
Voronoi-based Nearest Neighbor Search
for Multi-Dimensional Uncertain Databases

Peiwu Zhang #1, Reynold Cheng #2, Nikos Mamoulis #3, Matthias Renz ∗4

Andreas Züfile ∗5, Yu Tang #6, Tobias Emrich ∗7

#The University of Hong Kong, Pokfulam Road, Hong Kong
{pwzhang 1, ckcheng 2, nikos 3,ytang 6}@cs.hku.hk

∗Ludwig-Maximilians-Universität München, Munich, Germany
∗{renz 4, zuefle 5, emrich 7}@dbs.ifi.lmu.de

Abstract— In Voronoi-based nearest neighbor search, the
Voronoi cell of every point p in a database can be used to
check whether p is the closest to some query point q. We
extend the notion of Voronoi cells to support uncertain objects,
whose attribute values are inexact. Particularly, we propose the
Possible Voronoi cell (or PV-cell). A PV-cell of a multi-dimensional
uncertain object o is a region R, such that for any point p ∈ R,
o may be the nearest neighbor of p. If the PV-cells of all objects
in a database S are known, they can be used to identify objects
that have a chance to be the nearest neighbor of q.

However, there is no efficient algorithm for computing an
exact PV-cell. We hence study how to derive an axis-parallel
hyper-rectangle (called the Uncertain Bounding Rectangle, or UBR)
that tightly contains a PV-cell. We further develop the PV-index,
a structure that stores UBRs, to evaluate probabilistic nearest
neighbor queries over uncertain data. An advantage of the PV-
index is that upon updates on S, it can be incrementally updated.
Extensive experiments on both synthetic and real datasets are
carried out to validate the performance of the PV-index.

I. INTRODUCTION

Nearest neighbor queries are the fundamental procedures for
many similarity search and location-based query applications
for location-based services. In particular, a nearest-neighbor
query allows users to retrieve the most similar object to a
given query object or to retrieve a location from a geospatial
database that is closest to her current location. In recent
studies it is shown that a Voronoi diagram is a data structure
that is extremely efficient in exploring a local neighborhood
in a geometric space [1]. Given a set of points, a Voronoi
diagram uniquely partitions the space into disjoint regions
called Voronoi cells such that each cell is assigned to one
single point. The Voronoi cell corresponding to a point o
covers the points in space that are closer to o than to any
other point, as illustrated in Figure 1(a).

Attribute values of a traditional database are often assumed
to be exact. This is no longer true for many emerging applica-
tions. Consider a system that retrieves positions of pedestrians,
vehicles, and buildings from satellite images through human
effort (e.g., Wikimapia) and machine learning algorithms.
Due to the error-prone nature of the data transmission and
extraction procedures, the location values obtained from the
images may not be correct. This database, if released to the

public, may also be perturbed with noise, in order to alleviate
privacy concerns [2].

In natural habitat monitoring, information collected at sen-
sor nodes (e.g., temperature and humidity) can be contam-
inated with measurement error [3]. In order to satisfy the
increasing needs of managing imprecise data, several uncertain
databases have been developed [4]–[7].

In this paper, we study the efficient evaluation of the
probabilistic nearest neighbor query (PNNQ), a fundamental
query operator used in many uncertain databases, by adapting
the general concept of Voronoi-based nearest neighbor search.
Given a multi-dimensional point q (e.g., location of a vehicle,
a vector of (temperature, humidity, wind speed)), a PNNQ
returns the identities of objects whose (qualification) proba-
bilities of being the closest to q are larger than zero [8]. The
problem of evaluating this query in a scalable manner, which
is technically challenging, has attracted plenty of research
interest (e.g., [8]–[11]). In general, the execution of PNNQ
involves the following steps: Step 1: retrieving objects whose
qualification probabilities are larger than zero; and Step 2:
computing the qualification probabilities of objects obtained in
Step 1. Most previous work focused on the efficiency issues of
Step 2. Our goal is to propose a scalable solution for enhancing
the performance of Step 1.

(a) (b) (c)

Fig. 1. Illustrating the PV-cell of (circled) object o, whose uncertainty
region is: (a) point; (b) 2D rectangle; and (c) 3D rectangle (where
the PV-cell is composed of curved surfaces).

Specifically, we study a solution based on Possible Voronoi
cells (or PV-cells in short). To understand this concept, let
us consider a database that follows the attribute uncertainty
model [8], a model that is commonly used in the database

Administrator
 HKU CS Tech Report TR-2012-10

community in the context of uncertain data [9], [10], [12]–[14].
Consider a d-dimensional domain D, where D ⊆ ℜd. In the
model used in this paper the d-dimensional attribute values of
an object is a random variable specified by a given probability
distribution [5], [8] called uncertainty pdf. For instance, a
location value, obtained by a GPS sensor, can be represented
by a Gaussian distribution [15]; the temperature, humidity,
and wind speed values obtained at a sensor node is a three-
dimensional attribute with some probability distribution [3].
Here, we adopt the discrete model [13], [14], where o’s
uncertainty pdf is represented by a set of d-dimensional points,
or “instances”. Each instance is assigned the probability of
being the exact representation of o. Since we are interested in
retrieving all possible nearest neighbors of a given query ob-
ject q, i.e. objects with non-zero probability being the nearest
neighbor of q, we can use a more simplified approximation
of an uncertain object. Following the object representation
as proposed in [8], [10], [11], [13], an uncertain object o is
defined by an axis-parallel rectangular region u(o) ⊆ D which
we call uncertainty region of o. Specifically, u(o) minimally
bounds all possible values of o’s attributes o.a. Let us note
that our solution can also be used to handle the case when
u(o) is not a rectangle.

Based on the definition of an uncertain object we can now
formally define the Possible Voronoi Cell.

Definition 1: The Possible Voronoi Cell (PV-cell) of an
uncertain object o, denoted by V(o), is a d-dimensional region
R, such that for any point p ∈ R, o has a chance, i.e. a non-
zero probability, to be the closest to p among all the objects
in database S.

Here, “to be the closest to p” means to have the smallest
Euclidean distance to p among the objects in S. Notice that
when the objects in S are certain points, V(o) reduces to a
Voronoi cell of o, as illustrated in Figure 1(a). This example
shows the (2D) uncertainty regions of locations of five objects.
Given an uncertain database S and an object o ∈ S, a PV-
cell is a region R, where for any point p ∈ R, o has a non-
zero chance to be the closest to p. In Figure 1(b), the PV-cell
of o (in dotted circle) is a region bounded by solid curve
segments. To see whether o is the closest to q, we just check
whether q is inside the PV-cell of o. Moreover, if the PV-cells
of all objects in S are known, Step 1 of PNNQ evaluation
can be performed by retrieving objects in S, whose PV-cells
contain q. This approach, as shown by our experiments, is
much faster than previous solutions (e.g., [8], [11]). Figure 1(c)
shows another example of PV-cells, for uncertainty regions
that are 3D rectangles, respectively.

Unfortunately, computing exact PV-cells is rather complex.
To the best of our knowledge, there exists no efficient solution
for this problem. In fact any exact algorithm must scale
exponentially in the number of dimensions. To make this
clear, consider the simple case where the database consists
of only two uncertain objects o1 and o2. The border between
the two corresponding Voronoi cells is piece-wise curvilinear.
The number of pieces is linearly correlated with the number
of corners of an uncertain object, which is in O(2d) for

rectangles. (see [16] for a discussion on the computation of
such Voronoi planes).

To tackle this problem, we define the Uncertain Bounding
Rectangle, or UBR, which is an axis-parallel rectangle that
tightly approximates the PV-cell P in a conservative way, i.e.
completely contains P . We observed from our experiments
that if we use an UBR of P which is only slightly larger than
an UBR that minimally bounds P , the performance of PNNQ
will not be significantly affected. The advantage of such a
loose fitting UBR is that it can be quickly obtained as it does
not need to compute the exact PV-cell. The main idea is to ap-
proximate the PV-cell iteratively in an analytical way based on
distance relationships between uncertain objects. Specifically,
in each iteration we apply the concept of distance domination
following the studies made in [17] in order to check whether
the current UBR is still a conservative approximation of the
PV-cell. Based on this concept, we propose a Shrink-and-
Expand (or SE) algorithm. This solution runs in an iterative
manner; in each round, the UBR of P is either enlarged or
reduced, until its size is similar to that of the MBR of P . This
algorithm, which only needs a logarithmic number of steps,
can efficiently derive a UBR.

Based on the UBRs computed by SE, we develop the
PV-index to enable PNNQ evaluation. This space-partitioning
structure organizes the UBRs in a systematic manner, so
that a PNNQ can be efficiently executed. Through a detailed
experimental evaluation on real and synthetic datasets, we
show that our solution is efficient and scalable.

We further address the issue of updating the PV-index upon
insertion (deletion) of an object to (from) S. A straightforward
solution is to rebuild the index from scratch; however, this may
not be cost effective, since all UBRs have to be recomputed
and inserted to the index. We observe that the UBRs of object
o before and after the change are often similar in shape. Based
on this intuition, we develop an incremental version of SE ,
which derives the new UBR by shrinking or expanding the
old UBR. We make use of this result to develop an algorithm
that efficiently refreshes the PV-index.

The rest of the paper is organized as follows. We discuss
related works in Section II. We discuss preliminaries about
PNNQs and PV-cells in Section III. Section IV studies how
to express a PV-cell by the domination concept, and Sec-
tion V presents the SE algorithm. We present construction
and query algorithms of the PV-index, as well as how it can
be incrementally maintained, in Section VI. Our experimental
results are presented in Section VII. We conclude the paper in
Section VIII.

II. RELATED WORK

Our work is related to the Voronoi diagram and the PNNQ,
as detailed below.

The Voronoi Diagram is a partitioning of a multi-
dimensional space that contains point data. Each partition of
the diagram, called the Voronoi cell, is associated with a point
p, such that any point inside p’s cell has p as its nearest neigh-
bor (NN in short) [1]. Figure 1(b) illustrates a Voronoi cell.

The Voronoi diagram is primarily used to answer NN queries
over points [1], [18], [19]; the NN of a query point q is the one
whose corresponding Voronoi cell contains q. In this context,
the Voronoi diagram has been used to support nearest neighbor
queries in geo-spatial applications [19], [20], in spatial data
streams [21] and, recently, in distributed spatial environments
[22] as well as in spatial network environments [23], [24].
Furthermore, the Voronoi diagram has been used in wireless
database services [25], [26], location-based services [27], [28],
and virus spread analysis [29]. The PV-cell of object o defines
the area where any point inside it may have o as its NN. Hence,
the PV-cell is a generalized version of the Voronoi cell.

