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Abstract— A social tagging system, such as del.icio.us and
Flickr, allows users to annotate resources (e.g., web pages and
photos) with text descriptions called tags. Tags have proven to be
invaluable information for searching, mining, and recommending
resources. In practice, however, not all resources receive the
same attention from users. As a result, while some highly-
popular resources are over-tagged, most of the resources are
under-tagged. Incomplete tagging on resources severely affects
the effectiveness of all tag-based techniques and applications.
We address an interesting question: if users are paid to tag
specific resources, how can we allocate incentives to resources
in a crowd-sourcing environment so as to maximize the tagging
quality of resources? We address this question by observing that
the tagging quality of a resource becomes stable after it has been
tagged a sufficient number of times. We formalize the concepts of
tagging quality (TQ) and tagging stability (TS) in measuring the
quality of a resource’s tag description. We propose a theoretically
optimal algorithm given a fixed “budget” (i.e., the amount of
money paid for tagging resources). This solution decides the
amount of rewards that should be invested on each resource
in order to maximize tagging stability. We further propose a few
simple, practical, and efficient incentive allocation strategies. On
a dataset from del.icio.us, our best strategy provides resources
with a close-to-optimal gain in tagging stability.

I. INTRODUCTION

In recent years, there have been an increasing number of
collaborative tagging systems on the web, such as Flickr,
del.icio.us, Bibsonomy, Last.fm and YouTube. In these systems,
users (or taggers) help describe the various resources (such as
photos, webpages, songs, and video) by assigning descriptive
words (tags) to them. Given the collective wisdom of a user
community, tagging amasses a tremendous amount of meta-
data. This tagging information serves as invaluable data from
which various applications are derived. For example, tagging
data can be used to train a concept space, which captures tag
similarity to facilitate semantic retrieval [1], [2]. It has been
shown that tag-based resource retrieval is much more effective
than traditional full-text search [3]–[5]. Other applications
include webpage clustering [6], keyword search [7], and query
recommendation [8].

For all these tag-based applications to be effective, we need
good-quality tagging of resources. Intuitively, the tags given
to a resource should be relevant, succinct, and they should
cover the various aspects of the resource. In practice, however,
taggers are typically casual users and the tags they assign to
resources are hardly perfect. The tags given by a casual tagger
to a resource, called a post, is often noisy and incomplete [9].
A post is noisy if it includes tags that are typos or are irrelevant
to the resource; it is incomplete if it describes only some

of the many aspects of the resource. As an example of the
latter issue, consider the URL http://earth.google.com/ (Google
Earth homepage), a del.icio.us user might tag this resource
with the post “map, navigation”, another user might tag it
with “scenery, photos”, while a third user might tag it with
“world, weather”. It is easy to see that oftentimes a single
post does not capture all the aspects of a resource.

We can combat the problems of noisiness and incomplete-
ness by giving each resource a sufficient number of posts —
Since typos rarely repeat, their presence in a good number of
posts of a resource would be statistically insignificant. Also,
given enough posts, the relative occurrence frequencies of a
resource’s tags reflect the relative significance of the different
aspects of the resource. For example, if there are more posts
with the tag “navigation” than those with the tag “weather”
for the Google Earth’s URL, we know that people value the
navigation function of Google Earth more than its weather
information function. The need to acquire enough posts for
tagging resources is echoed by [10]. The observation is that
the description of a resource becomes more accurate when
the number of tags it receives increases. To illustrate this
observation, we have collected all the del.icio.us posts assigned
to the Google Earth URL in 20071. Figure 1(a) shows how the
relative occurrence frequencies of five selected tags (google,
maps, earth, software, travel) change as the number of posts
given to the URL increases from 0 to 500. From the figure,
we see that the relative frequencies change significantly when
the number of posts received are below 50; these frequencies
gradually converge between 50 to 250 posts; and finally, the
frequencies become very stable after about 250 posts. Based on
Figure 1(a), we call 250 the stable point, which is the number
of posts beyond which additional posts do not change the tags’
relative frequencies in any practical way. Also, we call 50 the
unstable point, which is the number of posts below which
the tags’ relative frequencies are not of sufficient accuracy for
practical use. (For the moment, we have only given an informal
and intuitive description of stable/unstable points. We will give
formal definitions of these concepts later in Section III.) Note
that different resources could have different stable/unstable
points depending on, for example, how multidimensional their
contents are. If a resource has received more posts than its
stable point, we say that the resource is over-tagged; if the
posts given to the resource is below the unstable point, we say
that the resource is under-tagged. To give the reader an idea of

1We thank the authors of [11] for providing us with the dataset.
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the values of stable/unstable points, we have analyzed a sample
of 5,000 URLs and their posts collected by del.icio.us2. We
found that the stable points of most URLs (resources) range
from 50 to 200 posts with an average of 112 posts, while a
typical unstable point is about 10 posts.

Naturally, we want the tagging of each resource to reach at
least the resource’s stable point. In that case, tagging data is
of very good quality, which translates into high-quality tag-
based applications. Unfortunately, in practice, it is hardly the
case. We observe that in real systems, only a small portion
of resources receive enough posts. This is especially true for
collaborative tagging systems in which tagging is largely a
volunteering task, which makes it an undermanned endeavor.
Moreover, taggers are free to choose the resources that they
wish to tag. Consequently, most postings are directed to
a small number of highly popular resources. To illustrate,
Figure 1(b) shows the distribution of the posts given to the
URLs indexed by del.icio.us in 2007. We observe that over
10 million URLs were tagged just once, while a few URLs
were tagged more than 10,000 times. The number of posts
given to the URLs are seen to be very skewed.

We took a closer look of our 5,000 URLs sample and made
some interesting statistical observations. First, we found that
only 7% of the URLs had passed their stable points (i.e., they
are over-tagged) and yet these over-tagged URLs received the
lion’s share of all posts. Specifically, we found that 48% of all
posts were given to those URLs that had already passed their
stable points. In other words, roughly half of all posts were
made without practically improving the tagging quality of the
resources. They are essentially wasted! At the other end of the
spectrum, if we take 10 posts as the unstable point of resources
(URLs), then about 25% of the URLs are under-tagged. That
means about 1/4 of the URLs have poor tagging data. For tag-
based applications, such as concept extraction, tag similarity
analysis, topic modeling, URL clustering, etc., these under-
tagged URLs cannot be reliably used and have to be discarded.
We remark that although the 7% over-tagged URLs are popular
among users, for many data mining tasks, they are not more
significant than the under-tagged ones. Hence, losing 1/4 of
the URLs in the training data could affect the quality of many
tag-based applications. In fact, these under-tagged URLs can
very well be salvaged. We found that if only 1% of the wasted
posts (i.e., those that were given to URLs that were already
over-tagged) had been channeled to those under-tagged URLs,
these URLs would have passed their unstable points.

