

1

Postprint of article in the 2012 International Workshop on Embedded System Software Development and Quality Assurance (WESQA 2012),
Proceedings of the 12th International Conference on Quality Software (QSIC 2012), IEEE Computer Society, Los Alamitos, CA (2012)

JSCloud: Toward Remote Execution of JavaScript Code on Handheld Devices*

Winson Y. S. Li Shangru Wu W. K. Chan† T. H. Tse
Department of Computer Science

City University of Hong Kong
Tat Chee Avenue, Hong Kong

winsonli@gmail.com

Department of Computer Science
City University of Hong Kong
Tat Chee Avenue, Hong Kong

shangruwu2@student.cityu.edu.hk

Department of Computer Science
City University of Hong Kong
Tat Chee Avenue, Hong Kong

wkchan@cityu.edu.hk

Department of Computer Science
The University of Hong Kong

Pokfulam, Hong Kong
thtse@cs.hku.hk

Abstract—We present a generic framework, JSCloud, for the
remote execution of JavaScript programs. Our work dynami-
cally estimates whether a code partition should be executed
remotely. The empirical result shows that JSCloud can be use-
ful if the JavaScript engine on a handheld device is inefficient.

Keywords—Remote execution, JavaScript, mobile computing

I. INTRODUCTION
A modern web application often has a browser-based

component, which contains the JavaScript code of the appli-
cation. At the same time, people increasingly use handheld
devices to access such web applications. Owing to the
limited hardware capability and screen sizes, some of these
web applications can only be used after customization (such
as the case of Facebook for Mobile webpage [5]). However,
such customization comes at a cost. Many mobile versions of
various applications offer only a subset of the features
provided by the standard counterpart. For instance, the lab
feature of Gmail [2] is not available in a mobile edition.

The execution of a piece of JavaScript code on such a
device can also be slow, which further restricts the types of
features that can be adapted on a handheld platform with
little processing capability and power supply. Our experi-
ment to be presented in this paper further shows that execut-
ing a sort program on Apple iPod may not be completed
successfully due to resource constraints.

Code migration for mobile platforms is not a new topic
[7]. Traditionally, researchers look for code optimization or
feature simplification. They mostly identify, say, a subset of
the Java classes to be migrated to other platforms for exe-
cution [6][9][11]. Recently, researchers explore the capabil-
ity of clone code running in a virtual machine of a computing
cloud infrastructure [1].

* © 2012 IEEE. This material is presented to ensure timely dissemination

of scholarly and technical work. Personal use of this material is permit-
ted. Copyright and all rights therein are retained by authors or by other
copyright holders. All persons copying this information are expected to
adhere to the terms and constraints invoked by each author’s copyright.
In most cases, these works may not be reposted without the explicit
permission of the copyright holder. Permission to reprint/republish this
material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works must be obtained
from the IEEE.

† Contact author

This paper presents JSCloud. It dynamically estimates
the relative amount of time needed to execute a piece of
JavaScript code locally and remotely and makes a decision
on whether to fulfill the execution request remotely to
enhance the performance of an application on a handheld
device via a simple but effective linear interpolation
approach, which sets it apart from the work [1] that inspired
JSCloud. It also reports preliminary experimental results on
the use of JSCloud on various handheld device platforms.

The rest of this paper is organized as follows. Section II
illustrates a motivating study. We elaborate on JSCloud in
Section III, followed by an experiment in Section IV. We
discuss related work in Section V. Finally, we conclude the
paper in Section VI.

II. MOTIVATING EXAMPLE
We use the function merge_sort() implemented in

JavaScript as shown in Figure 1 to motivate our work. In the
code listing, a column of integers modeled as array col of
length col.length will be sorted. The computation time of
the function to sort col on various desktop machines
(denoted by devices D1−D3) and handheld devices (denoted
by devices M1−M2) were measured. The results are shown
in Table 1.

The computation time to sort 1000 numbers on devices
M1 and M2 exceeded 100 ms. At this level of delay, the
user would experience a noticeable delay in system response
[10]. When sorting 100,000 numbers, the JavaScript
program failed to compute on devices D2, M1, and M2. On
desktop machines, the browser issued a warning and
prompted the user to indicate whether to terminate the
script. On mobile devices, the browser became non-
responsive and required a forced quit.

