
Optimizing Plurality for Human Intelligence Tasks

Luyi Mo†, Reynold Cheng†, Ben Kao†, Xuan S. Yang†, Chenghui Ren†,
Siyu Lei†, David W. Cheung†, Eric Lo‡

† University of Hong Kong, Pokfulam Road, Hong Kong
‡ Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

†{lymo, ckcheng, kao, xyang2, chren, sylei, dcheung}@cs.hku.hk ‡ ericlo@comp.polyu.edu.hk

ABSTRACT
In a crowdsourcing system, Human Intelligence Tasks (HITs) (e.g.,
translating sentences, matching photos, tagging videos with key-
words) can be conveniently specified. HITs are made available to
a large pool of workers, who are paid upon completing the HITs
they have selected. Since workers may have different capabilities,
some difficult HITs may not be satisfactorily performed by a sin-
gle worker. If more workers are employed to perform a HIT, the
quality of the HIT’s answer could be statistically improved. Given
a set of HITs and a fixed “budget”, we address the important prob-
lem of determining the number of workers (or plurality) of each
HIT so that the overall answer quality is optimized. We propose
a dynamic programming (DP) algorithm for solving the plurality
assignment problem (PAP). We identify two interesting properties,
namely, monotonicity and diminishing return, which are satisfied
by a HIT if the quality of the HIT’s answer increases monotoni-
cally at a decreasing rate with its plurality. We show for HITs that
satisfy the two properties (e.g., multiple-choice-question HITs), the
PAP is approximable. We propose an efficient greedy algorithm for
such case. We conduct extensive experiments on synthetic and real
datasets to evaluate our algorithms. Our experiments show that our
greedy algorithm provides close-to-optimal solutions in practice.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications
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1. INTRODUCTION
Recently, there has been a rise of interest in crowdsourcing sys-

tems, such as the Amazon Mechanical Turk (AMT)1 and Crowd-
Flower2. These Internet-based systems harness human effort to

1https://www.mturk.com
2http://crowdflower.com
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solve problems that are easy for human beings but difficult for com-
puters [3, 6–8]. Typically, a requester announces a set of Human
Intelligent Tasks (or HITs). Through a user interface, a worker se-
lects her preferred HIT(s) and submits her answers to the system.
If the requester is satisfied about the answers, the worker is duly
rewarded. Example HITs include question answering [3,8,16], en-
tity resolution [6, 19, 20], sorting and join [7, 9], data filtering [15],
and image tagging [21].

For HIT answers to be useful, the workers involved need to per-
form the tasks well. In practice, however, workers could be casual
Internet users and their answers are hardly perfect [3, 6–8]; they
may make careless mistakes or misinterpret the HIT requirements.
To improve the quality of a HIT’s answer, a requester is suggested
to assign a sufficient number of workers to the HIT [1, 3, 6–8]. In
AMT, for instance, a requester is asked to specify the plurality of a
HIT, which is the number of workers required to perform that HIT.
With multiple workers, their answers can be combined to derive
a higher-quality one for a HIT. We call the combined answer the
result of the HIT. For example, given a HIT of a binary question
(such as True or False), the result of the HIT could be taken as the
most frequent answer given by the workers of the HIT. Statistically
speaking, more workers working on a HIT gives a higher-quality
result of the HIT because the impact of wrong answers are much
reduced by the correct ones, if the latter outnumbers the former. In
fact, worker multiplicity is advised by AMT [1] as well as in many
other previous works [3, 6–8].

In practice, plurality has to be limited because: (1) a HIT is as-
sociated with a cost for paying the worker and the crowdsourcing
system; (2) a requester may only have a limited budget for reward-
ing workers; and (3) a requester has to spend some time to ver-
ify the HIT results. An interesting question is thus about how one
could wisely assign just the right pluralities to HITs of various for-
mats, difficulties, and costs, to achieve overall high-quality results,
subject to a budget constraint. We call this problem the plurality
assignment problem (PAP). As crowdsourcing systems are becom-
ing more popular, larger in scale, and with a richer variety of HITs,
we anticipate that plurality assignment will become an essential
component of crowdsourcing systems. So far, however, few works
(e.g., [2, 3, 8, 14]) have addressed the problem.

Manually assigning pluralities to HITs is tedious if not infea-
sible. As an example, we inspected the HITs that are available
on AMT on 28th October 2012. (Let’s call a requester a “heavy
requester” if she submits a large number of HITs.) We observed
that the top-10 heaviest requesters together submitted about 90,000
HITs. It is thus not uncommon that a requester has to handle thou-
sands of HITs. Our goal is to develop algorithms for automating the
process of plurality assignment, considering the various properties
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of HITs, such as their costs and difficulties, under a given budget
constraint.

Among the various types of HITs, multiple choice questions (MCQs)
are the most popular ones. For example, among all the HITs on
AMT on 28th October 2012, more than three quarters are MCQs.
Given an MCQ, workers are asked to make a choice among a set of
given ones. For instance, a sentiment-analysis HIT contains a sen-
tence, and a worker needs to indicate her opinion (positive, neutral,
or negative) about it. Other examples include categorizing objects
(e.g., choosing the best category for an image) and assigning rat-
ing scores to items. One way to combine workers’ answers to an
MCQ to obtain a result is half voting. Specifically, the choice that
is selected by more than half of the workers is taken as the MCQ’s
result. Due to its popularity, we illustrate our solution framework
using MCQ as an example. We remark that our framework can be
extended to address other kinds of HITs.

Recall that the objective of plurality assignment is to maximize
the overall quality of a set of HITs’ results. We therefore need a
quantitative measure of a result’s quality. For an MCQ, we measure
its result’s quality (or simply the MCQ’s quality) by the likelihood
that the result is correct (see Section 3.2). We note that an MCQ’s
quality generally improves with (1) its plurality and (2) the accu-
racies of its workers. That is, more and better workers improves
the MCQ’s quality. As a result, we formulate an MCQ’s quality as
a function of the above two factors. To tackle the plurality assign-
ment problem (PAP), we develop a dynamic programming algo-
rithm DP. Given a set of MCQs, DP takes the HITs’ quality func-
tions and a budget as input and determines the optimal plurality
assignment for the MCQs.

Although DP gives optimal solutions to PAP, it is not very effi-
cient especially for HIT sets that contain thousands of HITs. For
example, for a set of 60,000 HITs extracted from AMT, DP takes
over 10 hours to execute. In a large crowdsourcing system (e.g.,
AMT) that manages HITs from many heavy requesters, efficiency
becomes an important issue. We have made two interesting obser-
vations of a crowdsourcing system which lead to significant speedups
in solving PAP. First, we found that an MCQ’s quality function
possesses two interesting properties: (1) monotonicity: the quality
function increases with plurality; and (2) diminishing return: the
rate of quality improvement drops with plurality. We make use
of these characteristics of MCQs to design an approximation algo-
rithm Greedy, which is much more efficient than DP. We show
the theoretical approximation ratio of Greedy. We also show that
Greedy’s solution is very close to the optimal solution in prac-
tice. Second, we observe that many HITs submitted by the same
requester are given the same cost and that these HITs are of very
similar nature. For example, a requester performing sentiment anal-
ysis may submit numerous HITs, each one being a tweet to be la-
beled with an opinion (positive, negative, neutral). It is reasonable
to assume that these HITs share the same quality function. If we
group HITs of the same cost and quality function as a group, then
each HIT in the group should be given more or less the same plu-
rality. We exploit this observation and use a “grouping technique”
to effectively reduce the problem size of PAP. This technique can
be applied to both DP and Greedy to improve their efficiency.

We have performed extensive experiments to evaluate our ap-
proaches on a synthetic dataset. We examine the effectiveness and
the efficiency of our algorithms over a large number of HITs and
budget values. (By effectiveness, we refer to the HITs’ quality as a
result of a given plurality assignment computed by an algorithm.)
We have also developed a system to collect real data from human
users. We found that both DP and Greedy are on average 20%
more effective than other simple approaches (e.g., evenly assign-
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Figure 1: Solution framework.

ing budget to HITs). Moreover, Greedy is about a thousand times
faster than DP, and the group-based versions of DP and Greedy
are about ten times faster than their non-group-based counterparts.

Figure 1 shows the framework of our approach. (Step 1) A re-
quester sends her HITs and budget information to the quality man-
ager, which decides the plurality of the HITs. (Step 2) The manager
invokes the quality estimator, which keeps track of the accuracy
statistics of a pool of workers. (Step 3) Our algorithm, which com-
putes the plurality of each HIT, is then invoked. (Step 4) The HITs
are installed in the crowdsourcing system. In this paper we focus
on the design of plurality assignment algorithms.

