

of correlation between the predicates. ACTL seeks
to group correlated attributes together into as few
tables as possible yet the load factors of all tables
are high enough. On the one hand, the fewer tables
there are, the “wider” the tables become, the less
likely table-joins are needed. On the other hand,
the higher the load factors are, the higher attribute
correlation the tables have, the higher chance there
is for queries to be answered with fewer joins. In ad-
dition, a higher load factor implies a higher storage
efficiency for a table.

Recognizing the ACTL problem is NP-complete,
we have developed an agglomerative clustering al-
gorithm with pruning to approximate the optimal
solution. We conducted experiments with huge
real-life datasets, Wikipedia Infobox data[5] and
Barton Libraries data[6]. Experimental results have
demonstrated the following. Firstly, our algorithm
can efficiently generate “good” schemas for these
datasets. Secondly, the performance of running
some common queries on the Wikipedia dataset us-
ing the property tables automatically designed by
our technique is generally higher than that using
the triple store and the vertical database.

1.2. Organization of This Paper
This paper is organized as follows. Sect. 1 in-

troduces the motivation of our research. Sect. 2
compares four popular RDF storage schemes and
reviews the related work. Sect. 3 formulates the
ACTL problem. Sect. 4 presents a basic version of
our agglomerative clustering algorithm and shows
that this version of algorithm has high time and
space complexity. To cope with the high com-
plexity, we propose three pruning techniques to en-
hance the performance of the algorithm in Sect. 5.
Sect. 6 discusses the concept of attribute connectiv-
ity, which is used to prevent uncorrelated attributes
from being put in the same cluster. Sect. 7 intro-
duces two metrics to measure the “fitness” of the
schema of property tables against their actual, stor-
age. Sect. 8 compares our approach to other related
approaches. Sect. 9 analyzes the results of three ex-
periments. Lastly, Sect. 10 sums up our work.

2. Preliminaries

An RDF file is essentially a collection of triplets.
Each triplet is in the form of “subject predicate ob-
ject .”[7] The subject is a resource represented by its
URI. The predicate defines a property of the sub-
ject and is represented by a URI. The object is the
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subject predicate object .
〈Tom〉 〈degree〉 “PhD” .
〈May〉 〈degree〉 “MPhil” .
〈Roy〉 〈degree〉 “BSc” .
〈May〉 〈enrolls〉 〈Db〉 .
〈Roy〉 〈enrolls〉 〈Db〉 .
〈Roy〉 〈enrolls〉 〈Web〉 .
〈Sam〉 〈title〉 “Professor” .
〈Tom〉 〈title〉 “Instructor” .
〈Kat〉 〈title〉 “Professor” .
〈Tom〉 〈supervisor〉 〈Sam〉 .
〈May〉 〈supervisor〉 〈Sam〉 .
〈Sam〉 〈interest〉 “Datamining” .
〈Sam〉 〈interest〉 “Database” .
〈Kat〉 〈interest〉 “Security” .
〈Db〉 〈teacher〉 〈Sam〉 .
〈Net〉 〈teacher〉 〈Sam〉 .
〈Web〉 〈teacher〉 〈Tom〉 .
〈Db〉 〈code〉 “C123” .
〈Net〉 〈code〉 “C246” .
〈Web〉 〈code〉 “C135” .

Figure 1: Motivating RDF example (triples)

value of the predicate, which can be a resource or
a literal (constant value). For example:

<http://ex.edu/Db> <http://ex.edu/teacher>
<http://ex.edu/Sam> .

<http://ex.edu/Sam> <http://ex.edu/title> "Professor" .

<http://ex.edu/Tom> <http://ex.edu/supervisor>
<http://ex.edu/Sam> .

Fig. 1 shows an RDF file which serves as the mo-
tivating example in this paper. For simplicity, the
full URIs of resources and predicates are abbrevi-
ated and angle-bracketed, while literals are double-
quoted. In the following, we review four main-
stream RDF storage schemes, namely triple store,
horizontal database, vertical database, and property
tables, and study their pros and cons.

2.1. Triple Store
The triple store approach[8] stores RDF triplets

in a 3-column table. Fig. 1 can be considered as
a triple store. A variant[9] of this scheme uses a
symbol table to represent each different resource,
predicate or literal by a unique system ID. Despite
the flexibility of this scheme, it is commonly recog-
nized to be slow in processing queries[2] for large
datasets. It is because a query would likely require
many self-joins of a huge triplet table. For instance,
the SPARQL[10] query shown in Fig. 2 is translated
into the SQL statement for the triple store shown
in Fig. 3, which requires two self-joins.

2.2. Horizontal Database
The horizontal database approach[11] uses a sin-

gle “universal table” where each row represents a

SELECT ?s FROM <triples>
WHERE { ?s <degree> "MPhil" .

?s <enrolls> <Db> .
?s <supervisor> <Sam> . }

Figure 2: SPARQL query example involving three predicates

SELECT a.subject
FROM triples a, triples b, triples c
WHERE a.subject = b.subject AND b.subject = c.subject

AND a.predicate = "<degree>" AND a.object = "MPhil"
AND a.predicate = "<enrolls>" AND a.object = "<Db>"
AND a.predicate = "<supervisor>" AND a.object = "<Sam>";

Figure 3: SQL statement translated from Fig. 2 for triple
store

subject and each column stores the objects of a dis-
tinct predicate. Note that a cell may store multiple
values because of the multi-valued nature of RDF
properties. Fig. 4 shows the content of the hori-
zontal database for the motivating example. This
scheme can save table-joins for a query involving
multiple predicates. For example, the SPARQL
query in Fig. 2 is translated into the SQL query
in Fig. 5 for the horizontal database.

However, unless the RDF data set has a fixed
structure and a small number of predicates, the
row-based horizontal database is not practical for
the following reasons. First, the table is very sparse;
for instance, in Fig. 4, 38 out of 56 property cells
are null. Second, a horizontal database is not scal-
able to the number of predicates. For example, the
Wikipedia data set needs a table with over 50,000
columns, which is impractical for implementation.
Third, this scheme does not handle data of dy-
namic structures well. When an RDF statement
with a new predicate is added, the table has to be
expanded, which requires costly data restructuring

subject degree enrolls title super- inte- tea- code
visor rest cher

〈Tom〉 PhD Inst- 〈Sam〉
ructor

〈May〉 MPhil 〈Db〉 〈Sam〉
〈Roy〉 BSc 〈Db〉,

〈Web〉
〈Sam〉 Pro- Data-

fessor base,
Data-
mining

〈Kat〉 Pro- Secu-
fessor rity

〈Db〉 〈Sam〉 C123
〈Net〉 〈Sam〉 C246
〈Web〉 〈Tom〉 C135

Figure 4: Horizontal database for Fig. 1
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SELECT subject FROM horizontal_table
WHERE degree = "MPhil" AND enrolls = "<Db>"

AND supervisor = "<Sam>";

Figure 5: SQL statement for triple store

operations.

2.3. Vertical Database
Abadi et al.[2] proposed to store all objects of

each different predicate in a separate vertical ta-
ble. In this vertical partitioning approach, Fig. 1
requires 7 tables as shown in Fig. 6.1 The advan-
tages of this scheme are as follows. (1) It is simple
to implement. (2) It does not waste space on null
values (but it does waste space replicating the sub-
ject columns in all tables). (3) It does not store
multiple values in one cell while not every RDBMS
handles multi-valued fields. (4) Some column-based
databases (e.g., C-Store[12] and MonetDB[13]),
which are optimized for column-based storage, can
be used.

degree table
subject property
〈Tom〉 PhD
〈May〉 MPhil
〈Roy〉 BSc

code table
subject property
〈Db〉 C123
〈Net〉 C246
〈Web〉 C135

enrolls table
subject property
〈May〉 〈Db〉
〈Roy〉 〈Db〉
〈Roy〉 〈Web〉
supervisor table

subject property
〈Tom〉 〈Sam〉
〈May〉 〈Sam〉

teacher table
subject property
〈Db〉 〈Sam〉
〈Net〉 〈Sam〉
〈Web〉 〈Tom〉

title table
subject property
〈Tom〉 Instructor
〈Sam〉 Professor
〈Kat〉 Professor

interest table
subject property
〈Sam〉 Database
〈Sam〉 Datamining
〈Kat〉 Security

Figure 6: Vertical database for Fig. 1

However, this scheme also has some disadvan-
tages. (1) To process queries that involve multi-
ple predicates, table-joins are always needed. For

1Abadi et al. used IDs to represent subjects and predi-
cates.

SELECT a.subject FROM degree a, enrolls b, supervisor c
WHERE a.subject = b.subject AND b.subject = c.subject
AND a.value = "MPhil" AND b.value = "<Db>"
AND c.value = "<Sam>";

Figure 7: SQL statement for vertical database

example, the SPARQL query in Fig. 2 is trans-
lated into the SQL query in Fig. 7 on the vertical
database, which requires 2 joins. This scheme ne-
glects any data and query patterns, which may sug-
gest organizing some related predicates in one table
can save table-joins. For example, resources 〈Db〉,
〈Net〉, and 〈Web〉 about courses all have predicates
〈teacher〉 and 〈code〉, so they can be stored together
in the same table. (2) Column-based databases are
not as mature and popular as row-based RDBMS.
(3) Sidirourgos et al.[3] pointed out the scalability
issue of this scheme. They found that the triple
store approach outperformed the vertical partition-
ing approach on a row-based RDBMS in answer-
ing queries. Although the vertical database per-
formed much faster on a column store than on an
RDBMS, the query performance decreased rapidly
as the number of predicates increased. The triple-
store could still outperform the vertical database on
a column store when the number of predicates was
large enough, e.g., around 200 predicates.