III. JSCLOUD
In this section, we present our proposed system

JSCloud.

A. Overview

JSCloud consists of two phases: the code analysis and
instrumentation phase followed by the partition execution
phase. In the first phase, JSCloud aims at (a) identifying a
set of code partitions (such as a set of JavaScript functions)
in a given JavaScript document that JSCloud may choose to

Administrator
 HKU CS Tech Report TR-2012-09

2

execute a partition remotely in a later partition execution
phase, and (b) extending the given JavaScript document with
the migration logics. We refer to the JSCloud component
for this phase as JSCloud Packager and that for the
partition execution phase as JSCloud Migrator. JSCloud
also has a third component, which is a JavaScript engine
installed in a server/cloud to host the migrated code received
from JSCloud Packager and execute the selected partitions
based on the instructions from JSCloud Migrator. Figures 2
and 3 show the usages of JSCloud Packager and Migrator.

function merge_sort(arr){
 function split_array(arr){
 if (arr.length <= 1)
 return arr;
 var middle = parseInt(arr.length / 2);
 var left = arr.slice(0, middle);
 var right = arr.slice(middle, arr.length);
 return merge(split_array(left),
 split_array(right));
 }

 function merge(left, right){
 var result = [];
 while (left.length > 0 || right.length > 0){
 if (left.length > 0 && right.length > 0){
 if (left[0] <= right[0]){
 result.push(left.shift());
 } else {
 result.push(right.shift());
 }
 } else if (left.length > 0){
 result.push(left.shift());
 } else if (right.length > 0){
 result.push(right.shift());
 }
 }
 return result;
 }

 return split_array(arr);
}

// timestamp t1 in milliseconds
merge_sort(col);
// timestamp t2 in milliseconds

Figure 1. Example code in JavaScript.
In a JavaScript-based web application, the JavaScript

document is delivered as a separate file from a web server to
a web browser. JSCloud Packager serves as an inter-
mediary of the web server. It annotates the JavaScript
functions and inserts our migration logic into the original
JavaScript document. The modified JavaScript document
will then be executed on a web browser. If JSCloud
Migrator invokes a remote execution, the input values
necessary for the remote execution will be passed to a remote
JavaScript engine [13] for action.

B. JSCloud Packager
A partition is the code between the entry and exit of a

JavaScript function. A JavaScript statement may invoke
some environmental operations such as opening a dialog
box and prompting the user to select a file from the local file
system. Such a statement could be difficult to execute
remotely. As such, JSCloud Packager statically deter-

mines whether a partition contains any system calls or refer-
ences to non-local variables (e.g., global variables) or
system objects (e.g., the window object). It marks a partition
as legitimate if the partition contains no such statement. For
instance, if we apply this scheme to the example in Figure 1,
we obtain three partitions: merge_sort, split_array,
and merge. It annotates the start and end of a legitimate
partition by “^ ENTRY POINT” and “$ EXIT POINT”,
respectively.

TABLE 1. EXECUTION TIME FOR merge_sort()
FOR DIFFERENT LIST SIZES ON DIFFERENT PLATFORMS

 Time Taken (ms) to Sort Array col
col.length 10 100 1,000 10,000 100,000

Laptop computer
MacBook Pro 2.2GHz C2D
Chrome v.14 (Device D1)

0 1 2 21 773

Laptop computer
MacBook Pro 2.2Ghz C2D
Safari v.5 (Device D2)

0 1 28 1,531 −

Laptop computer
Lenovo X200 2.26GHz C2D
IE 9 (Device D3)

0 0 5 135 6,561

Mobile phone
BlackBerry 9780
Default browser (Device M1)

2 11 261 18,827 −

Portable multimedia player
iPod Touch 1st Generation
Safari (Device M2)

7 22 420 26,167 −

JSCloud Packager supports both an automatic mode

and a manual mode. In the automatic mode, JSCloud
Packager treats every function in a JavaScript document as
a partition so that it can identify the legitimate ones auto-
matically. In the manual mode, only the JavaScript func-
tions that are annotated by the web application developers
are defined as partitions. Functions are annotated by adding
a comment line “//JSCLOUD MIGRATE” before the func-
tion declaration.