The rest of the paper is as organized as follows. Section 2 dis-
cusses the related works. In Section 3 we describe the plurality
assignment problem. Section 4 describes various plurality assign-
ment algorithms. We show our experimental results in Section 5.
Section 6 discusses how our framework can be extended to address
other kinds of HITs. Section 7 concludes the paper.

2. RELATED WORK
Databases for crowdsourcing. To meet the needs of manag-

ing large amounts of data collected from crowdsourcing systems,
database prototypes such as CrowdDB [6] and Qurk [10, 11] have
been developed recently. These systems provide native language
support for crowdsourcing, where query operators can be invoked
to collect information from workers. In [9], the authors study a
database that utilizes workers to compare or to rate database items,
and to perform sort and join operations. It is interesting to exam-
ine how these systems should operate under the various resource
constraints (e.g., limited requester budget, number of workers, and
their accuracy). Our work on plurality assignment can very well be
applied to a crowdsourcing database to tackle this problem.

Designing HIT questions. A few works have recently addressed
the management of resource constraints in crowdsourcing systems.
In [16], the authors study human-assisted graph search, and pro-
pose algorithms to generate the optimal set of questions. In [19,20],
algorithms are developed to derive the minimum set of questions
for supporting entity resolution. In [7], the authors study how
to generate a set of paired-entity-comparison questions that opti-
mally identify the entity with the maximum value under a limited
budget. [15] studies the problem of filtering data using human re-
sources, and designs effective strategies to optimize expected cost
and error. In [14], the problem of deciding which items to label,
with the aim of improving the model used for active learning, is
studied. Notice that these works focus on the design of HITs (i.e.,
what questions to ask). On the other hand, we focus on how to ob-
tain high-quality results for HITs under a limited budget by running
a plurality assignment algorithm.

Determining plurality. Although the problem of determining
the pluralities of HITs has recently attracted some attention, there



are only a few works that have been done for specific types of HITs.
These include MCQs [2,8], binary questions [3], and labeling [14].
In [2, 8], the authors show how to determine the minimum plu-
rality of an MCQ such that a user-given quality threshold can be
achieved. Our work differs from [2, 8] in two ways. First, while
they deal with a quality threshold as a constraint, we deal with a
budget constraint. In some cases, it is more natural and is easier for
a requester to specify a budget (in dollar amount) than to specify a
quality threshold (in probability). Our work thus complement that
of [2,8]. Second, [8] assumes that all MCQs are answered correctly
with the same probability, and hence the same plurality is assigned
to all the MCQs. We do not make that assumption and consider
assigning (different) pluralities to a set of different MCQs.

In [3], the authors address binary question (or BQ), which con-
tains two possible answers only. An example BQ is similarity com-
parison, where two images are shown, and a worker is asked to give
a yes/no answer to state whether the two images refer to the same
person. [3] examines the problem of allocating manpower to work
on BQ-type HITs based on the workers’ accuracy. Their solution,
which assigns specific workers to each HIT, may not be applica-
ble in existing systems. This is because in common crowdsourcing
platforms like AMT, workers are allowed to freely choose the HITs
they wish to do. Our algorithms only decide plurality values and
do not force specific workers to perform specific tasks. Moreover,
we study MCQs, which are generalized forms of BQs.

In [14], the authors study the problem of assigning pluralities
to HITs that assign keyword labels to Internet resources (e.g., im-
ages). To determine pluralities, they propose a simple dynamic-
programming-based algorithm. Although their solution share some
similar properties as our DP algorithm, [14] did not further elabo-
rate on the efficiency and effectiveness of their algorithm. We study
some properties of MCQ (Section 3), and the relationship between
HIT cost and quality (Section 4.5). We use these observations to
develop solutions that are much faster than DP.

3. MULTIPLE-CHOICE QUESTIONS
We now describe our data and quality models (Sections 3.1 and

3.2). We focus on MCQ as an illustration of our solution frame-
work. We then discuss two properties of MCQ in Section 3.3. We
formally define the plurality assignment problem in Section 3.4.
Although we focus on MCQ to simplify our discussion, our solu-
tion framework can be extended to cover other HIT types. We will
briefly discuss other HIT types in Section 6.

3.1 Data model
The data model we employed here is based on the AMT system.

In particular, a requester submits a set of one or more HITs to the
crowdsourcing system, where each HIT contains a single MCQ.3

For each MCQ, the requester specifies the question to be asked, as
well as all their possible choices. The requester also associates an
amount of reward to each MCQ to indicate the number of monetary
units that will be paid to a worker for successfully finishing a HIT.

Notice that the number of MCQs contributed by a requester can
be enormous; for instance, on 28 October 2012, the top-10 heaviest
requesters contributed over 90,000 questions in total. To enable
better HIT management, and to allow workers to choose HITs more
easily, requesters may label the HITs and classify them based on
themes and other properties.

Now, let T = {t1, t2, . . . , tn} be n MCQs submitted by a re-
quester. We use ki, a non-negative integer, to denote the plurality

3In the sequel, when we mention MCQ, we refer to a HIT that
contains a single MCQ.

Table 1: Symbols and their meanings.
Notation Description
T A set of MCQs
B Budget for assigning plurality to T
n Number of MCQs in T
ti The i-th MCQ in T
ci Cost of ti (no. of units rewarded for finishing ti)
ki Plurality of ti
pi Accuracy of ti
ζi(k) Quality function of ti
Qt(T , ~k) Total quality of T , with ~k = k1, k2, . . . , kn

Qa(T , ~k) Average quality of T

of ti (i.e., ki workers are needed for ti). Let ci be the cost of ti, i.e.,
the amount of reward given to a worker for completing ti. Table 1
summaries the symbols used.

3.2 Quality Model
As discussed before, we determine the pluralities for a set of

MCQs to optimize their overall quality. We now explain how to
compute the quality of an MCQ ti. Intuitively, this quantity cap-
tures the confidence of the answers given by workers on ti; it de-
pends on the answers’ values, as well as the performances of work-
ers on ti. To model a worker’s performance, the worker’s accuracy
model was proposed in [8]. We first describe this model and then
explain how to use it to define an MCQ’s quality.

Worker’s accuracy [8]. Every HIT ti is associated with a real
value pi called worker’s accuracy, or accuracy in short. This is
the probability that a randomly-chosen worker provides a correct
answer for ti. A way to estimate pi is to collect information from
other HITs whose true answers are known, and whose features are
similar to those of pi. For example, consider a set of HITs, each of
which consists of a sentence; a worker is asked to express her senti-
ment about it. As discussed in [4], the readability of a sentence, and
hence the worker’s ability to comment it correctly, depends on its
length. We can thus cluster these HITs according to the lengths of
the sentences associated with them. Given a HIT ti of a cluster, [8]
presents a method to find pi:
1. Some “sample HITs” are collected from the cluster, whose true
answers are known.
2. Each worker is asked to do these HITs, after which her score is
obtained (e.g., 90% of the questions are correctly answered).
3. The average score of these workers is taken as pi.

As we will show in our experiments (Section 5), a small frac-
tion of questions extracted from each cluster suffices to derive an
accurate value of pi.

It is worth noting that the information of “HIT clusters” may
be provided by requesters themselves. For instance, requesters in
AMT often classify HITs according to features like themes, cate-
gories, time, and locations, in order to assist a worker to choose
HITs. On 28 October 2012, among the top-70 heaviest requesters,
45% of them provided more than one cluster of HITs, and 17% of
them separated their HITs into four or more clusters. These clusters
could be used to find pi, by using the method described above.

MCQ quality. Now, let ζi(k), a real-valued function, be the
quality function of ti, which describes the “expected quality score”
of ti after it has been performed by k workers. The exact form of
ζi(k) was recently proposed in [8], as

ζi(k) =


0, k = 0,
1, k is odd, pi = 1,∑k

l=d k2 e C
l
kp
l
i(1− pi)k−l, k is odd, pi 6= 1.

(1)
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Figure 3: Diminishing Return
of ζi(k) (pi = 0.6).

Clk is the notation for the binomial coefficient
(
k
l

)
. Note that

ζi(k) is not defined for any positive even number k. When k (the
plurality) is zero, ζi(0) has the lowest value of zero, since no work-
ers have worked on ti. When pi = 1, we have full confidence about
the workers, and ζi(k) attains the highest value of one. For other
cases, ζi(k) is given by:

ζi(k) =

k∑
l=d k2 e

Clkp
l
i(1− pi)k−l. (2)

Essentially, it is the probability that, out of the k workers answer-
ing ti, l ≥

⌈
k
2

⌉
of them give a correct answer. In other words,

more than half of the workers provide the correct answer for this
question [8]. We require k to be an odd number, so that an unam-
biguous decision can be made out of the k answers provided. This
requirement is also adopted by previous works (e.g., [3, 8]). We
remark that BQ is a special case of MCQ (where only two possible
answers are provided), and so ζi(k) can also be applied to BQ.

