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Abstract— The information managed in emerging applications,
such as sensor networks, location-based services, and data inte-
gration, are inherently imprecise. To handle data uncertainty,
probabilistic databases have been recently developed. In this
paper, we study how to quantify the ambiguity of answers
returned by a probabilistic top-k query. We develop efficient
algorithms to compute the quality of this query under the
possible world semantics. We further address the cleaning of a
probabilistic database, in order to improve top-k query quality.
Cleaning involves the reduction of ambiguity associated with the
database entities. For example, the uncertainty of a temperature
value acquired from a sensor can be reduced, or cleaned, by
requesting its newest value from the sensor. While this “cleaning
operation” may produce a better query result, it may involve a
cost and fail. We investigate the problem of selecting entities to
be cleaned under a limited budget. Particularly, we propose an
optimal solution and several heuristics. Experiments show that
the greedy algorithm is efficient and close to optimal.

I. INTRODUCTION

The information handled in many emerging application is
often uncertain. In the Global-Positioning System (GPS) [1]
and natural habitat monitoring applications [2], data collected
by sensors (e.g., location, humidity, and wind speed) may
be stale and contaminated with measurement error. In data
integration, record linkage tools may assign confidence values
to data to indicate matching quality [3]. For example, in a
movie rating system, whose information is integrated from
Netflix challenge and IMDB, a user’s rating is a set of values
with probabilistic guarantees [4]. Machine learning algorithms
also generate segments of a given piece of text, the output of
which can be incorrect [5]. To handle the increasing need of
managing imprecise data, probabilistic databases have been
recently developed (e.g., [6]–[9]).

Table I illustrates a probabilistic database, called udb1,
where the uncertainty of an entity is captured by the x-
tuple [6]. Here, an x-tuple represents current temperature
values recorded by a sensor deployed in a geographical region.
The tuples that exist in a x-tuple are mutually exclusive, and
the existential probability (or Prob.) of a tuple is the chance
that the reading is correct. For example, the reading of sensor
S1 is 21◦C with a probability of 0.6.

A probabilistic database enables the evaluation of a proba-
bilistic query, which produces answers with statistical guaran-
tees. Consider a probabilistic top-k query, returns information
about objects that yield the k highest scores [10]–[15]. A
Probabilistic Threshold top-k (or PT-k) query, for instance,
returns tuples whose probabilities of being ranked k-th or
higher are not smaller than some threshold T [11]. Let us

TABLE I
DATABASE udb1.

Sensor Tuple Temp. Prob.
ID ID (◦C)

S1
t0 21 0.6
t1 32 0.4

S2
t2 30 0.7
t3 22 0.3

S3
t4 25 0.4
t5 27 0.6

S4 t6 26 1

TABLE II
DATABASE udb2.

Sensor Tuple Temp. Prob.
ID ID (◦C)

S1
t0 21 0.6
t1 32 0.4

S2
t2 30 0.7
t3 22 0.3

S3 t5 27 1
S4 t6 26 1

suppose that in Table I, a tuple is given a higher rank if it has
a higher temperature. If k = 2 and T = 0.4, then the answer
of the PT-k query is {t1, t2, t5}, since the probabilities of these
tuples that rank second or higher exceed 0.4.

In this paper, we study how to interpret the probabilistic
result of a top-k query. Given the data uncertainty, a query
answer is naturally inexact. In the previous example, we know
that three tuples have probabilities larger than 0.4 for satisfying
the PT-k query. However, are these the only tuples in the
query answer? Is there any tuple that satisfies the query with
a large probability (e.g., 0.39), but does not appear in the
answer because T is set to 0.4? More generally, how should
the ambiguity of a query answer be measured, so that we can
know how much trust should be placed on an answer?

To address these issues, [16] proposed the PWS-quality
metric for a probabilistic query. This score systematically
quantifies the ambiguity of a query answer based on the
Possible World Semantics (PWS) [3]. The PWS is a formal
interpretation of a probabilistic database for supporting query
evaluation. As illustrated in Figure 1(a) (Step 1), a probabilistic
database can be viewed as a set of possible worlds. For in-
stance, in Table I, a possible world W = {t0, t3, t4, t6} exists
with probability 0.6× 0.3× 0.4× 1 = 0.072. A probabilistic
query q can be conceptually answered by evaluating it on
every possible world, yielding an answer known as pw-result
(Step 2). For example, to answer a PT-2 query, we evaluate
a deterministic top-2 query on every possible world. For W ,
this top-2 query returns pw-result (t6, t4). In Step 3, the pw-
results are aggregated according to the query semantics to
form q’s answer. The PWS-quality measures the entropy of the
occurrence of pw-results (Step A). Figure 2 shows all the pw-
results of a PT-2 query on udb1; the PWS-quality of this query
is −2.55. Let us consider another database udb2 (Table II),
where the x-tuple S3 of udb1 is modified. The PWS-quality
of the PT-2 query for this database is −1.85, which is higher
than that of udb1. Figure 3 lists all the pw-results of udb2, the
number of which is less than that of udb1. Intuitively, udb2 is
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less ambiguous than udb1, yielding a higher quailty score. 1

Our first objective is to study the challenging problem
of computing the quality score for a top-k query. A naive
solution, called PW, computes the score by using the definition
of the PWS-quality directly (Figure 1 Step A). Unfortunately,
PW is extremely expensive, since the number of possible
worlds is exponentially large. We thus develop two efficient
solutions to compute the quality of three common probabilistic
top-k queries, namely U-kRanks [10], PT-k [11], and Global-
topk [12]. The first algorithm, called PWR, computes the
pw-results of these queries without performing Steps (1) and
(2) (c.f. the dotted arrow in Figure 1). This saves the cost
of handling possible worlds. However, PWR depends on the
number of pw-results, it may not work very well if the number
of pw-results is large. Our second solution, called TP, does
not generate pw-results (Figure 1(b)). Instead, it uses tuple
ranking information, computed by the PSR algorithm [15], to
compute the PWS-quality efficiently (Step B). 2

Another advantage of TP is that it allows the computation
effort of a top-k query to be shared by quality evaluation.
As shown in Figure 1(b), the rank probability information
used to obtain query answers can also be evaluate quality
scores. Therefore, if a user wants to obtain a query answer
and quality score at the same time, computing the score incurs
little overhead. In some of our experimental results, the quality
computation time is only 6% of the query evaluation time.

Cleaning uncertain data. The use of the PWS-quality
metric allows us to address an important issue: if a user
is not satisfied with the quality of a query answer, can we
improve its quality? Intuitively, this can be done by removing,
or cleaning the uncertainty of the probabilistic database, so
that less ambiguous results can be produced. The uncertainty
of a movie rating, for instance, may be removed by asking
the movie viewer to confirm her score. In the sensor moni-
toring application, it is possible to reduce data uncertainty by
requesting (or probing) the sensor to report the latest reading.
Let us consider database udb1, and suppose that after a probing
operation, the reading of S3 should be 27◦C as indicated by
tuple t5. The new database, udb2 (Table II), shows that t4
was removed as a result. We say that S3 is cleaned. More
importantly, this udb2 can yield a higher quality than udb1.

1In the sequel, we use “quality” and “PWS-quality” interchangeably.
2The PSR algorithm was originally developed to evaluate probabilistic top-

k queries. We use it to compute PWS-quality here.
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Fig. 2. udb1 (quality = −2.55).
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Fig. 3. udb2 (quality = −1.85).

This is because the number of pw-results generated from udb2
is only four (Figure 3), which is smaller than the seven pw-
results obtained from udb1 (Figure 2).

Ideally, all the x-tuples should be cleaned, so that we can
attain the best query quality. However, this cleaning process
is complicated by the following factors:

1. Cost. A cleaning operation, such as calling a movie
viewer to confirm her rating, or querying a sensor about the
latest reading, often involves a cost. This cost, in the movie
rating system, may refer to the amount of money paid to
officers to make phone calls to the movie viewers, or the
airtime charge per minute. In the sensor monitoring system, it
may be the battery power or the bandwidth to transfer a value
from the sensor to the system.

2. Limited budget. The maximum amount of money al-
lowed to make phone calls to movie viewers, or the maximum
amount of resources that can be used to probing sensors,
is often limited in practice. Hence, the number of cleaning
operations that can be performed is constrained.

3. Successfulness. A cleaning operation may also fail to
remove the uncertainty of an entity. The movie viewer may
be unreachable at some time, and so the actual rating is not
confirmed in this phone call. The transmission between two
nodes in the network may also have some probability to fail
due to the packet loss or other reliability problems [17]. Thus
the system fails to get the latest reading from the sensor even
a probing action is performed.

Under these conditions, we have to carefully control which
x-tuples to be cleaned, in order to attain a better query quality.
Moreover, the real value of the x-tuple is unknown before
the cleaning operation is performed successfully. Hence, our
second goal in this paper is to efficiently decide a set of
x-tuples to cleaned, and the number of cleaning operations
performed on each selected x-tuple, in order to maximize the
expected quality improvement. To address this problem, we
first propose an efficient method to compute the expected
quality improvement, given the selected x-tuples and the
number of cleaning operations applied on each of them. We
then design an optimal solution, as well as some fast heuristics,
to tackle the cleaning problem.