After marking partitions as legitimate, JSCloud
Packager adds a preamble to the annotated JavaScript
document. The preamble contains the implementation of
JSCloud Migrator and the JSON serialization library [3]
that serializes and de-serializes the JavaScript objects to be
transmitted between the JavaScript engine in a web browser
and that in the cloud. Moreover, at the position annotated
with “^ ENTRY POINT”, it inserts the logic to invoke
JSCloud Migrator; and similarly, it inserts the logic to
record the time spent taken to execute the instance of the
partition at the position annotated with “$ EXIT POINT”.

C. JSCloud Migrator
1) Migration cost estimation
JSCloud Migrator first estimates the cost of migration

and then decides whether to service an invocation request of
a legitimate partition locally or remotely. Such a decision is
made based on the estimated execution time of the partition.
The workflow of JSCloud Migrator is shown in Figure 3.

We define the time for migration as the time required to
transmit messages between the web browser and the Java-
Script engine in the cloud. Ideally, the execution of a parti-

3

tion can be chosen to be conducted remotely if the time for
migration plus the time for remote execution is shorter than
the time for local execution.

JSCloud Migrator assumes that the more data needed
to be processed by a function, the more time needed for the
function to compute the result and more time needed to
transfer the data over the network. Based on this heuristics,
JSCloud Migrator makes a migration decision as follows:

Suppose the input parameter for the partition P that we
want to execute has a block size of n. (Note that the block
size of an input parameter, say, 64 words, is determined by
the specific operating system running on the handheld
device and transfer data via its network protocol.) For
brevity, let P(n) denote the corresponding execution trace.

Let dn be the time for migration of parameters and result
for P(n), eremote(n) be the time for the remote execution of
P(n), and elocal(n) be the time for the local execution of P(n).
In general, a program on the handheld device runs slower
than the same program on the cloud platform. Hence, we
may anticipate that elocal(n) > eremote(n). Hence, in essence, if

dn < elocal(n) − eremote(n), JSCloud Migrator will decide to
execute the partition remotely.

However, the values of elocal(n), eremote(n), and dn cannot
be known in advance. They should be estimated, and the
estimation procedure for elocal(n) and that for eremote(n) and dn
will be elaborated in the next two subsections, respectively.

2) Estimation of local execution time
JSCloud Migrator first checks whether enough samples

to estimate the local execution time are available. Specifi-
cally, if there are no more than two samples, JSCloud
Migrator simply fulfills the partition execution request by
executing P(n) locally. For instance, when the web applica-
tion has just been loaded, no partition can have been
executed either locally or remotely; as such, we do not have
any samples of local execution times. In this case, JSCloud
Migrator executes P(n) locally and measures the time taken.

Suppose there are already more than two samples that
JSCloud Migrator has executed locally. For every such
sample with a block size of x, JSCloud Migrator has
collected its local execution time, denoted by elocal(x). Now,
JSCloud Migrator aims to estimate the local execution
time elocal(n) for P(n). It first finds the two most recent
samples with block sizes x and x' closest to n such that x ≤ n
≤ x', and computes the value of elocal(n) such that the ratio
elocal(x) : elocal(n) : elocal(x') is the same as the ratio x : n : x'.
In other words, it performs a linear interpolation. If an
interpolation is not feasible, JSCloud Migrator finds the
two most recent samples with the largest two (and smallest
two, respectively) sampled block sizes if n is greater than
(and smaller than, respectively) the block size of any such
sample, and extrapolates the line to find the value of elocal(n)
such that the ratio elocal(x) : elocal(x') : elocal(n) is the same as
the ratio x : x' : n.

There are, however, corner cases. If the estimated
elocal(n) is smaller than 0, JSCloud Migrator will consider
the situation as having insufficient samples for estimation,
and will fulfill the partition execution request locally. When
the slope of the line connecting (x, elocal(x)) and (x', elocal(x'))
is negative, the estimation may not be accurate, and hence
JSCloud Migrator will also execute P(n) locally.