Incentive-based Tagging. To solve the above problems,
we study a novel solution, whose main idea is to award a
tagger some incentive for annotating under-tagged resources.
Specifically, the taggers are informed about which (under-
tagged) resources need to be tagged; if the taggers work on
these resources, they are given an extra reward (e.g., some
amount of money, free membership, or more disk space for
sharing photos). Figure 2 illustrates this solution. Given a set
of tagged resources, some incentive allocation strategy is first

2The details of this dataset is given in Section V-A
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Fig. 1. Posts collected by del.icio.us in Year 2007.
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Fig. 2. An Incentive-based Tagging System.

employed to decide how much reward should be assigned to
which resources (Step 1). Taggers are then invited to submit
their posts to the chosen resources (Step 2), based on which
the tagging data of the resources are updated (Step 3). Finally,
taggers are rewarded by the system (Step 4). This model can be
realized in crowdsourcing systems [12], e.g., the Mechanical
Turk3. In these systems, the owner of the tagged resources
creates jobs related to handling under-tagged resources. These
jobs are then announced to the Internet workers (“crowds”),
who can choose the resource(s) they want to tag. Upon
completion of a job, the Internet worker is paid by the system.

Quality and Stability. In this paper, we address an im-
portant problem about incentive-based tagging: given that the
amount of incentive (e.g., the monetary budget for rewarding
taggers) is limited, which resources should we ask taggers to
handle? Naturally, we should choose under-tagged resources
ahead of those that have already been associated with a lot
of tags. But how can we determine whether a resource is
under-tagged? To answer this question, we need a metric to
systematically measure the tagging quality of a resource in
terms of the posts given to it. The way we measure tagging
quality is to formalize the stability of tags’ relative frequencies.
We present a formula to compute the tagging stability score of
a resource, by tracking the moving averages of tags’ relative
frequencies obtained from the resource’s previous posts. If
we consider the tags’ frequencies shown in Figure 1(a), for
instance, when the number of posts is 10, the stability score
of the URL given by our scoring function is 0.1, which
indicates that tags’ frequencies are fairly unstable and more
posts should be given to the URL; this score increases to 0.99
when the number of posts is increased to 400, showing that
the frequencies are very stable. Hence, the higher the stability
score of a resource, the better is the tagging quality of the
resource.

Incentive Allocation Strategies. Based on the stability

3http://www.mturk.com



score, we present an optimal solution, which gives the best
allocation of incentive among the resources concerned. Intu-
itively, this solution gives more incentive to resources that
score low in stability. The solution, which is developed by
using dynamic programming techniques, runs in polynomial
times. However, this optimal algorithm is an offline algorithm
and it assumes that all the posts that are submitted for a
resource in the future are known in advance. Hence, this
algorithm is of theoretical interest only. We further develop a
few practical and efficient incentive allocation strategies (c.f.
Figure 2). These strategies analyze previous posts (e.g., the
number of posts that have already been given to a resource
so far, and their tags’ frequencies) as well as the new posts
submitted by taggers in order to make a reasonable decision
about how incentive should be allocated. In our experiments on
the del.icio.us dataset, the gain in stability of these strategies
is close to that of the optimal solution. We have further
performed two case studies on a real application, where
the similarity of resources is measured. We found that the
application benefited by the posts suggested by our strategies.

The rest of the paper is organized as follows. In Section II,
we discuss the related works. Section III gives the problem
definition, and presents the optimal incentive allocation al-
gorithm. In Section IV we describe other practical incentive
assignment strategies. Section V discusses our experimental
results. We conclude in Section VI.

II. RELATED WORKS

Tag data, also known as “folksonomy” [3], has recently
attracted a lot of research interest. In [6], Ramage et al. studied
how to use tag data to facilitate webpage clustering. Bi et
al. [7] examined the problem of performing effective keyword
search over tag data, with the aid of IR techniques. Guo et
al. [8] used tag data to facilitate information exploration and
query recommendation. Unfortunately, tag data can be noisy
and ambiguous. It often contains spams [11], misspelled tags,
and synoymous words (i.e., different words with the same
meaning) [9], [13]. In [11], Wetzker et al. observed that a lot
of resources are under-tagged. In this paper, we study how to
improve the description quality of under-tagged resources, so
that they can provide useful information to other applications.

The important issues of enhancing tag data quality has re-
cently been addressed by a few researchers. In [14], Heymann
et al. studied the use of machine learning techniques to enrich
the information of resources. To tackle the synonymy prob-
lems, Marchetti et al. [9] proposed an algorithm that utilizes
external knowledge, such as WordNet and Wikipedia. In [10],
[13], the authors observed the phenomenon of tagging stability
– the more posts submitted to a resource, the more stable are
the relative frequencies of the tags that are associated with the
resource. We propose a metric to quantify tagging stability.
We also study the problem of optimizing the allocation of
incentives to a set of resources in order to maximize the
average tagging stability of resources. To our best knowledge,
these problems have not been studied before.

Resource Post sequence
r1 ({google, earth}, {google, geographic}, {earth}, . . .)
r2 ({pictures}, {pictures}, . . .)

TABLE I
POST SEQUENCES

III. PROBLEM DEFINITION

In this section we give a formal definition of the problem
studied in this paper. We discuss the data model in Section III-
A and define tagging quality of resources in Section III-B. The
problem of tagging under a limited amount of incentive is
given in Section III-C. We also present a theoretically optimal
solution in Section III-D.

A. Data Model

Let R = {r1, r2, . . . , rn} denote a set of n resources. Let
T = {t1, t2, . . . , tm} be a set of all possible tags. A tagger
annotates a resource by performing a tagging operation, which
is to assign tags to the resource.

Definition 1: A post is a nonempty set of tags assigned to
a resource by a tagger in one tagging operation.

Each post is associated with a posting time at which the post
is made. Assuming that no posts are made at exactly the same
time instant, then the posts of a resource ri form a sequence
with respect to their posting times. We call this sequence the
post sequence of ri.

Definition 2: The post sequence of a resource ri is the
sequence (pi(1), pi(2), . . .), where pi(k) (k ≥ 1) is the k-
th post received by resource ri.

Example 1: Suppose that T = {google, earth, geographic,
pictures} and there are two resources inR: r1 = (the homepage
of) Google Earth and r2 = Picasa. Table I shows example
post sequences of the two resources. The first post of r1 is
p1(1) = {google, earth}, while the first post of r2 is p2(1) =
{pictures}.

B. Tagging Stability and Quality

Next we define relative tag frequency distribution (rfd for
short) of a resource. After that, we define the tagging quality
of a resource based on the stability of the resource’s rfd.

We consider a resource ri that has received k ≥ 0 posts and
a tag t.

Definition 3: The frequency of tag t for resource ri, de-
noted by hi(t, k), is given by:

hi(t, k) = |{pi(j)|1 ≤ j ≤ k, t ∈ pi(j)}|. (1)
Definition 4: The relative tag frequency of t for ri, de-

noted by fi(t, k), is given by

fi(t, k) =

 hi(t, k)∑
t′∈T hi(t

′, k)
k > 0,

0 k = 0.
(2)

That is, hi(t, k) is the number of posts ri has received
that contain tag t among the first k posts, and fi(t, k) is
the frequency normalized by the number of tags (duplicate
counted) received by ri.

Definition 5: The relative tag frequency distribution (rfd)
of a resource ri after it has received k posts is a vector ~Fi(k)
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Fig. 3. MA score and stable rfd (ω = 20)

such that its j-th component is the relative frequency of tag
tj for ri, i.e., ~Fi(k)[j] = fi(tj , k).