We have performed detailed experiments on real and syn-
thetic datasets.The results show that our approaches can ef-
ficiently compute the PWS-quality for the three probabilistic
top-k queries that we studied. Among our cleaning algorithms,
the greedy algorithm is an efficient solution and gives a close-



to-optimal quality improvement.
The rest of the paper is described as follows. Section II

discusses the related work. Section III and IV introduces
the probabilistic database model and how to compute PWS-
Quality for top-k queries. Section V presents the cleaning
problem and the solutions. Experimental results will be shown
in Section VI. Section VII concludes.

II. RELATED WORK

The topic of probabilistic top-k queries has recently
attracted a lot of research interest. Several semantics have been
proposed, including U-Topk [10], U-kRanks [10], PT-k [11],
Global-topk [13], and Expected Rank queries [14]. In [18], a
unified ranking framework was used to describe different vari-
ants of top-k queries. In [10]–[15], [19], researchers studied
efficient evaluation algorithms for these queries.

We develop efficient quality computation algorithms for
three well-studied top-k queries – U-kRanks, PT-k, and
Global-topk. These three queries share two common prop-
erties: (1) they conceptually evaluate a deterministic top-k
query in every possible world (Figure 1(a) Step (2)); and
(2) their query answers can be produced by rank probability
information (Figure 1(b)). As we will explain, these two
properties allow us to evaluate PWS-quality scores efficiently.
We plan to study efficient quality computation algorithms for
other top-k queries in the future.

Few works address the important issue of quantifying the
ambiguity of answers produced by top-k queries. The closest
work to ours is [16], which developed efficient algorithms
to compute PWS-quality scores for range and max queries.
The semantics of these queries are simple; both of them
return a set of tuples and their probabilities of satisfying the
queries. These query results are then used to derive the quality
score [16]. However, that approach cannot be trivially extended
to support top-k queries. First, a top-k query is more difficult
to handle than range and max queries, even in deterministic
databases. Second, as discussed before, a probabilistic top-k
query possesses different semantics. In this paper, we study
new solutions to compute the quality score of three common
top-k queries.

In recent years, a number of researchers have studied the
issues of cleaning uncertain data. In [20], user feedback was
used to improve the the quality of a probabilistic database
integrated from different sources. [21] analyzed the sensitivity
of a probabilistic query answer to input data. In [16], the
problem of cleaning a probabilistic database under a limited
budget for maximizing the quality of range and max queries
is studied. That paper assumes an idealistic model, where a
cleaning operation always successfully removes ambiguous
information about an object. In this paper, we study a more
practical cleaning operation, where the result of cleaning
is only successful with a probability. Moreover, we tackle
this problem for top-k queries which, as discussed before,
is more difficult to handle than range/max queries. A more
sophisticated cleaning model is studied in [22], where (1)
the probability that a cleaning operation is successful is a

probability distribution, and (2) the ambiguous information
of an object may only be partially removed. It would be
interesting to study how to extend our solutions to support
this cleaning model. However, we remark that [22] neither
handles probabilistic databases nor top-k queries.

We now summarize other works related to disambiguating
a database. In sensor networks and data streams, researchers
have studied how to request or probe data to reduce data am-
biguity [23]–[25]. Data duplicate elimination techniques [26]
can also be used to improve data quality. [27] used duplicate
tuple merging techniques to provide possible answers. In [28],
“possible repairs” are proposed to manage different versions
of resulting databases due to duplicate removal. In [29],
integration constraints were used to remove inconsistent data.

III. DATA MODELS AND TOP-k QUALITY

We now describe the probabilistic data model in Section III-
A, and variants of probabilistic top-k query in Section III-B.
We then review the PWS-quality in Section III-C and describe
how it can be used to measure the top-k query quality.

A. Probabilistic Database Model

We adopt the x-tuple model [6] in this paper. Generally,
a probabilistic database is denoted by D, which contains m
x-tuples where the l-th x-tuple is represented by τl. Each
x-tuple is a subset of tuples ti(i = 1, 2, . . . , n), and is
represented by (IDi, xi, vi, ei). IDi is the key of tuple ti.
xi = {l|l = 1, . . . ,m} indicates which x-tuple ti belongs to.
vi is a set of attribute values of ti, and ei is the existential
probability of ti (i.e., the probability that ti exists in the
real world). The existence of tuples in the same x-tuple is
mutually exclusive, while the existence of tuples from different
x-tuples is independent. Hence, the sum of ei in the x-tuple
τl, denoted by sl, is no larger than 1. If sl is smaller than 1,
we conceptually insert a “null” tuple to τl, whose existential
probability equals to 1 − sl, and value equals to “null”.
For example, in Table I, the “Temp.” and “Prob.” columns
respectively correspond to the value and existential probability.
There are 4 x-tuples, and in the first x-tuple, there are two
tuples t0 and t1, i.e., τ1 = {t0, t1}.

We also follow the PWS, where a possible world W
contains exactly one tuple from each x-tuple in D (i.e.,
|W ∩ τl| = 1). The probability of a possible world W is the
product of the existential probability of tuples in W . Notice
that

∑
W∈W(D) Pr(W ) = 1.

B. Probabilistic Top-k Queries

In a deterministic database, the result of a top-k query
contains tuples with the k highest ranks according to a ranking
function f . We assume that a tuple with value equals to “null”
always ranked lower than other tuples whose value is not
“null”. We also assume that the ranking function assigns a
unique rank for each tuple. This uniqueness can be obtained
by employing any tie breaking criteria. Therefore, for two
tuples t1 and t2, t1 =f t2, if and only if t1 is identical to



t2. Also t1 >f t2 indicates that t1’s rank is higher than t2’s.
For notational convenience, we omit f from >f ,≥f .

We now formulate the query process of the probabilistic
top-k query we study in this paper. The probabilistic database
is first expanded into a set of possible worlds. Then a deter-
ministic top-k query is evaluated on every possible world to
derive the pw-results. The pw-results are then aggregated by
tuple and rank and produce the query answer based on the
query semantics.

Three commonly used probabilistic top-k queries exactly
follow this query process to produce query answers.
• U-kRanks [10]: for each rank h (1 ≤ h ≤ k), return the

tuple whose rank equals to h has the highest probability
among all tuples in the database.

• PT-k [11]: return the tuples with a top-k probability not
smaller than a given threshold.

• Global-topk [13]: tuples are sorted according to their top-
k probabilities, and only tuples with the k highest top-k
probabilities are returned as the query answers.

Since other variants of top-k query do not exactly follow
this query process, we leave them for future study. In the rest
of the paper, we restrict our discussion to these three variants
of probabilistic top-k query. In the sequel, we use “query” to
denote probabilistic top-k query. Next is the formal definition
of pw-result.

Definition 1: The set of all pw-results, denoted by
R(D,Q), is given by:

R(D,Q) = {r|∃W ∈ W(D) s.t. r = Qk,f (W )}, (1)

where Qk,f (W ) is the top-k result according to the ranking
function f in possible world W . The probability of a pw-result
r ∈ R(D,Q) is Pr(r) =

∑
W∈W(D)∧r=Qk,f (W ) Pr(W ).

In fact, a pw-result r is an ordered list of k tuples according
to the ranking function, and

∑
r∈R(D,Q) Pr(r) = 1. Consider

udb1 in Table I, and a top-2 query on it. Suppose the ranking
function assigns a higher rank to a tuple with a higher tempera-
ture reading. An example pw-result is r = (t1, t2), since it is a
top-2 result in W1 = {t1, t2, t4, t6} and W2 = {t1, t2, t5, t6}.
The probability of r equals to 0.112 + 0.168 = 0.28. In fact,
Pr(r) can be computed without examining all possible worlds.

Lemma 1: Given a pw-result r, let r.t be the tuple which
is ranked the lowest in r, the probability of r is then given by

Pr (r) =
∏
ti∈r

ei
∏

τl∩r=∅

(1−
∑

ti∈τl∧ti>r.t
ei). (2)

Proof: The probability of r is the product of: (1) the
existential probabilities of tuples in r (i.e.,

∏
ti∈r ei), and (2)

the probability that other tuples ranked higher than r.t does not
exist, otherwise r is not a top-k result in this possible world.
The probability of (2) is

∏
τl∩r=∅ (1−

∑
ti∈τl,ti>r.t ei).

We can obtain the rank-h (h = 1, . . . , k) probability of a
tuple based on pw-results, and derive the top-k probability of
a tuple accordingly.

Definition 2: The rank-h probability (h = 1, . . . , k) of ti,
denoted by ρi(h), is the probability that ti’s rank equals to h
in a pw-result.

Definition 3: The top-k probability of ti, denoted by pi,
is the probability that ti is in top-k ranks in a pw-result, i.e.,

pi =
∑k
h=1 ρi(h) =

∑
ti∈r∧r∈R(D,Q) Pr (r). (3)

C. PWS-quality for Probabilistic Top-k Query

PWS-quality is first proposed in [16]. It is defined as the
negated value of the entropy of the pw-results. According to
information theory, entropy can measure the uncertainty of
information [30], which is used to quantify the ambiguity of
query results in [16]. We adopt this quality metric to measure
the uncertainty of probabilistic top-k query result.

Definition 4: Given a probabilistic database D, a ranking
function f , and a probabilistic top-k query, the PWS-quality,
denoted by S(D,Q), is given by:

S(D,Q) =
∑
r∈R(D,Q) Pr(r) log Pr(r), (4)

where the base of the log function is 2.
A higher entropy indicates that the pw-results are more

uncertain. Hence, the PWS-quality is lower. PWS-quality
achieves its maximum value zero whenR(D,Q) only contains
a single result. If the size of R(D,Q) is fixed, the minimum
value of PWS-quality is log 1/|R(D,Q)| at which each pw-result
has the same probability to exist.