Constructing a Voronoi diagram for multi-dimensional
points is often costly. Hence, researchers studied its approxi-
mate form. In [30], the Voronoi diagram was approximated as
a disjoint set of convex polygonal objects. In [31], Berchold
et al. developed a linear optimization algorithm for finding
rectangles that tightly bound multi-dimensional Voronoi cells.
The authors demonstrated that these rectangles facilitate NN
queries on a large database. We show that for a PV-cell, there
does not exist any efficient solution for finding its MBR. We
then study how to compute the UBR, which is only slightly
larger than the MBR. These UBRs, as we will explain, support
PNNQ evaluation.

Relatively few works studied the use of the Voronoi diagram
for uncertain data. In [32], the Voronoi diagram is used to
support uncertain data clustering. In [33], [34], the Voronoi di-
agram is employed to find out all uncertain objects that must be
the nearest neighbor of a query point. Recently, [9] proposed
the UV-cell, which is a Voronoi cell for a circular uncertainty
region. For any point p inside an object o’s UV-cell, o has a
non-zero chance to be p’s nearest neighbor. Hence, the UV-
cell is a special case of the multi-dimensional PV-cell studied
in this paper. In [35], a Voronoi-diagram-based structure is
developed for a “continuous” nearest neighbor query, where
a 2D query point is constantly moving. A problem common
to [9] and [35] is that their solutions are customized for 2D
data – they make an extensive use of intersection and rotation
operations of 2D hyperbolic curves. These operations require
costly and high-precision matrix computation. As we can see
in Figure 1(c), the shape of the PV-cell of a 3D uncertainty
region is complex. The construction cost would thus be very
high if solutions of [9] or [35] are extended to derive PV-
cells with three or higher dimensions. Our approach does not
generate a PV-cell. Instead, we compute UBRs, which does
not require any intersection and rotation operation. We also
study how to update UBRs upon object insertion or deletion;
to our best understanding, this has not been addressed before.

As discussed before, evaluating the probabilistic nearest
neighbor query (PNNQ) involves two steps:
• For Step 1, i.e., retrieving answer objects that have non-

zero probabilities of being the query answer, [8] proposed a
branch-and-prune solution based on the R-tree. Due to the
high I/O costs involved in that solution, [9] proposed the UV-
index, which stores UV-cells, in order to obtain answer objects
from a 2D database. Our PV-index, on the other hand, uses

Symbol Meaning
S A database of |S| uncertain objects
d The no. of dimensions of S
D The domain of S
o An uncertain object of S
q A query point in D

distmax(o, p) max distance of o from point p
distmin(o, p) min distance of o from point p

u(o) The uncertain region of o.a
V(o) The PV-cell of o
M(o) The MBR of V(o)
B(o) The UBR of V(o)

TABLE I
SYMBOLS AND MEANINGS USED IN THIS PAPER.

PV-cells to support the retrieval of multi-dimensional objects.
While [9] assumes that the uncertainty of an object is bounded
within a 2D circle, we assume that the uncertainty region is
a rectangle, which is a common assumption in the uncertain
database literature [8], [10], [11], [13]. For 2D uncertain data,
the UV- and PV-indexes register a similar performance in our
experiments. Nevertheless, the construction time of the PV-
index is about 15 times faster than that of the UV-index. The
spatial requirement of the PV-index is also much less than that
of the UV-index. Another problem of the UV-index is that if
any change occurs in the database, it needs to be rebuilt from
scratch; however, the PV-index can be incrementally updated.
• For Step 2, i.e., computing the probabilities of answer
objects, [8] studied a systematic way of computing these prob-
abilities. Since expensive integration operations are involved
in this step, a number of efficient methods have been proposed.
In [11], [36], efficient methods were proposed to generate
answer objects’ probability bounds without performing expen-
sive integration operations.

While we focus on enhancing the performance of Step 1,
we will also evaluate how this impacts the overall performance
of PNNQ. Other variants of PNNQs, such as group NN [12]
and reverse NN [13], [14], have also been studied. In all these
works, the R-tree was used to support efficient object retrieval.
It would be interesting to see how the PV-index can be used
to facilitate these query algorithms.

III. THE POSSIBLE VORONOI CELL

As we have discussed, PV-cells can be used to evaluate Step
1 of PNNQ. Let us now examine them in more detail. In the
following we first discuss several important properties of a
PV-cell. Then, in Section III-B, we show how to approximate
a PV-cell. Table I shows the symbols used in our paper.

A. PV-cell: Basic properties

1. Shape of V(o). Given a point p ∈ ℜd, let distmax(o, p)
(distmin(o, p)) be the maximum (minimum) distance of o.a
from p. Suppose that S contains two uncertain objects, o and
o′. Consider the following d-dimensional hyperplane, Ho′,o:

Ho′,o = {p ∈ ℜd|distmax(o
′, p) = distmin(o, p)} (1)

o’

o q

Fig. 2. Illustrating o, o′, Ho′,o
(in solid line), and the PV-cell of o
(shaded).

b a

p

distmax(a,p)
distmin(b,p)

Fig. 3. dom(a, b) (grey) and
¬dom(a, b), separated by Ha,b

(dotted line).

Figure 2 illustrates o, o′, and Ho′,o, bounded within a 2D
domain. Equation 1 cuts the domain space into two half-
spaces. If a point q ∈ ℜd is located in the half-space containing
o′, then since distmax(o

′, p) < distmin(o, p), o must not be
the nearest neighbor of q. The corresponding PV-cell of o
includes the boundaries of the domain, as well as a portion of
H(o′, o). The PV-cell of o is shaded in Figure 2.

Computing Ho′,o is not straightforward. In particular, if the
uncertainty regions of o and o′ are rectangles, the domain
space needs to be decomposed into a number of small rect-
angular partitions [37]. Figure 2 illustrates these partitions in
dotted lines. In 2D space, Ho′,o consists of straight lines and
curves. For d-dimensional space, finding all the vertices of
Ho′,o involves solving complex equations. The PV-cell of o,
which consists of Ho′,o, can therefore be “irregular” in shape.

The above observation also applies to a database of more
than two objects. To find the PV-cell of an object o, we
conceptually find its PV-cell with respect to each of the other
objects in S. Then, the PV-cell of o must be the intersection
of these |S|−1 PV-cells. Consequently, the shape of V(o) can
also be quite complex (e.g., Figure 1(a)). In fact, the number
of edges required to represent an exact PV-cell increases
exponentially in the number of dimension. Thus the space
complexity to store a UV-cell, and thus the time complexity of
any algorithm using UV-cell must be exponential. An intuition
of the exponential number of edges is given as follows: As
pointed out by [9], a 2D PV-cell consists of a number of
curvilinear one-dimensional surfaces (called edges). As illus-
trated in Figure 1(c), the PV-cell of a 3D object consists of a
number of curvilinear 2D surfaces, each described by a number
of curvilinear edges. The PV-cell of a 4D object consists of
a number of 3D surfaces, each described by a number of
2D surfaces, each described by a number of edges. Clearly,
a d-dimensional PV-cell is composed of a number of (d-1)-
dimensional surfaces, resulting in an exponential number of
1d-surfaces. Further information on the complexity of higher
dimension Voronoi cells can be found in [38].

Due to this complexity, even in 2D space [9], we next study
an approximate form of the PV-cell.

B. PV-cell: Approximation

One way to avoid computing the PV-cell is to approximate
it with a polygon. Due to its simplicity, a minimum bounding
rectangle (MBR), which is a hyper-rectangle that tightly
contains a complex spatial object, is often used (e.g., [39]).

The authors in [31] also studied the derivation of the MBR of
a Voronoi cell. Let us now examine the efficiency of finding
the MBR for a PV-cell.

Lemma 1: Let M(o) be the MBR of V(o). There does not
exist any polynomial-time algorithm for finding M(o).

Proof: (Sketch) Since the surfaces of V(o) are concave
in shape, M(o) is determined by the vertices of V(o). These
vertices are not readily known, since we do not know the exact
shape of V(o). In fact, we can view the finding of a dimension
of M(o) as a convex optimization problem. In particular, any
dimension of M(o) must be located in the feasible region
(or solution space) V(o). Since a PV-cell is composed of
planes and curved surfaces, V(o) cannot be a convex polygon.
This implies that the feasible region of this problem is not
convex. According to [40], this kind of problems does not have
any polynomial-time solution. Correspondingly, no efficient
solution exists for M(o).

The detailed proof of the above lemma can be found in
Appendix A. We conclude that it is impractical to findM(o).
Hence, we derive the UBR of V(o) defined as follows.

Definition 2: Given an object o, its Uncertain Bounding
Rectangle (UBR), denoted by B(o), is a d-dimensional rect-
angle that completely contains V(o).

A trivial B(o) is the domain space D, whereas a UBR
that tightly contains V(o) is essentially M(o). Our goal is
to develop an efficient algorithm for finding a B(o), which
is only a bit looser compared to the corresponding M(o).
Our experiments show that the UBRs we found are only a
bit larger than their corresponding MBRs, and they enable
efficient nearest neighbor retrieval. In Sections IV and V, we
will study how to derive B(o). Section VI then explains how
to use UBRs to evaluate a PNNQ.

IV. PV-CELL AND DOMINATED REGIONS

Our main idea of finding B(o) is to interpret V(o) by
using dominated regions. Section IV-A presents the concept
of dominated regions. In Section IV-B, we use dominated
regions to derive some fundamental properties of V(o). These
properties form the basis of our solution, which will be
discussed in Section V.

For the detailed proofs of the lemmas discussed in this
section, please refer to Appendix B.

A. Dominated and Non-dominated regions

Let a and b be two uncertain objects, whose uncertainty
regions u(a) and u(b) are inside the domain D. Then,

Definition 3: The dominated region of a over b, denoted
by dom(a, b), is a subset of D, such that:

dom(a, b) = {p ∈ D|distmax(a, p) < distmin(b, p)}.
Definition 4: The non-dominated region of a over b, de-

noted by ¬dom(a, b), is D − dom(a, b), or
¬dom(a, b) = {p ∈ D|distmax(a, p) ≥ distmin(b, p)}.
Figure 3 illustrates these two regions, which are separated

by hyperplane Ha,b (Equation 1). When point p is inside
dom(a, b), according to Definition 3, a is always closer to

p than b. If p ∈ ¬dom(a, b), then b may be closer to p than
a.

Lemma 2: dom(a, b) = ∅ if and only if u(a) intersects
u(b).

Lemma 2 allows us to quickly determine dom(a, b),
by checking whether u(a) intersects u(b). Notice that
dom(a, a) = ∅.

Now, let A ⊆ S be a subset of S. We introduce two
notations to facilitate our discussions.

Definition 5: The non-dominated intersection of A over
o, denoted by I(A, o), is the intersection of non-dominated
regions of objects in A over o, i.e.,

I(A, o) =
∩

∀a∈A

¬dom(a, o).

Definition 6: The dominated union of A over o, denoted
by U(A, o), is the union of dominated regions of objects in A
over o, i.e.,

U(A, o) =
∪

∀a∈A

dom(a, o).