2.4. Property Tables

The property table approach proposed by the
Jena project[4] strikes a balance between the hor-
izontal approach and the vertical approach. Cor-
related predicates are grouped into a property ta-
ble. Each subject with any of the predicates of this
property table has one row in the table. As shown
in Fig. 8, 7 predicates are clustered into 3 property
tables: student, staff, and course.2 In the course ta-
ble, all the resources 〈Db〉, 〈Net〉, 〈Web〉 have both
〈teacher〉 and 〈code〉 predicates. However, in the
student table, 2 out of 3 subjects do not have all
the predicates maintained by the table. Also note
that the subject 〈Tom〉 appears in both student and
staff tables. Obviously, the proportion of null cells
(only 3 nulls out of 21 predicate cells) is largely re-
duced when compared to the horizontal database.
In contrast to the vertical database, no table join
is needed when a query only involves the predicates
within the same table. For example, the SPARQL
query in Fig. 2 is translated into the SQL statement
in Fig. 9, which needs no table-join. However, if a
query involves the predicates from different prop-
erty tables, table-joins cannot be avoided. In gen-
eral, some table joins can often be saved compared

2Jena actually uses a resource table and a literal table to
reference the subjects and objects by system IDs in property
tables.
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staff table
subject title interest
〈Tom〉 Instructor
〈Sam〉 Professor Database, Datamining
〈Kat〉 Professor Security

student table
subject degree enrolls supervisor
〈Tom〉 PhD 〈Sam〉
〈May〉 MPhil 〈Db〉 〈Sam〉
〈Roy〉 BSc 〈Db〉, 〈Web〉

course table
subject teacher code
〈Db〉 〈Sam〉 C123
〈Net〉 〈Sam〉 C246
〈Web〉 〈Tom〉 C135

Figure 8: Property tables for motivating example

SELECT subject FROM student
WHERE degree = "MPhil" AND enrolls = "Db"

AND supervisor = "Sam";

Figure 9: SQL statement for property tables

with the vertical database. Oracle also provides
a property-table-like facility called subject-property
matrix table.[14]

2.5. Problems of Property Table Approach

Despite the above advantages of the property ta-
ble scheme, it poses two technical challenges as de-
scribed below.
Multi-valued properties: Some single predi-

cate representing a one-to-many (or many-to-many)
relationship between a subject and multiple objects
(e.g., 〈interest〉 and 〈enrolls〉) can result in multiple
objects stored in a single cell. Abadi et al. argued
this is a drawback of the property table approach
compared to the vertical approach because multi-
valued fields were poorly supported by RDBMS.[2]
Jena avoided this problem by not clustering multi-
valued predicates in any property table but by stor-
ing them in a fallback triple store instead.[15] An-
other solution is to use the proprietary support of
multi-valued fields by some RDBMS systems, e.g.,
PostgreSQL and Oracle.
Lack of good predicate clustering algo-

rithms: The benefit of fewer joins can only be
capitalized when the predicates are well clustered
so that the transactions for a subject are contained
within only one or few property tables. This is the
major drawback pointed out by Abadi.[2] On the
one hand, the schemas of the property tables can
be designed manually. However, this requires the
database designer to have a priori domain knowl-
edge on the data and query patterns, which is often

not feasible. For instance, Wikipedia adopts a lib-
eral editing, collaborative authoring model where
there are no governing hard schemas, but only soft
guidelines[16]; therefore, the data pattern is hardly
comprehensible by humans. On the other hand,
the predicates can also be “somehow” clustered by
a suitable data mining algorithm based on the data
or query patterns to generate the property table
schemas.

2.5.1. Data Pattern Analysis for Schema Design
Our ACTL approach aims to analyze the data

patterns in order to automate schema design. Two
related approaches can be applied for the same pur-
pose. They are the classical frequent pattern min-
ing approach suggested by Ding and Wilkinson[15,
17] and the HoVer approach proposed by Cui et
al.[18] We compare these two approaches with
ACTL in Sect. 8.

2.5.2. Query Pattern Analysis for Schema Design
Another approach to aid schema designs is by

analysing the query patterns. Ding and Wilkinson
proposed to mine frequent predicate patterns from
query logs to form candidate property tables.[15]
However, this technique suffers the same problems
discussed in Sect. 8 about the usefulness of the
frequent pattern mining results. Many research
works[19–22] proposed different techniques to eval-
uate the query costs of database designs against a
given query workload for database optimizations,
e.g., index selection, table partitioning. However,
in many RDF applications, query patterns are un-
known and dynamic, which makes these techniques
not applicable.

3. Problem Definition

This section models the property table design
problem as the following attribute clustering prob-
lem. Given a set of attributes (predicates) and a
set of transactions (subjects) associated with the
attribute set, we intend to partition the attributes
into clusters, each comprising the columns of one
table, so that the proportion of null cells is not less
than a given threshold while the number of tables
(clusters) is minimized. Definition 1 formally de-
fines the terminology we used in this paper.

Definition 1. A database D = (A, T ) consists of
a set of attributes A and a set of transactions T .
Each transaction t ∈ T is associated with a group
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of attributes α(t) ⊆ A. A database schema Π for D
is a partition of A, i.e., (1)

⋃
C∈Π = A, (2) C∩C ′ =

∅ for any distinct C,C ′ ∈ Π, and (3) C 6= ∅ for
any C ∈ Π. Each element C in Π is called an
attribute cluster, for which the following properties
are defined:

The transaction group of C (a subset of T ):

τ(C) = {t ∈ T : α(t) ∩ C 6= ∅} (1)

The table load of C (an integer):

LD(C) =
∑

t∈τ(C)

|α(t) ∩ C| (2)

The table load factor of C (a rational number):

LF(C) =
LD(C)

|C| × |τ(C)|
(3)

In our example, 8 subjects (i.e., 〈Tom〉, 〈May〉,
〈Sam〉, 〈Kat〉, 〈Db〉, 〈Net〉, and 〈Web〉) form the
set of transactions while 7 predicates (i.e., 〈degree〉,
〈enrolls〉, 〈title〉, 〈supervisor〉, 〈interest〉, 〈teacher〉,
〈code〉) form the set of attributes. Fig. 4 and Fig. 8
organize these attributes in two different database
schemas, where the attributes are organized in a
single table (cluster), and in 3 tables respectively.

In Fig. 8, the student cluster contains 3 at-
tributes: 〈degree〉, 〈enrolls〉, and 〈supervisor〉. The
transaction group of student is { 〈Tom〉, 〈May〉,
〈Roy〉 }. The table load of an attribute cluster is
the number of non-null attribute cells in a table, so
the table load of student is 7. The table load factor
of an attribute cluster is its table load divided by
the total number of attribute cells, so the table load
factor of student is 7/9 = 0.778.

Definition 2 formally defines the Attribute Clus-
tering by Table Load (ACTL) problem. Essentially,
it is how to partition a given set of attributes into
the fewest clusters such that each cluster has a table
load factor not less than a given threshold θ. We
have proved that the ACTL is NP-complete (The-
orem 1), as shown in Appendix A. Fig. 8 shows an
optimal solution to the example for θ = 2/3.

Definition 2. Given (1) a database (A, T ), and (2)
a load factor threshold θ, where 0 ≤ θ ≤ 1, find a
partition (schema) Π of A such that:
1. for each cluster C ∈ Π, LF(C) ≥ θ, and
2. for any possible partition Π′ of A where

LF(C ′) ≥ θ for any C ′ ∈ Π′, |Π| ≤ |Π′|.

Theorem 1. The ACTL problem is NP-complete.

4. Agglomerative Clustering

This section introduces a basic agglomerative al-
gorithm to approximate the optimal solution to the
ACTL problem, and shows that this algorithm has
high time and space complexity. Algorithm 1 shows
the agglomerative ACTL algorithm. At first, each
attribute forms a distinct attribute cluster. A pri-
ority queue is used to maintain all unordered pairs
of clusters {C,C ′} ∈ Π where (1) the combined load
factor LF(C ∪ C ′) (Definition 3) is not below the
given load factor threshold θ, and (2) the cluster
pair with the highest combined load factor is placed
at the top of the queue. Then, the cluster pair
from the queue with highest combined load factor
is taken for merging into a new cluster. All existing
cluster pairs with any of the old clusters that have
already been merged are removed from the queue.
The new cluster is then used to generate new cluster
pairs with the existing clusters. Among these new
cluster pairs, those with the combined load factor
greater than or equal to θ are added into the queue.
Iteratively, the next cluster pair is taken from the
top of the queue to repeat the above steps until the
queue is empty.

Definition 3. The combined load factor of two
clusters C and C ′, where C ∩ C ′ = ∅, is the load
factor for the cluster C ′′ = C ∪ C ′:

LF(C ′′) =
LD(C) + LD(C ′)

|τ(C) ∪ τ(C ′)| × (|C|+ |C ′|)

Algorithm 1. BasicACTL
Input: database (A, T ), where |A| = n, |T | = m
Input: load factor threshold 0 ≤ θ ≤ 1
Output: partition Π of A such that LF(C) ≥ θ for

any C ∈ Π
1: initialize Π = {{a1}, {a2}, . . . , {an}}
2: create an empty priority queue Q, where each

element is an unordered pair of clusters {C,C ′}
and the pair with the largest LF(C ∪ C ′) is
placed at the top

3: for all {C,C ′} where C,C ′ ∈ P do
4: compute LF(C ∪ C ′) /* O(m) */
5: if LF(C ∪ C ′) ≥ θ then
6: add {C,C ′} to Q /* O(log |Q|) */
7: end if
8: end for/* O(n2(m+ log n)) */
9: while Q is not empty do /* let |Π| = p (i.e.,
O(n)) and |Q| = q (i.e., O(n2)) */

10: pop {C,C ′} from Q /* O(1) */
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11: C ′′ ← C ∪ C ′ /* O(n) */
12: delete C,C ′ from Π
13: delete all pairs with C or C ′ from Q /*

O(p log q) */
14: for all Ĉ ∈ Π do
15: if LF(C ′′ ∪ Ĉ) ≥ θ then /* O(m) */
16: add {C ′′, Ĉ} to Q /* O(log q) */
17: end if
18: end for/* O(p(m+ log q)) */
19: add C ′′ to P
20: end while/* O(n2m+ n2 log n) */

Here, we run Algorithm 1 using Fig. 1 with
θ = 2/3. Initially, there are 7 clusters, each con-
taining one attribute and has a load factor 1. The
clusters {〈teacher〉} and {〈code〉} are first merged
into the new cluster { 〈teacher〉, 〈code〉 } because
their combined load factor is 1. Then, either
{ 〈title〉, 〈interest〉 }, { 〈degree〉, 〈enrolls〉 }, or
{ 〈degree〉, 〈supervisor〉 } is created because they
all have a combined load factor 5/6. Suppose {
〈title〉, 〈interest〉 } and { 〈degree〉, 〈enrolls〉 } are
created. Finally, { 〈degree〉, 〈enrolls〉, 〈supervisor〉
} is created by merging { 〈degree〉, 〈enrolls〉 } and
{ 〈supervisor〉 } while the combined load factor 7/9
is still not below θ = 2/3. After that, no bigger
cluster can be formed as merging any two clusters
will make the combined load factor drop below θ.