3) Estimation of remote execution parameters
After estimating elocal(n) with a decision that P(n) may be

executed remotely, JSCloud Migrator then checks whether
elocal(n) > a threshold value (say, 100 ms as we did in the
experiment, which can be adjusted arbitrarily). If it is the
case, JSCloud Migrator executes P(n) remotely. This is
because the time needed for local execution can be large,
which may deplete the battery easily. To prolong the usable
hours, it would be a wise decision to remotely execute the
relatively heavy computation tasks to the cloud.

On the other hand, if elocal(n) does not exceed the
threshold value above, it means that the decision to execute
P(n) remotely may not be obvious. As such, applying the
sample ratio formulas that estimate elocal(n) by linear interp-
olation or extrapolation, JSCloud Migrator further esti-
mates eremote(n). Note that the handling of corner cases when
estimating eremote(n) is similar to that of corner cases when

Web Browser

3. Execute JS
doc

Web Server
1. Request JS doc

2. Receive JS doc

Web Browser

6. Execute
JSCloud-

enirched JS doc

Web Server1. Request JS doc

4. Forward JSCloud-
enriched JS doc

(a) Original

(b) With JSCloud

JSCloud
Packager

2. Forward request

3. Receive JS doc

JavaScript
Engine

Legend:

Determine migratable partitions

7. Make migration decision on partition
8. Make execution migration
10. Integrate remote result as the local
result of the partition

9. Execute
migrated
partition

keep in a cloud/server

5. Forward JS doc

Web	 app

Web	 app

JSCloud Migrator

Figure 2. Usage scenario for JSCloud.

Sufficient local
execution
samples?

Execute
locally

Execute
remotely

Record
execution time

statistics

no

Estimate the local
execution time

elocal(n)	

yes

yes

Does elocal(n)	
exceed a ceiling
threshold value?

yes

Estimate the remote execution
time eremote(n)	 and migration

overhead dn

Basic	 steps

elocal (n)	 −
eremote(n)	

> dn ?

n	 =	 block	 size	 of	 parameter

no

no

 Figure 3. Basic workflow of JSCloud Migrator.

4

estimating elocal(n): JSCloud Migrator considers that there
is insufficient evidence to deem that remote execution can
bring in additional benefit to complete the execution of P(n)
earlier, and hence it executes P(n) locally.

The estimation of the overhead dn is more complicated.
We also note that, once P(n) is executed remotely, we can
obtain the actual migration time overhead dn, which can be
used for future estimation of dn.

The migration time is determined by the time for serial-
izing the parameter and result into JSON format [3], trans-
mitting the data in JSON format over a network between the
local web browser and a remote JavaScript engine, and de-
serialize the data back to the corresponding JavaScript
objects. As the network connection may vary over time,
JSCloud Migrator uses z most recent overhead timing
samples (or as much as available if there are less than z
samples) for the estimation of dn.

Suppose s samples are available, where s ≤ z, with time
overheads of 𝑑(!) and block sizes of 𝑥! for i = 1, 2, ..., s. We
first calculate the weighted average time overhead per block
size 𝑟 = 𝑤!(𝑑(!)/𝑥!)!

!!! . Each weight 𝑤! for 𝑑(!)/𝑥! is
computed by timestampi − timetsamp1, where timestampi is
the time when the sample for 𝑑(!) is obtained. In other
words, a more recent sample has a higher weight. As we
have explained, the tasks involved with migration depend on
the data size. On average, the value of dn is monotonically
increasing with the block size n of the input parameter of the
partition, which can be computed accurately. As such,
JSCloud Migrator multiplies r by n to obtain dn.

If dn < elocal(n) − eremote(n) or if elocal(n) is greater than a
threshold value, JSCloud Migrator executes P(n) remotely.
Otherwise, the partition is executed locally.

To overcome the limitation of insufficient samples ini-
tially, JSCloud Migrator allows two trials of remote execu-
tions of the partition (of any block size n) if elocal(n) > a
threshold value.

In the above procedure, every partition has its own set of
parameters for estimation. As such, the cost estimation may
be more accurate, but at the same time, it requires more
rounds of local executions of the partitions as a whole,
which consumes more energy than when using a global set
of parameters.

We also note that before performing the actual migra-
tion, JSCloud Migrator also checks whether the parameters
of the partition contain values of primitive data types only.
If it is not the case, JSCloud Migrator will run P(n) locally.