Before we go on, we would like to discuss the effect of pi on
ζi(k). As we will elaborate in Section 3.3, ζi(k) increases mono-
tonically with k if and only if pi ≥ 0.5. Intuitively, if it is more
likely that a worker gives a correct answer than an incorrect one,
then the quality of ti increases monotonically with the number of
answers obtained. In our experiments with real human workers, we
observed that their accuracies were generally well above 0.5. We
thus assume that pi ≥ 0.5 in our subsequent discussions.4

We next define the total and average qualities of T .

Definition 1. Let ~k = (k1, k2, . . . , kn), where ki is the plurality
of ti. The total quality of T , orQt(T ,~k), is:

Qt(T ,~k) =

n∑
i=1

ζi(ki). (3)

Definition 2. The average quality of T , orQa(T ,~k), is:

Qa(T ,~k) =
Qt(T ,~k)

n
. (4)

We will explain later how these two quality measures can be opti-
mized by assigning pluralities.

3.3 Monotonicity and Diminishing Return
We now discuss two interesting properties of MCQ’s quality

function. As we will show later, these properties are useful in de-
veloping plurality assignment algorithms.

4If pi < 0.5, the plurality ki should be set to zero, since ζi(k) does
not improve with the number of workers.

(1) Monotonicity. We first observe that the MCQ quality, or
ζi(k), increases with plurality k. An example is illustrated in Fig-
ure 2, which plots ζi(k) over different (odd) values of k, for pi =
0.6. We see that when one worker is assigned to ti, ζi(1) = 0.6;
with three workers, the quality increases to ζi(3) = 0.648. Theo-
rem 1 formalizes this phenonmenon.

THEOREM 1. ζi(k) increases monotonically with k, if and only
if pi ∈ [0.5, 1].

The proof can be found in Appendix D. We also note that this
theorem is consistent with the observation that the more workers
are assigned to an MCQ, the more confident we are about its result.
In fact, the AMT Best Practices Guide also suggests a HIT to be
assigned higher plurality, in order to yield better results [1].

(2) Diminishing Return (DR). The second property of ζi(k) is
that its rate of change drops with k. As an example, Figure 3 shows
that the difference between ζi(k + 2) and ζi(k) decreases with k,
for p = 0.6. This concept, also known as Diminishing Return (DR)
in economics literature [12], can be formalized by marginal return:

Definition 3. The marginal return of ζi(k), denoted by ∆ζi(k),
is:

∆ζi(k) =
ζi(k + ∆k)− ζi(k)

∆k
(5)

where ∆k = 1 if k = 0; otherwise, ∆k = 2.

Essentially, ∆ζi(k) describes the rate of change of ζi(k). Notice
that ∆ζi(k) ≥ 0, since its nominator is always non-negative due to
Theorem 1. We now present Theorem 2, which describes the DR
property of ζi(k).

THEOREM 2. ∆ζi(k) decreases monotonically with plurality
k, if and only if pi ∈ [0.5, 1].

To prove this theorem, we express ∆ζi(k+2) and ∆ζi(k) by using
Equation 2. Then we show that ∆ζi(k + 2) ≤ ∆ζi(k). The de-
tailed proof can be found in Appendix E. Intuitively, the higher the
value of k, the smaller is the change of ζi(k). These two properties
can be useful to develop efficient algorithms to solve the plurality
assignment problem.

3.4 The Plurality Assignment Problem (PAP)
Let B be the budget of a requester. That is, a maximum of B

cost units is awarded to workers upon successful completion of the
MCQs in T . Our goal is to solve the plurality assignment prob-
lem (denoted by P(B, T )), as defined below.

given B, T and pi, ci for ti ∈ T (6)

maximize Qt(T ,~k) (7)

subject to
n∑
i=1

kici ≤ B and (8)

ki = 0 or a positive odd number (9)

Our aim is to find ~k = {k1, k2, . . . , kn} such that Qt(T ,~k)
is maximized. Since n is constant, optimizing Qt is the same as
optimizingQa (c.f., Definitions 1 and 2). For simplicity, we useQt
as our objective function (Equation 7).5 Also notice that the above
problem has two constraints. First, since each ti is associated with
a cost of kici, the total cost of all the MCQs in T must not exceed
B (Equation 8). Second, ki has to be a positive odd number or 0
(Equation 9) according to the domain of ζi(k).
5We useQa as an effective measure in our experiments.



4. PLURALITY ASSIGNMENT
In this section we present several plurality assignment algorithms.

We first discuss two heuristics in Section 4.1. We then present an
optimal solution and its fast version in Sections 4.2 and 4.3, respec-
tively. We propose a greedy algorithm in Section 4.4, and discuss
how to enhance its performance in Section 4.5.

4.1 The Even and Random Heuristics
Consider a requester with a budget B and n MCQs. Without

any information about the workers’ accuracies, how would the re-
quester assign her budget? Here we consider two heuristic plurality
assignment methods which might be adopted by an “uninformed”
requester.
1. Random: We arbitrarily pick an MCQ to increase its plurality
and repeat until the budget is exhausted. Specifically, let b be the
currently available budget. Initially, b is equal toB, and all ki’s are
equal to zero. We execute two steps: (Step 1) We randomly pick
an MCQ tj such that b is large enough to increase tj’s plurality to
the next odd number. (Step 2) We decrease b by cj (if kj = 1) or
2cj (if kj > 1). These two steps are repeated until no MCQ can be
picked in Step 1.
2. Even: We divide the budget evenly across all the MCQs. Specif-
ically, let b be the amount of budget allocated for each MCQ, we
have b = B/n. Since the cost consumed for each MCQ should not
exceed b, i.e., kici ≤ b, we set ki to be the largest odd number that
does not exceed b b

ci
c if b ≥ ci; otherwise, ki = 0.

These heuristics, which ignore the worker’s performance infor-
mation (pi’s), may not yield an optimal plurality assignment. For
example, if pi is high, then just a few workers are enough to yield a
high quality for MCQ ti. However, these heuristics may still assign
an excessively large ki. We thus treat these two heuristics as our
baseline algorithms. We next investigate better solutions.

4.2 A Dynamic Programming Algorithm
Let us now present an optimal solution, called DP, to solve PAP.

We observe that problem P(B, T ) exhibits optimal substructure,
which enables dynamic programming. The detailed proof of this
property can be found in Appendix A. Now, let Tl be a subset of
T , which contains the MCQs with l smallest indices, i.e., Tl =
{t1, . . . , tl}. Let Q(B,n) be the optimal total quality of T for
P(B, T ), and Q(b, l)(0 ≤ b ≤ B, 0 ≤ l ≤ n) be the optimal
total quality of Tl for the subproblem P(b, Tl). Since the objective
function of P(B, T ) is

∑n
i=1 ζi(ki) (Equation 3), we can compute

Q(B,n) recursively:

Q(b, l) =


0, l = 0,
max{Q(b− klcl, l − 1) + ζl(kl)|

((kl is odd) ∧ (kl ≤
⌊
b
cl

⌋
)) ∨ (kl = 0)}, l > 0.

(10)

To compute Q(b, l), we enumerate all possible values of kl and
find the optimal one. Let k∗l be the value of kl that yields the max-
imal value of Q(b, l). Then, k∗l is also the optimal plurality for tl,
which is guaranteed by the optimal substructure of P (b, Tl). The
details of DP can be found in Appendix B.

Discussions. Let M = mini=1,...,n{ci}. Let F (ti, ki) be the
time for computing ζi(ki). Then, the complexities of F and DP are
O( B

M
) andO(nB

3

M2 ) respectively. Since ζi(k) can be evaluated fre-

quently (nB
2

M
times), if any of n, B, or F is large, DP will be very

slow. In our experiments, it takes a few hours to compute the plu-
rality of a set of 60,000 HITs! An efficient plurality assignment al-
gorithm is therefore essential for large crowdsourcing systems that

manage numerous requesters, or when the plurality assignment has
to be recomputed frequently to reflect any changes in worker statis-
tics and HITs. Next, we study how to reduce the time needed to
compute ζi(k).