The following result relates I(A, o) and U(A, o).
Lemma 3: U(A, o) = D − I(A, o)

We next study how these concepts can be used to derive
some important properties of a PV-cell.

B. Other Properties of PV-cell

Lemma 4 below establishes the relationship between the
PV-cell of o and the non-dominated intersection of S over o:

Lemma 4: V(o) = I(S, o)

Proof: (Sketch) We want to show that 1) for any point
p ∈ I(S, o), o has a non-zero chance to be the closest to p
and, 2) for any p /∈ I(S, o), o has no chance to be the nearest
to p. If these two statements hold, then I(S, o) must be the
PV-cell of o.

We say that S is an V-set of V(o). As we will explain later,
V-sets other than S may exist. Formally, we represent the V-set
of V(o) by Vset(o), with the following definition:

Definition 7: The V-set of V(o), denoted by Vset(o), is a
subset of S such that V(o) = I(Vset(o), o).

We also define the candidate V-set of V(o), or simply C-
set:

Definition 8: The C-set of V(o), denoted by Cset(o), is a
subset of S such that V(o) ⊆ I(Cset(o), o).

Thus, V(o) is bounded within the non-dominated intersec-
tion of Cset(o) over o. Notice that when Cset(o) = S, Cset(o)
becomes Vset(o). Let us now study other properties of V(o).

Lemma 5: The uncertainty region of o, i.e., u(o), must be
completely inside V(o), i.e., u(o) ⊆ V(o).

Based on the above result, we can consider u(o) to be a
“lower bound” of B(o). This is used in our UBR construction
algorithm that will be detailed in Section V. Next, we have:

Lemma 6: V(o) is a connected region.
Hence, V(o) can be bounded by a single rectangle (e.g.,
B(o)). We next explain how to use these lemmas to derive
B(o).

l(o)

oo

(b) During the iteration (c) After the iteration(a) Before the iteration

R1
low

R2
high

R2
low

R1
high

i1(o)
low

h(o)

M(o)

o

Fig. 4. Illustrating an iteration of SE (x-dimension, low direction).

V. GENERATING A UBR

Ideally, B(o) is the MBR of o (i.e., M(o)). However, as
discussed before, finding M(o) is extremely expensive. We
now present the Shrink-and-Expand (or SE) algorithm for
efficiently computing a B(o), which is only slightly larger than
M(o).

The main idea of SE is to estimate M(o) with the aid
of a pair of d-dimensional rectangles: the lower bound l(o),
which is enclosed byM(o); and the upper bound h(o), which
containsM(o). In other words,M(o) is sandwiched between
l(o) and h(o). The algorithm iteratively adjusts the size of
these rectangles untilM(o) is accurately represented by them.
Specifically, in each iteration, SE performs either one of the
operations:

• Shrink: Reduce the size of h(o), by pruning regions that
must not be part of M(o), and;

• Expand: Increase the size of l(o), by including regions
that are assured to be inside M(o).

When the distance between l(o) and h(o) is smaller than
some threshold value ∆, SE outputs h(o) as the UBR of o.
Figure 4(a) illustrates V(o) (in grey), M(o), l(o), and h(o),
in 2D space.

Algorithm 1 shows the details of SE. Step 2 executes the
procedure chooseCSet, which returns a C-set of V(o). Here,
we assume that chooseCSet returns S, but we will discuss
another implementation of this procedure in Section V-A.
Notice that S is indeed a C-set, since according to Lemma 4,
V(o) = I(S, o). Step 3 initializes the bounds l(o) and h(o).
For l(o), we use the uncertainty region of o (i.e., u(o)) as
the initial value of l(o). This is correct, because u(o) ⊆ V(o)
(Lemma 5), and V(o) ⊆M(o). For h(o), we use the domain
D as its initial value. Next, in every iteration (Steps 4-12),
the shrinking of h(o) and the expansion of l(o) are carried
out, until the condition defined in Step 4 is satisfied. (We will
explain this condition later.) Finally, Step 13 returns h(o) as
the UBR of V(o).

We now discuss Steps 4-12 in more detail. Let ρ =
{low,high} be the “direction” of object o along the j-th
dimension (where j = 1, . . . , d). For example, in Figure 4(a),
ρ = low(high) denotes the left (right) of o along the x-axis.
As shown in Steps 5 and 6, shrinking and expansion are done
for each direction ρ of dimension j. Step 7 computes iρj (o),
which is a hyperplane in the middle of h(o) and l(o), in
direction ρ along the j-th dimension. Figure 4(b) illustrates

Algorithm 1: The SE algorithm
input : Database S, object o
output: UBR of o (i.e., B(o))

1 begin
2 Cset(o)← chooseCSet(o, S)
3 h(o)← D, l(o)← u(o)
4 while |h(o)− l(o)|d ≥ ∆ do
5 for each dimension j = 1, . . . , d do
6 for ρ ∈ {low, high} do
7 Let iρj (o) be the middle plane between

h(o) and l(o) in direction ρ of j-th
dimension

8 Let Rρ
j be the region between iρj (o) and

the plane of h(o)
9 if Rρ

j ∩ I(Cset(o), o) = ∅ then
10 Remove Rρ

j from h(o)

11 else
12 Expand l(o) to position of iρj (o)

13 return h(o)

ilow1 (o), where dimensions 1 and 2 denote the x- and the y-
axes respectively. In Step 8, we consider the region between
iρj (o) and h(o), denoted by Rρ

j . Figure 4(b) demonstrates these
regions. In Step 9, we test whether Rρ

j overlaps I(Cset(o), o).
According to Definition 8, V(o) is bounded by I(Cset(o), o).
Hence, if Rρ

j does not touch I(Cset(o), o), it must also not
touch V(o). This Rρ

j cannot be part ofM(o), and can be safely
removed from h(o) (Step 10). Otherwise, we expand l(o) in
direction ρ, dimension j, up to the position of iρj (o) (Step 11).
Figure 4(c) shows that h(o) is shrunk with the removal of
Rlow

1 . The shrinking-and-expanding process is repeated until
the maximum distance between the boundaries h(o) and l(o),
denoted by |h(o)− l(o)|d, is less than ∆, as indicated in Step
4. 1

Discussions. Observe that in each iteration, the distance
between h(o) and l(o) (in one direction) is halved. Let |D|max

be the maximum of the lengths of domain D projected to all
dimensions. Then, the number of iterations executed for each
direction is at most log(|D|max/∆), and the total number
of iterations required by SE is log(|D|max/∆) · 2d. Thus,
l(o) and h(o) converge to M(o) quickly. When ∆ = 0,
h(o) = l(o), and h(o) becomes M(o), the MBR of V(o).
In our experiments, by using a small ∆, the UBR returned by
SE is only a bit larger than its corresponding MBR.

However, SE is still not very efficient, because of Step 9:

• Problem 1: The whole database (i.e., S) is used to
compute I(Cset(o), o) in Step 9, since chooseCSet
(Step 2) returns S. If |S| is large, Step 9 can take a long
time to run.

1Specifically, |h(o) − l(o)|d is the maximum distance between h(o) and
l(o), among all dimensions.

Ho2,o

o1 o3o2

o5

Ho3,o Ho4,o

Ho5,o
o o4

Fig. 5. Illustrating how different objects affect the PV-cell of o.

• Problem 2: Evaluating Rρ
j ∩ I(Cset(o), o) is costly,

since this involves computing intersections of multi-
dimensional non-dominated regions, whose shapes can
be complex.

In the worst case, Step 9 has to be executed 2d ·
log(|D|max/∆) times. We next study how to tackle Problem
1, in Section V-A. We examine an efficient method for solving
Problem 2 in Section V-B.

A. Designing the chooseCSet Routine

To handle Problem 1, let us consider chooseCSet again,
which was made to return S in the previous section. In fact,
this is not necessary. Let us first show the following lemma,
the proof of which can be found in Appendix C.

Lemma 7: Given an object o ∈ S, any non-null subset T
of S is a C-set of V(o).

Hence, S is not the only C-set. Since any subset of S
can be a C-set, can we just tell chooseCSet to return an
arbitrary object o′ ∈ S? If we do this, I(Cset(o), o) is simply
¬dom(o′, o), and Step 9 of SE can be efficiently executed.
Unfortunately, the UBR of o returned by SE can be much
larger than its corresponding PV-cell, as illustrated by he
following example.

Example. In Figure 5, S = {o, o1, . . . , o5}. The boundary
of V(o) is drawn in bold lines, and one of the V-sets of V(o)
is {o2, o4, o5}. Notice that o1 and o3 are not in this Vset(o).
Recall that V(o) = I(S, o) (Lemma 4), or the intersection of
¬dom(o′, o), for every o′ ∈ S. Since u(o) overlaps u(o1),
by Lemma 2, ¬dom(o1, o) is D. Hence, o1 does not affect
the shape of V(o), and o1 can be excluded from Vset(o). For
o3, notice that dom(o3, o) (the grey region) does not intersect
V(o). Consequently, ¬dom(o3, o) does not affect V(o), and o3
can also be pruned from Vset(o).

Now, suppose that chooseCSet returns o1. Then,
I(Cset(o), o) becomes I({o1}, o), or just D. As a result, in
Step 9 of SE, Rρ

j ∩ D is always not null, and h(o) will not
be shrunk at all. Consequently, h(o), which is initialized to D
(Step 3), will be returned. This UBR returned by SE may not
be desirable, since it may be much larger than V(o) orM(o).
With a similar argument, when Cset(o) = {o3}, h(o) cannot
be shrunk to tightly bound M(o).

To ensure that SE returns a small MBR, a thoughtful
design of chooseCSet is important. Notice that if Cset(o) =

Vset(o), SE can attain the highest effectiveness. This is be-
cause the condition tested in Step 9 becomes Rρ

j ∩ V(o)
(Lemma 4). If ∆ = 0, the UBR returned is exactly M(o).
Again, S is one of the V-sets of o. To solve Problem 1,
however, it is desirable to obtain a Vset(o) with the minimal
size. For example, {o2, o4, o5} is the minimum V-set of o,
denoted by Vmin

set (o), in Figure 5. Unfortunately, it is not easy
to derive this set: for every s ∈ S, we have to compute the
boundary Hs,o, and check whether Hs,o constitutes V(o). This
is similar to the computation of V(o), which as discussed in
Section III, is extremely expensive.

We propose two implementations of chooseCSet. They
derive a small V-set based on some simple observations about
V(o), as detailed below:
1. Fixed Selection (FS). This algorithm returns k objects
whose mean positions are the closest to the mean position of
o. In Figure 5, for instance, if k = 2, then Cset(o) = {o1, o2}.
The FS solution assumes that if object a is closer to o than
object b, then a has a higher chance to be included in Vmin

set (o)
than b. In Figure 5, o2 is closer to o than o3, and so Vmin

set (o)
contains o2, but not o3.