4.1. Core Data Structure
To facilitate the computation of the table load

factor, ACTL is conducted using an attribute-
oriented data structure rather than a transaction-
oriented one. The transactions, attributes, and
clusters are assigned unique system IDs for all ma-
nipulations in clustering. For each cluster C, (1)
a sorted list of the transaction IDs for the trans-
action group, and (2) the integer table load are
maintained. Initially, since each cluster contains
one distinct attribute, the IDs of all transactions
containing that attribute are sorted into the trans-
action list for that cluster, and the table load for
each cluster is the size of the list. (Note that the
table load factors for all initial clusters are 1.)

When two clusters C and C ′ are combined into
a new cluster C ′′ = C ∪ C ′, the transaction group
of C ′′ is the union of the transaction groups of C
and C ′, i.e., τ(C ∪ C ′) = τ(C) ∪ τ(C ′). Since the
transaction lists for C and C ′ are sorted, they can
be merged into the sorted transaction list for C ′′ in
O(k) time, where k = max{|τ(C)| , |τ(C ′)|}. The
table load for C ′′ is the sum of the table loads for

C and C ′, i.e., LD(C∪C ′) = LD(C)+LD(C ′). The
table load factor for C ′′ can then be easily computed
by Eq. 3. Therefore, the time complexity to com-
pute the combined load factor for two clusters from
their transaction groups and table loads is O(m),
where m is the number of transactions.

4.2. Complexity Analysis
The time complexity of the non-trivial steps in

Algorithm 1 are specified in the comments. The
total time complexity of the algorithm is O(n2m+
n2 log n), where n is the number of attributes and
m is the number of transactions. Clearly, the time
complexity is more sensitive to the number of at-
tributes than to the number of transactions. The
space complexity of this algorithm is determined
by (1) the storage for the transaction lists and at-
tributes for each cluster, which is nm and (2) the
priority queue size, which is n(n−1)/2 in the worst
case. The total space complexity is O(nm+ n2).

5. Pruning Techniques

We can see that Algorithm 1 may not be time
and space efficient enough to handle large sets of at-
tributes and transactions. The Wikipedia dataset
we used in our experiments has around 50,000 at-
tributes and 480,000 transactions, and was too large
for the above algorithm to cluster in an accept-
able time period. Our implementation of this ba-
sic algorithm failed with an insufficient memory
error after processing the dataset for 3 hours as
the priority queue had grown to exhaust the 12GB
memory we used. In this section, we discuss sev-
eral pruning techniques that can significantly im-
prove the time and space efficiency of the algo-
rithm. Our implementation of the algorithm en-
hanced with these pruning techniques succeeded in
clustering the dataset in ∼42 minutes.

5.1. Transaction Group Equality Test
In real-life datasets, there are many clusters of

attributes which share identical transaction groups.
In Fig. 1, the attributes 〈teacher〉 and 〈code〉 have
the same transaction group: { 〈Db〉, 〈Net〉, 〈Web〉
}. These attributes with the same transaction
group will surely be merged into the same cluster
because their combined load factor is always 1. We
can use an efficient transaction group equality test
to merge every set of attributes with the same trans-
action group into one cluster in the very beginning

7



in order to reduce the total number of initial clus-
ters.

Since testing the equality of two sets has non-
trivial computation cost, we can use a simple hash
function on transaction groups to efficiently find out
all attributes potentially having the same transac-
tion group. The hash value of an attribute is com-
puted as the sum of the IDs of all transactions in
its transaction group modulo the maximum hash
value: HASH(a) =

∑
t∈τ(a) ID(t) mod M .

To further process each set of attributes with the
same hash value, we divide them into subsets where
all attributes in the same subset has the same num-
ber of transactions. The hash value and size com-
parisons on transaction groups can effectively fil-
ter out most of false positives. Nevertheless, we
still need to exercise the actual equality test on the
transaction groups for all attributes in each sub-
set. Since the transaction groups are represented
by sorted ID lists, the time to confirm if two lists
are equal is linear to the list size. Algorithm 2 per-
forms the above process.

Algorithm 2. ClusterAttrsWithEqualTrxGrps
Input: set of attributes A
Output: list L of attribute sets where all at-

tributes in each set share the same transaction
group

1: initialize L to be an empty set
2: create a hash table H of attributes sets, where
H(h) = {a : HASH(a) = h}

3: for all attribute a ∈ A do /* compute H */
4: Add a to the attribute set H(HASH(a))
5: end for
6: for all attribute set A′ in H do
7: create a list L̄ of attribute sets
8: for all attribute a′ ∈ A′ do
9: done← false

10: for all attribute set Ā ∈ L̄ do
11: let a be some attribute in Ā
12: if |τ(ā)| = |τ(a′)| then /* try to avoid

comparing τ(ā) = τ(a′) */
13: if τ(ā) = τ(a′) then
14: put ā into Ā
15: done← true
16: break the for-loop
17: end if
18: end if
19: end for
20: if done = false then
21: create a new set A′′ in L̄ and add a′ to

A′′

22: end if
23: end for
24: append L̄ to L
25: end for

5.2. Maximum Combined Load Factor

In Lines 14-19 of Algorithm 1, when a new cluster
C ′′ is created, we need to find all existing clusters
C ∈ Π such that LF(C ′′ ∪ C) ≥ θ and put {C,C ′′}
into the priority queue. It is very time-consuming
if we compute LF(C ′′ ∪C) for all clusters C ∈ Π as
each list-merge on τ(C ′′) ∪ τ(C) costs O(m) time.
We have implemented a mechanism to prune all
clusters C ∈ Π where LF(C ′′ ∪ C) cannot reach
θ without computing τ(C ′′) ∪ τ(C).

5.2.1. Bounds on Transaction Group Size To At-
tain Maximum Combined Load Factor

When we examine a new cluster C ′′ just cre-
ated, we know its member attributes and transac-
tion group size. For the combined load factor of
C ′′ and some existing C (i.e., LF(C ′′ ∪C)), we can
derive the upper bound before LF(C) is known and
τ(C ′′)∪τ(C) is computed. Note that LF(C ′′∪C) at-
tains its maximum value when (1) C is fully loaded
and (2) τ(C ′′) ∪ τ(C) is the smallest, which equals
max{|τ(C ′′)| , |τ(C)|}.

LF(C ′′ ∪ C) =
LD(C ′′) + LD(C)

|τ(C ′′) ∪ τ(C)| (|C ′′|+ |C|)
(4)

≤ LD(C ′′) + |τ(C)| × |C|
max{|τ(C ′′)| , |τ(C)|}(|C ′′|+ |C|)

(5)

Therefore, if we require LF(C ′′∪C) ≥ θ, we must
have:

LD(C ′′) + |τ(C)| × |C|
max{|τ(C ′′)| , |τ(C)|}(|C ′′|+ |C|)

≥ θ (6)

Case 1: if 0 < |τ(C)| ≤ |τ(C ′′)| then

LD(C ′′) + |τ(C)| × |C|
|τ(C ′′)| (|C ′′|+ |C|)

≥ θ (7)

|τ(C)| ≥ |τ(C ′′)| (|C ′′|+ |C|)θ − LD(C ′′)

|C|
(8)

Since |τ(C)| is a positive integer, we have:
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|τ(C)| ≥
⌈
|τ(C ′′)| (|C ′′|+ |C|)θ − LD(C ′′)

|C|

⌉
(9)

Case 2: if |τ(C)| > |τ(C ′′)| then

θ ≤ LD(C ′′) + |τ(C)| × |C|
|τ(C)| (|C ′′|+ |C|)

(10)

|τ(C)| × ((|C ′′|+ |C|)θ − |C|) ≤ LD(C ′′) (11)

Case 2a: if |τ(C)| > |τ(C ′′)| and θ > |C|
|C′′|+|C|

then

|τ(C)| ≤ LD(C ′′)

(|C ′′|+ |C|)θ − |C|
(12)

Case 2b: if |τ(C)| > |τ(C ′′)| and θ ≤ |C|
|C′′|+|C|

then Eq. 11 always hold since LD(C ′′) is positive.
Therefore, we only need to consider Case 2a. Since
|τ(C)| is a positive integer, we have:

|τ(C)| ≤
⌊

LD(C ′′)

(|C ′′|+ |C|)θ − |C|

⌋
(13)

For example, suppose the newly created clus-
ter C ′′ has 4 attributes, a load factor of 0.9, and
a transaction group of size 1,000 while θ = 0.8.
Among all existing clusters with 5 attributes, we
only need to consider those with transaction group
size from

⌈
1000×(4+5)×0.8−1000×4×0.9

5

⌉
= 720 to⌊

1000×4×0.9
(4+5)×0.8−5

⌋
= 1636 for merging with C ′′.

5.2.2. Cluster Sorter Data Structure
We have designed a data structure called clus-

ter sorter to sort each cluster C using (1) its num-
ber of attributes |C| as the primary key, and (2)
the size of its transaction group |τ(C)| as the sec-
ondary key. This two-level sorting is supported by
the data structure shown in Fig. 5.2.2. The aim
of this data structure is to quickly find out, given
integers n,mlower,mupper, all clusters C with n at-
tributes and a transaction group of size between
mlower and mupper.

The first-level sorting is designed to return a list
of all clusters with a specified number of attributes
in O(1) time. This is implemented as an array of
pointers where each pointer points to a list of cluster
data nodes. The n-th array entry points to the list

| C | =

1

2

...

11

| τ(C) | =

id(C) =

1

25

4

3

5

64
...

188

23

| τ(C) | =

id(C) =

3

37

6

34

7

76
...

204

11

| τ(C) | =

id(C) =

2

6

2

85

6

2
...

386

28

of all clusters with n attributes. For example, the
second list in Fig. 5.2.2 records all clusters with 2
attributes.

The second-level sorting is designed to find out
all clusters of which the transaction group sizes are
within a specified range. It is supported by a list of
data nodes for all clusters with a particular num-
ber of attributes. Each node stores the transaction
group size and the ID of a different cluster. On the
list, the nodes are sorted by the transaction group
sizes of the corresponding clusters. To efficiently
return a sub-list of clusters with a specified range
of transaction group size, each list is implemented
as a red-black tree, which can locate the sub-list in
O(log n) time. For example, in the second list of
the example, two clusters with IDs 37 and 34 are
returned if the requested range is between 2 to 6
inclusively.