4.3 An Improved DP Algorithm
We discuss an alternative way to compute an MCQ’s quality

function, ζi(k). This result can be used to develop a faster ver-
sion of DP, which we call DP-inc. The mathematical derivations
of the equations shown in this section can be found in Appendix C.

Our main idea is to express ζi(k) in terms of ζi(k′) values, where
k′ is some number smaller than k. Particularly, let di(k) be the
difference between ζi(k′′) and ζi(k), where k′′ is an odd number
immediately larger than k. In other words,

di(k) =

{
ζi(1)− ζi(0), k = 0,
ζi(k + 2)− ζi(k), k is odd. (11)

We can then rewrite ζi(k) in terms of di(k′):

ζi(k) = di(0) +
∑

(k′<k)∧(k′ is odd)

di(k
′). (12)

Further, we have:

di(k) =

{
pi, k = 0,
di(k − 2) · 4pi(1− pi) k

k+1
, k is odd. (13)

For k > 1, given the value of di(k − 2), we can obtain di(k) by
Equation 13, in constant times. We can then “incrementally” obtain
ζi(k + 2), since ζi(k + 2) = ζi(k) + di(k) by Equation 11.

In DP, the possible plurality values for an MCQ, represented by
kl in Equation 10, are enumerated in ascending order. Hence, we
can use the solution above to compute ζi(k) based on the di(k′)
values. The corresponding complexity of computing ζi(k), or F ,
drops fromO( B

M
) toO(1), and the running time of DP is improved

to O(nB
2

M
). We name this modified version of DP as DP-inc.

4.4 A Greedy Algorithm
Our Greedy algorithm adopts the framework of the greedy al-

gorithm in [13], which was developed to solve the 0-1 knapsack
problem. In each iteration, we select the “best” MCQ according to
some measures, and increase its plurality accordingly. These steps
are repeated, until the budget B is exhausted. The criterion that we
use to choose the MCQ is the marginal gain, as defined below:

Definition 4. The marginal gain of ti, denoted by hi(k), is:

hi(k) =
∆ζi(k)

ci
. (14)

In essence, hi(k) is the marginal return (Definition 3) per unit cost
after k workers have been assigned to ti.

Details. The implementation of Greedy is shown in Algo-
rithm 4. We let b be the currently available budget, which is ini-
tially equal to B (Line 3). We use a priority queue structure, Q, to
store the IDs of MCQs. An MCQ with a larger marginal gain has a
higher priority in Q. We also initialize the plurality of every MCQ
to zero (Lines 4 to 6).

Next, in every iteration, we select an MCQ with the largest marginal
gain, and see whether we can raise its plurality (Lines 7 to 14).
Specifically, the MCQ ti with the largest hi(ki) in Q is popped
(Line 8). If the budget b is sufficient for hi(ki) to be increased by
∆k, we update the values of ki and b (Line 12). We then recompute
the new hi(ki) value, and push ti to Q (Lines 13 to 14). This pro-
cess is repeated until (1) the budget is exhausted or (2) Q is empty
(Line 7). In Line 15, Greedy returns ~k as the final answer.



Algorithm 1 Greedy
1: Input: B, T and pi, ci for ti ∈ T
2: Output: ~k
3: b← B
4: for i← 1 to n do
5: ki ← 0, calculate hi(ki) by Equation 14
6: Q.push(ti) // Q is a priority queue.
7: while b > 0 andQ is nonempty do
8: ti ←Q.pop() // The MCQ with the largest marginal gain, i.e.,

hi(ki), is popped.
9: if ki = 0 then ∆k ← 1
10: else ∆k ← 2
11: if ci∆k ≤ b then // There is enough budget.
12: ki ← ki + ∆k, b← b− ci∆k
13: calculate hi(ki) by Equation 14
14: Q.push(ti)
15: return ~k

Complexity. Notice that hi(ki) is a function of di(ki), and
di(k) can be incrementally computed in O(1) times (using Equa-
tion 13). In Greedy, we compute hi(ki) in ascending order of ki;
therefore, the time complexity of computing each hi(ki) is O(1).
Updating Q costs O(logn) time, and the maximum value of ki
cannot exceed B/M . Hence, the time and space complexities for
Greedy are respectively O(( B

M
+ n) logn) and O(n).

Accuracy. We next sketch the proof that Greedy is a 0.5-
approximation algorithm. First, we show that our plurality opti-
mization problem P is just a variant of the 0-1 knapsack problem
P ′ [13]. (Specifically, P is equivalent to P ′ with some additional
constraint.) Second, by using the monotonicity and DR proper-
ties of ζi(k), we prove that the optimal solutions of P and P ′
have the same objective value. Third, we consider KPGreedy,
which solves P ′ with a worst-case effectiveness ratio of 0.5 [13].
We show that Greedy is the same as KPGreedy, and is thus a
0.5-approximation algorithm. For more details, please consult Ap-
pendix F.

In practice, KPGreedy has a close-to-optimal effectiveness [17].
This can also be said for Greedy. In fact, our experiments also
show that the accuracy of Greedy is close to that of DP.

4.5 Enhancing Performance by Groups
For the algorithms presented so far (i.e., DP, DP-inc, and Greedy),

there is one thing in common: the plurality ki of each MCQ ti is
determined independently. Computing ki involves a cost; for DP
and DP-inc, their running times can be large when the budget
B is big. If n, the number of MCQs under consideration, is large
too, then the execution times of our algorithms could be substantial.
Unfortunately, B and n can be huge in reality: the MCQs submit-
ted by a requester in AMT is often in thousands. For example, we
extracted over 60,000 MCQs from AMT for our experiments. Even
with a small budget for these MCQs, sayB = 60,000 (i.e., each HIT
has an average plurality of one), DP-inc does not terminate within
ten hours! Hence, it is important to improve the performance of our
solutions in order to handle large HIT sets.

Our idea for enhancing the algorithms is not complicated. Also,
the algorithms’ effectiveness is not affected at all. To illustrate,
consider two MCQs, ti and tj , which have the same cost and worker
accuracy. If budget allows, they must be allocated the same plural-
ity by DP, DP-inc, and Greedy. This follows from the fact that
these algorithms only consider cost and accuracy of MCQs, and so
they cannot treat ti and tj differently. If we have determined the
plurality ki, then kj can be immediately deduced to be equal to ki.
This can be faster than computing ki and kj independently.

Based on this intuition, we first partition the set of MCQs into
groups; the MCQs that belong to each group possess the same cost

and accuracy. For each group, we select a “representative MCQ”
and evaluate its plurality. Given a sufficient budget size, this plural-
ity is assigned to other MCQs in the same group. This is faster than
computing the plurality of every MCQ in the group individually.

Due to the limitation of space, we do not show all the details of
how group information is incorporated in our algorithms. An im-
plementation issue that we want to discuss is that the given budget
may not be enough to enable all the MCQs in the same group to be
assigned the same plurality. Let us consider Line 12 of Greedy
(Algorithm 4), which increases ki by ∆k if the remaining budget,
b, is sufficient (Line 11). In the “group-based version” of Greedy,
we treat ti as the representative of a group g. In Line 11, we calcu-
late the maximum numberm of MCQs that can have their plurality
increased by ∆k with budget b. In Line 12, we arbitrarily select
m MCQs from g, and increase their plurality values accordingly.
Then g is disregarded, since we can no longer increase the plural-
ity of the MCQs in g. More details about how we consider group
information in our algorithms can be found in Appendix G.

We also remark that the MCQ set used in our experiments con-
sists of only a few “big” groups. That is to say, each group contains
a large number of HITs. Consequently, the algorithms that make
use of group information significantly outperform those that handle
MCQs individually. Next we explain these results in more detail.

5. RESULTS
We now present the experiment results of DP, DP-inc, Greedy,

and the baseline heuristics, Even and Random. Results on syn-
thetic data are reported in Section 5.1. We also examine our solu-
tions on the data collected from our system prototype (Section 5.2).

In this section, DP, DP-inc, and Greedy refer to their variants
that consider the grouping of MCQs discussed in Section 4.5. We
use DP-NG, DP-inc-NG, and Greedy-NG to denote the versions
of algorithms that manage MCQs independently (i.e., no grouping).
In the sequel, we focus on DP, DP-inc, and Greedy.6 Each data
point is the average result of 100 runs. All our experiments are
implemented with C++ on a 64-bit Ubuntu system with 8G memory
and an Intel i5 processor.