4) Limitations of the cost estimation approach
There are other limitations of our approach. We discuss

some selected ones in this subsection.
First, the approach requires at least two samples that are

obtained dynamically. As future work, we may replace them
by a randomized approach.

In our approach, it requires linear interpolation or extra-
polation of data points to compute elocal(n) and eremote(n). The
use of the other methods such as pattern classification or
Bayesian classifiers may be more useful. However, they
incur more computation cost, which may weaken the benefit
of remote execution.

We use the block size of the parameter of a partition P
as a proximity indicator of the computation workload for the
partition P to act on the parameter as well as the amount of
data transmission effort. This choice follows the work of
Chun et al. [1] and is not general. However, for many appli-
cations such as the display of a photo album or computing
the statistics based on a list of entries (e.g., a news feeder),
such a design decision seems applicable.

5) Alternative approaches
Apart from the cost estimation approach, we also

explored alternatives, namely, random outsourcing of com-
putations, outsourcing of computations at regular intervals,
and outsourcing of all computations. The evaluations are
discussed in Section IV.B.

D. Other parts of JSCloud
The major component in the other parts of JSCloud

includes the migration logic. The main issue is that we are
working in the JavaScript environment. We simply run a
JavaScript call to the remote server and waits for the result
to return owing to the lack of a good synchronization mech-
anism in JavaScript. A drawback of this strategy is that it
blocks the remaining parts of the web client from receiving
other results, such as messages for AJAX callback functions.

IV. EVALUATION
In this section, we evaluate JSCloud. It covers two

aspects: the overhead incurred by JSCloud Packager and
the performance gain achieved by JSCloud Migrator.

The experimental subject is a webpage that embodies the
sort program shown in Figure 1. All the machines were run
in the same university computer laboratory. We used the
campus Wi-Fi hotspot available in the laboratory and the 3G
network provided in the street by a major 3G operator. The
JavaScript engine in the cloud and the web applications
were hosted on device D2 (see Table 1). The MacBook Pro
and iPod Touch were connected to the Internet via Wi-Fi to
a router that accesses the Internet from a cable modem. The
BlackBerry, iPhone 4S, and (Android-based) Galaxy S2
were connected to the Internet via the 3G network. We
implemented JSCloud by a total of 39,723 bytes of
JavaScript. We set all the threshold values and the value of z
stated in Section III to 100 ms and 100, respectively. We
used the Google V8 JavaScript engine [13] to emulate a
JavaScript engine in a cloud.

TABLE 2. TIME SPENT BY JSCLOUD PACKAGER ON JAVASCRIPT
DOCUMENT WITH DIFFERENT NUMBERS OF PARTITIONS FOR ANALYSIS

Number of Partitions 8 12 50 110 130
Processing Time (ms) 2 4 10 53 64

TABLE 3. LOAD TIME FOR JSCLOUD-ENRICHED JAVASCRIPT DOCUMENTS

No. of Partitions Load Time (ms)
Without JSCloud With JSCloud Overhead

1 43 73 30
10 50 138 88

100 309 805 496

5

A. Overheads of JSCloud Packager
We have elaborated in Section III.B, the entry and exit

marks of each annotated partition require the expansion of
code that implements JSCloud Migrator. Hence, a program
with more functions requires more preparation and analysis
time. We have experimented with a JavaScript document
containing different numbers of copies of the merge_sort
function shown in Figure 1 using device D2. We find that
the analysis time needed is acceptable. See Table 2 for the
experimental result.

Our approach also requires code expansion at each
position with the markers “^ ENTRY POINT” and “$ EXIT
POINT” (see Section III.B for more details). They increase
the code size to be downloaded to a web browser. This will
lengthen the load time needed to display a web page. The
experiment was to have the web browser, the web server,
and JSCloud Packager all running on device D2 using the
reverse proxy configuration. As a comparison, we also
measured the time taken by D2 to load the whole Google
homepage, which took 1150 ms. The result is shown in
Table 3. We find that the overhead is reasonable.