To compute the quality score of a query, the naı̈ve way,
denoted by PW, derives all pw-results by evaluating a top-k
query in every possible world, and computes the quality score
based on Definition 4. However, the number of possible worlds
may be exponentially large. We next present two efficient
algorithms for computing query quality.

IV. TOP-k QUALITY COMPUTATION

We present two efficient quality computation algorithms
PWR and TP in Section IV-A and IV-B, respectively. We then
discuss how to share the computation effort between query
and quality evaluation (Section IV-C). Prior to the quality
computation, we assume that tuples in D are arranged in
descending order of ranks.

A. The PWR Algorithm

We propose an algorithm, denoted by PWR, which directly
derives all pw-results without expanding all possible worlds
(c.f. the dotted arrow in Figure 1(a)), and then compute the
quality score according to the definition (Step A). Compared
with PW, PWR avoids examining all possible worlds. Since
a pw-result contains at most k tuples in D, the number of
pw-results is bounded by nk. Hence, compared with PW,
PWR can reduce the time complexity from exponential to
polynomial to the size of D. Besides, PWR can avoid scanning
the whole database. We next discuss the details of PWR.

Recall the query semantic in deterministic database, the
result only contains the tuples in top-k ranks. If the tuples
are pre-sorted, the query result is the first k tuples. Therefore,
there is no need to distinguish the tuples ranked lower than
k. PWR makes use of this observation. We scan the tuples
one by one and enumerate the existence of each tuple. Once
we find that there are k tuples exist, we get a pw-result, and



Algorithm 1 PWR
Require: Pre-sorted Probabilistic Database D, k
1: R← ∅, r ← ∅
2: DFS(1, r)
3: Compute PWS-quality score by Equation 4
4: return Scores of PWS-quality
5: procedure DFS(i, r)
6: if |r| = k then
7: R← R∪ {r}, Compute Pr (r) by Equation 2
8: else if τxi ∩ r 6= ∅ then
9: DFS(i+ 1, r)

10: else if ∀ti′ ∈ τxi , ti′ > ti then
11: DFS(i+ 1, r ∪ {ti})
12: else
13: DFS(i+ 1, r ∪ {ti}), DFS(i+ 1, r)

we do not need to scan the rest of tuples. This process can be
realized by a depth first search algorithm.

The details are shown in Algorithm 1. R is used to store all
pw-results, and r is used to store all existing tuples currently.
The parameter i in DFS represents the index of tuple we are
considering. In DFS, we first check whether r is a pw-result,
i.e., whether there are k tuples in r. If r is a pw-result, there is
no need to consider the rest of tuples, and r should be inserted
into R (Step 6); otherwise, we should enumerate whether ti
exists. However, we should consider two special cases first:
(1) if there is another tuple in τxi that exists in r, ti will not
exist, since tuples in the same x-tuple are mutually exclusive
(Step 8); (2) if any other tuple in τxi is ranked higher than
ti and does not exist in r, ti will exist, since |W ∩ τxi | = 1
(Step 10). If these two cases are not satisfied, we enumerate
two possibilities of ti: ti exists or ti does not exist (Step 12).

The number of pw-results is bounded by nk, while finding
a specific pw-result and computing its probability both require
O(n) time to scan the database. Therefore, the time complexity
of PWR is O(nk+1), which is polynomial time to the size of
D. However, the time complexity is exponential to the value
of k, which makes this algorithm inefficient when k is large.
We next propose a more efficient algorithm to compute quality
without enumerating all pw-results.

B. The TP Algorithm

Before we discuss the TP algorithm, we first present an
important theorem which states that the PWS-quality for a
top-k query can be expressed by some function of tuple’s ex-
istential probability and top-k probability. We call it the tuple
form expression of PWS-quality. For notational convenience,
we use Y (x) to denote the function of x log x.

Theorem 1: The tuple form of PWS-quality is:

S(D,Q) =
∑
ti∈D ωi pi, (5)

where ωi equals to

log ei+
1

ei
(Y (1−

∑
xi′=xi∧ti′≥ti

ei′)−Y (1−
∑

xi′=xi∧ti′>ti

ei′)).

(6)
In fact,

∑
xi′=xi∧ti′≥ti

ei′ is the probability that tuples in
τxi ranked not less than ti. And

∑
xi′=xi∧ti′>ti

ei′ is the
probability that tuples in τxi ranked higher than ti.

Theorem 1 illustrates that the quality score is essentially a
weighted sum of tuples’ top-k probabilities, and so we may
avoid examining all pw-results in the quality evaluation. TP
algorithm employs this theorem to compute the quality score.
However, to directly use this theorem, it requires to compute
the values of pi and ωi first. We next show how pi and ωi can
be computed efficiently to complete the discussion of TP.

Evaluation of pi. To compute pi, we adopts the PSR
algorithm proposed in [15], which is the best approach cur-
rently known for calculating the rank-h probability (h =
1 . . . k) of all tuples in D. We slightly modify PSR in order
to make it also return the top-k probability of ti, i.e., we
additionally compute pi =

∑k
h=1 ρi(h). In fact, PSR also

enables evaluation of the three top-k queries we consider in
this paper. We will further discuss this in Section IV-C. The
time complexity of PSR is O(kn).

Evaluation of ωi. To compute ωi for ti, the straightforward
way is to directly employ Equation 6. However, it requires
to examine all tuples ti′ in D, which yields O(n2) time to
compute all ωis. Observed that tuples are pre-sorted, and ωi
only depends on the existential probabilities of tuples which
are ranked not lower than ti and in the same x-tuple with ti,
we can develop an incremental method to compute all ωis.

Let Ei,l(1 ≤ i ≤ n, 1 ≤ l ≤ m) be the probability that
tuples in τl ranked not lower than ti, i.e.,

Ei,l =
∑
ti′∈τl∧ti′≥ti

ei′ =
∑
xi′=l∧i′≤i

ei′ . (7)

Thus, ωi can be written as

log ei +
1
ei
(Y (1− Ei,xi)− Y (1− Ei,xi + ei))). (8)

Since the tuples are pre-sorted, we can get the relation
between Ei,l and Ei−1,l as follows:

Ei,l =

{
ei + Ei−1,l if l = xi,
Ei−1,l otherwise. (9)

The boundary case is E0,l = 0. Hence, we can incrementally
compute all Ei,l and ωi in O(n) time.

The efficiency of the evaluation of ωi can be further
improved by using the following fact. If pi = 0, then ωipi = 0.
Hence, if we find that no other tuple has nonzero top-k
probability, we can stop the evaluation of ωi. The following
lemma shows how to judge whether there is any tuple with
nonzero top-k probability.

Lemma 2: If |{l|Ei,l = 1, 1 ≤ l ≤ m}| ≥ k, then for all
i′ > i, we have pi′ = 0.

Proof: The condition indicates that in any possible world
there are at least k tuples ranked higher than ti′ , which
indicates that ti′ has no chance to be in a pw-result.

With Lemma 2, we can stop the evaluation of ωi once we
find that no other tuple has nonzero top-k probability.

To summarize, as shown in Figure 1(b), TP first employs
PSR to obtain the values of pi. It then calculates ωi incre-
mentally as discussed above, and get the quality score using
its tuple form stated in Theorem 1 (Step B). The total time
complexity of TP is O(kn).



C. Query Evaluation and Quality Computation

To obtain the query answer as well as the quality score,
one can first run a query evaluation algorithm and then run
one of the quality computation algorithms proposed in this
paper. In this section, we show that TP enables computation
effort sharing between query and quality evaluation, and so
the total evaluation time of query and quality can be reduced.

As discussed above, U-kRanks, PT-k and Global-topk pro-
duce query answers based on the rank probability information.
Using PSR, we can obtain the rank probability information
efficiently. In fact, it has been shown that PSR can accelerate
the evaluation process of these three queries [15]. For example,
the query result of PT-k can be obtained by scanning the tuples
with nonzero top-k probability once and output the ones whose
top-k probability is not smaller than the threshold (See [15]
for more details).

Based on this observation, we can first employ PSR to
compute the rank probabilities. This probability information
is then used to derive the query answers according to the
query semantics. Next we reuse this probability information to
compute the PWS-quality. This information sharing is shown
in Figure 1(b).

D. Proof of Theorem 1

We outline the proof of Theorem 1 in this section. The
detailed derivation can be found in Appendix A.

By using Lemma 1 and the property that log (ab) = log a+
log b, PWS-quality can be rewritten as:

S(D,Q) =
∑

r∈R(D,Q)

Pr (r)
∑
ti∈r

log ei

+
∑

r∈R(D,Q)

Pr (r)
∑

τl∩r=∅

log(1−
∑

ti∈τl∧ti>r.t
ei).

(10)

Recall the definition of top-k probability (Definition 3),
pi is obtained by summing up the pw-results’ probabilities
(Pr(r)s’). We can make use of this fact to replace all Pr(r)s’
by pis’ in the first part of Equation 10.