Despite of the simplicity of FS, it faces four problems:
• The C-set returned is sensitive to k. If k is too small, the

C-set may not include all members of Vmin
set (o). In the

previous example, although o5 is a member of Vmin
set (o),

it is not returned by FS, since k = 2. On the other hand,
if k is too large, the C-set may contain objects that do
not belong to Vmin

set (o).
• Since the positions of the objects’ uncertainty regions

may not be uniformly distributed, the PV-cells of any
two objects can be very different in shape. Thus, the size
of the minimum V-set may not be the same for different
objects, and it is not easy to find a single value of k that
is close to the minimum V-set size of every object.

• Objects far away from o, but are in Vmin
set (o), may not

be chosen by FS. In Figure 5, if k = 2, o5, which is not
near to o, will not be selected. However, o5 ∈ Vmin

set (o).
• FS does not discard objects whose uncertainty regions

overlap u(o). As explained before, these objects should
not be included in a C-set, since it does not affect V(o)
at all. In Figure 5, although u(o1) intersects u(o), o1 is
also returned by chooseCSet.

Let us see how the next solution alleviates the above
problems.
2. Incremental Selection (IS). In this approach, Cset(o)
is determined by examining objects in ascending order of
distance from o. This not only avoids the problem of setting
a fixed k (in FS), but also allows objects whose uncertainty
regions overlap u(o) to be skipped. Moreover, as discussed
next, the search of objects span the whole domain. This
increases the chance an object that is in Vmin

set (o) but far away
from o to be selected.

In detail, domain D is conceptually divided into 2d disjoint
partitions, based on the mean position of o. Figure 5 illustrates
the four partitions of a 2D object o separated by dotted lines.
Each partition is associated with a counter variable, which

tracks the number of NN’s that has been considered in the
partition so far. The solution examines the nearest neighbor
of o one at a time, using the algorithm in [41]. Suppose that
the current NN of o is n. If u(n) intersects any partition(s),
and u(n) does not intersect u(o), the counters associated with
these partitions will be incremented by one. The algorithm
stops either when the counter values of all partitions are at
least kpartition, or when kglobal nearest neighbors of o are
examined. Suppose that kpartition = 2 and kglobal = 10 in
Figure 5. Then, o4 and o5 will be retrieved by IS, since they
are the only two NN’s of o in the upper-right partition. On
the other hand, o1 is not returned, since IS detected that u(o1)
intersects u(o). In this example, IS returns {o2, o3, o4, o5},
which includes all members of o’s minimum V-set. The full
algorithm of IS can be found in Appendix E.

One benefit of IS over FS is that it does not need to set the
value of k anymore. Although IS needs to determine kpartition
and kglobal, our experiments show that the results not very
sensitive to these parameters. Another advantage of IS is that
objects that are far away from o and are not considered by FS
may also be returned. In Figure 5, for instance, o5 is ignored
by FS, but is returned by IS. This is because IS requires that
the number of NN’s found in every partition of D is at least
kpartition.

Remarks. Although IS and FS may not return Vmin
set (o),

they are still correct, since according to Lemma 7, any subset
of S can be Cset. For complexity, notice that FS executes a
k-NN query. The worst-case cost of IS is also that of a k-NN
query, with k = kglobal. Hence, the worst-case complexity
of both solutions is O(|S|). With the aid of a data structure
(e.g., an R-tree of objects’ uncertainty regions for efficient
NN retrieval), both IS and FS can be run efficiently. In our
experiments, the size of the C-sets returned is usually much
smaller than |S|, and so Problem 1 is addressed.

B. Non-Dominated Region Intersection Test

Recall that Step 9 of SE checks whether the intersection
of Rρ

j and I(Cset(o), o) is equal to null. This test, whether
there is any intersection at all, can be performed efficiently,
even though the task of computing the concrete intersection
set is hard. A simple way to perform this test is to com-
pute Rρ

j ∩ I(Cset(o), o) directly. As mentioned in Problem
2 (Section V-A), this involves calculating the intersection
of multi-dimensional non-dominated regions. Since the shape
of these regions can be complex, obtaining their precise
intersection points is extremely expensive. To check this con-
dition efficiently, we design a solution that does not compute
any intersection of non-dominated regions. The main idea is
to use the techniques proposed in [17] denoted as spatial
domination and domination count estimation. The concept of
spatial domination allows to efficiently decide, for three given
rectangles A, B and R whether it holds that for any triple of
points a ∈ A, b ∈ B, r ∈ R, a is closer to r than b. This equals
the decision whether B is completely contained in the region
dom(A,R). In Figure 6(a), this technique allows to decide that
R is completely contained in the dominating region dom(a, b).

b

a
R

(a)

b a1

a2

R

(b)

Fig. 6. Illustrating (a) spatial domination and (b) domination count estima-
tion.

The concept of domination count estimation, essentially splits
object R into a set of partitions, and applies the concept of
spatial domination to each partition individually. If for each
partition Ri of R, it holds that there exists an object X ∈ S
such that X spatially dominates Ri with respect to b, then
we can conclude that R cannot intersect the non-dominating
region of b. This test corresponds to testing whether the
domination count of b is greater than zero. An example is
given in Figure 6(b), where R is neither completely contained
in dom(a1, b) nor in dom(a2, b). However, it still holds that
any point r ∈ R is contained in either these regions. The
concept of domination count estimation aims at detecting this
situation.

Remarks. The intersection test as described above is an
approximate solution, specifically not all cases where Rρ

j does
not intersect I(Cset(o), o) are detected. The accuracy primarily
depends on the granularity of the partitioning of R. However,
the granularity of the partitioning process in turn influences
the runtime of the intersection test. Since for each partition of
R, the spatial domination test has to be performed for each
object in Cset(o), and the spatial domination test is linear in the
dimensionality of the dataset, the runtime of the intersection
test is in O(|part(R)| · |Cset(o)| · d), where |part(R)| denotes
the number of partitions of R.

Efficiency of SE. As discussed in Section V-A, if
chooseCSet is implemented by IS or FS, the cost of Step 2
is O(|S|). For Steps 4-12, a maximum of O(log(|D|max/∆) ·
d) iterations is needed. In each iteration, the most costly task
is the condition testing in Step 9. If the non-dominated region
intersection test is used, the cost of SE is O(log(|D|max/∆) ·
|part(R)| · |Cset(o)| · d2). Notice that SE does not compute
any intersection on V(o). Finally, if the uncertainty region of
o (i.e., u(o)) is not rectangular, we can represent u(o) by its
minimum bounding rectangle. The size of the PV-cell for this
rectangle will not be less that of V(o). Thus, the UBR returned
by SE still contains V(o).

VI. THE PV-INDEX

We now discuss how the PV-index uses UBRs to support
PNNQ evaluation. Section VI-A presents the querying and
construction of this structure. We explain how to efficiently
update the PV-index in Section VI-B. In the sequel, we
assume that the UBR of every object in the database has been
generated, based on the solutions discussed in Section V.

disk page

root

non-leaf

node

leaf node

Primary

uID

...

o1

o2

o3

UBR Uncertainty Info

Secondary

... ...

B(o1)

o3 u(o3)

u(o1).pdf

B(o2)

B(o3)

u(o2).pdf

u(o3).pdf

Fig. 7. Illustrating the PV-index (2D).

A. Index Design

The PV-index contains two parts: a primary index, which
facilities data pruning, and a secondary index, which stores the
UBR and uncertainty information of each object. The primary
index is based on a multi-dimensional octree [42], while the
secondary index is an extensible hash table [43]. Figure 7
illustrates the PV-index for 2D uncertain objects. In this case,
the primary index is a quad-tree, whose root node covers the
whole domain. A non-leaf node contains pointers to its 2d

child nodes; the region associated with each child node is 1/2d

of that of its parent. We do not store the region represented
by each child node, because this information can be derived
from its parent. A leaf node stores the IDs of objects whose
UBRs overlap the region associated with the leaf node. The
uncertainty regions of these objects are stored there too. We
keep all the non-leaf nodes in the main memory. The leaf
nodes are stored in the disk, each of which is a linked list
of disk pages. For the secondary index, an entry is accessible
by the object ID. For every entry in this entry, we store the
object’s UBR, as well as its uncertainty pdf. The secondary
index is stored in the disk. 2

Query Evaluation. The PV-index supports Step 1 of PNNQ
evaluation, i.e., retrieval of objects with non-zero qualification
probabilities. Starting from the root of the primary index, we
access the child nodes whose associated regions contain the
query point q. This is repeated until we reach the leaf node
nleaf , whose region contains q. The list L of IDs stored
in nleaf correspond to objects that may constitute PNNQ
answers. Notice that the UBR of any object o in L overlaps
the region spanned by nleaf . Since q can be inside the PV-
cell of o, o is possibly a nearer neighbor of q. However,
some objects in L may not qualify for the answer; for these
objects, their PV-cells do not contain q. These objects can be
pruned by checking whether their minimum distances from
q are larger than the minimum of the maximum distances of
objects in L from q. Objects that remain in L are those whose
qualification probabilities exceed zero. Their probabilities are
then computed in Step 2, using the uncertainty information
stored in the secondary index. We implement Step 2 based

2Each uncertainty pdf is discretized by 500 samples in our experiments.
Moreover, the region spanned by a leaf node can be touched by up to |S|
UBRs. We thus store this in the disk.

on the method in [8]; in practice, any solution mentioned in
Section II can be used. Appendix F discusses this in detail. 3

Index Construction . The PV-index is created by inserting
UBRs to it sequentially. Initially, its primary index is a root
node with an empty page, and its secondary index is a hash
table. We also allocate a fixed amount of main memory to
store the non-leaf nodes of the primary index. The UBR B(o)
of every object o ∈ S is then inserted to the index as follows:

1) Perform a range search on the PV-index, using B(o),
and locate the leaf nodes whose regions overlap B(o).

2) For every node nleaf obtained in Step 1, if the first
page in the list of nleaf is not fully occupied, insert
(ID of o, u(o)) to it.

3) Suppose that all pages in nleaf are full. If there is not
enough main memory to allocate a new non-leaf node,
attach a new page to the head of the list in nleaf , and
insert (ID of o, u(o)) to it. Otherwise, make nleaf to
be the parent of 2d new child leaf nodes. (Thus, nleaf

becomes a non-leaf node.) We then re-insert the UBRs
whose corresponding objects were previously contained
in nleaf , to the new child nodes.

4) Insert an entry (B(o), u(o).pdf) to the secondary index.
Since both the region of a node and B(o) are rectangles,

checking whether they overlap is easy. Let M and K be the
sizes of the main memory and disk page respectively. Then,
the PV-index has at most ⌊M/2d+2⌋ · (1 + 2d) nodes. The
construction cost of the index is O((M + costSE) · |S|), where
costSE denotes the time complexity of SE. Evaluating Step 1
of PNNQ requires a cost of O(log⌊M/2d+2⌋ + |S|/K). For
details, please refer to Appendix G.