B. Comparative Effects of JSCloud Migrator
In this section, we evaluate the performance of JSCloud

Migrator after JSCloud Packager has annotated the
merge_sort function of the subject. To account for the
differences in execution performance of different devices,

the lengths of the arrays were adjusted individually for each
device so that the sorting takes around 77,000 ms without
JSCloud. In other words, the value of 100% represents
77,000 ms of execution time for all devices.

The result is shown in Figure 4. There are three bars for
each device. The darker bar represents the ideal execution
scenario that each migration decision is perfect (that is, the
decision always results in the shorter execution time), the
lighter bar shows the actual result of JSCloud Migrator,
and the unfilled bar is the result without using JSCloud.

In the case of MacBook Pro and iPod Touch, JSCloud
Migrator brought the execution time down to 57.95% and
52.15% of the original, respectively. The execution was
almost twice as fast. The performance gained by JSCloud
on these two devices was high. We believe that it is due to
two reasons: (1) the internet connection is fast and stable,
and (2) the JavaScript engine on the two devices are slow.

For the BlackBerry 9780, JSCloud Migrator brought
the execution down to 85.35% of the original. We find that
the 3G network in the experimental period is of high latency
and instability. It made the estimation inaccurate.

On the iPhone 4S and Galaxy S2, JSCloud Migrator
increased the execution time to 112.85% and 105.85%,
respectively. The JavaScript engines on these two devices
were already efficient enough and any migration would
suffer from the high latency of the 3G network. The ideal
execution time of 100% suggests that the best performance
is achieved when no partition invocation is served remotely
(when JSCloud Migrator is not used).

We also evaluated the performance of alternative out-
sourcing approaches. They include computations that were
outsourced (a) randomly, (b) at regular intervals (outsourc-
ing every other computation) and (c) all the time. They are
referred to as “random outsourcing”, “fixed interval out-
sourcing”, and “always outsourcing”, respectively.

The results in Figure 5 show that using any of the three
alternative approaches yielded poorer results than using
JSCloud. The unnecessary migration of computations
incurred additional migration delays, which in turn degraded
the performance. As we adjusted the array lengths for each
device such that computation takes around 77,000 ms to
complete without JSCloud, and given that iPhone 4S and
Galaxy S2 had higher performance than BlackBerry 9780,
the arrays on iPhone 4S and Galaxy S2 were longer. This
finding explains the greater increase in execution time on
iPhone 4S and Galaxy S2 than that on BlackBerry 9780.
This comparison with alternative outsourcing approaches
demonstrates the effectiveness of our cost estimation
approach.

The overall result shows that JSCloud is useful on slow
devices. For high-performance handheld devices, other
methods to save energy may need to be explored.

V. RELATED WORK
CloneCloud [1] is the most recent related work. It

requires manual annotations to API methods to define the
partitioning policies for each type of virtual machine. For
instance, different Android operating systems by various
vendors may have been customized. CloneCloud requires a

Figure 4. Comparison of performance of JSCloud Migrator.

Figure 5. Comparison of performance of alternative outsourcing approaches.

6

separate manual annotation for every member of such
family of operating systems. JSCloud is implemented as a
JavaScript framework and complies with the standardized
JavaScript. Therefore, as long as the JavaScript engine is
standard-complaint, our approach is applicable to handle
any program running on it. The result presented in Section
IV.B shows that this assumption applies to different
browsers on different handheld devices. We are not aware
of a similar adaptation to JavaScript programs in the
literature.

Another difference between JSCloud and CloneCloud
lies in our algorithm that estimates various migration param-
eters and makes a migration decision. JSCloud uses a sim-
plified method-local approach to trend estimation in order to
save the computation overhead in making a migration
decision, whereas CloneCloud uses a more complicated
approach that involves dynamic profiling and global optimi-
zation among the statistics of different methods. Our result
in Section IV.B has shown that on some devices, executing
all methods locally is optimal, and hence spending more
effort to compute the optimal solution may defy the purpose
of enhancing efficiency by remote execution.