For the second part of Equation 10,
∑
ti∈τl∧ti>r.t ei is

essentially the probability that τl has at least a tuple ranked
higher than r.t. It can be obtained by summing up the
existential probabilities of tuples in τl whose ranks are higher
than r.t. Thus, ∑

ti∈τl∧ti>r.t
ei =

∑
ti∈τl∧ti≥t(l,r.t)

ei, (11)

where t(l, r.t) is the smallest tuple in τl whose rank is higher
than r.t. Then the second part of Equation 10 is equivalent to:∑

τl∈D

∑
ti∈τl

log (1−
∑

ti′∈τl∧ti′≥ti

ei′)
∑

τl∩r=∅∧
t(l,r.t)=ti

Pr (r). (12)

The summation of Pr(r)s’ in Equation 12 is the probability
that a pw-result r contains no tuple from τl and the smallest
tuple in τl whose rank is higher than r.t is tuple ti. This proba-
bility can be further replaced by the tuples’ top-k probabilities
and existential probabilities in τl using the following facts.

First, the condition that t(l, r.t) = ti can be rewritten as
ti > r.t ≥ tξ(ti), where ξ(ti) is the index of the largest tuple
in τl whose rank is lower than ti.

Second, let Ai be the event that (1) the rank of the
smallest tuple in a pw-result is lower than ti, and (2) tuples
in τl whose rank is not smaller than ti does not appear.∑
τl∩r=∅∧ti>r.t Pr(r) equals to the probability that Ai is true

(Pr(Ai)). Also,

pi = ei Pr (Ai)/(1−
∑
t
i′∈τl∧ti′≥ti

ei′ ). (13)

In fact, Pr (Ai)/(1−
∑
t
i′∈τl∧ti′≥ti

ei′ ) is the probability that for
tuples not in τl, there are at most k−1 tuples whose ranks are
higher than ti exist. Hence, if ti exists, ti is in the pw-result.

Using these facts to replace all Pr(r)s’ in Equation 10 by
tuples’ top-k probabilities and existential probabilities, we can
derive the final result (Equation 5 and 6).

V. CLEANING UNCERTAIN DATA

We describe the cleaning model and the cleaning problem
we study in this paper in Section V-A. We then discuss
how to efficiently solve the cleaning problem in Section V-
B, Section V-C and Section V-D.

A. Cleaning Model and Problem Definition

As mentioned in Section I, after the user obtains the quality
score, they may not be satisfied, which arouses the requirement
of removing the uncertainty in the database, or clean the
database. However, a cleaning operation, such as contacting
the movie-viewer to confirm their rating or probing a sensor
to obtain the latest reading, may fail and involve a cost.

To model the successfulness of a cleaning operation, we
associate a successful cleaning probability or sc-probability to
each x-tuple, which is the probability that an x-tuple is cleaned
successfully. In the movie rating system, the sc-probability can
be estimated by the historical statistics of the cleaning agent’s
performance. In the sensor monitoring application, it can be
the reliability of the data transmission between the sensor and
the base station [31]. Let us first define the cleaning operation
pclean(τl) with sc-probability.

Definition 5: Given an x-tuple τl, and the sc-probability
on this x-tuple Pl (0 ≤ Pl ≤ 1), the cleaning operation
pclean(τl) is performed successfully with probability Pl. If
pclean(τl) is successful, τl is replaced by an x-tuple that
contains a single tuple: {IDi, l, vi, 1}, such that IDi and vi
are the corresponding identifier and value of some tuple ti that
belongs to τl. If pclean(τl) fails, there is no change on τl.

According to this definition, if pclean(τl) is performed, it
has probability Pl to be successful. If pclean(τl) is successful,
τl becomes “certain”. For example, in udb1 (Table I), after
pclean(S3) is successfully performed, S3 in the new database,
udb2 (Table II), only contains a single tuple {t5, S3, 27

◦C, 1},
derived from t5, with the existential probability equals to 1.

We use cl, a natural number, to model the cost of performing
the cleaning operation pclean(τl) once. We assume that for
the current query Q, it is associated with a budget of C units,



where C is a natural number and limits the maximum amount
of resources that can be used to improve query quality.

Ideally, all x-tuples should be cleaned successfully. Howev-
er, due to the cost and the limited budget, we should carefully
select the set of x-tuples to clean. Moreover, since a cleaning
operation may fail, we may need to clean an x-tuple for several
times to increase its chance to be cleaned successfully. Hence,
our goal is to select an appropriate set of x-tuples to clean, and
determine the number of cleaning operations to be performed
on the selected x-tuples such that the expected improvement
in quality is maximized under a limited budget.

Formally, let X be any set of x-tuples chosen from the
probabilistic database D. Without loss of generality, let X =
{τ1, . . . , τ|X|}. Let M = {M1, . . . ,M|X|}, where Ml repre-
sents the number of times pclean(τl) to be performed.

We use zl to denote the set of all possible cleaned results
of τl. Thus, zl contains (|τl|+ 1) x-tuples. Among them, one
is τl, and others are new x-tuples which contain a single tuple
derived from some tuple ti that belongs to τl. Also, let ~x be
an “x-tuple vector” of |X| dimensions, which is the possible
result after pclean(τl) is performed for Ml times for all τl ∈
X . We have ~x ∈ z1 × . . .× z|X|.

In Table I (udb1), for example, if X = {τ1, τ2}, we have
z1 = {τ1, {t0}, {t1}} and z2 = {τ2, {t2}, {t3}}. Since ~x ∈
z1× z2, there are 9 possible values of ~x, including (τ1, {t2}),
({t0}, {t3}), and (τ1, τ2).

The existential probability of a tuple in an x-tuple represents
the probability that this tuple exists in the real world. There-
fore, if ti ∈ τl and pclean(τl) is successful, the probability
that ~x(l) = {ti} is ei.3 Consider the sc-probability Pl, and the
number of times pclean(τl) to be performed Ml, we have

Pr(~x(l) = τl) = (1− Pl)Ml (14)
Pr(~x(l) = {ti}, ti ∈ τl) = ei(1− (1− Pl)Ml) (15)

Equation 14 is the probability that after pclean(τl) is
performed for Ml times, uncertainty of τl still cannot be
removed. Equation 15 is the probability that pclean(τl) is
successful and the real tuple in τl is ti.

We can further derive the probability of ~x = ~x0, where ~x0
is one of the possible values of ~x (i.e., ~x0 ∈ z1 × . . .× z|X|):

Pr(~x = ~x0) =
∏|X|
l=1 Pr(~x(l) = ~x0(l)) (16)

The new database after pclean(τl) is performed for Ml

times for all τl ∈ X is denoted by D′ (i.e., in D′, τl is replaced
by the corresponding x-tuple in ~x). The expected quality of
the cleaned database D′ is equal to:

E(S(D′, Q)) =
∑

~x0∈z1×...×z|X|

Pr(~x = ~x0) · S(D′, Q) (17)

Next we define the expected quality improvement of the
cleaning, and the cleaning problem we study in this paper.

3~x(l) is the l-th element of ~x, which is corresponding to τl.

Definition 6: Given X = {τ1, . . . , τ|X|}, and M =
{M1, . . . ,M|X|}, the expected quality improvement after the
cleaning is:

I(X,M,D,Q) = E(S(D′, Q))− S(D,Q) (18)
Definition 7: Given a budget of C units, the Problem of

cleaning uncertain data is to return a set of x-tuples X from
D, and determine the number of cleaning operations to be per-
formed on each selected x-tuple M , such that I(X,M,D,Q)
is maximized, and the total cost of all cleaning operations does
not exceed C.

In practice, after we decide which x-tuples are selected to
clean, and the number of cleaning operations to be performed
on the selected x-tuples, we pass this information to the clean-
ing agent. The cleaning agent then uses this list of cleaning
tasks and their frequencies to do cleaning. It is possible that an
x-tuple is cleaned successfully before performing the assigned
number of cleaning operations. In this case, the cleaning agent
will not perform more cleaning operations on this x-tuple, and
so some resources may be left. In this paper, we decide X and
M to maximize the expected quality improvement before the
cleaning. The interesting problem about how to update the list
so that the rest of resources can be used to further improve
the quality will be studied in future work.

We note that the total cost of cleaning τl for Ml times
for all τl ∈ X is equal to

∑
τl∈X clMl. A naı̈ve way to

solve this problem is to enumerate all possible combinations
of X and M , such that the total cost will not exceed the
given budget, and find the one that can achieve the highest
value of I(X,M,D,Q). However, this solution is inefficient in
practice. The first reason is the computation of I(X,M,D,Q)
may consume a lot of time if we calculate it by directly
employing Equation 17, which requires to consider all possible
x-tuple vectors. Another reason is, despite of M , the number of
possible values of X may be exponentially large. We address
these problems in Section V-B and V-C, and propose some
efficient data cleaning algorithms in Section V-D.

B. Evaluating Quality Improvement

In this section, we discuss some principles about the expect-
ed quality improvement in order to build up the background
knowledge for Section V-C and V-D. The main problem we
investigate in this section is how to compute the expected
quality improvement without evaluating the quality in every
possible cleaned database.4

We first use e′i, ω
′
i and p′i to denote the existential probabil-

ity, weight and top-k probability of ti in the cleaned database
D′, respectively. If ti is removed from D′ by the cleaning
operation, we have e′i = ω′i = p′i = 0.

We also let g(l,D) =
∑
ti∈τl ωipi, which is the weighted

sum of top-k probabilities for tuples in τl and D. Thus, the
quality of Q in D, i.e. S(D,Q), equals to

∑
τl∈D g(l,D).