B. Updating the PV-Index

We now study the maintenance of the PV-index. After a
database has been changed, its associated PV-index also needs
to be refreshed, in order to allow queries to be answered
correctly. A simple yet expensive solution is rebuild the index
from scratch. We now introduce an incremental solution,
which only modifies part of the index. This solution supports
two common operations: object insertion and deletion.

Change of PV-cell. Our approach is based on understanding
how a PV-cell is impacted by an update on database S. We
found that a PV-cell may remain unchanged after an update is
applied to S. Specifically, let o′ be the object to be inserted
to (or removed from) S, and S′ be the resulting database.
Also, let V(X, o),M(X, o) and B(X, o) be the PV-cell, MBR,
and UBR of o derived from database X respectively, with
X ∈ {S, S′}. We say that an object o (where o ∈ S∧o ̸= o′) is
affected, if V(S, o) and V(S′, o) are different upon a database
update. Lemma 8 lists the conditions for o to be not affected:

Lemma 8: Object o is not affected if:
1) V(S, o) ∩ V(S, o′) = ϕ (for deletion of o′); or
2) V(S, o) ∩ V(S′, o′) = ϕ (for insertion of o′); or

3Alternatively, an R-tree can be used to implement the primary index. We
choose the octree, because its grids do not overlap. This enables efficient
evaluation of point query q.

(a) (b)

Fig. 8. Illustrating deletion of o′: (a) UBRs of o′ (dotted) and objects that
may be affected (bolded); (b) UBRs of an affected object before and after
deletion (dotted and bolded rectangles).

3) u(o) ∩ u(o′) ̸= ϕ

Condition (1) says that o is not affected if upon removal
of o′ from S, the PV-cells of o and o′ derived from S do not
intersect. In Condition (2), if o′ is inserted to S, and V(S, o)
does not overlap V(S′, o′), the PV-cell of o does not change.
As shown in Condition (3), if the uncertainty regions of o and
o′ do not intersect, than again o is unaffected. These conditions
can be proved by using the domination results in Section IV,
as detailed in Appendix D.

We can thus use the above conditions to discard unaffected
objects, whose PV-cells (and UBRs) do not change. For any
object that may be affected, the following summarizes how
their PV-cells evolve:

Lemma 9: The PV-cell of an affected object o:

• Cannot be smaller than before, if o′ is deleted from S;
• Cannot be larger than before, if o′ is inserted to S.

To show that the above is correct, we use Lemma 7. The
detailed proof is in Appendix D. Lemma 9 allows us to use
the old UBR of o, i.e., B(S, o) to derive the new one, i.e.,
B(S′, o). We next explain how to do this efficiently.

An Incremental Solution. We can now describe our incre-
mental update algorithm. We assume that S has been updated
to S′. Let us first describe a four-step solution for handling
the deletion of o′.

1) Retrieve B(S, o′) from the secondary index, using the
ID of o′.

2) Identify the set A ⊆ S of objects that may be affected.
3) Compute the new UBRs of objects in A.
4) Refresh the PV-index with the new UBRs.

We next describe the details of Steps 2-4:
[Step 2] We first issue a range query on the primary index,
using the range B(S, o′), and obtain leaf nodes whose space
in D overlap B(S, o′). Since the UBRs of the objects found in
these nodes overlap the regions represented by these nodes, the
PV-cell of these objects may also touch B(S, o′). Let the set of
all objects found in these nodes be A. Then, from the primary
index, we obtain the uncertainty regions of these objects, and
exclude any object o ∈ A where u(o)∩u(o′) ̸= ϕ. Next, from
the secondary index, we retrieve their UBRs, and discard any
object o where B(S, o) ∩ B(S, o′) = ϕ, or correspondingly,
V(S, o) ∩ V(S, o′) = ϕ. Notice that these discarded objects
satisfy Conditions (1) or (3) of Lemma 8. The remaining
objects in A may be affected. Figure 8(a) shows the UBRs

of o′ and the objects in A, in dotted and bolded rectangles,
respectively.
[Step 3] For every o ∈ A, V(S, o), as well as B(S, o), may be
changed after the update. To obtain B(S′, o), we use a slightly-
changed version of SE: in Step 3, rather than initializing the
lower bound l(o) to u(o), we set l(o) to be B(S, o), which
was stored in the secondary index. As discussed in Lemma 9,
V(S′, o) cannot be smaller than V(S, o); hence, B(S′, o) may
also be bigger than B(S, o). We can thus use B(S, o) as l(o). 4

Since B(S, o) cannot be smaller than u(o), the gap between
h(o) and l(o) is smaller in Step 3 of SE. As a result, the
shrinking-and-expansion process runs more quickly.
[Step 4] We first remove B(S, o′) from the primary index.
This is done by locating the leaf nodes whose regions overlap
B(S, o′) found in Step 2. We then remove all entries related
to o′ from these nodes. We also delete the entry of o′ from
the secondary index. For every affected object o ∈ A, we
extract the sets N and N ′ of leaf nodes, whose regions overlap
B(S, o) and B(S′, o) respectively. The entries of o are then
inserted to the set of nodes in N ′ − N . Figure 8(b) shows
the (grey) set of leaf nodes (N ′ − N) where the entry of an
affected object has to be inserted. Notice that since B(S, o)
is covered by B(S′, o), we do not have to handle the nodes
in N . The UBR information of o in the secondary index is
updated accordingly. 5

Insertion can be handled in a similar manner:
[Step 1] Retrieve B(S′, o′) by running SE on S′.
[Step 2] Identify the set A of affected objects, by issuing a
range query B(S′, o′) on the primary index. For any o ∈ A,
remove o from A if u(o)∩u(o′) ̸= ϕ or B(S, o)∩B(S′, o′) =
ϕ; as stated in Lemma 8, o satisfies Conditions (2) or (3), and
is an unaffected object.
[Step 3] For every o ∈ A, obtain B(S′, o) by running a
modified version of SE, where h(o) is set to B(S, o), instead
of D. This is correct, because Lemma 9 states that V(S′, o)
cannot be larger than V(S, o); also V(S, o) is completely inside
B(S, o). Since now B(S, o) is smaller than D, SE can start
with a smaller h(o) and yield a UBR more efficiently.
[Step 4] For every o ∈ A, retrieve the sets N and N ′

of leaf nodes, whose regions overlap B(S, o) and B(S′, o)
respectively. Remove entries of o from the set of nodes in
N − N ′. Then, insert the UBR of o′ to the PV-index, using
the index construction algorithm described in Section VI-A.

Complexity. For both deletion and insertion, the worst-case
cost of incremental is O((M + costSE) · |S|). Appendix G
describes how to derive this result, for both insertion and
deletion. Notice that this is the same as the cost of rebuilding
the PV-index. In our experiments, however, incremental is
about two orders of magnitude faster than constructing the
index from scratch.

4Even if B(S, o) is larger than M(S′, o), SE is still correct, since h(o) =
D is always an upper bound of M(S′, o).

5We choose not to update the non-leaf nodes in the primary index, because
this can trigger a lot of update operations. Our approach still returns correct
query answers efficiently, as shown in our experiments.

parameter values (synthetic) values (real)
|S| 20k, 40k, 60k, 80k, 100k 30k, 36k, 20k
d 2, 3, 4, 5 2, 3

|u(o)| 20, 40, 60, 80, 100 N/A
∆ 0.1, 0.5, 1, 10-1000 1

mmax 2-5, 10, 20, 40 10
k 20, 40, 100, 200, 400 200

kpartition 2, 5, 10, 20, 50 10
kglobal 200 200

TABLE II
PARAMETERS AND THEIR DEFAULT VALUES (IN BOLD).

VII. EXPERIMENTAL RESULTS

We now report our results. Section VII-A describes the
experiment setup. In Section VII-B, we compare the query
performance of different indexes. We then present a detailed
analysis of the PV-index in Section VII-C.

A. Setup

We have evaluated our approaches on synthetic and real
datasets. Synthetic data are generated by using Theodoridis et
al’s data generator 6. The mean attribute values of uncertain
objects are uniformly distributed in domain D = [0, 10K]d,
where d = 3 by default. The length of an attribute’s uncertainty
region, u(o), in each dimension is uniformly distributed in
[1, |u(o)|], where |u(o)| denotes the maximum length of u(o)
in a dimension. We adopt the discrete model [13], [14],
by representing an object’s uncertainty pdf with 500 points
randomly sampled within the uncertainty region, each of which
exists with a probability of 1/500. The number of instances
in our experiments is in the order of 107, and sizes of these
datasets are within 0.2 and 1 GB. Table II list the values of
parameters used in our experiments.

For the three real datasets used, two of them, called roads
(30k) and rrlines (36k), contain 2D rectangular regions 7.
The third one, named airports, records 3D coordinates (i.e.,
latitude, longitude, and height) of 20k airports in the US 8.
A airport location was collected by GPS devices, whose
measurement error is a 10m-radius sphere [15]. These uncer-
tainty regions are represented by their corresponding minimum
bounding rectangles. The uncertainty pdf of each object in
these datasets is a normal distribution, with mean equal to the
object’s reported location, and variance equal to 1. This pdf
is again discretized by 500 samples.

Each PNNQ is generated by randomly selecting a query
point from D. We compare three indexes, namely R-tree, UV-
index, and PV-index, in terms of their performance in retrieving
objects with non-zero qualification probabilities (i.e., PNNQ
Step 1). For R-tree, objects are indexed by an R*-tree [44]
with a fanout of 100. This R-tree is also used to build UV-
and PV-indexes. For UV-index, we implement the solution of
[9] for 2D uncertain data. The default settings of [9] are used.

6http://www.rtreeportal.org/software/SpatialDataGenerator.zip
7http://www.rtreeportal.org
8http://www.ourairports.com/data/

For PV-index, the default values of k, kpartition, and kglobal
are 200, 10, and 200 respectively. The IS strategy is used to
implement chooseCSet by default. The non-leaf nodes of
these three indexes are all stored in 5 Mb of main memory,
while their leaf nodes and object information are kept in 4kb
disk pages 9. For computing the actual probabilities of the
objects (i.e., PNNQ Step 2), we implement the solution in
[8]; the details of this step can be found in Appendix F.

In the following results, each data point reported is an
average of 50 runs. Unless stated otherwise, the discussion
below refers to synthetic datasets. We test our solutions on
a PC with an Intel Core2 Duo 2.83GHz processor and 2GB
RAM. The source codes of our implementation are publicly
available 10.