One observation in [10] is that the rfd of a resource changes
little after the resource has received a large number of posts.
Assuming that rfd converges, we formalize the observation of
rfd stability by the following:

Definition 6: The stable rfd of a resource ri, denoted by
ϕi, is given by

ϕi = lim
k→∞

~Fi(k). (3)
In practice, we cannot compute ϕi, since we cannot get

an infinitely large number of posts for any resource. We next
present a practical version of stable rfd.

Definition 7: Given a parameter ω ≥ 2, the Moving Aver-
age (MA) score of a resource ri after it has received k ≥ ω
posts, denoted by mi(k, ω), is given by

mi(k, ω) =
1

ω − 1

k∑
j=k−ω+2

s(~Fi(j − 1), ~Fi(j)), (4)

where s is a similarity metric for quantifying the similarity of
two consecutive rfds’ derived from the same post sequence.
For convenience, we call s(~Fi(j − 1), ~Fi(j)) the adjacent
similarity at the j-th post. In this paper, we use cosine-
similarity [15] for s (Appendix A). Notice that if a resource
has received less than ω posts, its MA score is not defined.

Figure 3 illustrates the idea of MA scores. The x-axis is the
number of posts (k) given to the resource and the y-axis is the
similarity score. In the figure, two lines are displayed, which
show the adjacent similarity and the MA score as k varies.
For example, to compute the MA score at the 40-th post, i.e.
mi(40, ω), we consider the (40− ω + 1)-st to the 40-th post
and calculate the adjacent similarity among these ω rfds’. The
MA score is the average of ω − 1 adjacent similarity scores.
Intuitively, a high MA score indicates that these ω rfds’ are
highly similar. We now define the concept of practically-stable
rfd as follows:

Definition 8: Given a parameter ω ≥ 2 and a threshold
τ , the practically-stable rfd of a resource ri, denoted by
ϕ̂i(ω, τ), is given by

ϕ̂i(ω, τ) = ~Fi(k), (5)

where k is the smallest number such that

mi(k, ω) > τ and k ≥ ω. (6)
The threshold τ in Definition 8 is used to determine

whether the MA score is considered to be high enough. In
our definition, the range of cosine-similarity score is [0, 1].

google geographic earth pictures

~F1(3) 0.4 0.2 0.4 0
ϕ̂1 0.25 0.25 0.5 0

~F2(2)) 0 0 0 1
ϕ̂2 0.33 0 0 0.67

TABLE II
rfd’S AND STABLE rfd’S

So τ is set to be close to 1. The fact that the MA score is
higher than τ indicates that the rfd is relatively stable. For
instance, in Figure 3, if we set ω = 20 and τ = 0.99, we have
mi(100, ωs) > τ . This indicates that the rfd’s from the 81-st
post to the 100-th post are highly similar. So, ri’s rfd is very
stable after 100 posts. In fact, 100 is the smallest k in this
example such that mi(k, ω) > τ . Hence, the practically stable
rfd of the resource is ϕ̂i = ~Fi(100). For ri’s practically-stable
rfd to be defined, the length of ri’s post sequence should be
large enough such that there exists a k that satisfies Equation 6.

For notational convenience, we omit ω and τ when their
values are understood and simply write ϕ̂i instead of ϕ̂i(ω, τ).
In the following discussion, when we mention stable rfd, we
refer to the practically-stable rfd, i.e. ϕ̂i.

Golder explains that the rfd of a resource can be viewed as
taggers’ description of the resource [10]. The fact that the rfd
becomes stable reflects that the description is becoming more
accurate. Given a resource ri, our objective is to quantify the
quality of the tags the resource has received, even though the
resource may not have received enough posts to reach tagging
stability. Our quality metric is defined using practically-stable
rfd as the reference. Intuitively, the more similar the rfd of a
resource is to the corresponding stable rfd, the higher is the
tagging quality of the resource.

Definition 9: The tagging quality of a resource ri that has
received exactly k posts, denoted by qi(k), is the similarity
between its rfd ~Fi(k) and ri’s stable rfd ϕ̂i, i.e.,

qi(k) = s(~Fi(k), ϕ̂i). (7)
Furthermore we define the tagging quality of a set of

resources R as the average tagging quality of the resources
in R.

Definition 10: Let ~k = (k1, k2, . . . , kn) be a vector such
that ki is the number of posts resource ri has received. The
tagging quality of R, denoted by q(R,~k), is given by

q(R,~k) =
1

n

n∑
i=1

qi(ki). (8)

Example 2: Consider the resources r1 = Google Earth and
r2 = Picasa mentioned in Example 1. Suppose they have
received k1 = 3 and k2 = 2 posts, respectively. If their rfd’s
and stable rfd’s are those that are listed in Table II, then their
tagging qualities are

q1(k1) = s(~F1(3), ϕ̂1) = 0.953,

q2(k2) = s(~F2(2), ϕ̂2) = 0.897.

Therefor, the quality of R is q(R,~k) = (0.953 + 0.897)/2 =
0.925.
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C. Tagging Under Limited Budget

Given a limited amount of incentive (or budget), our objec-
tive is to assign the incentive to resources so as to maximize
the overall quality of the resources. We use the term post task
to refer to a vacant job of submitting a post for a specific
resource. A post task can either be assigned to a tagger by the
system, or, in the case of crowdsourcing, chosen by a tagger
according to her wish. Upon completing a post task, the tagger
is rewarded. For simplicity, we assume that every post task is
given one reward unit. We remark that our solution can easily
be extended to handle post tasks of different reward amounts.
Our optimization problem is defined as follows.

Definition 11: Given a set of resources R such that each
resource ri ∈ R has already been tagged with ci posts. Let ~c
= (ci, . . . , cn). Given a budget of B reward units and let xi
be the number of post tasks allocated to resource ri such that∑n
i xi = B. The problem of incentive-based tagging is to

return an assignment ~x = (x1, . . . , xn) such that the quality
of R, after all the B post tasks have been completed, i.e.,
q(R,~c+ ~x), is maximized.

Figure 4 shows an illustrative example. In the figure, R
consists of three resources, which have received 3, 2, and
4 posts, respectively (~c = (3,2,4)). Given a budget B = 7
units, one possible post task assignment is ~x = (2,1,4). The
tagging quality of R given this assignment is q(R,~c + ~x) or
q(R, (5, 3, 8)).

The incentive-based tagging problem can be reformulated
as the following optimization problem P(B,R).

given R,~c, post sequence of each resource (9)
maximize q(R,~c+ ~x) (10)

subject to
n∑
i=1

xi = B (11)

xi ∈ Z∗ (12)

Equation 10 is the quality of a set of tagged resources after
all post tasks are completed. Since maximizing the average
quality is equivalent to maximizing the total quality, we re-
place Equation 10 by Equation 13 to simplify our discussions.

n∑
i=1

qi(ci + xi) (13)

Table III summaries the symbols used in this paper.
Example 3: Continuing with our running example of two

resources r1 = Google Earth and r2 = Picasa. Let ~c = (3,2)
be the posts that the two resources have already received.
From Example 2, we have q1(3) = 0.953 and q2(2) = 0.897.