Accordingly, we let g(l,D′) =
∑
ti∈τl ω

′
ip
′
i and S(D′, Q) =∑

τl∈D g(l,D
′).

4The detailed proofs of lemmas and theorem in this section can be found
in Appendix B to D.



In one possible cleaned database D′, we can compute ti’s
top-k probability in D′. We first study the relation between ti’s
expected top-k probability over all possible cleaned databases
and ti’s top-k probability in the original database D.

Lemma 3: Given X = {τ1, . . . , τ|X|}, and M =
{M1, . . . ,M|X|}. If ti ∈ τl (l > |X|), the expected top-k
probability of ti over all possible cleaned databases, denoted
by E(p′i), equals to pi.

Proof: (Sketch) To evaluate E(p′i) directly, we should
examine all possible cleaned databases. Furthermore, to com-
pute p′i in D′, it requires querying on every possible world.
Thus, we can first aggregate the same possible world from dif-
ferent cleaned databases, and evaluate E(p′i) on the aggregated
possible worlds. We can further prove that the probability of a
possible world over all possible cleaned databases is the same
with the probability of this possible world in D. Thus, the
function of E(p′i) is the same with pi.

In fact, Lemma 3 is used to support the following theorem
about expected quality improvement.

Theorem 2: Given X = {τ1, . . . , τ|X|}, and M =
{M1, . . . ,M|X|}, the expected quality improvement is:

I(X,M,D,Q) = −
∑|X|
l=1 (1− (1− Pl)Ml)g(l,D). (19)

Proof: (Sketch) Observed that E(S(D′, Q)) equals to∑|X|
l=1E(g(l,D′)) +

∑m
l=|X|+1E(g(l,D′)) (20)

We first claim that if 1 ≤ l ≤ |X|, E(g(l,D′)) = (1 −
Pl)

Mlg(l,D). Consider two cases. (1) if τl is cleaned, for all
ti ∈ τl, ω′i = 0, and so g(l,D′) = 0; (2) if τl is not cleaned, for
all ti ∈ τl, ω′i = ωi. And the the expected top-k probability of
ti over all possible cleaned databases where τl is not cleaned,
is equivalent to the expected top-k probability of ti on X̃ and
M̃ where X̃ = X − {τl}, M̃ = M − {Ml}. This expected
top-k probability equals to pi according to Lemma 3. Since
the probability that τl is not cleaned is (1 − Pl)Ml , we have
E(g(l,D′)) = (1− Pl)Ml

∑
ti∈τl ωipi = (1− Pl)Mlg(l,D).

We next claim that if |X| + 1 ≤ l ≤ m, E(g(l,D′)) =
g(l,D). Since τl is not selected to be cleaned, the existential
probability of tuples in τl keeps unchanged. Thus, for all ti ∈
τl, we have ω′i = ωi. Furthermore, E(ω′ip

′
i) = ωiE(p′i), which

is equivalent to ωipi according to Lemma 3.
By substituting these two facts into Equation 18, we get the

final result (Equation 19).
Theorem 2 illustrates that when ωi and pi have been com-

puted during the quality evaluation, g(l,D) can be calculated
in linear time, and so I(X,M,D,Q) can be computed in
polynomial time. This computation method is much more
efficient than the original definition which requires to examine
all possible cleaned databases.

Because the value of the term (1 − (1 − Pl)
Ml)g(l,D)

in Equation 19 equals to the value of I(X,M,D,Q) when
X = {τl}, this term can be regarded as the expected quality
improvement caused by performing pclean(τl) for Ml times.
For convenience, we use G(l,D, j)(j ≥ 0) to denote this term
where j =Ml.

We then let b(l,D, j) be the amount of increment on the
expected improvement if the number of times pclean(τl) to
be performed increases from j − 1 to j. We have

b(l,D, j) = G(l,D, j)−G(l,D, j − 1)

= −(1− Pl)j−1Pl · g(l,D). (21)

Furthermore, we assume that b(l,D, 0) = 0. With Equation 21,
if g(l,D) is given, b(l,D, j) can be computed in O(1) time.
And I(X,M,D,Q) can be rewritten as the summation of
b(l,D, j) as follows:

I(X,M,D,Q) =
∑
τl∈X

∑Ml

j=1 b(l,D, j) (22)

Equation 22 can be used to derive the equivalent optimiza-
tion problem to the cleaning problem. We will further discuss
this in Section V-C.

Finally, we claims that b(l,D, j) has a monotonic property.
Lemma 4: b(l,D, j) monotonically decreases with j, which

is the number of times pclean(τl) to be performed.
Proof: (Sketch) We first prove that g(l,D) is non-

positive by recalling the proof of Theorem 1. Hence, b(l,D, j)
is non-negative, and b(l,D, j + 1) = (1 − Pl)b(l,D, j) ≤
b(l,D, j).

This nice property enables our efficient solutions proposed
in the next two sections. Let us discuss how to make use of
facts described in this section to solve our cleaning problem.

C. An Optimization Problem

We first state that not all x-tuples need to be considered in
the cleaning process.

Lemma 5: For an x-tuple τl, if ∀ti ∈ τl, pi = 0, there is no
need to clean τl.

Proof: Since g(l,D) =
∑
ti∈τl ωipi = 0, no matter how

the cleaning operation is performed on this x-tuple, it has no
effect on the expected quality improvement.

By using this fact, we can first exclude the x-tuples that
cannot contribute to the expected quality improvement. We
next reformulate the cleaning problem as an optimization
problem.

We let Z be the set of all x-tuples whose g(l,D) 6= 0.
Without loss of generality, let Z = {τ1, τ2, . . . , τ|Z|}. Let cl
be the cost to perform pclean(τl) once, and C be the budget
assign to the cleaning. Under the limited budget, we can derive
that the number of times pclean(τl) to be performed cannot
exceed Jl = bCcl c. We also assume that the value of g(l,D)
have been obtained and stored in a lookup table, thus b(l,D, j)
can be computed by Equation 21 in O(1) time. For notational
convenience, we use bl,j to represent b(l,D, j).

Consider the following optimization problem P (C,Z):

maximize
∑|Z|
l=1

∑Jl
j=1 yl,j · bl,j (23)

subject to
∑|Z|
l=1

∑Jl
j=1 yl,j · cl ≤ C (24)

yl,j = 0 or 1 (25)

We claim that P (C,Z) is equivalent to our cleaning prob-
lem (Definition 7).



Theorem 3: The optimal solution to the cleaning problem
is given by:

X∗ = {τl|
∑Jl
j=1 y

∗
l,j > 0} (26)

M∗ = {Ml|τl ∈ X∗ ∧Ml =
∑Jl
j=1 y

∗
l,j} (27)

where y∗l,j is the optimal solution to P (C,Z).
Proof: We first prove that for an x-tuple τl ∈ Z, if ∃j0

s.t. y∗l,j0 = 0, then ∀j > j0, y
∗
l,j = 0.

Suppose by contradiction that for an x-tuple τl0 , ∃j1 > j0
and y∗l0,j1 = 1. Consider y′l,j = y∗l,j , except y′l0,j0 = 1, y′l0,j1 =
0. We have

∑
l

∑
j y
′
l,j · cl =

∑
l

∑
j y
∗
l,j · cl ≤ C. Thus y′l,j

is a feasible solution to P (C,Z). As discussed in Lemma 4,
bl0,j0 ≥ bl0,j1 , thus,

∑
l

∑
j y
′
l,j · bl,j ≥

∑
l

∑
j y
∗
l,j · bl,j ,

which violates the assumption that y∗l,j is the optimal solution
to P (C,Z).

Therefore, adding the constraint yl,j+1 < yl,j(∀1 ≤ l ≤
|Z| ∧ 1 ≤ j ≤ Jl − 1) into P (C,Z) will not affect the
optimal solution to P (C,Z). Let jl be the largest index in
τl such that yl,jl = 1. We have

∑Jl
j=1 yl,j · bl,j =

∑jl
j=1 bl,j .

Besides,
∑Jl
j=1 yl,j · cl = jl · cl, which is the cost to perform

pclean(τl) for jl times. So the following optimization problem
is equivalent to P (C,Z):

maximize
∑|Z|
l=1

∑jl
j=1 bl,j

subject to
∑|Z|
l=1 jl · cl ≤ C, jl = 0, 1, . . . , Jl

Furthermore, this optimization problem is essentially the
one corresponding to Definition 7, with Ml = jl. Thus, we
obtain the equivalence of P (C,Z) and our cleaning problem.
We can then derive the optimal solution to the cleaning
problem based on y∗l,j , and obtain Equation 26 and 27.

D. Efficient Data Cleaning Algorithms

In this section, we first propose an optimal algorithm to the
cleaning problem. We further develop several heuristics to im-
prove the efficiency of the data cleaning. The implementation
details and complexity analysis of all algorithms can be found
in Appendix E to G.

1) DP: This is a dynamic programming algorithm which
can achieve the optimal solution to the cleaning problem. We
note that P (C,Z) is essentially the 0-1 knapsack problem
in [32]. There are N =

∑|Z|
l=1 Jl items in total, while each item

has the value of bl,j and cost of cl. The budget of the knapsack
problem is C. This problem can be solved by a dynamic
programming solution that runs in O(N × C) = O(C2|Z|)
time. After finding the optimal solution to P (C,Z), we can
further derive the optimal solution to the cleaning problem
according to Equation 26 and 27. Thus, the time complexity
of DP is O(C2|Z|).