Similar to CloneCloud, MAUI [4] optimizes execution
time or energy consumption of a mobile device by estimat-
ing and trading off the cost of local execution with the
transmission of remote execution, but MAUI requires more
programmer help to annotate methods. Based on
CloneCloud, Zhang et al. [14] proposed an elastic applica-
tion model that aims to remove the constraints of mobile
platforms through a distributed framework. This model
partitions a single application into multiple components
called Weblets, and dynamically configures these Weblets
to execute in the cloud or mobile devices. However, the cost
estimation introduced by this elastic application model can
be complicated. For example, there are four attributes to
consider when calculating the cost: power consumption,
monetary cost, performance attributes, and security and
privacy. As mentioned above, spending more effort to
compute the solution may decrease the efficiency rather
than improving it. Other work like Odessa [12] dynamically
makes offloading decisions based on runtime profiles. Our
work complements all these studies.

It should also be noted that using a simple logic to save
energy (while lowering the performance requirements on the
hardware platform) may be further improved by using a
classification approach as what we did in EClass [8].

VI. CONCLUSION
In this paper, we have proposed JSCloud, a generic

framework that supports the remote execution of JavaScript
programs. We have elaborated on its key design and
reported the preliminary empirical result of its application to
various handheld devices.

ACKNOWLEDGMENT
This work is supported in part by the General Research

Fund of the Research Grants Councils of Hong Kong (pro-
ject numbers 111410 and 717811).

REFERENCES
[1] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:

elastic execution between mobile device and cloud,” in Proceedings of
the 6th Conference on Computer Systems (EuroSys 2011). New York,
NY: ACM, 2011, pp. 301–314.

[2] K. Coleman, Introducing Gmail Labs. Google Gmail, 2008. Available
from http://gmailblog.blogspot.hk/2008/06/introducing-gmail-
labs.html.

[3] D. Crockford, JSON in JavaScript. GitHub Inc., 2010. Available from
https://github.com/douglascrockford/JSON-js.

[4] E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman, S. Saroiu, R.
Chandra, and P. Bahl, “MAUI: making smartphones last longer with
code offload,” in Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services (MobiSys 2010). New
York, NY: ACM, 2010, pp. 49–62.

[5] Facebook Mobile. Facebook. Available from
https://www.facebook.com/FacebookMobile. Last access January
2012.

[6] X. Gu, A. Messer, I. Greenberg, D. Milojicic, and K. Nahrstedt,
“Adaptive offloading for pervasive computing,” IEEE Pervasive
Computing, vol. 3, no. 3, pp. 66–73, 2004.

[7] F. Hohl, P. Klar, and J. Baumann, “Efficient code migration for
modular mobile agents,” in Proceedings for the 2nd ECOOP
Workshop on Mobile Object Systems. Berlin, Germany: Springer,
1997.

[8] E. Y. Y. Kan, W. K. Chan, and T. H. Tse, “EClass: an execution
classification approach to improving the energy-efficiency of software
via machine learning,” Journal of Systems and Software, vol. 85, no.
4, pp. 960–973, 2012.

[9] A. Messer, I. Greenberg, P. Bernadat, D. Milojicic, D. Chen, T. J.
Giuli, and X. Gu, “Towards a distributed platform for resource-
constrained devices,” in Proceedings of the 22nd International
Conference on Distributed Computing Systems (ICDCS 2002). Los
Alamitos, CA: IEEE Computer Society, 2002, pp. 43–51.

[10] R. B. Miller, “Response time in man-computer conversational
transactions,” in Proceedings of the December 9-11, 1968, Fall Joint
Computer Conference, Part I (AFIPS 1968 (Fall, Part I)). New York,
NY: ACM, 1968, pp. 267–277.

[11] S. Ou, K. Yang, and J. Zhang, “An effective offloading middleware
for pervasive services on mobile devices,” Pervasive and Mobile
Computing, vol. 3, no. 4, pp. 362–385, 2007.

[12] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R.
Govindan, “Odessa: enabling interactive perception applications on
mobile devices,” in Proceedings of the 9th International Conference
on Mobile Systems, Applications, and Services (MobiSys 2011). New
York, NY: ACM, 2011, pp. 43–56.

[13] V8 JavaScript Engine. Google. Available from
http://code.google.com/p/v8/. Last access January 2012.

[14] X. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs, “Towards an
elastic application model for augmenting the computing capabilities
of mobile devices with cloud computing,” Mobile Networks and
Applications, vol. 16, no. 3, pp. 270–284, 2011.