5.2.3. Algorithm to Find Candidate Clusters for
Merging

Based on Sect. 5.2.1 and Sect. 5.2.2, we have de-
veloped Algorithm 3 to efficiently find out all exist-
ing clusters C to merge with the newly created clus-
ter C ′′ with a combined load factor LF(C ′′∪C) ≥ θ.

Algorithm 3. FindCandidateClusters
Input: cluster sorter S where S(n,mlower,mupper)

returns a list of existing clusters C ∈ Π with
n attributes and transaction groups of size m,
where mlower ≤ m ≤ mupper

Input: newly created cluster C ′′
Input: load factor threshold θ
Output: list L of existing clusters C where

LF(C ′′, C) ≥ θ
1: initialize L to be an empty list
2: for all n ← 1 . . . maximum number of at-

tributes of existing clusters in P do

3: mlower ← dmin{ |τ(C′′)|(|C′′|+n)θ−LD(C′′)

n , τ(C ′′)}e
4: if n

|C′′|+|C| < θ then

9



5: mupper ← bmax{ LD(C′′)
(|C′′|+n)x−n , τ(C ′′) + 1}c

6: else
7: mupper ←∞
8: end if
9: L← S(n,mlower,mupper) /* O(log n) */

10: end for
11: for all C ∈ L do
12: if LD(C′′)+LD(C)

max{|τ(C′′)|,|τ(C)|}(|C′′|+|C|) ≥ θ then
13: remove C from L
14: else
15: compute τ(C ′′) ∪ τ(C) /* O(logm) */
16: if LD(C′′)+LD(C)

|τ(C′′)∪τ(C)|(|C′′|+|C|) < θ then
17: remove C from L
18: end if
19: end if
20: end for

5.3. Iterative Clustering
When we cluster a large number of attributes us-

ing Algorithm 1, we face the insufficient memory
problem when too many cluster pairs are stored
in the priority queue. For example, there are over
50,000 attributes in the Wikipedia dataset, which
can produce 1.25 billion possible attribute pairs at
maximum. Initially, if all possible pairs of clusters,
each having one attribute, are candidates for merg-
ing, the priority queue would need tens of gigabytes
of memory space. This could not only run out of
the memory but also significantly slow down the in-
sertions of a new cluster pair to and the deletions
of an invalid cluster pair from the priority queue.
Each of these operations costs O(log q) time, where
q is the queue size.

It is easy to see that the higher the load fac-
tor threshold is, the more effective Algorithm 3 is
in pruning unqualified cluster pairs for merging,
the fewer candidate cluster pairs which attain the
threshold need to be added to the priority queue.
Since Algorithm 1 merges the clusters from the
highest combined load factor down to the required
load factor threshold, we can do the clustering step
by step.

However, this iterative clustering approach does
not always improve the performance. The reason
is that the combined load factor of some candidate
cluster pairs may need to be recomputed for those
pairs which cannot be pruned by Algorithm 3. For
example, if clusters C and C ′ have a combined load
factor LF(C ∪ C ′) = 0.75, there is a chance that
the same LF(C ∪ C ′) is recomputed in all three it-
erations at θ = 0.9, 0.8, 0.7. Nevertheless, this ap-

proach allows our clustering algorithm to be tun-
able for speeding up performance as well as to be
scalable for adapting to different data sizes.

5.4. Modified Clustering Algorithm
Combining the techniques discussed in Sect. 5.1,

5.2, and 5.3, Algorithm 1 is modified to Algo-
rithm 4.

Algorithm 4. ModifiedACTL
Input: database (A, T )
Input: load factor threshold 0 ≤ θ ≤ 1
Input: threshold step 0 ≤ δ ≤ 1
Output: partition Π such that LF(C) ≥ θ for any

C ∈ Π
1: Π← ClusterAttrsWithEqualTrxGrps(A)
2: create a cluster sorter S and add all cluster C ∈

Π to S
3: create an empty priority queue Q, where each

element is an unordered pair of clusters {C,C ′}
and the pair with the largest LF(C∪C ′) placed
in the top of Q

4: for all θ′ = 1 − δ, 1 − 2δ, . . . , 1 − kδ, θ where
kδ < θ for k = 1, 2, . . . do

5: for all C ∈ Π do
6: L← FindCandidateClusters(S,C, θ′)
7: add {C ′, C} toQ for all C ′ ∈ L and C ′ 6= C
8: end for
9: while Q is not empty do

10: pop {C,C ′} from Q
11: C ′′ ← C ∪ C ′
12: delete C,C ′ from both Π and S
13: delete all pairs containing C or C ′ from Q
14: L← FindCandidateClusters(S,C ′′, θ′)
15: add {C ′, C ′′} to Q for all C ′ ∈ L
16: add C ′′ to both Π and S
17: end while
18: end for

6. Attribute Connectivity

Some applications may require only “connected”
attributes to be allocated in the same cluster. Intu-
itively, when two disjoint sets of attributes are not
connected, there is not any transaction that con-
tains some attributes from one set and some from
the other set. In that case, putting two discon-
nected sets of attributes together in the same clus-
ter will not save any table-joins but only waste stor-
age on null values.

For example, in Fig. 10, two clusters C1 and C2

may be produced from clustering 7 attributes over
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a1 a2 a3 a4

t1 x x
t2 x x
t3 x x

C1 = {a1, a2, a3}
LF(C1) = 1/2

a5 a6 a7

t4 x x
t5 x x
t6 x

C2 = {a5, a6, a7}
LF(C2) = 5/9

Figure 10: Example on attribute connectivity

6 transactions given load factor threshold θ = 0.5.
We can say that attributes a1 and a2 are connected
because transaction t1 contains both attributes and
it is natural to put them in the same cluster C1. Al-
though there is no transaction containing both a1

and a3, they are both connected to a2 so a1 and a3

are indirectly connected. Similarly, a4 is also con-
nected to a1, a2, a3 too. Therefore, it is natural to
put all of them in single cluster C1. Conversely, for
cluster C2, it seems not very useful to put a7 with
a5 and a6 because a7 is “orthogonal” to others, even
though the load factor of C2 attains the threshold.

Definition 4 formally defines this attribute con-
nectivity relation. In fact, ∗-connectivity is a tran-
sitive closure on 1-connectivity. We can consider
the attributes being the nodes in a graph where
there is an edge between two attributes if they
are 1-connected. It is easy to observe that all
nodes in each connected component of the graph
forms an equivalence class of ∗-connectivity while ∗-
connectivity is a equivalence relation (Theorem 2).

Definition 4. Two attributes a and a′ are said to
be 1-connected if τ(a) ∩ τ(a′) 6= ∅. Two attributes
a and a′ are said to be k-connected if there exists
another attribute a′′ such that a and a′′ are (k −
1)-connected and a′′ and a′ are 1-connected. Two
attributes a and a′ are said to be connected or ∗-
connected if there exists some integer k such that a
and a′ are k-connected.

Theorem 2. ∗-connectivity is an equivalence rela-
tion.

We call each equivalence class on ∗-connectivity
a connectivity class. If attribute connectivity is re-
quired, we can modify Algorithm 1 or 4 as follows.
We can assign each connectivity class with a unique
ID (CCID) and associate each attribute with its
CCID. Then, we add a new condition into the al-
gorithm to restrict that only two clusters with the
same CCID can be merged. The CCID assignment
algorithm is listed in Algorithm 5.

Algorithm 5. AssignCCID

Input: a database D = (A, T )
Output: a mapping CCID[a] returns the connec-

tivity class id for attribute a
1: initialize CCID[a]← 0 for all a ∈ A
2: create a mapping K : Z+ 7→ 2A and initialize
K[i] = ∅ for all 1 ≤ i ≤ n

3: j ← 1
4: for all t ∈ T do
5: At ← α(t)
6: if CCID[a] = 0 for all a ∈ At then
7: CCID[a]← j for all a ∈ At
8: K[j]← At
9: j ← j + 1

10: else if there exists non-empty sets A′t, A′′t
where A′t ∪ A′′t = At such that all attributes
a′ ∈ A′t with CCID[a′] = 0 and all attributes
a′′ ∈ A′′t share the same CCID[a′′] = d > 0
then

11: CCID[a′]← d for all a′ ∈ A′t
12: K[d]← K[d] ∪A′t
13: else if there exists a, a′ ∈ At such that

both CCID[a],CCID[a′] > 0 and CCID[a] 6=
CCID[a′] then /* attributes in At have two
or more different CCIDs */

14: for all a ∈ At do
15: if CCID[a] = 0 then
16: CCID[a]← j
17: K[j]← K[j] ∪ {a}
18: else if CCID[a] 6= j then
19: d← CCID[a]
20: CCID[a′′]← j for all a′′ ∈ K[d]
21: K[j]← K[j] ∪K[d]
22: K[d]← ∅
23: end if
24: end for
25: j ← j + 1
26: end if
27: end for

7. Measuring Schema Fitness

This section proposes several metrics to mea-
sure the fitness of an ACTL-mined schema. Def-
inition 5 formally defines storage configuration as
well as mappings ACLUSTER and TCLUSTERS.
ACLUSTER returns the cluster to which attribute
a belongs while TCLUSTERS returns the set of
clusters covered by a given transaction.

Definition 5. Let (D,Π) be a storage configura-
tion, where D = (A, T ) is a database and Π is a
partition of A.
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Define mapping ACLUSTER : A 7→ Π so that
ACLUSTER(a) = C if a ∈ C.

Define mapping TCLUSTERS : T 7→ 2Π so that
TCLUSTERS(t) = {ACLUSTER(a) : a ∈ α(t)}.

A single transaction may spread across multiple
tables (e.g., transaction 〈Tom〉 in Fig. 8). The av-
erage number of clusters per transaction (ACPT)
(Definition 6) is the total number of rows in all ta-
bles (or the sum of the numbers of clusters stor-
ing each transaction) divided by the total num-
ber of transactions. An ACPT value is inclusively
between 1 and the total number of clusters. For
example, ACPT = 2.3 means each transaction
spreads across 2.3 tables on average. Therefore,
if the ACPT is small then the number of table-
joins required for a query is potentially small. The
more structured the data pattern is, the smaller the
ACPT is. The ACPT for Fig. 8 is 9/8 = 1.125.

Definition 6. The average number of clusters per
transaction (ACPT) of a storage configuration is
defined as follows:

ACPT(D,Π) =

∑
t∈T |TCLUSTERS(t)|

|T |
, where D = (A, T )

The aggregate load factor (ALF) (Definition 7)
measures the aggregate storage efficiency of all ta-
bles. It is the total number of non-null cells in
all tables divided by the total number of cells of
the attribute columns in all tables. An ALF is in-
clusively between the load factor threshold and 1.
The higher the ALF is, the less storage space is
wasted on storing null values. The ALF for Fig. 8
is 18/21 = 0.857.