2) RandU: This is the simplest heuristic, where x-tuples are
randomly selected to be cleaned with the same probability and
with replacement until the budget is exhausted. This heuristic
is designed based on the fairness principle, thus each cleaning
operation gets a nearly fair chance to be selected to perform.
The time complexity of this heuristic is O(C).

3) RandP: This heuristic is similar to RandU. But the
probability that an x-tuple is selected to be cleaned is derived
based on the top-k probability of each x-tuple. We notice
that

∑n
i=1 pi = k, thus the probability that τl is selected

to be cleaned equals to
∑
ti∈τl

pi/k. The selection process is
the same as RandU’s, where x-tuples are randomly selected
base on the derived probability and with replacement until the
budget is exhausted. In fact, this heuristic is designed based
on the intuition that cleaning an x-tuple with a larger top-k
probability may have a better effect on the quality score, thus
this x-tuple should have a higher probability to be cleaned.
The time complexity of this heuristic is O(C).

4) Greedy: Consider N items described in V-D.1, let
γl,j = bl,j/cl be the score of an item with value of bl,j and
cost of cl. Conceptually, Greedy selects the item with the
highest values of γl,j such that the total cost does not exceed
the budget. We denote the solution obtained by Greedy as
the approximate solution to P (C,Z). Greedy then employs
Equation 26 and 27 to derive the solution to the cleaning
problem based on this approximate solution. Intuitively, γl,j
is the expected quality improvement of pclean(τl) per unit
cost. Thus, the choice of Greedy is decided by the amount of
expected quality improvement and the cost required by each
cleaning operation. By using the fact that γl,j+1 ≤ γl,j , and
a heap to maintain items’ scores, the time complexity of this
heuristic is O(N log |Z|) = O(C|Z| log |Z|).

VI. EXPERIMENTS

We conducted an empirical study on both real data set and
some synthetic datasets. All our experiments are written in
C++ and run on a machine with 8G memory, i5 CPU, 64-bit
linux system.

Synthetic Datasets. To generate the synthetic dataset, we
follow the way in [16]. The default dataset contains 5K
x-tuples. Each x-tuple has 1D attribute y, in the domain
[0, 10000]. y has two components “uncertainty interval” y.L
and the “uncertainty pdf” y.U , where y.U is a Gaussian
distribution ℵ(µ, σ2). The default parameter is σ = 100 and
the mean value µ is uniformly distributed in the domain. The
range of y.L is uniformly distributed in [60,100] and the center
of “y.L” equal to µ. Each x-tuple contains 10 tuples. We also
discretize the y.U by its histogram representation, where the
existential probabilities are computed based on the “equal
histogram bars”(the number of bars is 10), and values are
the mean values of the histogram bars. Our default synthetic
dataset thus has 5K x-tuples, and 50K tuples. In the sequel,
when we mention the database size, it refers to the number of
tuples in the database. Our ranking function f always gives
a higher rank to a tuple with a larger value. For two tuples
with the same value, the tuple with a smaller index is ranked
higher the other one.

Real Datasets (MOV). We also perform experiments on
a real-world probabilistic dataset [4], which stores the uncer-
tainty about movie-viewer ratings. This dataset contains 4999
x-tuples, and each x-tuple consists of 2 tuples in average.
Each tuple has five attributes: movie-id, viewer-id, date,



rating, and confidence, where (movie-id, viewer-id) is the
key for the corresponding x-tuple. The date and rating are
the value attributes. The confidence represents the existential
probability of this tuple. the date varies from 2000-01-01
to 2005-12-31, while the rating varies from 1 to 5. We
normalized date and rating within the interval [0,1] to give
each attribute the same weight. The ranking function f on this
dataset gives a higher rank to a tuple with the larger score on
date + rating. The top-k query on each possible world can be
viewed as to find the top-k movie ratings with a high rating
and large date, that are the newest.

Top-k Queries. The tuples in all datasets are pre-sorted in
the descending order of rank. For top-k queries, by default,
k = 15, and the threshold for PT-k is 0.1. To evaluate the
query answers, we implement PSR and adopt the evaluation
framework proposed in [15].

Quality Score. To compute the quality score, we employ TP
by default. We have verified the correctness of PWR and TP
by comparing with PW in several experiments under different
settings. We found that the absolute difference between the
quality scores calculated by different methods is always small-
er than 10−8. The slight difference is caused by the precision
loss during the computing process.

Cleaning Problem. To model the cleaning problem, for
both datasets, we first generate a cleaning cost for each x-tuple,
which is an integer and uniformly distributed in the range of
[1, 10]. We also attach a successful cleaning probability to each
x-tuple. The sc-probability is generated from a sc-probability
distribution function, or sc-pdf for short. By default, the sc-
pdf is a uniform distribution in the range of [0, 1]. The default
cleaning budget C is 100 units.

A. Quality of Top-k Queries

Effect of k. We next investigate how the value of k affects
the quality score of the query results. Figure 4(a) shows that
when k increases the quality score decreases. This is because
the number of pw-results increases with k, and the query
results are more uncertain. Thus, the quality score reflects the
ambiguity of the query results.

Effect of Uncertainty pdf. We also test the effect of
the uncertainty pdfs of the attribute y (y.U ) in our datasets.
Figure 4(b) presents the quality scores for five different pdfs.
We test the effect of variance of the Gaussian distribution
(y.U ), where GX denotes that the variance is X, and also test
a dataset where the uncertainty pdf is a uniform distribution.
Observed that a Gaussian pdf with a smaller variance yeilds a
higher quality score, and the uniform pdf has a lower quality
score than other Gaussian pdfs. This shows that a uniform pdf
leads to a more ambiguous result than a Gaussian pdf, and a
Gaussian pdf with a larger variance renders a more ambiguous
result than the one with a smaller variance.

Results on MOV. Figure 4(c) shows the quality score of
MOV under different values of k. Similar to Figure 4(a), we
observe a degradation in quality when k increases. We also
observe that although the number of x-tuples in MOV (4999)
is similar to the number of x-tuples in the default synthetic
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Fig. 4. Effectiveness and Efficiency of Query Quality Computation.

dataset (5000), the quality scores in MOV is generally higher
than those obtained in synthetic dataset. This is because each
x-tuple in MOV has 2 tuples on average, while each x-tuple
in synthetic dataset has 10 tuples. Thus, MOV is generally
less ambiguous than the synthetic dataset, which may lead to
a higher query quality.

B. Evaluation of Quality

Evaluation Time. To compare the efficiency of three quality
computation algorithms, we first examine small datasets and
with k = 5. We present the results in Figure 4(d). The amount
of time required by PW and PWR increases with the database
size, since more possible worlds (or pw-results) have to be
considered. For PW, its runtime increases rapidly with the
database size, and it takes 36.2 minutes to compute the quality
even for a database with only 10 x-tuples. PWR is much faster
than PW, since the number of pw-results (e.g., 1.1× 105 for
database size = 100 and k = 5) is much fewer than the number
of possible worlds (e.g., 1010 for database size = 100). On the
other hand, TP runs very fast since its runtime is linear to the
database size and k.

We further evaluate the efficiency of PWR and TP in some
large datasets. Figures 4(e) and 4(f) both show that if the
database size is large, or the value of k is large, PWR cannot
return the quality score in a reasonable time. In Figure 4(e),
when k = 15, runtime of PWR increases very fast since the
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number of pw-results increases rapidly. However, TP needs
much shorter time to evaluate the quality score than PWR. In
the sequel, we use TP to compute the quality.

Query vs. Quality Evaluation. We next evaluate the effect
of probability information sharing discussed in Section IV-
C. Figure 5(a) shows that with the probability information
sharing, the total evaluation time of query and quality can
be reduced to 52% of the time required by a solution without
sharing at k = 100. Figure 5(b) further shows the time required
to evaluate PT-k and the extra time required to compute the
quality when sharing is employed. Observed that when k
increases, the percentage of time spent on quality computation
decreases. For example, the percentage is reduced from 33.3%
at k = 15 to 6.3% at k = 100. We also test the evaluation
time of U-kRanks and Global-topk, and shows the result in
Figure 5(c). Generally, the evaluation time of these two queries
is slightly more than PT-k, and so the extra time to compute
quality only occupies a small percentage of the total evaluation
time. The results for varying the database size are similar, and
so they are skipped here.

Results on MOV. As shown in Figure 5(d), the overhead
for quality computation in addition to query evaluation is also
not too much in MOV. However, we observe that the total
time for query and quality evaluation in MOV is less than the
one in synthetic dataset. For example, when k = 15, the total
evaluation time in MOV is 0.04ms, while the total evaluation
time in synthetic dataset is 0.36ms. This is because when k =
15, the number of tuples with nonzero top-k probability in
MOV is 75, while the number in synthetic dataset is 579.

C. Data Cleaning

We next examine the results for data cleaning. We assume
that before running the cleaning algorithms, the query quality
of has been obtained, and the values of g(l,D) =

∑
ti∈τl ωipi

have been stored in a lookup table such that they can be
retrieved in O(1) time.