5.1 Results on Synthetic Data
(a) Experiment setup. We use the MCQs provided by an AMT

requester called “CrowdSource” on 28 October 2012 as the basis
of the synthetic dataset. This requester submits a total of 67, 075
MCQs. These MCQs have been classified into N groups by the
requester, where N = 12. Recall that every MCQ in the same
group has the same cost and worker accuracy. For convenience,
we label each group as gj , where j = 1, . . . , N . Each gj has mj

MCQs. For each MCQ in gj , its cost and accuracy are αj and ρj
respectively. In these experiments, ρj is randomly selected from
the range [0.5, 1]. We use the average quality, Qa(T ,~k) (Equa-
tion 2), to measure the effectiveness of our algorithms. The costs
of MCQs vary from $0.08 to $0.24, with an average of $0.12. The
requester’s budget is $20K by default. If plurality is not consid-
ered, this budget allows each MCQ to be worked by an average of
3 workers. Table 2 shows the detailed setup of our experiments.

(b) Effect of budget B. Figure 4(a) shows the effectiveness of
DP-inc, Greedy, Even and Random under different values of
budget B. Since DP-inc, a faster version of DP, has the same
effectiveness as DP, we do not show the results of DP here. Also,

6The use of groups does not change the effectiveness of the algo-
rithms being considered. Moreover, they can be much faster than if
groups are not used. Hence, we use the “group-based algorithms”
as our default.



Table 2: Summary of groups gj (mj and αj are true values extracted from AMT).
j 1 2 3 4 5 6 7 8 9 10 11 12
mj 14206 7153 8977 8970 7577 7568 3024 3024 2610 2605 688 673

αj in $ 0.08 0.08 0.15 0.15 0.12 0.12 0.12 0.12 0.24 0.24 0.15 0.15
ρj Uniformly distributed in [0.5, 1]

as shown later in our performance experiments, DP-inc runs very
slowly under a large budget, and so we only present its effectiveness
for B ≤ $30K. For all the algorithms shown, Qa increases with
B. This means that in general a larger budget gives better quality
result. However, the increase rate of Qa drops with B; increasing
its value constantly does not give a significant improvement ofQa.
Hence, it is not necessary to use a very large value of B to obtain
high-quality results.

We also see that DP-inc attains the highest effectiveness, and
Greedy comes very close to it. On average, the difference be-
tween these two algorithms is 1% or less. AtB = $20K, DP-inc
and Greedy both have Qa = 81%, which is 5% higher than that
of Even (77%) and 20% higher than that of Random (64%). Un-
der a smaller budget (say, $10K), the gap is even wider: the ef-
fectiveness of DP-inc and Greedy are about 76%, while that of
Even and Random is both less than 50%. This difference is due
to the fact that neither Even nor Random considers accuracy in-
formation in setting plurality values. As a result, MCQs with lower
accuracy may not receive enough number of answers, while the
highly accurate MCQs may be associated with unnecessarily high
plurality values. Since DP-inc considers group accuracy informa-
tion and produces an optimal solution, its effectiveness is the best.
The effectiveness of Greedy is almost as good as DP-inc. Also,
although Even performs better than Random in most of cases, it
performs the worst under a small budget (of 10K or less). In Even,
expensive MCQs may have a zero plurality, rendering poor effec-
tiveness. Another point is that both DP-inc and Greedy need a
budget of $20K to achieve Qa = 80%, while Even and Random
will respectively use more than $30K and $45K to achieve the
same effectiveness. Hence, if we want to attain a specified value
ofQa, DP-inc and Greedy only needs about 67% of the cost of
Even and 44% of the cost of Random.

(c) Effect of number of HITs n. Figure 4(b) examines the ef-
fect of the number of HITs (n), obtained by varying the number
of groups. We observe that the effectiveness of all the algorithms
drop with the increase of n. Under a fixed budget, with more
MCQs, the plurality assigned to each MCQ tends to be smaller.
Hence, Qa drops. Another observation is that the quality drop
rates of DP-inc and Greedy are both slower than those of Even
and Random. When the number of MCQs is small, all the algo-
rithms concerned have few choices, and so their effectiveness val-
ues are similar. When the number of MCQs increases, DP-inc
and Greedy allocate plurality to MCQs with higher accuracy and
lower cost, and so they perform better than both Even and Random.

(d) Effect of worker’s accuracy ρj . Figures 4(c) and (d) study
the impact of accuracy of an MCQ of each group (i.e., ρj) on the
algorithms’ effectiveness. For Figure 4(c), ρj is uniformly dis-
tributed between [u − 0.05, u + 0.05], and we vary the value of
u. Observe that with a higher MCQ accuracy, the effectiveness of
all the algorithms increases; in other words, better MCQ results can
be obtained. On average, DP-inc and Greedy are 5% and 18%
more effective than Even and Random, respectively.

Figure 4(d) examines the effect of the range of ρj on Qa. Here,
the values of ρj are uniformly distributed between [0.75− r

2
, 0.75+

r
2
]. When r increases, the difference in ρj values among different

groups increases. Notice that the effectiveness of all the algorithms
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Figure 4: Result on synthetic data.

is stable over a wide range of r. Also, DP-inc and Greedy are
5% and 18% better than Even and Random respectively.

(e) Performance. Figure 4(e) illustrates the performance of the
plurality-setting algorithms under different budget size B. Since
DP and DP-inc are very slow, we only show their results for small
values ofB. We see that DP-inc is about 100 times faster than DP.
This is because DP-inc computes the MCQ quality function more
efficiently than DP. Unfortunately, DP-inc is still very slow com-
pared to heuristics (i.e., Random and Even) and our approximate
solution (i.e., Greedy). At B = 20K, for example, DP-inc,
which completes in 6000s, is 1,000 times slower than Random,
which finishes in less than 1s, and is four orders of magnitude
poorer than Even and Greedy, whose running times are less than
10ms. Moreover, while the execution time of DP-inc increases
sharply with B, the performance of other solutions is relatively
stable. We conclude that the performance of DP and DP-inc is
significantly inferior to other solutions.

Grouping. On the same graph, we display Greedy-NG, which
does not use any grouping information. We see that it is 20 times
slower than Greedy. Recall that the MCQs tested here are parti-
tioned into 12 groups (Table 2). Also, Greedy-NG has to compute
the plurality independently for every MCQ. Since the number of
MCQs is tremendous (67K), its performance is much worse than
Greedy, which evaluates the plurality for only 12 group represen-



tatives (and assigns these values to other MCQs). We have also
tested DP-NG and DP-inc-NG. Since they are extremely ineffi-
cient, we do not show all their results here. Under a mild budget of
5K (i.e., each MCQ has an average plurality of one), they cannot
finish in 10 hours. By using group information, DP and DP-inc
complete in 4 hours and 10 minutes respectively. Hence, the use
of grouping information significantly improves the performance of
DP, DP-inc, and Greedy.

Figure 4(f) shows the performance of the plurality-setting algo-
rithms under different number of groupsN . Similar to (e), DP-inc
performs much worse than other solutions. For example, atN = 8,
DP-inc needs 3,500 seconds to complete, while the finishing time
of Greedy is only 10ms. Moreover, while the execution time of
DP-inc increases sharply with N , the completion time of other
solutions increases much more slowly with N . We skip the results
for DP-NG and DP-inc-NG here, since they are extremely slow.

(f) Summary. By assigning plurality to MCQs based on their ac-
curacy and cost information, DP-inc and Greedy achieve higher
effectiveness than simple heuristics (e.g., Even and Random). The
effectiveness of DP-inc and Greedy is stable over a wide range
of worker’s accuracy values. The use of grouping techniques sig-
nificantly improves the performance of these algorithms without
sacrificing effectiveness. The best algorithm is the Greedy; while
its effectiveness is close to optimal, it is efficient even under large
values of B and n.

5.2 Results on Real Data
(a) Experiment setup. We have created 100 MCQs for collect-

ing the sentiment information of a comment. These 100 comments
are extracted from ten popular Youtube videos. For each MCQ, a
worker is asked to select an answer from {positive, neutral, nega-
tive}. As discussed in [4], a longer comment is usually harder to
interpret. We thus separate these MCQs into three groups of dif-
ferent lengths. We also associate more incentives to groups with
longer comments, as shown in Table 3. We have implemented a
web application for workers to perform these MCQs (Figure 5).
The worker can view the comments and submit her choice. Help
messages, displayed at the bottom of the screen, assist the worker
to use the system. We have employed 25 graduate students, whose
second language is English, to work on these MCQs.