Notation Description
Data Model

R A set of resources
T A set of tags
n Number of resources in R
ri The i-th resource in R
t A tag in T

pi(k) The k-th post received by ri
Stability and Quality

hi(t, k), fi(t, k) Frequency and relative frequency of t for resource ri after k posts
~Fi(k) The rfd of resource ri after k posts

mi(k, ω) The MA score of resource ri after k posts
ϕi The stable rfd of resource ri

ϕ̂i(ω, τ) The practically-stable rfd of resource ri
qi(k) Tagging quality of resource ri after k posts
q(R, ~k) Tagging quality of resource set R

Incentive-based Tagging Problem
B Budget for the incentive-based tagging
ci The number of posts already received by resource ri
xi The number of post tasks allocated to resource ri
ω The window parameter used under MU and FP-MU

TABLE III
SYMBOLS USED IN THIS PAPER

(x1, x2) q1(c1 + x1) q2(c2 + x2) q(~c+ ~x)
(0, 2) 0.953 0.992 0.973
(1, 1) 0.990 0.990 0.990
(2, 0) 0.943 0.897 0.920

TABLE IV
QUALITY OF RESOURCES

If our budget B = 2, then there are only three possible post
task assignments, namely, ~x = (2,0), (1,1), and (0,2). Suppose
that the next 2 posts r1 will get are {geographic, earth} and
{google, geographic}, while r2 will get {google, picture} and
{google}, the tagging quality of the resources under the three
possible assignments are shown in Table IV. From the table,
we see that the assignment ~x = (1,1) results in the highest
tagging quality. It is thus the optimal assignment.

D. An Optimal Solution

In this section we present a dynamic programming solution,
named DP, which gives us a theoretically optimal solution to
the incentive-based tagging problem.

This solution assumes that all posts a resource will receive
as well as the stable rfd of each resource are known. Hence,
the value qi(ci + xi) can be computed for each resource ri
and for each value xi ≤ B. As a result, the theoretically
optimal solution for the optimization problem P(B,R) can
be found by dynamic programming techniques. Specifically,
let Q(B,n) be the optimal value to the problem P(B,R) and
let Q(b, l) (1 ≤ b ≤ B, 1 ≤ l ≤ n) be the optimal solution to
the subproblem P(b, {r1, r2, . . . , rl}). We use the following
recurrence equation to computer Q(B,n):

Q(b, l) =

{
q1(c1 + b) l = 1,
max0≤xl≤bQ(b− xl, l − 1) + ql(cl + xl) l > 1.

(14)
The idea is that to find the optimal solution for the problem
P(b, {r1, r2, . . . , rl}), we enumerate all possible values for xl,
which ranges from 0 post tasks to a maximum of b post tasks.
The value x∗l that maximizes Q(b−xl, l−1)+ql(cl+xl) is the
number of post tasks that should be assigned to resource rl in



an optimal solution. A correctness proof of the DP algorithm
is given in Appendix B. The time and space complexities of
DP are O(n|T |B2) and O(nB + n|T |), respectively.

Although DP generates an optimal solution, it cannot be
applied in practice. The reason is that the stable rfd’s ϕ̂i
are generally not know, and hence the quality qi(ci + xi)
cannot be computed. Nonetheless, DP is of theoretical interest
because it serves as an optimal reference against which our
practical solutions are compared. In Section IV, we present
some practical incentive allocation strategies.

IV. INCENTIVE ALLOCATION STRATEGIES

We now propose five practical incentive allocation strate-
gies. They do not require that the resources’ stable rfd’s,
ϕ̂i, be known, nor do they need any posts that have not yet
been received. These strategies follow the framework shown
in Algorithm 1. The main idea of this framework is to invest
one unit of budget at a time, and to allocate one post task to
a chosen resource based on some simple strategies.

Algorithm 1 Strategy Framework
Require: Budget B, Resources R, Initial no. of posts ~c
1: for i← 1 to n do x[i]← 0

2: INIT()
3: while B > 0 do
4: i0 ← CHOOSE()
5: Present ri0 for a tagger to tag
6: The tagger completes a post task on ri0
7: UPDATE()
8: x[i0]← x[i0] + 1, B ← B − 1

return ~x

In the algorithm, arrays x and c are used to represent ~x
and ~c, respectively. The value of each xi is initialized to 0
(Step 1). INIT() is used to initialize some global variables that
are customized for each strategy. In each iteration of the while-
loop, a resource ri0 is selected by CHOOSE(). Then a new post
task for ri0 is presented to a tagger (Step 5). After the post task
is completed (Step 6), UPDATE() is called to update the global
variables. xi0 and B are also updated accordingly. This process
repeats until the budget is exhausted. The various allocation
strategies differ in the implementation of CHOOSE(), which is
used to choose the next resource to be presented to the tagger.

Let TI, TC and TU be the time complexity of INIT(),
CHOOSE(), and UPDATE(), respectively. The total time com-
plexity of Algorithm 1 is O(n+ TI +B(TC + TU)). We will
further elaborate on the time and space complexities of the
various allocation strategies at the end of this section. We next
describe these strategies.

A. The Free Choice Strategy (FC)

The Free Choice strategy (FC) allows taggers to freely de-
cide which resource they want to tag. The function CHOOSE()
simply returns the resource a tagger picks. This strategy is
a baseline solution which follows the practice of existing
collaborative tagging systems.

B. The Round Robin Strategy (RR)

The Round Robin strategy (RR) chooses a resource in a
round-robin fashion, regardless of how many posts they have
received or how stable their rfds are. RR does not require
much information to be maintained by the system and is very
simple to implement. Resources get roughly the same number
of post tasks. Algorithm 2 shows the INIT(), CHOOSE() and
UPDATE() functions of RR. The global variable l stores the id
of the the last chosen resource.

Algorithm 2 Round Robin (RR)
1: procedure INIT()
2: l← 1
3: function CHOOSE()
4: return (l mod n) + 1
5: procedure UPDATE()
6: l← l + 1

C. The Fewest Posts First Strategy (FP)

In general, if a resource has received only a small number
of posts, then the quality improvement it gets by giving it
an additional post is much more significant than the case if
the resource has already been given many posts. To illustrate,
Figure 5 shows how the tagging quality (in terms of MA
scores) of two resources, ri and rj , change as the number
of posts they receive increases. Suppose ri and rj have so
far received 10 and 50 posts, respectively, and that we have
a budget B of 10 post tasks, the figure shows that allocating
these 10 post tasks to ri results in a much greater quality
improvement than if the post tasks are allocated to rj . The
Fewest Posts First strategy (FP) follows this observation and
chooses the resource that has received the fewest posts to be
allocated the next post task.

Algorithm 3 Fewest Posts First (FP)
1: procedure INIT()
2: for i← 1 to n do
3: Q.push((c[i], i)) // Q is a priority queue
4: function CHOOSE()
5: (cxi0 , i0)← Q.pop()
6: return i0
7: procedure UPDATE()
8: Q.push((c[i0] + x[i0], i0))

Algorithm 3 shows the details of FP. A priority queue is
used to maintain the set of resources and they are ordered
by the total number of posts they have received. FP always
chooses the resource ri with the smallest ci + xi value to be
allocated the next post task. A potential weakness of FP is that
it does not consider the different properties of the resources
in its post task selection. For example, a webpage (URL) may
carry complex and rich contents, which require many posts to
adequately describe them. In this case, the URL needs many
posts to go pass its unstable point. On the other hand, another
webpage may focus on one single topic, which only needs a
handful of posts to well describe it. In this case, the tagging
quality improvement brought about by a post task could be
more significant if it is given to the complex webpage rather
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than to the simple webpage, even if the former has already
received more posts than the latter.