B. Query Performance

We first compare the query time Tq required by R-tree and
PV-index, on 3D datasets. Figure 9(a) shows that under a
wide range of database size |S|, PV-index is 38− 40% faster
than R-tree. To understand why, let us consider Figure 9(b),
which displays the major components of Tq: Step 1(i.e., object
retrieval, or OR), and Step 2 (i.e., probability computation,
or PC). While the amount of time spent on PC is the same
for both methods, the time invested by PV-index on OR is
about 1/6 of R-tree. Notice that OR involves traversing non-
leaf nodes (in main memory) and leaf nodes (in the disk), for
both methods. The time required for visiting non-leaf nodes
is very small (less than 0.1ms). However, as illustrated by
Figure 9(c), the cost of accessing leaf nodes for PV-index is
only 20% of that of R-tree. Given a query point q, in PV-index
only one leaf node and its list pages has to be accessed. Due to
the overlapping nature of the bounding rectangles in R-tree, q
may be contained by the regions associated with one or more
nodes. Thus, PV-index is much faster than R-tree in the OR
phase, and this leads to a superior query performance 11.

Figure 9(d) shows that for both PV-index and R-tree, Tq

increases with the size of uncertainty region, |u(o)|. This is
because the chance that an object contributes to a PNNQ
answer increases. Again, since PV-index has a better I/O
performance, it is consistently faster thanR-tree.

Dimensionality. Figure 9(e) shows that PV-index is 20 −
40% faster than R-tree in different dimensionality d. This is
because the time spent on the OR phase (i.e., TOR) by PV-
index is less than R-tree (Figure 9(f)). The improvement is due
to the fact that PV-index performs better than R-tree in terms of
I/O (Figure 9(g)). Moreover, when d ≥ 3, the fraction of time
Tq spent by R-tree on OR is over 60%. Thus, the performance
of PNNQ can be improved significantly by the decrease in
TOR. Although PV-index and UV-index perform similarly, UV-
index only supports 2D data.

9In our experiments, R-tree needs more main memory to store the non-leaf
nodes than both UV-index and PV-index.

10http://www.cs.hku.hk/˜pwzhang/pvc.zip
11Notice that fast solutions such as [11], [36] can be used to implement

PC. Then, the fraction of Tq time spent on OR is increased. Thus, enhancing
the time for OR becomes more important.

Figure 9(e) also reveals that for all the indexes tested, Tq

does not increase with d. When d increases, the volume of D
also increases, and objects in D tend to be more separated.
Since fewer objects qualify for the PNNQ, the amount of
time spent on the PC, i.e., TPC , drops with d. However,
the amount of time spent on OR, i.e., TOR, increases with
d (Figure 9(f)). As the drop in TPC is higher than the rise
in TOR, the performance at d = 2 can be worse than that of
other higher dimensions.

Real datasets. As shown in Figure 9(h), for 2D datasets
(roads and rrlines, UV and PV-indexes are about 40% faster
than R-tree. In the 3D dataset (airport), PV-index is 45% better
than R-tree. Hence, Voronoi-based techniques outperform R-
tree in PNNQ evaluation.

C. Analysis of the PV-Index

In this section, we study the effect of different parameters
on the performance of the PV-index. We also present results
about construction and update of this index.

(a) Parameter Testing. Figures 10(a)-(c) shows the effect
of ∆, k, and kpartition, on the query performance of the
PV-index. Observe that Tq is quite stable, except when the
parameter values are extremely high or low (e.g., ∆ > 500).
It is thus not very hard to choose parameters to attain a high
query performance. The indexes created by using FS and IS
strategies also yield a similar performance.

We then study the effect of these parameters on the index
construction time Tc. Figure 11(a) shows that Tc drops with
the increase of ∆. This is because SE needs fewer iterations to
compute the UBR. We further found that Tc increases with k
and kpartition; the results are skipped due to space limitation.

(b) Index Construction. We next study how FS and
IS, used in chooseCSet, affect Tc. We compare these
methods with a naive solution, called ALL, which instructs
chooseCSet to return S as the C-set. Figure 11(c) shows
that ALL is extremely inefficient; when |S| = 20k, the
construction time is 103 hours. However, FS and IS needs 10
minutes or less to complete. Figures 11(d) and 11(e) compare
IS and FS over different values of |S| and |u(o)| respectively.
Observe that IS is always better than FS. This is explained by
Figure 11(f), which shows the two major time components of
SE : (1) Run chooseCSet; and (2) Compute the UBR. (The
time for inserting the UBR to the PV-index, which is relatively
small (less than one second), is omitted here). Observe that
most of the time is spent on computing the UBR. Although
IS is slower than FS, it can select a smaller and better C-set. In
particular, while FS returns 200 objects, IS returns 120 objects
on average. Hence, IS can compute the UBR more efficiently
than FS.

Real datasets. As shown in Figure 11(g), IS is faster than
FS for all the datasets tested. Figure 11(h) compares the time
for constructing the PV- and the UV-index on 2D datasets.
We can see that the construction time of the PV-index is 15-
25 times faster than the UV-index.
(c) Index Update. We compare the incremental update algo-
rithm (Inc) and the solution that rebuilds the index. For dele-

0

20

40

60

80

100

120

140

160

20k 40k 60k 80k 100k

Tq
(m

s)

|S|

R-tree

PV-index

(a) Tq(ms) vs. |S|.

0

10

20

30

40

50

60

70

R-tree PV-index

Tq
(m

s)

OR

PC

(b) OR and PC.

0

1

2

3

4

5

6

7

8

20k 40k 60k 80k 100k

#
 p

a
g

e
 a

cc
e

ss
e

s

|S|

R-tree

PV-index

(c) Tq(I/O) vs. |S|.

0

20

40

60

80

100

120

140

160

180

20 40 60 80 100

Tq
(m

s)

|u(o)|

R-tree

PV-index

(d) Tq(ms) vs. |u(o)|.

0

50

100

150

200

250

2D 3D 4D 5D

Tq
(m

s)

d

R-tree

PV-index

UV-index

(e) Tq vs. d.

0

20

40

60

80

100

120

2D 3D 4D 5D

T
O

R
(m

s)

d

R-tree

PV-index

UV-index

(f) TOR vs. d.

0

2

4

6

8

10

12

2D 3D 4D 5D

#
 p

a
g

e
 a

cc
e

ss
e

s

d

R-tree

PV-index

UV-index

(g) Tq(I/O) vs. d.

0

20

40

60

80

100

120

140

roads rrlines airports

Tq
(m

s)

R-tree

PV-index

UV-index

(h) Real DBs.

Fig. 9. PNNQ Performance.

20

30

40

50

60

70

80

90

0 200 400 600 800 1000

T
q
(m
s
)

(a) Effect of ∆.

0

50

100

150

200

0 100 200 300 400

T
q
(m
s
)

k

(b) Effect of k (FS).

0

50

100

150

200

250

0 10 20 30 40 50

T
q
(m
s
)

kpartition

(c) Effect of kpartition (IS).

Fig. 10. Sensitivity of Tq to PV-index parameters.

0

200

400

600

800

1000

0 200 400 600 800 1000

T
c
(s
)

(a) Effect of ∆.

1

10

100

1,000

10,000

0 10 20 30 40

T
c
(s
)

mmax

(b) Effect of mmax.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

20k 40k 60k 80k 100k

Tc
(s

)

|S|

FS

IS

ALL

(c) Tc(s) vs. |S|.

0

500

1000

1500

2000

2500

3000

20k 40k 60k 80k 100k

Tc
(s

)

|S|

FS

IS

(d) Tc(s) vs. |S|.

0

200

400

600

800

1000

1200

20 40 60 80 100

Tc
(s

)

|u(o)|

FS

IS

(e) Tc(s) vs. |u(o)|.

0

200

400

600

800

1000

1200

FS IS

Tc
(s

)

UBR

C-set

(f) Analysis of SE.

0

50

100

150

200

250

roads rrlines airports

Tc
(s

)

FS IS

(g) Real DBs.

0

10

20

30

40

50

roads rrlines

Speed up over UV-index

FS IS

(h) Speedup on 2D Real DBs.

0

1

10

100

1000

10000

20k 40k 60k 80k 100k

T
u

(s
)

|S|

Insertion

Inc

Rebuild

(i) Insertion

0

1

10

100

1000

10000

20k 40k 60k 80k 100k

T
u

(s
)

|S|

Deletion

Inc

Rebuild

(j) Deletion

Fig. 11. Construction and Update Performance of the PV-Index.

tion, we randomly remove 1K objects from S. For insertion,
we use the database where the 1K objects have been removed,
and re-insert all these objects to it. We measure the average
time Tu to handle insertion/deletion per object. Figure 11(i)
shows that Inc is more than two orders of magnitude faster
than Rebuild. For example, at |S| = 20K, Tu = 350s for
Rebuild, but Tu = 2s for Inc. For deletion, Figure 11(j) also
shows that Inc is much faster than Rebuild. We remark that the
query performance of the indexes generated by Inc and Rebuild
is highly similar: for object insertion (deletion), the average

difference of Tq between Inc and Rebuild is 1.44% (0.88%).
Thus, Inc does not impact query performance significantly.

VIII. CONCLUSION

Evaluating PNNQs over a multi-dimensional uncertain
database is an important and challenging problem. In this pa-
per, we study a PNNQ algorithm based on PV-cells. We found
that while a PV-cell is difficult to derive and store, finding its
MBR can be much more efficient. We also propose the PV-
index, which stores these MBRs in a systematic manner, in

order to efficiently answer a PNNQ. The PV-index can be
incrementally refreshed to reflect the changes occurring in
the underlying database. In the future, we will study how
to use the PV-index to support other queries, e.g., group
NN [12] and reverse NN [13], [14]. We are also interested in
developing other precomputation techniques (e.g., bulkloading
and compression) for facilitating the access of uncertain data.

REFERENCES

[1] F. Aurenhammer, “Voronoi diagrams: a survey of a fundamental geo-
metric data structure,” ACM Computing Surveys (CSUR), 1991.

[2] C. Aggarwal, “On unifying privacy and uncertain data models,” in ICDE,
2008.

[3] A. Deshpande et al., “Model-based approximate querying in sensor
networks,” VLDBJ, 2005.

[4] J. Widom, “Trio: A system for integrated management of data, accuracy,
and lineage,” Technical Report, 2004.

[5] S. Singh et al., “Orion 2.0: native support for uncertain data,” in
SIGMOD, 2008.

[6] J. Boulos et al., “Mystiq: a system for finding more answers by using
probabilities,” in SIGMOD, 2005.

[7] J. Huang, L. Antova, C. Koch, and D. Olteanu, “Maybms: a probabilistic
database management system,” in SIGMOD, 2009.

[8] R. Cheng, D. Kalashnikov, and S. Prabhakar, “Querying imprecise data
in moving object environments,” TKDE, 2004.

[9] R. Cheng et al., “UV-diagram: A Voronoi diagram for uncertain data,”
in ICDE, 2010.