Definition 7. The aggregate load factor (ALF) of
a storage configuration is defined as follows:

ALF(D,Π) =

∑
C∈Π LD(C)∑

C∈Π(|C| × |τ(C)|)
, where D = (A, T )

Since good clustering is indicated by a low ACPT
and a high ALF, we may use the ratio of the
ALF/ACPT to find a suitable load factor threshold
that produces a schema for balanced query perfor-
mance and storage efficiency.

8. Other Clustering Approaches

As discussed in Sect. 2.5.1, some frequent pattern
mining algorithm and the HoVer (horizontal rep-
resentation over vertically partitioned subspaces)
algorithm[18] can be used to cluster attributes for
designing property tables. However, both algo-
rithms have some shortcomings when they are used
for this purpose.

8.1. Frequent Patterns Mining
Ding and Wilkinson[15, 17] suggested that fre-

quent patterns mining techniques (e.g., Apriori[23]
and FP-Growth[24]) could be used to aid property
tables design. To verify this suggestion, we ran the
FP-Growth algorithm[24] to find the frequent at-
tribute patterns given different support values for
the Barton Libraries dataset. The experimental re-
sult is given in Section 9.3.1, which shows that the
algorithm cannot generate proper schema designs
for the following reasons:

1. The frequent patterns are overlapping at-
tribute subsets instead of disjoint clusters.
Also, a frequent pattern only counts those
transaction where all attributes in the pat-
tern always occur together. Therefore, it is
difficult to set a suitable support value while
the frequent attribute subsets with the high-
est support may not be good table schemas.
This problem can be illustrated in Fig. 8. The
attribute subset {degree, enrolls, supervisor} in
the student table does not receive the highest
support (which is only 1 because of the subject
May). However, we tend to group these at-
tributes together because all three subjects in
the table share at least two of the predicates.

2. There is no guarantee that the union of all fre-
quent attribute subsets must cover the entire
set of attributes. Even when a very low sup-
port value of 2 transactions was used to mine
the frequent patterns from the Barton dataset,
all the frequent attribute subsets cover only
149 out of 285 attributes.

3. For the above reasons, the frequent attribute
subsets cannot be used to create property
tables without manual selection and adjust-
ments. We doubt how much the mining result
can help design the schemas. It is infeasible
for humans to analyze so many frequent pat-
terns generated. When the support value was
set as high as 100,000, 10,285 frequent patterns
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(covering only 25 attributes) from the Barton
dataset were still discovered.

In contrast, ACTL, by definition, produces dis-
joint attribute clusters covering the whole attribute
set. This means that the produced clusters can be
readily used as a schema design for property tables.
The choice of the loading factor threshold only af-
fects the number of property tables to be built and
the storage efficiency of those tables when data are
populated. In this sense, the ACTL approach is
more suitable than the frequent pattern mining ap-
proach for mining property table schemas from data
patterns.

8.2. HoVer Clustering
Cui et al. proposed a approach called horizontal

representation over vertically partitioned subspaces
(HoVer) to solve a similar problem addressed by
ACTL.[18] HoVer is a basic hierarchical cluster-
ing algorithm on attributes using a new distance
function, called correlated degree. The correlated
degree between two attributes (called dimensions)
a and a′ is the size of the intersection of their
transaction groups (called active tuples) divided by
the size of the union of their transaction groups ,
i.e., |τ({a}) ∩ τ({a′})| / |τ({a}) ∪ τ({a′})|. A cor-
relation degree threshold is given to the algorithm;
HoVer seeks to group attributes into clusters (called
subspaces) where for every pair of attributes in
each cluster, the correlation degree is not less than
the threshold. This algorithm poses the following
problems when used to generate property tables
schemas:

1. The correlation degree is merely a heuristic
function without an obvious physical meaning
like the load factor. It is difficult to use it to
control the schema fitness.

2. The algorithm favors only small clusters but
not large ones. In order for an unclassified at-
tribute to be grouped into a existing cluster,
HoVer requires the correlation degree thresh-
old between that attribute with every attribute
from that cluster to attain the correlation de-
gree threshold. In other words, an unclassified
attribute cannot be grouped into that cluster
simply when merely a single attribute in that
cluster is not sufficiently correlated with that
unclassified one. Therefore, it is difficult to
grow large clusters. Sect. 9.3.2 shows that, in
our experiment where HoVer was used to clus-
ter Wikipedia dataset, the average cluster size

was only ∼3 and ∼15,000 clusters remained
at very small thresholds. In contrast, ACTL
progressively grew large clusters from merging
small ones as the threshold was decreasing.

9. Experiments

We have conducted three experiments to show
the applicability and effectiveness of our schema
mining approach compared with other techniques.
Experiment 1 performed ACTL (Algorithm 4) on
two datasets, namely Wikipedia Infobox and Bar-
ton Libraries, for analyzing the clustering perfor-
mance and the schema fitness. Experiment 2 per-
formed clustering techniques (i.e., FP-Growth, and
HoVer) on the Wikipedia dataset for comparison
with ACTL. Experiment 3 stored the Wikipedia
dataset using (1) property tables based on a schema
mined from ACTL, (2) property tables based on a
schema mined from HoVer, (3) a triplet store, and
(4) a vertical database. These experiments were
conducted on a Debian Linux (amd64) server with
two Quad-Core Xeon Pro E5420 2.50GHz CPUs
and 16GB RAM. Algorithm 4 was implemented as a
single-threaded Java program, running on the Java
HotSpot 64-Bit Server Virtual Machine initialized
with 12GB heap-size.

9.1. Datasets
Wikipedia Infobox dataset. This dataset

was extracted from the Wikipedia database[5]
(20071018 English version). (The data extraction
toolkit has been open-souced.[25]) Many Wikipedia
pages contained an infobox created from a list
of name-value pairs (e.g., bridge_name = Tsing
Ma Bridge). Fig. 11 shows the infobox on the
Wikipedia page “Tsing Ma Bridge.” Every page
with an infobox was treated as a subject resource,
and each infobox field name qualified by the in-
fobox name as a predicate. The infobox field value
produced the objects for the predicate. If the field
value did not have links, the object was a literal
(e.g., “HK$30 (cars)” in the toll field). If the
field value contained some links to other pages, each
linked page was treated as one object resource, and
the whole text value was treated as a literal. For
example, in Fig. 11, the field locale generates the
following 3 triplets:

<Tsing Ma Bridge> <Bridge#locale> <Ma Wan> .
<Tsing Ma Bridge> <Bridge#locale> <Tsing Yi Island> .
<Tsing Ma Bridge> <Bridge#locale>

"Ma Wan Island and Tsing Yi Island" .
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The conversion of the infobox data from the
Wikipedia source to RDF required substantial data
cleansing procedures, e.g., removal of comments,
formatting tags, null values, and syntax errors from
field names and values. This dataset contained
50,404 attributes (predicates), 479,599 transactions
(subjects), and 9,549,024 RDF triplets.
Barton Libraries dataset. This dataset was

provided by the Smile Project, which developed
tools for library data management.[6] It was a col-
lection of RDF statements converted from the MIT
Libraries Barton catalog data. It was also used
in the experiments by Sidirourgoes[3], Abadi[2]
and Neumann[26]. This dataset contained 285
attributes, 3,811,592 transactions, and 35,182,174
triplets.

We selected these two datasets because they were
huge and from real-life applications. While the
Wikipedia dataset contained a large number of at-
tributes, the Barton dataset contained a large num-
ber of transactions. Therefore, we could compare
the experimental results of ACTL handling very
large datasets of different natures.

9.2. ACTL Performance and Schema Fitness
In this experiment, we ran Algorithm 4 on both

datasets with load factor thresholds from 1 to 0 at
intervals of 0.2. Also, we clustered the Wikipedia
dataset twice, one time with attribute connectiv-
ity disabled and another time with connectivity en-
abled. In the Barton dataset, all attributes are con-
nected so ACTL gives the same result no matter
attribute connectivity is enabled or not.

Fig. 12 and Fig.13 show the number of clusters
and the execution time when ACTL was used to
cluster the Wikipedia dataset and Barton Libraries
dataset respectively at thresholds from 1 to 0. The
experimental results are summarized below:

1. The Wikipedia dataset and the Barton dataset
have 50,404 attributes and 285 attributes, re-
quiring the same numbers of tables in vertical
databases. When we clustered these datasets
at load factor threshold 0.9, the numbers of
clusters were 26,435 (for disabled attribute
connectivity) and 26,449 (for enabled attribute
connectivity) for the Wikipedia dataset, and
255 for the Barton dataset. This illustrates, at
high thresholds, ACTL can already reduce the
numbers of tables substantially.

2. Algorithm 4 (with pruning) took ∼42 minutes
to cluster the Wikipedia dataset at threshold

{{Infobox Bridge
|bridge_name=Tsing Ma Bridge
|image=Tsing Ma Bridge 2008.jpg
|caption=Tsing Ma Bridge at night
|official_name=Tsing Ma Bridge
|also_known_as=
|carries=6 lanes of roadway (upper)<br>2 [[MTR]] rail tracks,
2 lanes of roadway (lower)
|crosses=[[Ma Wan Channel]]
|locale=[[Ma Wan|Ma Wan Island]] and [[Tsing Yi Island]]
|design=Double-decked [[suspension bridge]]
|mainspan={{convert|1377|m|ft|0}}
|width={{convert|41|m|ft|0}}
|clearance={{convert|62|m|ft|0}}
|open=[[April 27]], [[1997]]
|toll=HK$30 (cars)
|coordinates={{coord|22|21|05|N|114|04|27|E|
region:HK_type:landmark}}

}}
Tsing Ma Bridge

Tsing Ma Bridge at night
Official name Tsing Ma Bridge
Carries 6 lanes of roadway (upper) 2 MTR

rail tracks, 2 lanes of roadway (lower)
Crosses Ma Wan Channel
Locale Ma Wan Island and Tsing Yi Island
Design Double-decked suspension bridge
Width 41 metres (135 ft)
Longest span 1,377 metres (4,518 ft)
Vertical clearance 62 metres (203 ft)
Opening date April 27, 1997
Toll HK$30 (cars)
Coordinates 22◦21’05”N 114◦04’27”E

Figure 11: Wikipedia Infobox data

0.0 with or without attribute connectivity en-
abled and only about one minute to cluster the
Barton dataset at threshold 0.0. When we ran
Algorithm 1 (ACTL without pruning) on the
Wikipedia dataset, it raised the out of memory
error after running for over 3 hours under the
same setup. This demonstrates our pruning
techniques are effective to make ACTL efficient
enough for large datasets. Also, the results
show that ACTL’s complexity is more sensi-
tive to the number of attributes than to the
number of transactions.