D. The Most Unstable First Strategy (MU)

As mentioned in Section III-B, the MA score of a resource
measures the stability of the resource’s rfd and thus the
resource’s tagging quality. The Most Unstable First strategy
(MU) chooses the resource with the smallest MA score be-
cause presumably that is the resource which requires quality
improving the most. Algorithm 4 gives the details of MU.
Since the MA score is defined over a window of ω posts,
resources that have not received at least ω posts are ignored by
MU. (This issue is addressed by our next strategy.) Similar to
FP, a priority queue is used under MU. Specifically, resources
are ordered by their MA scores, mi(c[i] + x[i], ω).

Algorithm 4 Most Unstable First (MU)
1: procedure INIT()
2: for i← 1 to n do
3: if resource ri has received at least ω posts then
4: Q.push((mi(c[i], ω), i)) // Q is a priority queue
5: function CHOOSE()
6: (mai0 , i0)← Q.pop()
7: return i0
8: procedure UPDATE()
9: Q.push((mi0 (c[i0] + x[i0], ω), i0))

To compute mi(ci + xi, ω), O(|T |) space and O(ω|T |)
time are required if the rfds’ are stored as vectors. However,
in practice, the number of distinct tags associated with a
particular resource is usually very small compared with |T |.
We can reduce the space and time complexities by using a
self-balancing binary search tree (eg. map in C++ and Java)
to store the non-zero tag frequency information. This makes
MU a practical strategy even for large datasets.

There are two issues in applying MU. First, we need to set a
value for the parameter ω, which is the window size for com-
puting the MA score. We will discuss this issue in Section V.
The second issue is that resources that have received less than
ω posts are ignored by MU. This is undesirable because these
resources are largely under-tagged and are in need of post
tasks to improve their tagging quality.

E. The Hybrid Strategy (FP-MU)

If there are resources that have not received at least ω posts,
the FP-MU strategy uses FP to allocate post tasks to these
resources. We call this the warm-up stage of FP-MU. Once

TABLE V
TIME AND SPACE COMPLEXITIES

Strategy Time Space
DP O(n|T |B2) O(nB + n|T |)
FC O(n+ B) O(n)
RR O(n+ B) O(n)
FP O((n+ B) logn) O(n)
MU O((n+ B) logn+ (nω + B)|T |) O(nω + n|T |)

FP-MU O((n+ B) logn+ (nω + B)|T |) O(nω + n|T |)

all resources have received at least ω posts, FP-MU switches
to the MU strategy because the MA scores of all resources are
now available.

Algorithm 5 Hybrid Strategy (FP-MU)
Require: Budget B, Resources R, Initial no. of posts ~c
1: b← 0
2: for i← 1 to n do b← b+max (0, ω − c[i])
3: b← min (B, b)
4: ~x← FP(b,R, ~c)
5: return ~x + MU(B − b,R, ~c+ ~x)

Algorithm 5 shows the details of the CHOOSE() function of
FP-MU. Steps 1 and 2 calculate the total amount of reward
units that are needed to bring all resources to at least ω posts.
Step 3 ensures it does not exceed the given budget. Then the
FP and the MU strategies are employed in that order. Note
that a larger ω implies more budget is spent in the warm-up
stage, and so FP-MU behaves more like FP. We will further
discuss how ω should be set in Section V.

Table V summarizes the time and space complexities of
all the proposed strategies. Their derivation can be found in
Appendix C. With appropriate data structures (e.g. priority
queue, self-balancing binary search tree), these strategies are
efficient in both time and space.

V. EXPERIMENTS

In this section we present our experiment results evaluating
the various incentive allocation strategies. We first describe
the experiment setup in Section V-A. Then we evaluate the
strategies in Section V-B. In Section V-C we illustrate the
performance of our strategies using two case studies.

A. Experimental Setup

We use the dataset provided by the authors of [11]. This
dataset contains all posts collected by del.icio.us during the
whole year of 2007 for tagging webpages (URLs), which we
regard as resources. Ideally, the tagging system (del.icio.us in
our case) should run long enough so that the post sequence of
each resource contains enough posts to cover the resource’s
stable point. However, since our dataset only contains one-
year worth of posts, the post sequences of many resources
are way shorter than what the ideal case requires. In order to
(1) measure the tagging quality of the various strategies with
reference to the theoretical stable rfd’s and to (2) compare
the strategies against the theoretical optimal strategy DP, we
focus only on the resources in the dataset that have reached
their stable points with the posts they received in Year 2007.
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Fig. 6. Experiment Results

Specifically, we use relatively large values of ωs = 20 and
τs = 0.9999 as the values of ω and τ (See Definition 8,
Equation 6) to check if the post sequence of a resource derives
a stable rfd. We identified 5,000 resources from the del.icio.us
dataset that satisfy the above test. Our experiments were then
conducted on these 5,000 resources (and their post sequences).
Note that the parameters ωs and τs were used only to prepare
our dataset. They represent very stringent requirements of
stability. Strategies MU and FP-MU require the parameter ω
too. As we will see later in our experimental results, MU and
FP-MU can use a much smaller ω and yet they are able to
achieve very good performance4.

There were a total of 562, 048 posts given to the 5,000
selected resources in Year 2007, or 112 posts for each on
average. In our model, we assume that resources are given
some initial numbers of posts (i.e., ~c) before an incentive
allocation strategy is run. In our experiment, we take all the
posts given in January 2007 as those initial posts. These
January posts consist of 148, 471 posts, or 29.7 posts per
resource on average. These posts are very unevenly distributed
to the resources: while some resources have more than 150
posts, over 1000 of them have 10 posts or less. So, many
resources are under-tagged. These posts are accessible by all
strategies for making incentive allocation decision.

Any post given on or after Feb 1st is considered a result of
a post task assigned by some strategy. For example, consider
a resource ri that has 50 posts between Feb 1st and Dec 31st.
If a strategy A decides to allocate three reward units to ri,
then the first three posts of ri given after Feb 1st are treated
as the result of the three post tasks offered by A. The tagging
quality of ri under A is then measured by the post sequence of
ri up to the last one of these three posts. For the theoretically
optimal solution DP, it can access the complete Year 2007 post

4We have repeated our experiments with other values of (ωs, τs), such as
(40, 0.99999), to prepare different datasets. Since the results of these different
datasets led to similar conclusions, we omit the discussions on these datasets
in this paper.

sequences of all resources to make its allocation decision. (The
post tasks DP offers is of course limited by the budget B.)
For other strategies, they only have the information about the
post sequence up to January 31st, as well as the result of any
post tasks they offer. The default budget is 5, 000 reward units,
which is 3.4% of the number of posts given in January 2007.
For MU and FP-MU, the default value of ω is 5.

All our experiments were written in C++ and were executed
on a machine with 8G memory, i5 CPU, 64-bit linux system.