We compute the worker’s accuracy values based on their input,
based on the method described in Section 3.2. First, we manually
check each comment to generate our ground truth. Then, we ran-
domly sample s = 10% MCQs from each group, and ask all our
workers to do these selected questions. (For convenience, we call
s the sampling rate.) By comparing their answers with the ground
truth, we can estimate their performance of doing the MCQs in each
group. Specifically, let S be the set of sampled MCQs, and W be
the set of workers. For each worker w ∈W , let A(w) be the set of
answers provided by w for questions in S, and a be an answer of
A(w). We then compute the effectiveness of each worker p(w) for
questions in S, where

p(w) =
‖{a is correct|a ∈ A(w)}‖

‖A(w)‖ . (15)

The accuracy of an MCQ for each group is estimated as the average
of all p(w) values, that is,

∑
w∈S p(w)

‖W‖ . Table 3 shows the accuracy
values. We can see that the longer the comments, the lower is the
accuracy.

In the sequel, we present our results on the effectiveness of the
plurality assignment algorithms, as well as the actual amount of
time needed by workers to answer the MCQs. We have also exam-
ined the performance of our algorithms. Their relative performance

5/18/13 Attitude Review
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The task is to decide the attitude of a certain comment, e.g.
1) "The movie is just so good" shows a positive attitude.
2) "The picture sucks" is obviously negative.
3) "Well, it's just ok" is somehow neutral.

Figure 5: Sentiment collection: screenshot.

Table 3: A real dataset.
group g1 g2 g3

# words in comments ≤ 10 (10, 20] > 20
# questions 36 36 28

cost ($) 0.1 0.2 0.3
MCQ accuracy (%) 83.4 70.1 61.3

avg. completion time (s) 6.15 8.87 10.33

is similar to that of synthetic data. Due to space constraints, we do
not report their results here.

(b) Effect of budget B. Figure 6 (a) shows the average qual-
ity, Qa, over different values of B. We can see that the trend of
the curves is similar to those obtained for synthetic data in Fig-
ure 6(a), where DP-inc and Greedy are always better than Even
and Random. At B = $20, DP-inc and Greedy are 26.3%
and 42.1% more effective than Even and Random, respectively.
Moreover, to achieve Qa = 80%, DP-inc and Greedy require
a budget of $40, which is 30% and 55% smaller compared to the
budget needed by Even and Random, respectively.

(c) Effect of sampling rate s. Figures 6(b) shows the effect of
sampling rate on Qa. Here, each line represents the effectiveness
of Greedy based on a fraction s of the MCQs. Observe that s does
not have significant influence onQa. For example, atB = $30, the
quality difference between the two cases {s = 10%, s = 100%}
is only 0.49%. This shows that a low sampling rate (e.g., 10%) is
sufficient to yield high effectiveness.

Let us further investigate why the values of s tested do not have
a big impact at Qa. We first compute the estimated accuracy val-
ues ~ρ = {ρs1, ρs2, . . . , ρsN} for G = {g1, g2, . . . , gN}, where ρsi
denotes the sampling rate used for estimating ρi.

We then define the sampling error as:

err(~ρ) =

∑N
j=1 |ρ

s
j − ρ100

j |
N

(16)

Figure 6(c) shows err(~ρ) over different values of s. We can see
that err(~ρ) is quite stable (less than 4%) when s ≥ 20%. Hence,
the effectiveness of Greedy is not very sensitive to s.

(d) Real quality. In this experiment, we analyze the answers
obtained from the workers, after the number of answers provided
for each MCQ has reached the assigned plurality. We would like
to compute the goodness of these results, which we call real qual-
ity, and compare it with Qa. Specifically, for every MCQ ti with
plurality ki, we obtain a set A(ti) of ki worker’s answers for ti.
Then, we use half-voting to decide the result of this MCQ. Let the
half-voting result on A(ti) be V (ti). We define the real quality, or
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Figure 6: Result on real data.

Qr , as:

Qr(T ,~k) =
‖{V (ti) is correct|ti ∈ T }‖

n
.

Essentially, Qr is the fraction of the MCQs, whose half-voting re-
sult is same as the ground truth.

Figure 6(d) shows the effect of budget on the real quality. No-
tice that the graph is highly similar to Figure 6(a) (which plots Qa
against B). This indicates that Qa reflects the number of MCQs
correctly answered. To study the relationship betweenQa andQr ,
we plot Figure 6(e), where each point (xi, yi) corresponds to a plu-
rality assignment ~k based on some budget and plurality assignment
algorithm. Specifically, xi = Qa(T ,~k) and yi = Qr(T ,~k). We
observe a strong correlation betweenQa andQr . We further com-
pute the correlation [5] of the two sets of {xi} and {yi} values, and
find that the correlation is over 99.8%. Hence, in this experiment,
our average quality measure is a good indicator of the correctness
of workers’ results.

(e) Completion time. We next analyze the average completion
time of workers to work on an MCQ. Specifically, we record the
time a particular worker uses to give an answer to MCQ ti. This
is defined as the completion time of this worker on ti. Table 3
summarizes the average completion time for MCQs in each group.
We observe that for a longer comment, workers may consume a
longer time to read it and decide its sentiment. Similar to the ex-
periment on real quality, for every MCQ ti with plurality ki, we
obtain ki workers, and also their corresponding completion time.
We then sum them up to get the total completion time for all these
ki workers on ti, denoted by Ti. The average completion time of
T , denoted by TT , is

TT =
1

n

n∑
i=1

Ti. (17)

Figure 6(f) shows the effect of budget on TT . We observe that TT
of all algorithms increases with budget since more plurality is allo-
cated to each MCQ as budget increases. Besides, TT for DP-inc
(21.52s) and Greedy (21.89s) are both about 5% higher than that
of Random (20.5s), and 9% higher than that of Even (19.88s).
This is because in this real dataset, MCQs with lower accuracy re-
quire more completion time, and both DP-inc and Greedy allo-
cate higher plurality to MCQs with lower accuracy. Consequently,
the average completion time of DP-inc and Greedy are slightly
higher than others. This increase in completion time, however, is
justified, because the answers produced by DP-inc and Greedy
have a higher quality than those of Even and Random.

6. OTHER HIT TYPES
We have focused our discussion so far on MCQ, which is the

most popular HIT type on AMT, as an illustration of our solution
framework. We remark that other kinds of HITs can also be sim-
ilarly handled. In this section we further illustrate our framework
by briefly discussing how plurality assignment can be done on two
other kinds of HITs, namely, Enumeration Query (EQ) and Tagging
Query (TQ).

First, we note that the key component of our framework (see
Figure 1) is the quality manager, which consists of a quality esti-
mator and a plurality assignment algorithm. Basically, the job of
the quality estimator is to derive the quality function ζi(k) of a HIT
ti after the HIT has received k answers. For MCQ, we model ζi(k)
by Equation 1. Note that this model has one parameter pi. The
job of the quality estimator is thus to estimate the model parameter
pi, which is done through a sampling process (Section 3.2). Given
the quality functions ζi(k) of all the HITs as input, the plurality
assignment algorithm outputs an assignment. The choice of the as-
signment algorithm depends on the properties of the quality func-
tion — DP is applicable for all quality functions, while Greedy
is applicable as long as the quality function observes monotonicity
and diminishing return. So, for any other types of HITs, to apply
our plurality assignment framework, we only need (1) a model of
the quality function ζi(k) and a way to estimate the model’s pa-
rameters (such as pi for MCQ) and (2) analyze the quality function
and see if it satisfies the two conditions required by Greedy (and
if so, we apply Greedy; otherwise, we apply DP). Let us illustrate
this process using two other HIT types, EQ and TQ.

The objective of an EQ is to obtain the complete set of distinct
elements for a set query. (For example, “Name a state in the US.”
with the purpose of getting all the states’ names.) From [18], we

can model the quality function ζi(k) by f̂0

[
1−

(
1− 1−Ĉ

f̂0

)k−k0]
.

The variables f̂0 and Ĉ are two model parameters that captures the
information of the total number of distinct answers, and the per-
centage of distinct answers collected so far, respectively, and k0

is the number of answers given by workers so far. This quality
function estimates the number of distinct answers obtained by k
workers. In [18], it is shown how the model parameters can be esti-
mated by statistical methods. It is easy to verify that the above qual-
ity function satisfies monotonicity and diminishing return. Hence,
PAP on EQ can be efficiently solved by our Greedy algorithm.

As another example, we consider Tagging Query (TQ). The ob-
jective of a TQ is to obtain keywords (or tags) that best describe
an object (such as an image or a web page). TQ has been recently
studied in [21], which proposes a quality metric for measuring the
quality of tags collected through workers’ answers. Although not
yet proven, the empirical results presented in [21] indicates that the
quality metric proposed exhibits a power-law relationship with the



number of workers’ answers. We can thus model our quality func-
tion ζi(k) for TQ using some power-law models. Since power-law
models satisfy monotonicity and diminishing return, Greedy is
again applicable to TQ. As a future work, we are studying how to
effectively estimate the power-law model parameters for TQ.