3. The number of clusters for the Wikipedia
dataset produced by ACTL with attribute con-
nectivity enabled was 1,501. This is the num-
ber of attribute connectivity classes for this
dataset. The Barton dataset has only one
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Figure 12: Performance of ACTL with pruning (Wikipedia
Infobox dataset)
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Figure 13: Performance of ACTL with pruning (Barton Li-
braries dataset)

attribute connectivity class, meaning all at-
tributes are connected.

Fig. 14 and Fig. 15 show the ALFs, ACPTs, and
ALF/ACPT ratios of using ACTL to cluster the
Wikipedia dataset and Barton dataset respectively
at different thresholds. The experimental results
are summarized below:

1. Without ACTL, on average, a transaction
(subject) has 14.26 and 5.647 attributes (not
shown on the graphs) in the Wikipedia dataset
and the Barton dataset respectively. In other
words, a transaction on average spreads across
∼14 and ∼6 tables in vertical databases. The
ACPTs dropped very quickly at high thresh-
olds for both datasets. At the threshold 0.9,
the ACPTs for the Wikipedia dataset and the
Barton datasets were 5.60 and 2.43 respec-
tively. This indicates that the ACTL-mined
schemas at high thresholds can already contain
transactions within small numbers of property
tables.

2. The schemas mined with ACTL with attribute
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Figure 14: Schema fitness (Wikipedia infobox dataset)
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Figure 15: Schema fitness (Barton Libraries dataset)

connectivity disabled and enabled gave very
similar ALF, ACPT, and ALF/ACPT values.

3. The ALF/ACPT ratios attained the highest for
the Wikipedia dataset and the Barton dataset
at thresholds 0.64 and 0.80, which generated
property tables’ schemas with balanced storage
efficiency and query performance.

4. The ALFs were fairly proportional to and
slightly higher than the load factor thresholds,
so it is easy to use the load factor threshold to
control the ALF.

9.3. Other Attribute Clustering Approaches
In this experiment, we attempted to cluster the

Wikipedia dataset using FP-Growth and HoVer.

9.3.1. Frequent Patterns Mining
Table 1 summarizes the mining results of running

the FP-Growth algorithm on the Barton dataset.
The support values ranged from 2 to 500,000. The
number of frequent attribute patterns decreased
with increasing support values. However, there
were two problems when these results were used to
design the property tables. On the one hand, even
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supp. #freq. #cov. %cov. supp. #freq. #cov. %cov.
value patterns atts atts value patterns atts atts

2 55,459,593 149 52.28 1,000 261,451 53 18.60
3 25,274,889 119 41.75 5,000 76,755 39 13.68
5 13,220,483 103 36.14 10,000 43,375 31 10.88

10 6,896,435 91 31.93 50,000 16,429 25 8.77
50 2,261,295 73 25.61 100,000 10,285 25 8.77
100 1,393,295 70 24.56 500,000 3,105 18 6.32
500 522,993 61 21.40

Table 1: Frequent patterns generated by FP-Growth

when the support value was set to 100,000, there
were still over 10,000 overlapping frequent patterns.
On the other hand, only about half of the entire
attribute set were covered even when the support
value was set as low as 2. Therefore, it was difficult
to find a right support value that could generate a
good property tables schema. These problems are
elaborated in Sect. 8.1.

9.3.2. HoVer Clustering
We implemented the HoVer algorithm in Java.

We repeatedly performed HoVer on the Wikipedia
dataset at correlation degree thresholds from 1.0
to 0.0 at intervals of 0.2, and collected numbers
of clusters, average cluster sizes, ALFs, ACPTs,
ALF/ACPT ratios for each clustering result. To
particularly look into the trends of the above val-
ues for thresholds approaching zero, we performed
HoVer 19 more times at thresholds from 0.019 to
0.001 at intervals of 0.001. Fig. 16 compares the
number of clusters and the average cluster size
at different thresholds between HoVer and ACTL.
We can see that the rate of decrease in the num-
ber of clusters for HoVer was slower than that
for ACTL. When the correlation degree thresh-
old approached zero (e.g., 0.001), 15,375 clusters
remained; when the threshold was exactly zero,
there was only 1 cluster. In addition, the av-
erage cluster size for HoVer even remained small
even at very small thresholds, e.g., only 3.303 at
threshold 0.001. In contrast, ACTL progressively
merged small clusters into large ones as the load
factor threshold decreased. These phenomena are
explained in Sect. 8.2.

9.4. Query Performance Comparison
In this experiment, we compared the actual query

performance of four storage schemes: (1) a triple-
store, (2) a vertical database, (3) HoVer-mined
property tables and (4) ACTL-mined property ta-
bles. To make a fair comparison, we used the same
mainstream database PostgreSQL, instead of dif-
ferent systems specialized for particular schemes.
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Figure 17: ALF, ACPT and ALF/ACPT ratio against
threshold for HoVer

We used the Wikipedia dataset as it was commonly
used for semantic (SPARQL) queries[27, 28]. Also,
we designed 8 queries that were typical questions
about the infobox data. Some queries were simple
while others were more complex (which might re-
quire more table-joins). Yet, these queries are not
trivial, which cannot be easily answered by typical
search engines on Wikipedia pages. See Appendix
B for details.

We loaded all 9,549,024 triplets into each
database. The triple-store was a single table with
three columns: subject ID, predicate ID, and object
ID, with each triplet occupying one row. The verti-
cal database was created with 50,404 predicate ta-
bles, each comprising one subject id column and one
object ID column. The property-table databases
were organized as follows. On the one hand, the
schema mined by ACTL (with attribute connectiv-
ity disabled) at load factor threshold 0.7 was se-
lected to make property tables. The ALF of the
property tables at this threshold was 0.7367. On
the other hand, the schema mined by HoVer at
correlation degree threshold 0.19 was selected to
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query time (ms) #joins
TS Vert HoVer ACTL TS Vert HoVer ACTL

Q1 0.368 0.246 0.200 0.209 1 1 0 0
Q2 0.575 0.433 0.360 0.204 2 2 1 0
Q3 4.207 0.524 0.215 0.234 3 3 0 0
Q4 0.634 0.451 0.228 0.228 4 4 0 0
Q5 1.847 0.895 1.109 0.564 2 2 2 1
Q6 0.477 0.349 0.285 0.285 3 3 1 1
Q7 6.086 4.007 1.168 1.138 7 7 3 3
Q8 0.557 0.373 0.683 0.691 1 1 1 1

Table 2: Query performance of triple store (TS), vertical
database (Vert) and HoVer-mined property tables (HoVer),
ACTL-mined property tables (ACTL)

make property tables. This was because the ALF
(storage efficiency) of the HoVer property tables
at this threshold was 0.7365, which was slightly
smaller than that of the ACTL property tables. In
these property-table databases, each single-valued
attribute in a cluster with more than one attribute
was organized in some property table. Each prop-
erty table comprised a subject ID column and the
object ID columns for the predicates in the clus-
ter. Each attribute which was multi-valued or in
a single-attribute cluster was organized in a left-
over triple-store. This measure was taken to han-
dle the multi-valued field issue and reduce the num-
ber of tables; however, this could impact the query
performance of these property tables. All columns
containing IDs in all tables were indexed in each
database.

To assess the query performance of each case,
each query was translated into an independent SQL
statement for each database design. The SQL state-
ments and ID mappings are shown in Appendix B
for details. Each query was executed 100 times,
and the total elapsed time was recorded and aver-
aged. The average query time per execution and
the number of joins required by each query are
tabulated in Table 2. The query time was gener-
ally proportional to the number of joins; in gen-
eral, more time was required for a query with more
joins. The query performance of the triple-store
was the poorest, Although the vertical database re-
quired the same number of joins as the triple store
did, the vertical database performed better because
it involved joins between much smaller tables. The
HoVer and ACTL databases performed better than
the other databases. The ACTL database per-
formed slightly better than the HoVer database as
the ACTL database required fewer joins than the
HoVer database for Q2 and Q5 and answered these
queries faster.

10. Conclusions

In this paper, we have proposed a new data min-
ing technique called Attribute Clustering by Table
Load (ACTL) to handle RDF storage. This tech-
nique can be used to cluster predicates according
to the data pattern to generate a property-table
database schema that can balance storage efficiency
and query performance. Experiments show that our
algorithm can efficiently mine good property-table
schemas from huge RDF datasets, while the derived
property tables generally give better query perfor-
mance over a triple store and a vertical database.

As future work, we are developing a hybrid
approach by combining the triple store, vertical
database, and property table schemes. While these
three schemes have their own advantages in differ-
ent situations, we are studying how to cluster a
dataset into different partitions according to data
and query patterns, and to manage each partition
using the most suitable scheme. The attribute clus-
ters can be used to create materialized views on
top of a triple store or vertical database to re-
duce the chance of joining tables when answering
queries. Another possible extension of ACTL is to
infer RDF Schema by analyzing the patterns of an
RDF dataset statistically.
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Appendices
Appendix A. Proof of NP-Completeness of

ACTL

To prove ACTL is NP-complete, we define the
following decisive version of ACTL in Definition 8,
which is same as Definition 2 in complexity class.

Definition 8. Given a database D = (A, T ), a
load factor threshold 0 ≤ θ ≤ 1, and a positive
integer k, Is there any partition Π of A such that
|Π| ≤ k and LF(C) ≥ θ for each C ∈ Π? De-
fine that ACTL(A, T, θ, k) is true if the answer to
this question is “yes.”; otherwise, ACTL(A, T, θ, k)
is false.

Theorem 3. The ACTL problem (Definition 8) is
NP-complete.

Proof. ACTL is in NP since a possible solution
to ACTL is verifiable in polynomial time. We are
going to show that ACTL is NP-hard by reducing
an NP-complete problem called edge-partition[29].
The edge-partition problem EPn is defined as fol-
lows. Given a graph G(V,E), where V is its set of
vertices, E is its set of edges, and e = {v1, v2} ⊆ V
for each e ∈ E. EPn(G(V,E)) is true if and only
if E be partitioned into E1, . . . , Em such that each
Ei for 1 ≤ i ≤ m generates a subgraph of G iso-
morphic to the complete graph Kn on n vertices.
Holyer[29] proved that EPn is NP-complete for any
fixed integer n ≥ 3. In the following, we show
that EP3(G(V,E)) is polynomial time reducible to
ACTL(A, T, θ, k).