[10] G. Beskales, M. Soliman, and I. IIyas, “Efficient search for the top-k
probable nearest neighbors in uncertain databases,” VLDB, 2008.

[11] R. Cheng et al., “Probabilistic verifiers: Evaluating constrained nearest-
neighbor queries over uncertain data,” in ICDE, 2008.

[12] X. Lian and L. Chen, “Probabilistic group nearest neighbor queries in
uncertain databases,” TKDE, 2008.

[13] M.A. Cheema et al., “Probabilistic reverse nearest neighbor queries on
uncertain data,” TKDE, 2010.

[14] T. Bernecker et al., “Efficient probabilistic reverse nearest neighbor
query processing on uncertain data,” VLDB, 2011.

[15] B. Parkinson, “GPS error analysis,” Global Positioning System: Theory
and applications., vol. 1, pp. 469–483, 1996.

[16] T. Emrich et al., “Incremental reverse nearest neighbor ranking in vector
spaces,” Advances in Spatial and Temporal Databases, 2009.

[17] ——, “Boosting spatial pruning: on optimal pruning of mbrs,” in
SIGMOD, 2010.

[18] C. Shahabi and M. Sharifzadeh, “Voronoi diagrams for query process-
ing,” in Encyclopedia of GIS, 2008, pp. 1235–1240.

[19] M. Sharifzadeh et al., “Vor-tree: R-trees with voronoi diagrams for
efficient processing of spatial nearest neighbor queries,” PVLDB, 2010.

[20] L. Hu, W.-S. Ku, S. Bakiras, and S. C., “Verifying spatial queries using
voronoi neighbors,” in SIGSPATIAL, 2010.

[21] M. Sharifzadeh and C. Shahabi, “Approximate voronoi cell computation
on spatial data streams,” VLDB J., vol. 18, no. 1, pp. 57–75, 2009.

[22] A. Akdogan et al., “Voronoi-based geospatial query processing with
mapreduce,” in The 2nd International Conference on CloudCom, 2010.

[23] M. Kolahdouzan and C. Shahabi, “Voronoi-based k nearest neighbor
search for spatial network databases,” in VLDB, 2004.

[24] U. Demiryurek and C. Shahabi, “Indexing network voronoi diagrams,”
in DASFAA 2012, 2012.

[25] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. Lee, “Location-based
spatial queries,” in SIGMOD, 2003.

[26] B. Zheng et al., “Grid-partition index: a hybrid method for nearest-
neighbor queries in wireless location-based services,” VLDBJ, 2006.

[27] J. Xu et al., “Energy efficient index for querying location-dependent data
in mobile broadcast environments,” in ICDE, 2003.

[28] S. Nutanong, R. Zhang, E. Tanin, and L. Kulik, “The v*-diagram: a
query-dependent approach to moving knn queries,” VLDB, 2008.

[29] P. Wang et al, “Understanding the spreading patterns of mobile phone
viruses,” Science, vol. 324, no. 5930, p. 1071, 2009.

[30] J. Vleugels and M. Overmars, “Approximating voronoi diagrams of
convex sites in any dimension,” International Journal of Computational
Geometry and Applications, 1998.

[31] S. Berchtold, B. Ertl, D. Keim, H. Kriegel, and T. Seidl, “Fast nearest
neighbor search in high-dimensional space,” in ICDE, 1998.

[32] B. Kao, S. Lee, D. Cheung, W. Ho, and K. Chan, “Clustering uncertain
data using voronoi diagrams,” in ICDM, 2008.

[33] W. Evans et al, “Guaranteed voronoi diagrams of uncertain sites,” in
20th Canadian Conference on Computational Geometry, 2008.

[34] M. Jooyandeh, A. Mohades, and M. Mirzakhah, “Uncertain voronoi
diagram,” Information processing letters, 2009.

[35] M. Ali et al., “Probabilistic voronoi diagrams for probabilistic moving
nearest neighbor queries,” Data and Knowledge Engineering, 2012.

[36] T. Bernecker et al., “A novel probabilistic pruning approach to speed up
similarity queries in uncertain databases,” in ICDE, 2011.

[37] T. Emrich et al., “Constrained reverse nearest neighbor search on mobile
objects,” in SIGSPATIAL, 2009.

[38] R. Seidel, “The complexity of voronoi diagrams in higher dimensions,”
in the 20th Annual Allerton Conference on CCC. IEEE, 1982.

[39] T. Brinkhoff, H. Kriegel, and R. Schneider, “Comparison of approxima-
tions of complex objects used for approximation-based query processing
in spatial database systems,” in ICDE, 1993.

[40] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University Press, 2004.

[41] G. Hjaltason and H. Samet, “Distance browsing in spatial databases,”
TODS, 1999.

[42] H. Samet, The design and analysis of spatial data structures. Addison-
Wesley Longman Publishing Co., Inc., 1990.

[43] A. Rathi et al., “Performance comparison of extensible hashing and
linear hashing techniques,” in Proc. ACM SIGSmall/PC Symposium on
Small Systems, 1990.

[44] N. Beckmann et al., “The r*-tree: an efficient and robust access method
for points and rectangles,” SIGMOD, 1990.

APPENDIX

A. Section III

[Lemma 1] Since the surfaces of V(o) are concave in shape,
M(o) is determined by the vertices of V(o). Specifically, in
each dimension, the lower (upper) bounds of M(o) is the
smallest (largest) coordinate value among the vertices of V(o).
Unless we can find the exact form of V(o) (which is extremely
complex), the vertices of V(o) are not readily known.

We next show that the problem of finding M(o) can be
classified as a convex optimization problem. Let lowj and upj
be the lower and upper bounds of M(o) in dimension j (1 ≤
j ≤ d) respectively. For each j, obtaining {lowj , upj} involves
solving two equations:

lowj = min{pj |p ∈ V(o)} (2)

upj = max{pj |p ∈ V(o)} (3)

where pj is the coordinate of a point p in dimension j.
The problem of solving Equation 2 can be viewed as an

optimization problem, whose feasible region (i.e., solution
space) must be V(o), sinceM(o) is determined by the vertices
of V(o). However, since V(o) is not a convex polygon, the
feasible region of this problem is neither convex. According
to [40], this kind of optimization problem has no efficient
solution.

We can similarly conclude that there is no efficient solution
for Equation 3. Since finding M(o) involves solving Equa-
tions 2 and 3 over d dimensions, it is not possible to derive
M(o) efficiently.

B. Section IV

[Lemma 2] consists of the if and only if parts:
• (If) Since u(a) overlaps u(b), there exists a point p′

such that p′ ∈ u(a) and p′ ∈ u(b). For any point
p ∈ D, distmin(b, p) ≤ dist(p′, p), and dist(p′, p) ≤
distmax(a, p). Therefore, distmax(a, p) ≥ distmin(b, p).
According to Definition 3, dom(a, b) = ∅.

• (Only if) Since dom(a, b) = ∅, using Definition 4,
¬dom(a, b) = D. This means for every p ∈ D,
distmax(a, p) ≥ distmin(b, p). Suppose by contrary that
u(a) does not overlap u(b). Then, we can find a point
p ∈ u(a) such that distmax(a, p) ≥ distmin(b, p) does
not hold, resulting in a contradiction.

[Lemma 3] Notice that D−I(A, o) = D−
∩

∀a∈A

¬dom(A, o).

By using set algebra, this becomes
∪

∀a∈A

(D − ¬dom(A, o)).

This expression is equal to
∪

∀a∈A

dom(A, o), or U(A, o). The

lemma is thus proved.
[Lemma 4] We want to show that 1) for any p ∈ I(S, o), o
has non-zero probability to be the closest of p and, 2) for any
p /∈ I(S, o), o has no chance to be the nearest to p. If these
two statements hold, then Lemma 4 holds.

• For statement (1), based on Definition 4 we know that
∀s ∈ S, distmax(s, p) ≥ distmin(o, p). Hence, if
every object s (except o) is at the position ds such
that distmax(s, p) = dist(ds, p), and that o is at the
position do where distmin(o, p) = dist(do, p), every
object s ∈ S −{o} is farther away to p than o. Hence, o
has a non-zero probability to be the closest to p.

• For statement (2), we know that there exists an object
s ∈ S where p is located in dom(s, o). Note that s ̸= o,
because dom(o, o) = ∅ (cf. lemma 2). According to
Definition 3, distmax(s, p) < distmin(o, p), meaning
that s is always closer to p than o. Hence, o must not
be the closest to p.

[Lemma 5] ∀p ∈ u(o), distmin(o, p) = 0. Since
distmax(s, p) ≥ 0, there does not exist any s ∈ S such that
p ∈ dom(s, o). Thus, p ∈ I(S, o), or equivalently, V(o) (by
Lemma 4). Thus, u(o) ⊆ V(o).
[Lemma 6] By using Lemma 4, we can rewrite V(o) as:

V(o) = {p ∈ D|∀s ∈ S, distmax(s, p) ≥ distmin(o, p)} (4)

Now, let ⊙(c, r) denote a circle of centre c and radius r.
Also, suppose by contrary that V(o) is not connected. Without
loss of generality, suppose V(o) consists of two disjoint parts,
namely R1 and R2, as shown in Figure 12. Since u(o) ⊆ V(o),
suppose that u(o) ⊆ R1. Now, given a point p ∈ R2,
based on Equation 4, we know that ∀s ∈ S, distmax(s, p) ≥
distmin(o, p). Let distmin(o, p) be dist(v, p), where v is a
point in u(o). Let the uncertainty region of s be u(s). Then
there must not exist s ∈ S such that u(s) is enclosed by circle
⊙(p, dist(v, p)); else, distmax(s, p) < distmin(o, p).

Since R1 and R2 are not connected, there exists a point p′

on line segment lvp such that p′ /∈ V(o), which means that

R1 R2

v pp’
o

Fig. 12. Proof of Lemma 6.

o o’

R

V(S,o) V(S’,o’)

Fig. 13. Proof of Lemma 8.

∃s ∈ S such that distmax(s, p
′) < distmin(o, p

′). Hence,
u(s) is enclosed by circle ⊙(p′, distmin(o, p

′)). However,
p′ ∈ lvp, which means distmin(o, p

′) ≤ dist(v, p′). Hence,
⊙(p′, distmin(o, p

′)) is enclosed by ⊙(p, dist(v, p)). This
contradicts with the fact that @s ∈ S such that u(s) is enclosed
by ⊙(p, dist(v, p)). Hence, V(o) must be a connected region.

C. Section V

[Lemma 7] Notice that

I(S, o) = (
∩

∀s∈T

¬dom(s, o)) ∩ (
∩

∀s∈S/T

¬dom(s, o)) (5)

Since V(o) = I(S, o) (by Lemma 4), we can see from
Equation 5 that V(o) ⊆

∩
∀s∈T

¬dom(s, o), or equivalently,

I(T, o). By Definition 8, T = Cset(o).