Effectiveness. We first compare the effectiveness of d-
ifferent cleaning algorithms. Figure 6(a) shows the quality
improvement (I) under a wide range of budget (C). Since
the quality score (S) of the default dataset for a top-15 query
is −66.797551, the maximum expected quality improvement
cannot exceed |S|. DP is the optimal solution, thus it performs
the best. When C increases, it has more budget to perform
a cleaning operation for more times, and so the quality
improvement is close to the maximum value when C is large
enough. It is worth to notice that Greedy comes close to DP .
This is because the cleaning problem is essentially a variant
of 0-1 knapsack problem (Section V-D.1), for which it has
been proved that a greedy algorithm has a close-to-optimal
performance [33]. For two random algorithms RandU and
RandP , RandP performs better since it gives priority to x-
tuples with a higher top-k probability, that may be beneficial
to the quality improvement. RandU does not consider any
factor which may affect the quality improvement, and so it
performs the worst among all cleaning algorithms.

Effect of sc-pdf. We also evaluate how the sc-pdf affects the
cleaning effectiveness in Figure 6(b). In addition to the default
uniform distribution, we also test three sc-pdfs that follow nor-
mal distributions with mean 0.5 and variance σ = 0.13, 0.167,
and 0.3, respectively. We observe that the effectiveness of
DP and Greedy both increases with σ, and the effectiveness
with a uniform sc-pdf is maximum. Conceptually, a larger
variance indicates that there are more x-tuples have a large
sc-probability. DP and Greedy take the sc-probability into
consideration when determine the solution to the cleaning
problem, and so they both benefit by a large variation of
sc-pdf. However, RandU and RandP do not consider the
sc-probability during the selection process. Since the average
value of all sc-pdfs is identical, their effectiveness does not
change a lot in different sc-pdfs.

Effect of Average sc-probability. Figure 6(c) shows how
the change of the average sc-probability affects the cleaning
effectiveness. We examine six sc-pdfs, each of them is a
uniform distribution in the range of [x, 1], thus its average
value is (1 + x)/2. The effectiveness of all cleaning algorithms
increases with the average sc-probability, since the expected
quality improvement will benefit by a larger sc-probability.

Efficiency. We present the time required by different al-
gorithms to compute the solution to the cleaning problem in
Figure 6(d). We see that DP provides an optimal solution
in polynomial time, but its runtime is much higher than other
heuristics. Greedy runs more slowly than RandU and RandP
since it needs to maintain a heap which stores values of
γl,j = b(l, D, j)/cl. The overhead of RandP compared to
RandU is caused by the selection criterion of RandP which
also considers the top-k probability of each x-tuple.

We then study the effect of k in Figure 6(e). We observe that
runtime of DP and Greedy slightly increases with k. This is
because, when k increases, the value of |Z| slightly increases,
which will affect the efficiency of these two algorithms. For
example, when k = 15, |Z| = 79. When k is increased to 30,
|Z| becomes 98. For RandU and RandP , the change of k
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Fig. 6. Effectiveness and Efficiency of Cleaning Algorithms.

does not affect their efficiency.
Results on MOV. The results on MOV (shown in Fig-

ure 6(f) and 6(g)) are similar to those for the synthetic
data. Observed that Greedy always has a close-to-optimal
performance, and it is the best among all heuristics.

VII. CONCLUSIONS

In this paper, we address the challenging problem of com-
puting the PWS-quality score of a probabilistic top-k query.
We develop efficient algorithms to evaluate the quality of U-
kRanks, PT-k, and Global-topk queries. We also investigate
the problem of cleaning a probabilistic database to achieve
an optimal gain of quality under a limited budget. In the
future, we will study how to efficiently compute the PWS-
quality of other complex probabilistic queries. We will also
examine other uncertain data cleaning problem, e.g., how to
use minimal cost to attain a given quality score.
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APPENDIX

TABLE III
SYMBOLS USED IN THIS PAPER.

Notation Description
Data Model

D A probabilistic database
τl An x-tuple of D with l = 1, . . . ,m
ti A tuple of D with i = 1, . . . , n
IDi The key for ti
xi The ID of the x-tuple (l) that ti belongs to
vi Value attribute of tuple ti
ei Existential probability of the tuple ti
W(D) A set of all possible worlds of D

Probabilistic Top-k Query and Quality Metric
R(D,Q) A set of all top-k PW-results of D
S(D,Q) PWS-quality of probabilistic top-k query on D

pi The top-k probability of ti
Data Cleaning

C Cleaning budget
cl Cost of performing clean(τl) once
Pl Successful cleaning probability of τl
X Set of x-tuples to be cleaned
Ml Number of times that clean(τl) is performed

A. Proof of Theorem 1

For convenience, let d, rj and qj be the size of R(D,Q),
the j-th pw-result in R(D,Q) and the probability of rj ,
respectively.

By substituting Equation 2 into log qj , Equation 4 becomes

S(D,Q) =

d∑
j=1

qj log(
∏
ti∈rj

ei
∏

τl∩rj=∅

(1−
∑
ti∈τl∧
ti>rj.t

ei)). (28)

Using the property that log (ab) = log a+ log b, we have

S(D,Q) =

d∑
j=1

qj
∑
ti∈rj

log ei+

d∑
j=1

qj
∑

τl∩rj=∅

log(1−
∑
ti∈τl∧
ti>rj.t

ei)).

(29)
By swapping the summation orders and notice that pi =∑
ti∈rj qj , all qjs’ in the first of Equation 29 can be replaced

by pis’. Hence,

d∑
j=1

qj
∑
ti∈rj

log ei =

n∑
i=1

pi log ei. (30)

We next show how the qjs’ in the second part of Equation 29
can be replaced by tuples’ top-k probability. Observed that∑
ti∈τl∧ti>rj .t ei is essentially the probability that τl has at

least a tuple ranked higher than rj .t. It can be obtained by
summing up the existential probabilities of tuples in τl whose
ranks are higher than rj .t. Thus,∑

ti∈τl∧ti>rj .t
ei =

∑
ti∈τl∧ti≥t(l,rj .t)

ei, (31)

where t(l, rj .t) is the smallest tuple in τl whose rank is higher
than rj .t. Then the second part of Equation 29 equals to:∑

τl∈D

∑
ti∈τl

log (1−
∑

ti′∈τl∧ti′≥ti

ei′)
∑

τl∩rj=∅∧t(l,rj .t)=ti

qj .

(32)
The summation of qjs’ in Equation 12 is the probability that

a pw-result rj contains no tuple from τl and the smallest tuple
in τl whose rank is higher than rj .t is tuple ti. This probability
can be further replaced by the tuples’ top-k probabilities and
existential probabilities in τl using the following facts.

First, the condition that t(l, rj .t) = ti can be rewritten as
ti > rj .t ≥ tξ(ti), where ξ(ti) is the index of the largest tuple
in τl whose rank is lower than ti. Thus,∑

τl∩rj=∅∧t(l,rj .t)=ti

qj =
∑

τl∩rj=∅∧ti>rj .t≥tξ(ti)

qj (33)

Notice that, if ti is the smallest tuple in τl, there is no pw-
result rj can satisfy the condition τl∩ rj = ∅∧ ti > rj .t since
exactly one tuple from τl will exist in any possible world.

Second, let Ai be the event that (1) the rank of the
smallest tuple in a pw-result is lower than ti, and (2) tuples
in τl whose rank is not smaller than ti does not appear.∑
τl∩r=∅∧ti>rj .t Pr(r) equals to the probability that Ai is true

(Pr(Ai)). Also,

pi = ei Pr (Ai)/(1−
∑
t
i′∈τl∧ti′≥ti

ei′ ). (34)

In fact, Pr (Ai)/(1−
∑
t
i′∈τl∧ti′≥ti

ei′ ) is the probability that for
tuples not in τl, there are at most k−1 tuples whose ranks are
higher than ti exist. Hence, if ti exists, ti is in the pw-result.
Thus,

Pr(Ai) = (1−
∑

ti′∈τl∧ti′≥ti

ei′)
pi
ei
. (35)

Similarly, let Bi be the event that (1) the rank of the smallest
tuple in a pw-result is not higher than tξ(ti), and (2) tuples in
τl whose rank is not smaller than ti does not appear. We have

Pr(Bi) = (1−
∑

ti′∈τl∧ti′≥ti

ei′)
pξ(ti)

eξ(ti)
. (36)

According to the definition of ξ(ti), there is no tuple in τl
whose rank is between ti and ξ(ti). Thus, we have∑

τl∩rj=∅∧ti>rj .t≥tξ(ti)

qj = Pr(Ai)− Pr(Bi). (37)

By substituting Equation 37 into qj , Equation 32 becomes
n∑
i=1

Y (1−
∑

ti′∈τl∧ti′≥ti

ei′)(
pi
ei
−
pξ(ti)

eξ(ti)
). (38)

Since ξ(ti) is the largest tuple in τl whose rank is lower
than ti, Equation 38 can be further rewritten as
n∑
i=1

pi
ei
(Y (1−

∑
xi′=xi∧ti′≥ti

ei′)− Y (1−
∑

xi′=xi∧ti′>ti

ei′)).

(39)



By substituting Equation 30 and Equation 39 into Equa-
tion 29, all qjs’ can be replaced by tuples’ top-k probability
and existential probability, and we prove that Equation 5and 6
is correct.

B. Proof of Lemma 3

To evaluate E(p′i) directly, we should examine all possible
cleaned databases. Furthermore, to compute p′i in D′, it
requires querying on every possible world. Thus, we can
first aggregate the same possible world from different cleaned
databases, and evaluate E(p′i) on the aggregated possible
worlds.