We can assume |E| = 3m, where m ∈ Z+.
Since K3 contains 3 edges, if |E| is not a multi-
ple of 3, EP3(G(V,E)) must be false. We con-
struct the reduction as follows. (1) A = E. (2)
T = V . (3) α(v) = {e′ : v ∈ e′} for v ∈ T , and
τ(e) = {v′ : v′ ∈ e} = e for e ∈ A. (4) θ = 2/3. (5)
k = m. Obviously, this construction can be done in
polynomial time. We claim that ACTL(A, T, θ, k)
is true if and only if EP3(G(V,E)) is true.
If-part: If EP3(G(V,E)) is true, E is parti-

tioned into E1, . . . , Em such that each Ei, where
1 ≤ i ≤ m, generates a subgraph of G isomor-
phic to K3. In other words, Ei has exactly 3 edges
forming a complete graph on 3 vertices from V .
We can construct the partition Π of A = E such
that Π = {E1, . . . , Em}. For each Ei ∈ Π, sup-
posing Ei = {e1, e2, e3}, we have LD(Ei) = 6.
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While e1, e2, e3 form a complete graph on 3 ver-
tices, e1 ∪ e2 ∪ e3 is the set of these 3 vertices. The
load factor LF(Ei) for Ei is 6/(3× 3) = 2/3 = θ.
Also, |Π| = m = k. Therefore, ACTL(A, T, θ, k) is
true.
Only-if-part: If ACTL(A, T, θ, k) is true, there

exists some partition Π of A such that |Π| ≤ k and
LF(C) ≥ 2/3 for each C ∈ Π. For each C ∈ Π,
every e ∈ C is an attribute (edge) which is associ-
ated with a set of exactly 2 transactions (vertices).
We have LF(C) = |C| × 2/(|C| ×

∣∣⋃
e∈C C

∣∣) ≥ 2/3,
which gives

∣∣⋃
e∈C C

∣∣ ≤ 3. Since C is a collec-
tion of distinct sets, each containing 2 elements,∣∣⋃

e∈C C
∣∣ ≤ 3 implies |C| ≤ 3 Based on (a) |Π| ≤ k,

(b) |C| ≤ 3 for any C ∈ Π, and (c)
∑
C∈Π |C| =

|A| = 3k, we can conclude Π has exactly k clusters
and every C ∈ Π contains exactly 3 elements. For
each C ∈ Π, LF(C) = LD(C)/(3 ×

∣∣⋃
e∈C C

∣∣) =

3× 2/(3×
∣∣⋃

e∈C C
∣∣) ≥ 2/3 because

∣∣⋃
e∈C C

∣∣ ≤ 3.
Since C has exactly 3 distinct two-element-sets,∣∣⋃

e∈C C
∣∣ ≥ 3. Hence,

∣∣⋃
e∈C C

∣∣ = 3. Every C ∈ Π
contains exactly 3 edges (attributes) covering 3 ver-
tices (transactions), which forms a subgraph of G
isomorphic to K3. Π is an EP3 solution, which im-
plies EP3(G(V,E)) is true.

Since ACTL is both in NP and NP-hard, it is
NP-complete.

Appendix B. Queries on the Wikipedia In-
fobox Dataset

The queries on the Wikipedia dataset described
in Sect. 9.4 are listed below. For each query, we first
describe it in English. Then, we give its SQL state-
ments for the schemas of the triple-store (TS), the
vertical database (Vert), HoVer, and ACTL. The
HoVer and ACTL SQLs involve the machine gener-
ated table and column names, which are prefixed by
“t” and “a” respectively, followed by a number. The
mappings between column names and attributes are
listed in Table B.3.
Q1: Find the law schools with known rankings

and their annual tuition fees.
TS: SELECT subject_id , A.object_id AS ranking ,

B.object_id AS fee FROM (SELECT subject_id ,
object_id FROM triplets WHERE predicate_id =
23492) AS A LEFT OUTER JOIN (SELECT
subject_id , object_id FROM triplets WHERE
predicate_id = 23497) AS B USING (subject_id)
ORDER BY subject_id ASC;

Vert: SELECT subject_id , A.object_id AS ranking ,
B.object_id AS fee FROM p_23492 AS A LEFT
OUTER JOIN p_23497 AS B USING (subject_id)
ORDER BY subject_id ASC;

Table B.3: Column names in HoVer and ACTL schemas
ACTL HoVer

Query Attribute name column column
name name

Q1 Law School#ranking 23492 23486
Law School#annual tuition 23497 23488

Q2 Star Trek episode#name 1271 1282
Star Trek episode#producer 21953 21953
Star Trek episode#prod_num 1279 1279

Q3 Computer Hardware Printer#color 15286 15292
Computer Hardware Printer#dpi 15292 15288
Computer Hardware Printer#speed 15287 15291
Computer Hardware Printer#slot 15297 15293

Q4 Laboratory#type 13493 13496
Laboratory#budget 13497 13500
Laboratory#website 13500 13492
Laboratory#staff 13499 13494
Laboratory#students 13498 13495

Q5 NBA Player#career_highlights 31595 31595
NBA Player#height_ft 4243 4245
NBA Player#weight_lbs 5887 5887

Q6 Officeholder#date_of_birth 28655 28657
Officeholder#place_of_birth 28658 28655
Officeholder#date_of_death 34972 34972
Officeholder#place_of_death 34973 34973

Q7 London Bus#number 37023 37021
London Bus#start 37013 37018
London Bus#end 37025 37025
London Bus#length 37017 37013
London Bus#day 37019 37017
London Bus#level 37021 37014
London Bus#frequency 37024 37023
London Bus#time 37014 37015

Q8 Library#location 13472 13474
Library#website 13471 13470

HoVer: SELECT subject , a23486 AS ranking , a23488 AS
fee FROM t2474 WHERE a23486 IS NOT NULL ORDER
BY subject ASC;

ACTL: SELECT subject , a23492 AS ranking , a23497 AS
fee FROM t81008 WHERE a23492 IS NOT NULL
ORDER BY subject ASC;

Q2: What is the name and production number
of the Start Trek episode of which the producer is
Dawn Valazquez?
TS: SELECT B.object_id AS name , C.object_id AS

prod_num FROM (SELECT subject_id FROM
triplets WHERE predicate_id = 21953 AND
object_id = 2921687) AS A LEFT OUTER JOIN
(SELECT subject_id , object_id FROM triplets
WHERE predicate_id = 1271) AS B USING
(subject_id) LEFT OUTER JOIN (SELECT
subject_id , object_id FROM triplets WHERE
predicate_id = 1279) AS C USING (subject_id)
ORDER BY name ASC;

Vert: SELECT B.object_id AS name , C.object_id AS
prod_num FROM (SELECT subject_id FROM p_21953
WHERE object_id = 2921687) AS A LEFT OUTER
JOIN p_1271 AS B USING (subject_id) LEFT
OUTER JOIN p_1279 AS C USING (subject_id)
ORDER BY name ASC;

HoVer: SELECT B.a1282 AS name , B.a1279 AS prod_num
FROM (SELECT subject FROM triplets WHERE
predicate = 21953 AND object = 2921687) AS A
LEFT OUTER JOIN t750 AS B USING (subject)
ORDER BY name ASC;

ACTL: SELECT a1271 AS name , a1279 AS prod_num FROM
t81159 WHERE a21953 = 2921687 ORDER BY name ASC;

Q3: List the model numbers, speeds and num-
bers of slots of four-color printers wirh 600 dpi.
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TS: SELECT subject_id , C.object_id AS speed ,
D.object_id AS slot FROM (SELECT subject_id
FROM triplets WHERE predicate_id = 15286 AND
object_id = 1000343) AS A INNER JOIN (SELECT
subject_id FROM triplets WHERE predicate_id =
15292 AND object_id = 1068340) AS B USING
(subject_id) LEFT OUTER JOIN (SELECT
subject_id , object_id FROM triplets WHERE
predicate_id = 15287) AS C USING (subject_id)
LEFT OUTER JOIN (SELECT subject_id , object_id
FROM triplets WHERE predicate_id = 15297) AS
D USING (subject_id) ORDER BY subject_id ASC;

Vert: SELECT subject_id , C.object_id AS speed ,
D.object_id AS slot FROM (SELECT subject_id
FROM p_15286 WHERE object_id = 1000343) AS A
INNER JOIN (SELECT subject_id FROM p_15292
WHERE object_id = 1068340) AS B USING
(subject_id) LEFT OUTER JOIN p_15287 AS C
USING (subject_id) LEFT OUTER JOIN p_15297 AS
D USING (subject_id) ORDER BY subject_id ASC;

HoVer: SELECT subject , a15291 AS speed , a15293 AS
slot FROM t1626 WHERE a15292 = 1000343 AND
a15288 = 1068340 ORDER BY subject ASC;

ACTL: SELECT subject , a15287 AS speed , a15297 AS
slot FROM t81388 WHERE a15286 = 1000343 AND
a15292 = 1068340 ORDER BY subject ASC;

Q4: List all the laboratories with any of the
following information known: types, budgets, web-
sites, staff counts and student counts.
TS: SELECT subject_id , A.object_id AS type ,

B.object_id AS budget , C.object_id AS
website , D.object_id AS staff_count ,
E.object_id AS student_count FROM (SELECT
subject_id , object_id FROM triplets WHERE
predicate_id = 13493) AS A FULL OUTER JOIN
(SELECT subject_id , object_id FROM triplets
WHERE predicate_id = 13497) AS B USING
(subject_id) FULL OUTER JOIN (SELECT
subject_id , object_id FROM triplets WHERE
predicate_id = 13500) AS C USING (subject_id)
FULL OUTER JOIN (SELECT subject_id , object_id
FROM triplets WHERE predicate_id = 13499) AS
D USING (subject_id) FULL OUTER JOIN (SELECT
subject_id , object_id FROM triplets WHERE
predicate_id = 13498) AS E USING (subject_id)
ORDER BY subject_id ASC;

Vert: SELECT subject_id , A.object_id AS type ,
B.object_id AS budget , C.object_id AS
website , D.object_id AS staff_count ,
E.object_id AS student_count FROM p_13493 AS
A FULL OUTER JOIN p_13497 AS B USING
(subject_id) FULL OUTER JOIN p_13500 AS C
USING (subject_id) FULL OUTER JOIN p_13499 AS
D USING (subject_id) FULL OUTER JOIN p_13498
AS E USING (subject_id) ORDER BY subject_id ASC;

HoVer: SELECT subject , a13496 AS type , a13500 AS
budget , a13492 AS website , a13494 AS
staff_count , a13495 AS student_count FROM
t4105 WHERE a13496 IS NOT NULL OR a13500 IS
NOT NULL OR a13492 IS NOT NULL OR a13494 IS
NOT NULL OR a13495 IS NOT NULL ORDER BY
subject ASC;

ACTL: SELECT subject , a13493 AS type , a13497 AS
budget , a13500 AS website , a13499 AS
staff_count , a13498 AS student_count FROM
t80539 WHERE a13493 IS NOT NULL OR a13497 IS
NOT NULL OR a13500 IS NOT NULL OR a13499 IS
NOT NULL OR a13498 IS NOT NULL ORDER BY
subject ASC;

Q5: Which NBA players have career highlights
listed? State also their weights and heights.