B. Incentive Allocation Strategies

1. Tagging Quality. Figure 6(a) shows the tagging quality
of the resources under different strategies as the budget B
varies from 0 to 10,000 units. The tagging quality of resources
is 0.865 on January 31st, before any post tasks are done.
From the figure, we see that FC, which allows taggers free
choices of resources to tag, does not improve the tagging
quality of the resources much even under a very big budget.
For example, when B = 10,000, the tagging quality is only
increased by a mere 0.4% compared with the January 31st
quality value. The theoretically optimal solution DP, on the
other hand, improves the quality by 9.1% Interestingly, FP
and FP-MU perform very well. The tagging quality under
them are very close to that under DP. Between the two, FP-
MU edges over FP when B > 3,000. When B ≤ 3000, FP-
MU operates as FP because some of the resources have not
received the minimum ω = 5 posts for FP-MU to switch to
MU. We also note that even with a very small budget, such as
B = 1,000, FP and FP-MU both give sharp improvements in
the resources’ tagging quality. We also observe that MU does
not improve tagging quality significantly. This is because it
ignores those resources that have received less than 5 posts.
These resources are heavily under-tagged and are the resources
whose tagging quality allows much rooms for improvements.
Finally, RR shows intermediate performance, since it is not
paying particular attention to the under-tagged resources, nor
is it focusing on those that have already been over-tagged.



We have extended the budget B to much bigger values
until all 5,000 resources’ rfd’s are practically stable. We found
that FC requires more than two million post tasks to achieve
stability while FP and FP-MU require only about 200, 000,
which is 90% less than what FC needs. This experiment shows
that a good incentive allocation strategy can significantly
reduce the budget requirement for achieving tagging stability.

2. Over-tagging and Wasted Posts. The reason why FC
fails to improve tagging quality is that most taggers focus only
on popular resources (in our experiment, popular webpages).
Since these popular resources are already over-tagged, a signif-
icant portion of post tasks offered by FC are essentially wasted
(i.e., these post tasks are on already over-tagged resources).
To illustrate, Figures 6(b) and 6(c) show the number of over-
tagged resources and the number of wasted post tasks under
various strategies when the budget increases. We see that the
number of over-tagged resources increases under FC and RR,
while there are no increases under the other strategies which
focus on helping either under-tagged or low-tagging-quality
resources. We also see that FC wasted much post tasks, while
the other strategies except RR did not waste any post tasks on
over-tagged resources. In fact, FC wasted about 48% or nearly
half of its post tasks. Again, this shows that a good allocation
strategy can significantly save valuable tagging budget.

3. Under-tagging. Instead of wasting post tasks on over-
tagged resources, a good allocation strategy should also assign
post tasks to those under-tagged resources to help them pass
their unstable points. From our experiment, we see that for
most resources, their rfd’s are not stable if each is given less
than 10 posts. (In particular, the adjacent similarity of those
rfd’s are typically less than 0.95.) If we consider a resource
to be under-tagged if it has received not more than 10 posts,
then Figure 6(d) shows the percentage of resources that are
under-tagged after a certain budget B of post tasks have been
performed under the various strategies. Intuitively, a good
strategy should bring this number down as much as possible,
so that more resources’ tagging information are of reliably
good quality, thus improving all tag-based applications.

From the figure, we see that about 25% of the resources are
initially under-tagged. FC is the worst in reducing this per-
centage. This is because most taggers ignore the less-popular
resources, leaving them severely under-tagged. Since RR does
not focus on under-tagged resources either, its performance
is only marginally better than FC. The performance of FP
is interesting. It doesn’t reduce the under-tagged percentage
initially, but the percentage drops sharply when B is 6,000 to
7,000. This is because FP assigns post tasks to those that have
received the fewest posts first. Once FP has brought the post
counts of all under-tagged resources to 9 posts, any additional
post tasks will carry these under-tagged resources over the
10-post threshold. This explains the sharp drop in the under-
tagged resource percentage. The performance of MU is also
very good, particularly when the budget is relatively small
(e.g., when B < 7,000). Since MU focuses on those resources
with the most unstable rfd’s, it tends to help the under-tagged
resources first. For DP, the percentage drops gradually and

not as sharply as MU because it is not optimized for reducing
the number of under-tagged resources. The performance of
FP-MU is seen to be between those of FP and MU.

4. Effect of Number of Resources. From the 5,000
resources, we randomly pick smaller subsets to evaluate the
effect of the dataset size. Figure 6(e) shows the effect of
the number of resources on tagging quality. We observe that
the tagging quality decreases when the number of resources
increases. This is because with a fixed budget, when the
number of resources becomes larger, the number of post tasks
received by each resource is less. We again observe that FP
and FP-MU come closest to DP in terms of tagging quality.

5. Effect of ω. Both MU and FP-MU use ω to control the
moving average window size. Figure 6(f) shows the effect of
ω on MU and FP-MU. We also show the tagging quality of
FP as a reference. Under MU, the tagging quality drops with
ω. The reason is that the larger ω is, the more under-tagged
resources MU ignores. This lowers the tagging quality. For
FP-MU, a larger ω means a longer warm-up stage, during
which FP-MU operates as FP. From the figure, we see that
when ω > 8, the warm-up stage never finishes and so FP-
MU performs the same as FP. When ω ≤ 8, FP-MU switches
to MU once its warm-up stage is done. This gives FP-MU
slightly better performance than the pure FP strategy.

6. Efficiency. We test the computational time required by
each strategy. Since the running time of FC is almost the same
as that of RR we only show RR here. Figure 6(g) shows the
effect of budget on the performance of these strategies. We
can see that DP does not scale well; it takes more than 3, 000
seconds to calculate the optimal number of post tasks, when
the budget is 10, 000 reward units. On the other hand, other
strategies scale well with the budget. In these experiments,
RR runs the fastest, while FP runs a little bit slower because
it has to maintain a priority queue. Since MU and FP-MU
have to calculate the similarity between rfd’s and MA scores,
their running times are much longer than that of FP. For FP-
MU, when the budget is smaller than 3, 000, all post tasks are
allocated by FP, and so it is fast; when the budget becomes
larger, MU can be used to allocate post tasks, therefore, its
running time is nearly the same as MU’s. Figure 6(h) shows
the effect of the number of resources on the performance of
strategies. We can see that all our strategies scale well and
runs significantly faster than DP.

Summary. The effectiveness of FP-MU is the closest to that
of DP; however, it is not very efficient. On the other hand, FP
is almost as good as FP-MU. Besides, it is more efficient than
FP-MU and it is also easy to implement. Moreover, FP can be
run offline, and does not need the information of the newest
post tasks in order to determine the allocation of incentives.
Based on these experimental results, we recommend FP to be
used.