We next prove that that the probability of a possible world
over all possible cleaned databases is the same with the
probability of this possible world in D. Recall that a possible
world contains exactly one tuple from each x-tuple, and its
probability equals to the product of existential probability of
tuples in this possible world, thus we only need to prove that
the existential probability of a tuple ti over all possible cleaned
databases, denoted by ẽi, is equal to ei. Suppose ti ∈ τl, we
consider two cases.

First, τl /∈ X . Since τl is not selected to clean, it is trivial
that ẽi = ei.

Second, τl ∈ X . In this case, ẽi is the summation of the
following two probabilities:

1) τl is cleaned, and the remaining tuple is ti. The proba-
bility equals to ei × (1− (1− Pl)Ml);

2) τl is not cleaned, and ti exists. The probability equals
to ei × (1− Pl)Ml .

Therefore, ẽi = ei× (1− (1−Pl)Ml)+ ei× (1−Pl)Ml = ei.
Hence, ẽi = ei for all ti ∈ D, and we obtain the conclusion

that the function of E(p′i) is the same with pi.

C. Proof of Theorem 2

Observed that E(S(D′, Q)) equals to

|X|∑
l=1

E(g(l,D′)) +

m∑
l=|X|+1

E(g(l,D′)) (40)

We first claim that if 1 ≤ l ≤ |X|,

E(g(l,D′)) = (1− Pl)Mlg(l,D). (41)

Consider two cases.
(1) If τl is cleaned, for all ti ∈ τl, ω′i = 0, and so g(l,D′) =∑
ti∈τl ω

′
ip
′
i = 0;

(2) If τl is not cleaned, for all ti ∈ τl, ω′i = ωi. For
the expected top-k probability of ti over all possible cleaned
databases where τl is not cleaned, it is equivalent to∑

~x0∈z1×...×zl−1×τl×zl+1×...×z|X|

Pr(~x = ~x0|~x(l) = τl)p
′
i.

(42)
In fact, this is the same function with the expected top-
k probability of ti over all possible cleaned databases with
X̃ = X−{τl} and M̃ =M −{Ml}. According to Lemma 3,
this probability equals to pi.

The probability that τl is cleaned is (1−(1−Pl)Ml) and the
probability that τl is cleaned is (1 − Pl)Ml . Hence, we have
E(g(l,D′)) = (1− Pl)Ml

∑
ti∈τl ωipi = (1− Pl)Mlg(l,D).

We next claim that if |X|+ 1 ≤ l ≤ m,

E(g(l,D′)) = g(l,D). (43)

Since τl is not selected to be cleaned, the existential probability
of tuples in τl keeps unchanged. Thus, for all ti ∈ τl, we
have ω′i = ωi. Furthermore, E(ω′ip

′
i) = ωiE(p′i), which is

equivalent to ωipi according to Lemma 3.
By substituting Equation 41 and 43 into Equation 40, we

obtain the final result (Equation 19).

D. Proof of Lemma 4

We first prove that g(l,D) is non-positive. Recall the proof
of Theorem 1, g(l,D) is essentially equivalent to∑
ti∈τl

pi log ei +
∑
ti∈τl

log (1−
∑

t
i′∈τl∧
t
i′≥ti

ei′)
∑

τl∩rj=∅∧
ti>rj.t>succ(ti)

qj .

Since 0 < ei ≤ 1, p(ti) ≥ 0, qj ≥ 0, and
∑
ti∈τl ei = 1, it is

obvious that g(l,D) is non-positive.
By using Equation 21, we have b(l,D, j) is non-negative.

Hence, b(l,D, j + 1) = (1− Pl)b(l,D, j) ≤ b(l,D, j).

E. A Dynamic Programming Solution

Algorithm 2 shows the details of DP algorithm. It first
generates N items and decides its value and cost as discussed
in Section V-D.1 (Step 1 to 8). xid[i] indicates which x-tuple
the i-th item is generated from.

Step 9 to 17 is the dynamic programming solution to
solve the 0-1 knapsack problem. dp[c, i] (c = 1, . . . , C, i =
1, . . . , N) is the optimal solution for the subproblem which
contains the first i items and with budget equals to c. Thus,
the optimal solution to the knapsack problem is dp[C,N ].
Notice that, if the i-th item is selected, it consumes cost[i]
units of budget, and obtains value[i] units of gain. Hence, we
can obtain the recurrence as follows:

dp[c, i] =


dp[c, i− 1] if c < cost[i],
max(dp[c, i− 1],

dp[c− cost[i], i− 1] + value[i])
otherwise.

(44)
Furthermore, we use case[c, i] to store whether the i-th item
is selected (e.g., 0 means it is not selected) in order to obtain
the optimal value of dp[c, i].

In Step 18 to 28, we derive the optimal solution to the
knapsack problem based on the information of case[c, i],
and then obtain the optimal solution to the cleaning problem
according to Theorem 3.

The time complexity of DP is O(C × N). Since dp[c, i]
and case[c, i] are both C×N arrays, the space complexity of
DP is O(C×N). Observed that N =

∑
τl∈Z Jl = O(C|Z|),

the time and space complexities of DP are both O(C2|Z|).



Algorithm 2 DP
Require: Z, g(l,D), Pl, cl, Budget C

1: i← 0
2: for l← 1 to |Z| do
3: Jl ← bCcl c
4: for j ← 1 to Jl do
5: bl,j ← −(1− Pl)

j−1Pl · g(l,D)
6: i← i+ 1
7: xid[i]← l, value[i]← bl,j , cost[i]← cl
8: N ← i
9: dp[0, i]← 0, i = 0, . . . , N

10: for i← 1 to N do
11: for c← 1 to C do
12: if c < cost[i] or dp[c, i − 1] > dp[c − cost[i], i − 1] +

value[i] then
13: dp[c, i]← dp[c, i− 1]
14: case[c, i]← 0
15: else
16: dp[c, i]← dp[c− cost[i], i− 1] + value[i]
17: case[c, i]← 1

18: Ml ← 0, l = 1, . . . , |Z|
19: c← C, i← N
20: while c > 0 and i > 0 do
21: if case[c, i] = 1 then
22: Mxid[i] ←Mxid[i] + 1
23: c← c− cost[i]
24: i← i− 1
25: X ← ∅
26: for l← 1 to |Z| do
27: if Ml > 0 then
28: X ← X ∪ {τl}

return X , M

Algorithm 3 RandU
Require: Z, cl, Budget C

1: Ml ← 0, l = 1, . . . , |Z|
2: while C ≥ min cl do
3: Randomly select τl from Z (each x-tuple has probability of

1/m to be selected)
4: if C > cl then
5: Ml ←Ml + 1
6: C ← C − cl
7: X ← ∅
8: for l← 1 to |Z| do
9: if Ml > 0 then

10: X ← X ∪ {τl}
return X , M

Algorithm 4 RandP
Require: Z, pi, cl, Budget C

1: Ml ← 0, l = 1, . . . , |Z|
2: while C ≥ min cl do
3: Randomly select τl from Z (each x-tuple has probability of∑

ti∈τl
pi/k to be selected)

4: if C > cl then
5: Ml ←Ml + 1
6: C ← C − cl
7: X ← ∅
8: for l← 1 to |Z| do
9: if Ml > 0 then

10: X ← X ∪ {τl}
return X , M

Algorithm 5 Greedy
Require: Z, g(l,D), Pl, cl, Budget C

1: Ml ← 0, l = 1, . . . , |Z|
2: for l← 1 to |Z| do
3: Jl ← bCcl c
4: for j ← 1 to Jl do
5: bl,j ← −(1− Pl)

j−1Pl · g(l,D)

6: γl,j ←
bl,j
cl

7: Q.insert(γl,1) // Q is a heap.
8: while C ≥ min cl do
9: γl,j ← Q.pop() // The largest γl,j in Q is popped.

10: if C > cl then
11: Ml ←Ml + 1, C ← C − cl
12: if j + 1 < Jl then
13: Q.insert(γl,j+1)
14: X ← ∅
15: for l← 1 to |Z| do
16: if Ml > 0 then
17: X ← X ∪ {τl}

return X , M

F. RandU and RandP

The details of RandU and RandP are shown in Algorith-
m 3 and 4, respectively. The process of these two heuristics
is very similar except the selection criterion. The probability
of an x-tuple to be selected in RandU is the same (Step 3
Algorithm 3), while the probability in RandP is proportioned
to the x-tuple’s top-k probability (Step 3 Algorithm 4). The
time and space complexities of these two heuristics are both
O(C) and O(Z), respectively.

G. Greedy

We use a heap to maintain the items’ scores (i.e., γl,j) and
retrieve the items one by one in descending order of their
scores. Observed that bl,j+1 ≤ bl,j , we have γl,j+1 ≤ γl,j .
Using this observation, we can just maintain γl,1(1 ≤ l ≤ |Z|)
in the heap initially, and insert γl,j+1 into the heap after γl,j is
popped (during each iteration, only the one with largest value
of γl,j is popped). With this technique, the time for retrieving
all items is reduced to O(N log |Z|), since the size of the heap
is always not larger than |Z|. The details of Greedy is shown
in Algorithm 5.

The time complexity of Greedy is O(N log |Z|) =
O(C|Z| log |Z|), while the space complexity is O(N) =
O(C|Z|), since γl,j should be computed and stored in advance.