TS: SELECT subject_id , A.object_id AS
career_highlight , B.object_id AS height ,
C.object_id AS weight FROM (SELECT
subject_id , object_id FROM triplets WHERE
predicate_id = 31595) AS A LEFT OUTER JOIN
(SELECT subject_id , object_id FROM triplets
WHERE predicate_id = 4243) AS B USING
(subject_id) LEFT OUTER JOIN (SELECT
subject_id , object_id FROM triplets WHERE
predicate_id = 5887) AS C USING (subject_id)
ORDER BY subject_id ASC;

Vert: SELECT subject_id , A.object_id AS
career_highlight , B.object_id AS height ,
C.object_id AS weight FROM p_31595 AS A LEFT
OUTER JOIN p_4243 AS B USING (subject_id)
LEFT OUTER JOIN p_5887 AS C USING
(subject_id) ORDER BY subject_id ASC;

HoVer: SELECT subject , A.object AS career_highlight ,
B.a4245 AS height , C.object AS weight FROM
(SELECT subject , object FROM triplets WHERE
predicate = 31595) AS A LEFT OUTER JOIN
(SELECT subject , a4245 FROM t152) AS B USING
(subject) LEFT OUTER JOIN (SELECT subject ,
object FROM triplets WHERE predicate = 5887)
AS C USING (subject) ORDER BY subject ASC;

ACTL: SELECT subject , A.a31595 AS career_highlight ,
B.a4243 AS height , B.a5887 AS weight FROM
(SELECT subject , a31595 FROM t81315 WHERE
a31595 IS NOT NULL) AS A LEFT OUTER JOIN
(SELECT subject , a4243 , a5887 FROM t81694) AS
B USING (subject) ORDER BY subject ASC;

Q6: List all the officeholders with known date of
birth, birthplace, date of death or death place
TS: SELECT subject_id , A.object_id AS birth_date ,

B.object_id AS birth_place , C.object_id AS
death_date , D.object_id AS death_place FROM
(SELECT subject_id , object_id FROM triplets
WHERE predicate_id = 28655) AS A FULL OUTER
JOIN (SELECT subject_id , object_id FROM
triplets WHERE predicate_id = 28658) AS B
USING (subject_id) FULL OUTER JOIN (SELECT
subject_id , object_id FROM triplets WHERE
predicate_id = 34972) AS C USING (subject_id)
FULL OUTER JOIN (SELECT subject_id , object_id
FROM triplets WHERE predicate_id = 34973) AS
D USING (subject_id) ORDER BY subject_id ASC;

Vert: SELECT subject_id , A.object_id AS birth_date ,
B.object_id AS birth_place , C.object_id AS
death_date , D.object_id AS death_place FROM
p_28655 AS A FULL OUTER JOIN p_28658 AS B
USING (subject_id) FULL OUTER JOIN p_34972 AS
C USING (subject_id) FULL OUTER JOIN p_34973
AS D USING (subject_id) ORDER BY subject_id ASC;

HoVer: SELECT subject , A.a28657 AS birth_date ,
A.a28655 AS birth_place , B.a34972 AS
death_date , B.a34973 AS death_place FROM
(SELECT subject , a28657 , a28655 FROM t8172
WHERE a28657 IS NOT NULL OR a28655 IS NOT
NULL) AS A FULL OUTER JOIN (SELECT subject ,
a34972 , a34973 FROM t14873 WHERE a34972 IS
NOT NULL OR a34973 IS NOT NULL) AS B USING
(subject) ORDER BY subject ASC;

ACTL: SELECT subject , A.a28655 AS birth_date ,
A.a28658 AS birth_place , B.a34972 AS
death_date , B.a34973 AS death_place FROM
(SELECT subject , a28655 , a28658 FROM t80008
WHERE a28655 IS NOT NULL OR a28658 IS NOT
NULL) AS A FULL OUTER JOIN (SELECT subject ,
a34972 , a34973 FROM t61116 WHERE a34972 IS
NOT NULL OR a34973 IS NOT NULL) AS B USING
(subject) ORDER BY subject ASC;

Q7: Find the bus routes to or from Heathrow
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Airport. Show the route numbers, starting point,
ending point, journey length, service time during
the day, service level, frequency and journey time.

TS: SELECT A.object_id AS bus_num , B.object_id AS
start , C.object_id AS end , D.object_id AS
length , E.object_id AS day , F.object_id AS
level , G.object_id AS frequency , H.object_id
AS time FROM (SELECT subject_id , object_id
FROM triplets WHERE predicate_id = 37013) AS
B FULL OUTER JOIN (SELECT subject_id ,
object_id FROM triplets WHERE predicate_id =
37025) AS C USING (subject_id) LEFT OUTER
JOIN (SELECT subject_id , object_id FROM
triplets WHERE predicate_id = 37023) AS A
USING (subject_id) LEFT OUTER JOIN (SELECT
subject_id , object_id FROM triplets WHERE
predicate_id = 37017) AS D USING (subject_id)
LEFT OUTER JOIN (SELECT subject_id , object_id
FROM triplets WHERE predicate_id = 37019) AS
E USING (subject_id) LEFT OUTER JOIN (SELECT
subject_id , object_id FROM triplets WHERE
predicate_id = 37021) AS F USING (subject_id)
LEFT OUTER JOIN (SELECT subject_id , object_id
FROM triplets WHERE predicate_id = 37024) AS
G USING (subject_id) LEFT OUTER JOIN (SELECT
subject_id , object_id FROM triplets WHERE
predicate_id = 37014) AS H USING (subject_id)
WHERE (B.object_id = 2980136 OR C.object_id =
2980136) ORDER BY bus_num ASC;

Vert: SELECT A.object_id AS bus_num , B.object_id AS
start , C.object_id AS end , D.object_id AS
length , E.object_id AS day , F.object_id AS
level , G.object_id AS frequency , H.object_id
AS time FROM p_37013 AS B FULL OUTER JOIN
p_37025 AS C USING (subject_id) LEFT OUTER
JOIN p_37023 AS A USING (subject_id) LEFT
OUTER JOIN p_37017 AS D USING (subject_id)
LEFT OUTER JOIN p_37019 AS E USING
(subject_id) LEFT OUTER JOIN p_37021 AS F
USING (subject_id) LEFT OUTER JOIN p_37024 AS
G USING (subject_id) LEFT OUTER JOIN p_37014
AS H USING (subject_id) WHERE (B.object_id =
2980136 OR C.object_id = 2980136) ORDER BY
bus_num ASC;

HoVer: SELECT A.a37021 AS bus_num , B.object AS
start , C.object AS end , A.a37013 AS length ,
D.object AS day , A.a37014 AS level , A.a37023
AS frequency , A.a37015 AS time FROM (SELECT
subject , object FROM triplets WHERE predicate
= 37018) AS B FULL OUTER JOIN (SELECT
subject , object FROM triplets WHERE predicate
= 37025) AS C USING (subject) LEFT OUTER JOIN
(SELECT subject , a37021 , a37013 , a37014 ,
a37023 , a37015 FROM t443) AS A USING
(subject) LEFT OUTER JOIN (SELECT subject ,
object FROM triplets WHERE predicate = 37017)
AS D USING (subject) WHERE (B.object =
2980136 OR C.object = 2980136) ORDER BY
bus_num ASC;

ACTL: SELECT A.a37023 AS bus_num , B.object AS
start , C.object AS end , A.a37017 AS length ,
D.object AS day , A.a37021 AS level , A.a37024
AS frequency , A.a37014 AS time FROM (SELECT
subject , object FROM triplets WHERE predicate
= 37013) AS B FULL OUTER JOIN (SELECT
subject , object FROM triplets WHERE predicate
= 37025) AS C USING (subject) LEFT OUTER JOIN
(SELECT subject , a37023 , a37017 , a37021 ,
a37024 , a37014 FROM t80764) AS A USING
(subject) LEFT OUTER JOIN (SELECT subject ,
object FROM triplets WHERE predicate = 37019)
AS D USING (subject) WHERE (B.object =
2980136 OR C.object = 2980136) ORDER BY
bus_num ASC;

Q8: Find all the libraries with known locations
and websites.
TS: SELECT subject_id , A.object_id AS location ,

B.object_id AS website FROM (SELECT
subject_id , object_id FROM triplets WHERE
predicate_id = 13472) AS A INNER JOIN (SELECT
subject_id , object_id FROM triplets WHERE
predicate_id = 13471) AS B USING
(subject_id)ORDER BY subject_id ASC;

Vert: SELECT subject_id , A.object_id AS location ,
B.object_id AS website FROM p_13472 AS A
INNER JOIN p_13471 AS B USING (subject_id)
ORDER BY subject_id ASC;

HoVer: SELECT subject , A.object AS location ,
B.a13470 AS website FROM (SELECT subject ,
object FROM triplets WHERE predicate = 13474)
AS A INNER JOIN (SELECT subject , a13470 FROM
t1378 WHERE a13470 IS NOT NULL) AS B USING
(subject) ORDER BY subject ASC;

ACTL: SELECT subject , A.object AS location ,
B.a13471 AS website FROM (SELECT subject ,
object FROM triplets WHERE predicate = 13472)
AS A INNER JOIN (SELECT subject , a13471 FROM
t80919 WHERE a13471 IS NOT NULL) AS B USING
(subject) ORDER BY subject ASC;

21