7. CONCLUSIONS
We study the problem of setting plurality for HITs in crowd-

sourcing environments. We develop a solution that enables an opti-
mal assignment of plurality for MCQs under a limited budget. We
show that the quality of MCQs demonstrate monotonicity and di-
minishing return. We use these properties to develop effective and
efficient plurality algorithms. We have performed extensive exper-
iments on real and synthetic data. We conclude that the greedy
algorithm is highly effective and efficient. We briefly discuss how
our framework can be extended to support other kinds of HITs (i.e.,
EQ and TQ). We plan to study these extensions in more detail.
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APPENDIX
A. OPTIMAL SUBSTRUCTURE OF PAP

In this section, we show that P(B, T ) exhibits optimal sub-
structure, and so Bellman’s optimality principle is hold. We let
(Q,K) to be the optimal solution to P(B, T ), where Q is the op-
timal value and K = {ki|i = 1, 2, . . . , n} is the plurality of ki
to ti in the optimal solution. Consider the subproblem P(B −
kncn, Tn−1). We claim that (Q− ζn(kn),K − {kn}) is the opti-
mal solution to this subproblem. Suppose that this is not true. Let
(Q′,K′), where K′ = {k′1, . . . , k′n−1}, be the optimal solution to
P(B − kncn, Tn−1), and Q′ > Q − ζn(kn). Let (Q′′,K′′) =
(Q′ + ζn(kn), K′ ∪ {kn}). Since

∑n−1
i=1 k

′
ici ≤ B − kncn,

(Q′′,K′′) is a feasible solution to P(B, T ). However, Q′′ =
Q′ + ζn(kn) > Q, which violates the assumption that Q is the
optimal value to P(B, T ). Therefore, (Q − ζn(kn),K − {kn})
must be the optimal solution to the subproblem.

B. DYNAMIC PROGRAMMING SOLUTION

Algorithm 2 DP
1: Input: B, T and pi, ci for ti ∈ T
2: Output: Q∗, K∗
3: for b← 0 toB doQ[b, 0]← 0

4: for l← 1 to n do
5: for b← 0 toB do
6: Q[b, l]← Q[b, l− 1] + ζl(0), y[b, l]← 0

7: for kl ← 1 to
⌊

b
cl

⌋
do

8: ifQ[b, l] < Q[b− klcl, l− 1] + ζl(kl) then
9: y[b, l]← kl,Q[b, l]← Q[b− klcl, l− 1] + ζl(kl)

10: Q∗ ← Q[B,n]
11: b← B
12: for l← n downto 1 do
13: K∗[l]← y[b, l], b← b− y[b, l] · cl

return (Q∗, K∗)

Our bottom-up, dynamic programming algorithm is shown in Al-
gorithm 3. Q[b, l] and y[b, l] are both B × n arrays that store the
optimal value of P(b, Tl) and the optimal plurality kl for tl in this
subproblem. So the optimal value of P(B, T ) is Q[B,n].

We first deal with the boundary case where l = 0. Then for each
subproblem P(b, Tl), we enumerate all the possible settings to kl
and find out the one at which the optimal value is achieved. Q[b, l]
and y[b, l] are updated accordingly(Step 4 to 10). Thus, the optimal
value Q∗ = Q[B,n].

Step 11 to 13 are used to recover the optimal plurality assignment
K∗ based on optimal plurality of kl for each subproblem.

As we can see, all subproblems are scanned once during the pro-
cess and each time all possible values of kl are checked once from 0

to
⌊
b
cl

⌋
(which cannot exceed B

M
) to find the optimal one. Besides,

calculating the specific value of the quality function requiresO(F )
time. Therefore, the time and space complexities of this algorithm
are O(nB

2F
M

) and O(nB), respectively.

C. INCREMENTAL COMPUTATION OF ζi
Here we explain how to derive Equation 13. When k is odd, we

have
⌈
k
2

⌉
= k+1

2
,
⌈
k+2

2

⌉
= k+1

2
+ 1.



Consider Clk+2, where l ≥
⌈
k+2

2

⌉
= k+1

2
+ 1. By Pascal’s

Formula, we have Clk+2 = Clk+1 +Cl−1
k+1 = Clk + 2Cl−1

k +Cl−2
k

Note that the above formula holds for l ≤ k. For l > k, we have
Ck+1
k+2 = 2 + k = 2Ckk + Ck−1

k , and Ck+2
k+2 = Ckk .

Let r = k+1
2

. By breaking down each combination in ζi(k+ 2),
i.e., Clk+2, by the above formula, and merging terms with the same
combination together, we have:

ζi(k + 2) = pi(1− pi)Cr−1
k pri (1− pi)k−r

+(2pi − p2
i )C

r
kp
r
i (1− pi)k−r

+

k∑
l=r+1

Clkp
l
i(1− pi)k−l

Since ζi(k) =
∑k
l=r C

l
kp
l
i(1− pi)k−l, we get

ζi(k + 2)− ζi(k) = pi(1− pi)Cr−1
k pri (1− pi)k−r

+(2pi − p2
i − 1)Crkp

r
i (1− pi)k−r

= (piC
r−1
k − (1− pi)Crk)pri (1− pi)r

Since r = k+1
2

, we have r+(r−1) = k. ThereforeCrk = Cr−1
k .

Thus, we get

ζi(k + 2)− ζi(k)

pri (1− pi)r
= (piC

r−1
k − (1− pi)Crk)

= (pi − (1− pi))Crk
= (2pi − 1)Crk

Since di(k) = ζi(k + 2)− ζi(k), we have

di(k) = Crk(2pi − 1)pri (1− pi)r. (18)

For k > 1, we can derive di(k + 2) from di(k) as follows.

di(k + 2) = di(k) · pi(1− pi)
Cr+1
k+2

Crk

= di(k) · 4pi(1− pi)
k + 2

k + 3

Hence, Equation 13 is proved.

D. PROOF OF THEOREM 1
This proof is based on the incremental computation of ζi(k) (c.f.

Section 4.3 and Appendix C).
Recall that in the definition of ζi(k) in Equation 1, if pi = 1,

ζi(k) = 1 for all k > 0. Hence, ζi(k) monotonically increases
with k.

We next consider the case that pi 6= 1. Since ζi(0) = 0 and
ζi(1) = pi, ζi(1) > ζi(0) for all 0.5 ≤ pi < 1. For k ≥ 1, we
have

ζi(k + 2) = ζi(k) + di(k).

Recall that di(k) = Crk(2pi − 1)pri (1 − pi)
r , r =

⌈
k
2

⌉
(Equa-

tion 18). We obtain for 0.5 ≤ pi < 1, di(k) > 0. Thus, we have
ζi(k + 2) ≥ ζi(k) if and only if 0.5 ≤ pi < 1.

Thus, ζi(k) monotonically increases with k if and only if 0.5 ≤
pi ≤ 1.

E. PROOF OF THEOREM 2
This proof is based on the incremental computation of ζi(k) (c.f.

Section 4.3 and Appendix C).
If pi = 1, di(0) = 1 and di(k) = 0 for any positive odd integer

k. According to the relationship of ∆ζi(k) and di(k), we can see
that ∆ζi(k

′) ≤ ∆ζi(k) for k′ > k.
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Figure 7: Analyzing effectiveness of Greedy.

We next consider the case where pi 6= 1. According to Equa-
tion 18, we have di(0) = pi and di(1) = 2(pi − 1

2
)pi(1 − pi).

Since pi(1− pi) ≤ 1
4

, and 0.5 ≤ pi < 1, we have

∆ζi(1) =
1

2
di(1) ≤ 1

4
(pi −

1

2
) < pi < di(0) = ∆ζi(0).

We next prove that for any positive odd integer k, ∆ζi(k+ 2) ≤
∆ζi(k). This can be derived by the fact that

∆ζi(k + 2)

∆ζi(k)
=
di(k + 2)

di(k)
= 4pi(1− pi)

k + 2

k + 3
≤ k + 2

k + 3
< 1.

Thus, if ∆ζi(k) ≥ 0, we have ∆ζi(k+2) ≤ ∆ζi(k). According
to Theorem 1, ζi(k) is monotonically increasing with k if and only
if 0.5 ≤ pi ≤ 1. Hence, ∆ζi(k) monotonically decreases with k,
i.e., ζi(k) satisfies the property of DR, if and only if 0.5 ≤ pi ≤ 1.