C. Case Study: Similarity Measurement

So far, we have compared the various allocation strategies
in terms of the tagging quality of resources. In this section we
illustrate how the improvement in tagging quality translates



Rank Jan. 31 FC (B = 10,000) FP (B = 10,000) Dec. 31
1 javaranch.com physicsclassroom.com physicsclassroom.com physicsclassroom.com
2 onjava.com hyperphysics.phy-astr. practicalphysics.org practicalphysics.org

gsu.edu/hbase/hph.html
3 java.sun.com practicalphysics.org hyperphysics.phy-astr. hyperphysics.phy-astr.

gsu.edu/hbase/hframe.html gsu.edu/hbase/hframe.html
4 jguru.com hyperphysics.phy-astr. hyperphysics.phy-astr. hyperphysics.phy-astr.

gsu.edu/hbase/hframe.html gsu.edu/hbase/hph.html gsu.edu/hbase/hph.html
5 bluej.org javaranch.com physicsforums.com physicsforums.com
6 kickjava.com robocode.sourceforge.net upscale.utoronto.ca/ upscale.utoronto.ca/

GeneralInterest/Harrison/Flash GeneralInterest/Harrison/Flash
7 java.sun.com/docs/books/tutorial www.onjava.com bethe.cornell.edu micro.magnet.fsu.edu/primer/

java/scienceopticsu/powersof10
8 java.sun.com/docs/codeconv java.sun.com grc.nasa.gov/WWW/K-12/Numbers/Math/ bethe.cornell.edu

Mathematical Thinking/index.htm
9 checkstyle.sourceforge.net jguru.com micro.magnet.fsu.edu/primer/ grc.nasa.gov/WWW/K-12/Numbers/

java/scienceopticsu/powersof10 Math/Mathematical Thinking/index.htm
10 developer.com/java kickjava.com sodaplay.com madsci.org

TABLE VI
TOP-10 RESULTS OF WWW.MYPHYSICSLAB.COM

URL Description Jan 31 FC (B = 10,000) FP (B = 10,000) Dec 31
6 video editing 8 video editing 9 video editing

dvdvideosoft.com video editing 10 video sharing 2 video sharing 2 video sharing 1 video sharing
2 other

2 photo editing 3 photo editing 4 photo editing 4 photo editing
slashup.com photo editing 4 photo sharing 1 photo sharing 6 photo sharing 6 photo sharing

4 other 5 other
bdonline.co.uk news on architecture 3 architecture 8 architecture 9 architecture 9 architecture

7 news 2 news 1 news 1 news
espn.go.com sports 10 sports 10 sports 10 sports 10 sports

TABLE VII
SOME MORE TOP-10 RESULT COMPARISONS

into the improvement of tag-based applications. A fundamental
operation of many IR techniques is to measure the similarity
of resources [16]. Such a resource-resource similarity measure
is used in many applications such as searching [7], [17],
recommendation [8], and clustering [6]. Given the tagging
information of resources, one popular method to measure
resources’ similarity is to compute the cosine similarity of
resources’ rfd’s [6], [16]. We discuss two case studies and
show how a good allocation strategy improves the quality of
such a similarity measure.

1. Top-10 Similar Resources. In our first case study, we
pick a subject webpage, say r∗, indexed by del.icio.us and
determine r∗’s rfd, ~F∗. All other webpages rfd’s are then
compared with ~F∗ using cosine similarity. The top-10 most
similar webpages are so determined. The result of this top-
10 search for the subject webpage www.myphysicslab.com is
shown in Table VI. The first column (Rank) shows the ranks of
the top-10 similar webpages according to the cosine similarity
scores. The 2nd column (Jan 31) shows the top-10 results if
the webpages’ rfd’s are derived from the posts obtained up to
Jan 31. In other words, these are the initial rfd’s before any
allocation strategies are applied. The 5th column (Dec 31)
shows the top-10 results if all the posts collected in 2007 are
used to derive webpages’ rfd’s. This is thus the ideal top-10
result if all tagging information is used. The 3rd column (FC)
and the 4th column (FP) show the result if a budget of 10,000
post tasks are offered under FC and FP, respectively, to derive
the rfd’s.

The subject webpage provides simulations of physics ex-
periments. These simulations are written in Java. From the
“Jan 31” column, we see that all of the top-10 webpages are
java-related. This is because most of the initial posts given

to the subject webpage focus on the java implementation
of its simulations programs. This is obviously poor top-10
result because the main theme of the subject webpage is
about physics, not the Java programming language. From
the “Dec 31” column, we see that all the top-10 webpages
are about physics, which is a perfect. This shows that by
giving webpages enough posts, the tags accurately describe the
webpages. The results of FC and FP given the same budget
(10,000) differ significantly. For FC, only 4 out of its top-10
webpages are about physics. The other 6 are on Java. On the
other hand, the top-10 list of FP is almost perfect. It gets 9
out of the top-10 webpages given by the ideal case (Dec 31).
Moreover, the rankings of the two lists are almost the same.

We have repeated the same experiment using other subject
webpages and in most cases FP outperforms FC significantly
and FP’s top-10 lists are very similar to those of the ideal
scenario. Table VII shows a few more examples. For example,
the webpage dvdvideosoft.com is a website on video editing
software. However, all top-10 webpages obtained using the
rfd’s derived by the initial (Jan 31) posts are video sharing
sites. The ideal scenario (Dec 31), on the other hand, gives 9
video editing sites and 1 video sharing site. This combination
is matched very closely by FP, which gives 8 video editing
sites and 2 video sharing sites. This result is much better
than that of FC, as shown in the table. Finally, we remark
that for the webpage espn.go.com, all of the 4 cases give the
same (perfect) results. This is because espn is a very popular
resource, and for those, FC has no problems in describing
them with enough posts and tags.

2. Accuracy of Similarity Ranking. Having discussed
how our strategy can improve the quality of top-k queries,
now let’s see how they can help the overall accuracy of



resource-resource similarity measurements. As pointed out
by [16], different similarity measures have different distribu-
tional properties. Besides it is often difficult to quantify the
similarity between two resources. On the other hand, to rank
the resource pairs based on their similarities is more intuitive.
So we follow their framework to evaluate the overall resource-
resource similarity derived from their rfd’s. Specifically, given
a set of resources R, it first ranks all pairs of resources
by their cosine similarity. It then compares the ranking to a
ground truth with Kendall’s τ correlation coefficient, which is
a correlation measurement between two rankings, with value
ranging from −1 to 1, where −1 means two rankings are
totally opposite, and 1 means they are exactly the same. The
ground truth is generated from the Open Directory Project5,
where resources from R are hierarchically categorized. For a
particular resource pair, it measures the similarity based on
their distance in the hierarchy; the smaller the distance, the
higher is their similarity.

Figure 7(a) shows how our strategies can help to improve
the overall accuracy of similarity measurement among the re-
sources. For instance, with 5, 000 more posts assigned by FP-
MU and FP, the overall accuracy of similarity measurement
can be improved by 7.6% and 7.1% respectively, which are
much more significant than we can get from FC.

Besides, an even more interesting discovery is that Fig-
ure 7(a) is highly similar to Fig 6(a), which confirms the
intuition that if the tagging quality of the set of resources R
is high, the overall accuracy of similarity measurement (the
Kendall’s τ score) should also be high. To verify this, we
plot Figure 7(b) in which each point (xi, yi) corresponds to
a post task assignment. Specifically, xi is the tagging quality
of R after all the post tasks are completed; and yi is the
accuracy of similarity measurement derived from their posts.
From this figure we can observe a strong correlation between
the similarity accuracy and the tagging quality. By denoting
the tagging qualities and overall similarity accuracies with ~x
and ~y we calculate their correlation with Equation 15,

corr(~x, ~y) =

∑n
i=1(xi − x̄)(yi − ȳ)

(n− 1)sxsy
(15)

where x̄ and sx (ȳ and sy) are the mean and standard
value of ~x (~y) respectively [18]. The correlation between
tagging qualities and overall similarity accuracies is over 98%,
meaning that our tagging quality metric can well indicate the
result quality of similarity related IR tasks performed on the
tagged resources.