D. Section VI

[Lemma 8] The proof is equivalent to showing that the
following three claims are correct:

• Claim 1: If object o′ is deleted from S, and V(S, o) ∩
V(S, o′) = ϕ, then o is not affected.

• Claim 2: If object o′ is inserted to S, and V(S, o) ∩
V(S′, o′) = ϕ, then o is not affected.

• Claim 3: If object o′ is inserted to (or deleted from) S,
and u(o) ∩ u(o′) ̸= ϕ, then o is not affected.

The following explains why these claims are correct.
[Claim 1] Let S′ = S − {o′} be the database after

o′ is removed. We want to show that if V(S, o) does not
intersect V(S, o′) (Figure 13), then V(S, o) = V(S′, o) after
the deletion. Using Lemma 4, this is equivalent to showing
the following:

V(S, o) = V(S′, o) (6)

From Lemma 4, we know that V(S′, o) = I(S′, o). Based
on Lemma 7, since S′ ⊆ S, we have V(S, o) ⊆ V(S′, o).
Suppose that V(S′, o) = V(S, o)∪R where R is some region
in D such that V(S, o) ∩ R = ∅. Hence, if R = ∅, Equation
(6) is true. The following explains why R = ∅.

First, we show that R ⊆ V(S, o′) (i.e., Figure 13). Suppose
by contrast that this is not true. That is, there exists a point
p ∈ R such that p /∈ V(S, o′). Since p ∈ R, p /∈ V(S, o) and
p ∈ V(S′, o). Moreover, as V(S, o) = V(S′, o)∩¬dom(o′, o),
p cannot be inside ¬dom(o′, o); otherwise, p ∈ V(S, o). Thus,
p ∈ dom(o′, o). On the other hand, because p /∈ V(S, o′), there
exists s ∈ S such that p ∈ dom(s, o′). Since p ∈ V(S′, o),
s /∈ S′. Thus s = o′. Because dom(o′, o′) = ∅ (Lemma 2), p
cannot exist. Hence, R ⊆ V(S, o′).

Now, since R ⊆ V(S, o′) and V(S, o) does not intersect
V(S, o′), if R ̸= ∅, V(S′, o) = V(S, o)∩R will be unconnect-
ed, which violates the result of Lemma 6. Thus, R = ∅, and
the claim is correct.

[Claim 2] Let S′ = S∪{o′}, i.e., the database after inserting
o′. From Lemma 9, we know that the new PV-cell of any
object o ̸= o′ must not be smaller than before, i.e., V(S′, o) ⊆
V(S, o). Hence, V(S′, o) ∩ V(S′, o′) = ϕ. Next, we apply the
result of Claim 1 in Lemma 8, by viewing S as result of
removing o′ from S′, i.e., “If object o′ is deleted from S′, and
V(S′, o) ∩ V(S′, o′) = ϕ, then o is not affected.” The lemma
is thus proved.

[Claim 3] For deletion, since u(o′) overlaps u(o), Lemma 2
tells us that dom(o′, o) = ∅. Thus, ¬dom(o′o) = D, and

V(S, o) = I(S, o) = I(S − {o′}, o) = V(S′, o)

For insertion, we can similarly argue that V(S, o) = I(S ∪
{o′}, o) = V(S′, o). Hence, Claim 3 is correct.
[Lemma 9] For deletion, let S′ be the database after deleting
o′. Given an object o ̸= o′, according to Lemma 4, V(S, o) =
I(S, o) and V(S′, o) = I(S′, o). Since S′ ⊂ S, S′ is a C-set
of V(S, o) (Lemma 7). Using Definition 8, we know that

V(S, o) ⊆ I(S′, o)

Hence, V (S, o) ⊆ V (S′, o). In other words, the PV-cell of o
cannot be smaller than before.

For insertion, S′ contains o′. We can use the proof in the
above paragraph, by substituting S with S′ and S′ with S.
We can then show that V (S′, o) ⊆ V (S, o). Thus, o’s PV-cell
cannot be larger than before.

E. The IS Algorithm (Section V-A)

The Incremental Selection (IS) is a heuristic used by
chooseCSet. Its details are shown in Algorithm 2. Step 2
divides the space of D into 2d disjoint partitions, based on
the coordinates of o. Each partition Pi (where i = 1, . . . , 2d)
is associated with a counter ci, which records the number of
NN’s that intersect Pi (Step 3). The variable cglobal records the
total number of NN’s scanned (Step 4). Steps 5-11 perform the
incremental scanning of NN’s. We first retrieve the next NN,
on, of o (Step 6). If u(on) overlaps u(o), we skip it, increment
cglobal, and scan the next NN (Steps 7 and 11). Otherwise, for
partition Pi that intersects u(on), we increment ci, and insert
on to Cset(o) (Steps 8-11). These steps are repeated until either
(1) the number of NN’s scanned exceeds kglobal; or (2) the
counter value of every partition is larger than kpartition (Step
5). Finally, Step 12 returns Cset(o).

Algorithm 2: Incremental Selection (IS)
input : Object o, kglobal, kpartition
output: Cset(o)

1 begin
2 Let P1, ..., P2d be the 2d partitions of D based on the

d-dimensional coordinates of o
3 Let ci = 0 be the counter for partition Pi

(i = 1, . . . , 2d)
4 cglobal ← 0; Cset(o)← ∅
5 while cglobal < kglobal or

min{c1, . . . , c2d} < kpartition do
6 Let on be the next nearest neighbor of o
7 if u(on) does not intersect u(o) then
8 for each partition Pi do
9 if Pi intersects u(on) then ci ← ci + 1

10 Insert on to Cset(o)

11 cglobal = cglobal + 1

12 return Cset(o)

F. PNNQ Evaluation

This section summarizes how to evaluate a PNNQ.
1. Answer object retrieval. First, we retrieve the answer

objects (i.e., objects with non-zero qualification probabilities).
In particular, we use the query point q of the PNNQ to traverse
the PV-index, and find the leaf node nleaf whose region
contains q. We then retrieve the objects from the disk pages
that are associated with nleaf . Let L be the objects retrieved
from nleaf . Since for every object o ∈ L, B(o) overlaps with
nleaf , q may be located in V(o). Let A be the answer object
set of the PNNQ, then A ⊆ L. To determine A, we can simply
perform a min/max refinement in [8]. Specifically, we find out
the minimum of maximum distances of objects in L from q.
We denote this distance by dminmax. Any object within L
that has a minimum distance from q larger than dminmax is
removed, since this object has no chance to be the closest to
q. The answer objects are those that are not deleted from L.

2. Probability computation. For this step, we adopt the so-
lution from [8]. We assume that the uncertainty pdf of attribute
o.a is discrete. In particular, o.a is characterized by a set of
d-dimensional points, w1,...,wt, which are regularly spaced in
uncertainty region u(o). Each instance wj is associated with
a probability P (wj), to denote the probability that o.a = wj .
Also,

∑t
j=1 P (wj) = 1. A possible world W = {w1, .., w|S|}

is a set of instances, with exactly one instance chosen from
each object. The probability of W is P (W) =

∏|S|
i=1 P (wi).

The qualification probability of object o is then equal to:
t∑

j=1

P (wj) · Q(wj). (7)

where:

Q(wj) =
∏

s∈S/{o}

(1−
∑

ws∈s,dist(ws,q)<dist(wj ,q)

P (ws)). (8)

G. Complexity Analysis of the PV-index

Let M be the number of bytes of main memory, and K be
the disk page size. If each pointer to the child nodes occupies
4 bytes, the PV-index has at most ⌊M/2d+2⌋ non-leaf nodes.
Since each non-leaf node has at most 2d leaf nodes, the PV-
index has at most ⌊M/2d+2⌋ · (1 + 2d), or O(M) nodes.

To insert a UBR, we first have to compute it by using SE,
with a cost costSE = O(mmax log(|D|max/∆) · |S| ·d2). In the
worst case, each UBR needs to traverse all the O(M) nodes
in the PV-index. Once a leaf node is located, the entry of an
object can added to the head of the list in the leaf node in
O(1) times. Since |S| UBRs are inserted, the complexity of
constructing the PV-index is O((M + costSE) · |S|).

For Step 1 of PNNQ evaluation, log⌊M/2d+2⌋ non-leaf
nodes need to be retrieved for a query point q, and once the leaf
node is found, at most O(|S|/K) pages need to be accessed.
Thus, the total querying cost is O(log⌊M/2d+2⌋+ |S|/K).

Incremental update algorithm. Let us consider deletion
and insertion.
(A) For deletion,

• Step 1 needs a cost of O(1).
• Step 2: in the worst case, the range search of B(S, o′)

touches all the nodes of the primary index, with a cost of
O(M). For each of the leaf nodes, we examine O(|S|/K)
pages to retrieve the objects and their UBR information,
and this costs O(M · |S|/K). Retrieving the UBRs from
the secondary index requires a cost of O(|S|), for all
objects in S in the worst case. Thus, the total cost of this
step is O(M · |S|/K).

• Step 3: For every affected object in A, we run a slightly-
changed version of SE which requires the same cost of
SE, i.e., costSE. In the worst case, A = S, and so the cost
of this step is costSE · |S|.

• Step 4 deletes the entries of o′ from the leaf nodes in
O(M · |S|/K) times. Finding N and N ′, as well as
inserting the entries of every affected object to N −N ′,
needs a cost of O(M). Updating the information of an
affected object in the secondary index requires O(1)
times. Since we have O(|S|) affected objects, the total
cost is O(M · |S|/K +M · |S|) times.

The total cost of the above steps is O((M + costSE) · |S|).
(B) For insertion,

• Step 1 needs a cost of costSE;
• Step 2: in the worst case, the range search of B(S′, o′)

touches all the nodes of the primary index, with a cost of
O(M). For each of the leaf nodes, we examine O(|S|/K)
pages to retrieve the objects and their UBR information,
and this costs O(M · |S|/K). Retrieving the UBRs from
the secondary index requires a cost of O(|S|), for all
objects in S in the worst case. Thus, the total cost of this
step is O(M · |S|/K).

• Step 3 runs a slightly-changed version of SE for every
affected object in A. In the worst case, the cost of this
step is costSE · |S|.

• Step 4: Finding N and N ′, as well as inserting the
entries of an affected object to N ′ −N , run at a cost of
O(M). Updating the information of an affected objects
in the secondary index requires O(1) times. Since we
have O(|S|) affected objects, the cost of handling affected
objects is O(M · |S|). Inserting the entries of o′ to the
leaf nodes costs O(M). Thus, the total cost of this step
is O(M · |S|) times.

The total cost of the above steps is O((M + costSE) · |S|).
In the worst case, incremental has the same complexity

as the cost of reconstructing the index. In our experiments,
however, incremental runs much faster than rebuilding the
index.