F. EFFECTIVENESS ANALYSIS OF GREEDY
In this section, we study the accuracy of Greedy. We follow the

analyzing flow in Figure 7, and summarize Step 1 to 3 in Theorem 3
to 5, respectively. First, recall thatP is the plurality setting problem
defined in Section 3.4. We further define two problems, namely P ′
and P ′′, as follows.

• Problem P ′:

given B, T and pi, ci for ti ∈ T (19)

maximize
n∑
i=1

Ji∑
j=0

yi,j · bi,j (20)

subject to
n∑
i=1

Ji∑
j=0

yi,j · γi,j ≤ B (21)

yi,j = 0 or 1 (22)
yi,j ≥ yi,j+1 (23)

where

Ji =
B

2ci
(24)

bi,j =

{
di(0), j = 0,
di(2j − 1), otherwise. (25)

γi,j =

{
ci, j = 0,
2ci, otherwise. (26)

Essentially, we would like to find all the values of yi,j such that the
objective function of P ′, or Equation 20, is optimized.
• Problem P ′′: identical to P ′, except that an optimization con-
straint, Equation 23, is removed. Notice that P ′′ is a variant of a
0-1 knapsack problem [13] with

∑n
i=1 (Ji + 1) items; each item

has a value of bi,j and a cost of γi,j .
Let us denote the optimal solutions of P , P ′, and P ′′ be Θ, Θ′,

and Θ′′ respectively. We next present three lemmas, with the aid of
Figure 7.



THEOREM 3. P is equivalent to P ′.
PROOF. Constraints 22 and 23 in P ′ indicate that, in any fea-

sible solution for P ′, there exists ai such that for every j < ai,
yi,j = 1, and for every j ≥ ai, yi,j = 0. If we let ki =

max{2ai − 1, 0}, we have
∑n
i=1

∑Ji
j=0 yi,jbi,j =

∑n
i=1 ζi(ki),

which is exactly the objective function of P (Equation 7). We can
also deduce that Equation 21 is equivalent to the budget constraint
of P (i.e., Equation 8), since

∑n
i=1 yi,jγi,j =

∑n
i=1 kici. Thus, P

and P ′ represent the same problem, as illustrated by Figure 7.

THEOREM 4. The values of the objective functions of P , P ′,
and P ′′, computed respectively by the solutions of Θ, Θ′, and Θ′′,
are identical.

PROOF. The proof is illustrated in Figure 7. First, notice that P
can be rewritten as P ′ (Theorem 3). Therefore, the values of the
objective functions obtained by Θ and Θ′ are identical.

We next prove that the values of the objective functions obtained
by Θ′ and Θ′′ are also the same. This is equivalent to showing
that the solution of Θ′′ satisfies Equation 23. Suppose that this
is not true. This means that in algorithm Θ′′, the optimal solu-
tion for yi,j is y∗i,j , and ∃ i0, j0, and j1 such that j1 = j0 + 1,
y∗i0,j0 = 0, and y∗i0,j1 = 1. Now, consider another solution
where y+

i,j = y∗i,j , except that y+
i0,j0

= 1 and y+
i0,j1

= 0. Since
γi,j1 ≥ γi,j0 , we have

∑
i

∑
j y

+
i,j · γi,j ≤

∑
i

∑
j y
∗
i,j · γi,j ≤

B. Thus, y+
i,j is a feasible solution to P ′′. According to Theo-

rem 2, di(2j1 − 1) < di(2j0 − 1), and so bi,j1 < bi,j0 . Thus,∑
i

∑
j y

+
i,j · bi,j >

∑
i

∑
j y
∗
i,j · bi,j , which violates the assump-

tion that y∗i,j is the optimal solution to P ′′. Hence, the theorem
holds.

THEOREM 5. The values of the objective functions of P and
P ′′, computed respectively by the solutions of Greedy and KPGreedy,
are identical.

PROOF. Since P and P ′ are equivalent (Theorem 3), we can
adapt Greedy to solveP ′. The resulting algorithm, called Greedy’,
attains the same objective function values as Greedy. Specifically,
let k̂i, ŷi,j be the solution of Greedy, and Greedy’ respectively.
We can obtain:

ŷi,j =

{
1, if j <

⌈
k̂i
2

⌉
,

0, otherwise.
(27)

We can then see that Greedy and Greedy’ yields the same ob-
jective function values for problems P and P ′ respectively.

As explained before, P ′′ is a variant of the 0-1 knapsack prob-
lem, which can be solved effectively by a well-known greedy algo-
rithm in [13], denoted as KPGreedy. We next prove that ŷi,j is
the same solution obtained by KPGreedy. We first state without
proof that hi(k) =

bi,j
γi,j

, where j =
⌈
k
2
e . Using Theorem 2, we

deduce that hi(k′) ≤ hi(k) for all k′ ≥ k. Hence,

bi,j′

γi,j′
≤ bi,j
γi,j

∀j′ ≥ j. (28)

We remark that Equation 28 is a criterion used by KPGreedy to
select the next item. Thus, Greedy’ is the same as KPGreedy.
Combined with the previous results, we can see that the solutions
of Greedy and KPGreedy produce the same objective function
values for respectively P and P ′′. The theorem is thus proved.

Effectiveness of Greedy. In [13], it was shown that KPGreedy
attains a worst-case effectiveness ratio of 0.5 with respect to the
optimal solution, Θ′′, for Problem P ′′. Using Theorems 4 and 5,

we can see that Greedy is also a 0.5-approximation algorithm.
In practice, KPGreedy has a close-to-optimal effectiveness [17].
This can also be said for Greedy. Let us examine Greedy exper-
imentally next.

G. PSEUDO-CODE FOR GROUP-BASED AL-
GORITHMS

Algorithm 3 Group-based DP

1: Input: B, T and pi, ci for ti ∈ T
2: Output: Q∗,K∗
3: G ← GETGROUPS(T )
4: mj ← no. of HITs in gj ∈ G
5: t̂j ← representative of gj ∈ G
6: ζ̂j ← quality function of t̂j
7: αj ← cost of t̂j
8: for b← 0 to B do Q[b, 0]← 0

9: for j ← 1 to |G| do
10: for b← 0 to B do
11: Q[b, j]← Q[b, j − 1], y[b, j]← (0, 0)
12: for m← 1 to mj do
13: ifαj ·m ≤ b andQ[b, j] < Q[b−αj ·m, j−1]+m·ζ̂j(1)

then
14: Q[b, j]← Q[b− αj ·m, j − 1] +m · ζ̂j(1)
15: y[b, j]← (0,m)

16: for kj ← 1 to
⌊

b
mjαj

⌋
do

17: for m← 0 to mj do
18: C ← αj · (kj ·mj + 2 ·m)
19: ifC ≤ b andQ[b, j] < Q[b−C, j−1]+(mj−m) ·

ζ̂j(kj) +m · ζ̂j(kj + 2) then
20: Q[b, j]← Q[b−C, j−1]+(mj−m) · ζ̂j(kj)+

m · ζ̂j(kj + 2)
21: y[b, j]← (kj ,m)

22: Q∗ ← Q[B,n]
23: b← B
24: for j ← |G| downto 1 do
25: (k,m)← y[b, j]
26: set plurality of all HITs in gj to k
27: if k = 0 then
28: select m HITs from gj , and increase their plurality by 1
29: b← b− αj ·m
30: else
31: select m HITs from gj , and increase their plurality by 2
32: b← b− αj · (k ·mj + 2 ·m)

return (Q∗,K∗)



Algorithm 4 Group-based Greedy

1: Input: B, T and pi, ci for ti ∈ T
2: Output: ~k
3: G ← GETGROUPS(T )

4: t̂j ← representative of gj ∈ G
5: αj ← cost of t̂j
6: b← B
7: for j ← 1 to |G| do
8: set plurality of all HITs in gj to zero
9: calculate marginal gain of t̂j by Equation 14

10: Q.push(t̂j ) // Q is a priority queue.
11: while b > 0 and Q is nonempty do
12: t̂j ←Q.pop() // The MCQ with the largest marginal gain is

popped.
13: if plurality of t̂j = 0 then ∆k ← 1
14: else ∆k ← 2
15: m← b b

αj∆k
c

16: if m < no. of HITs in gj then // There is not enough budget.
17: select m HITs from gj , and increase their plurality by ∆k
18: b← b− αj∆k ×m
19: else
20: increase plurality of all HITs in gj by ∆k
21: b← b− αj∆k × no. of HITs in gj
22: calculate marginal gain of t̂j by Equation 14
23: Q.push(t̂j )
24: return ~k