VI. CONCLUSIONS

In this paper, we study how to improve the quality of
tag data, in order to facilitate applications that make use of
these data. We propose a metric to measure the quality of tag
descriptions, based on the stability of their relative frequencies.
We also examine how to improve their quality under a limited
amount of incentive. We study an optimal solution, and also

5http://www.dmoz.org/
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Fig. 7. Overall Accuracy of Resource-Resource Similarity

present a number of practical and efficient incentive allocation
strategies. Our experiments show that the FP strategy is highly
effective and efficient. In the future, we will study how our
solution can handle post tasks with different costs, and also
how user preference should be considered in the allocation
process. We will also develop a system prototype and a user
interface to support incentive-based tagging.
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APPENDIX

A. Cosine-similarity

Given two rfd’s ~Fi(ki) and ~Fj(kj), cosine-similarity is
given by: s( ~Fi(ki), ~Fj(kj))

∑
tl∈T

( ~Fi(ki)[l]· ~Fj(kj)[l])√∑
tl∈T

~Fi(ki)[l]2
√∑

tl∈T
~Fj(kj)[l]2

ki > 0 and kj > 0,

0 otherswise.
(16)

B. Dynamic Programming Solution

In this section, we present a dynamic programming solution
to the tagging problem. As mention in Section III-D, the value
of qi(ci +xi)(i = 1, 2, . . . , n) can be obtained for resource ri
when it receives xi more posts.

We note that P(B,R) exhibits optimal substructure, which
enables dynamic programming. To show this, let (Q,X) be
the optimal solution to P(B,R), where Q is the optimal
value and X = {xi|i = 1, 2, . . . , n} is the assignment of
xi to ri in the optimal solution. Consider the subproblem
P(B − xn,R−{rn}), we claim that (Q− qn(cn + xn), X −
{xn}) is the optimal solution to this subproblem. Suppose
(Q′, X ′) is the optimal solution to P(B − xn,R − {rn}),
and Q′ > Q − qn(cn + xn). Let (Q′′, X ′′) = (Q′ + qn(cn +
xn), X ′ ∪{xn}). Since

∑n−1
i=1 x

′
i = B−xn, (Q′′, X ′′) is also

a solution to P(B,R). However, Q′′ = Q′+qn(cn+xn) > Q,
which violates the assumption that Q is the optimal value to
P(B,R). Therefore, (Q − qn(cn + xn), X − {xn}) must be
the optimal solution to the subproblem.

Next, we define the optimal value of P(B,R) recursively.
Let Q(b, l) be the optimal value to subproblem P(b, l), where
0 ≤ b ≤ B and 1 ≤ l ≤ n. We obtain the recurrence

Q(b, l) =

{
q1(c1 + b) l = 1,
max0≤xl≤bQ(b− xl, l − 1) + ql(cl + xl) l > 1.

(17)
The optimal assignment X(b, l) to P(b, l) can be defined

accordingly. Let yb,l be the point at which the optimal value
of Equation 17 is achieved, i.e.,

yb,l = arg max
0≤xl≤b

Q(b− xl, l − 1) + ql(cl + xl). (18)

Note that yb,1 = b, b = 0, 1, . . . , B. We have

X(b, l) =

{
{x1 = yb,1} l = 1,
X(b− yb,l, l − 1) ∪ {xl = yb,l} l > 1. (19)

Our bottom-up, dynamic programming algorithm is showed
in Algorithm 6. Q[b, l] and y[b, l] are both B×n arrays storing
the optimal value of P(b, l) and the corresponding point yb,l
respectively. So the optimal value of P(B,R) is Q[B,n], and
the optimal assignment is X[B,n].

We first deal with the bound case where l = 1(Step 1 to
3). Then for each subproblem P(b, l), we enumerate all the
possible assignments to xl and figure out the one at which
the optimal value is achieved. Q[b, l] and y[b, l] are updated
accordingly(Step 4 to 9). The optimal value Q∗ = Q[B,n]
and the optimal assignment X∗ = X[B,n] are calculated in
Step 10 to 14.

Algorithm 6 DP
Require: Budget B, Resources R, Initial no. of posts ~c
1: for b← 0 to B do
2: Q[b, 1]← q1(c1 + b)
3: y[b, 1]← b

4: for l← 2 to n do
5: for b← 0 to B do
6: for x← 0 to b do
7: if Q[b, l] < Q[b− x, l− 1] + qk(ck + x) then
8: Q[b, l]← Q[b− x, l− 1] + qk(ck + x)
9: y[b, l]← x

10: Q∗ ← Q[B,n]
11: b← B
12: for l← n downto 1 do
13: X∗[l]← y[b, l]
14: b← b− y[b, l]

return (Q∗, X∗)

As we can see, all subproblems are scanned once during the
process and each time all possible values of xl are checked
once to find the optimal one. Besides, calculating the specific
value of the quality function requires O(|T |) time and O(|T |)
space. Therefore, the time and space complexities of this
solution are O(n|T |B2) and O(nB + n|T |), respectively.

C. Complexity Analysis

We now describe the time and space complexities of the
practical incentive allocation strategies.

1. FC. Since FC lets users to freely choose a resource to tag,
TI, TC and TU are all equal to O(1). The total time complexity
is O(n+B) and space complexity is O(n) for keeping xi(1 ≤
i ≤ n).

2. RR. As shown in Algorithm 2, INIT(), CHOOSE() and
UPDATE() cost O(1) time. Similar to FC, the time and space
complexities are O(n+B) and O(n), respectively.

3. FP. In the priority queue structure, push and pop can
be completed in O(log n) time. Therefore, TI is equal to
O(n log n) and TC, TU are both equal to O(log n). The time
complexity of FP is O((n + B) log n). Since the size of the
priority queue is n, the space complexity of FP is O(n).

4. MU. In MU, we need to compute mi(ci+xi, ω) before the
priority queue is updated (Step 4 and Step 9 in Algorithm 4).
A straightforward way is to store ri’s latest ω rfds’ in ω
vectors with length |T | and use Equation 16 and Definition 8
to calculate mi(ci + xi, ω) in O(ω|T |) time. When ki > ω,

(ω − 1)mi(ki, ω) + s( ~Fi(ki − ω), ~Fi(ki − ω + 1))

= (ω − 1)mi(ki − 1, ω) + s( ~Fi(ki − 1), ~Fi(ki)).

Based on this observation, if we use a queue to store the
following ω values: s( ~Fi(j − 1), ~Fi(j))(j = ci + xi − ω +
1, . . . , ci+xi) and mi(ci+xi−1, ω) is known, the computation
of mi(ci + xi, ω) can be reduced to O(|T |) time and the
space complexity is reduced to O(ω+ |T |). Therefore, in MU,
TI = O(n(ω|T |+log n)) and TC +TU = O(log n+ |T |). The
total time complexity of MU is O((n+B) log n+(nω+B)|T |)
and the space complexity is O(nω + n|T |).

5. FP-MU. FP-MU successively employs FP and MU to
allocate the incentive. So the time and space complexities are
respectively O((n + B) log n + (nω + B)|T |) and O(nω +
n|T |).




