
Data-driven Adaptive History for Image Editing

Hsiang-Ting Chen∗ Li-Yi Wei† Björn Hartmann‡ Maneesh Agrawala‡
∗National Tsing Hua University †University of Hong Kong ‡University of California, Berkeley

ABSTRACT
Digital image editing is usually an iterative process; users
repetitively perform short sequences of operations, undo them
and then redo them using history navigation tools. In our
collected data, these undo, redo and navigation constitute
about 9 percent of the total commands and consume a sig-
nificant amount of user time. Unfortunately, such activities
also tend to be tedious and frustrating, especially for complex
projects. We address this critical issue by adaptive history,
an UI mechanism that groups relevant operations together to
reduce user workloads. Such grouping can happen at var-
ious history granularities. We present two that have been
found to be most useful: On a detailed level, we group re-
peating commands patterns together to facilitates the smart
undo functions; On a coarser level, we segments commands
history into chunks with similar semantic meaning for easier
semantic navigation. The main advantages of our approach
are that it is easy for users to learn and easy for develop-
ers to integrate into any existing tools with text-based his-
tory lists. Unlike prior methods that are predominately rule
based, our approach is data driven, and thus adapts better to
common editing tasks which exhibit sufficient diversity and
complexity that may defy predetermined rules or procedures.
We evaluate our system via both quantitative analysis and
qualitative studies.

Keywords: image editing, interaction, adaptive history, smart
undo, semantic navigation

INTRODUCTION
Undo, redo, and history navigation are the most commonly
used operations in interactive image editing [17]. In our data
collected from digital artists, such meta commands constitute
about 9% of all issued commands (66 out of 797 per task
average). However, they are also the most tedious, as
it may take many repetitive operations to reach the intended
points on the editing histories. This can greatly diminish user
efficiency and satisfaction in common image editing tasks.

Prior works attempted to address this critical issue by propos-
ing new graphical history representations or better undo mech-
anisms. However, these methods either introduce completely
different representations from the traditional linear histories
and thus present usability issues (e.g. hierarchical graphs in
Chen et al. [4]) or use hardcoded rules that might not be flex-
ible enough in handling more complex real-world cases (e.g.
regular expressions in [5] and spatial filter in [20]). Thus,
a linear text list, despite its deficiencies, remains the domi-
nant form of operation history representation in image edit-
ing softwares .

We propose adaptive history, a data-driven method to aggre-

Figure 1: Data-driven adaptive history. Our system (left)
provides an adaptive history with better appearance and in-
teraction than the traditional history list as in Photoshop
(right). Our prototype system is implemented as a stand-
alone companion application (running on a table) for Pho-
toshop (running on a PC), so that they display synchronized
image editing state through Photoshop Connection SDK.
All our visualizations (including color coding and com-
mand grouping) as well as interactions are achieved in real-
time. Please refer to our video for more demonstrations.

gate user editing operations for more efficient undo, redo,
and history navigation (Figure 1). Our two key observa-
tions are that 1) users often mentally chunk sequences of
low-level editing operations into some higher-level, seman-
tically meaningful units; during undo operations, users typ-
ically seek to undo an entire semantic unit instead of just
individual operations, and 2) there are certain repeating com-
mand patterns with frequent occurrences in users command
histories which are semantically inseparable (e.g. copy +
paste or patch tool + patch selection in Photoshop). The chal-
lenge is to identify the boundaries between such semantic
units. By collecting and analyzing actual data from profes-
sional artists through instrumented image editing tools, we
use machine learning algorithms to train a classifier that can
in turn predict the boundaries between semantic units. We
employ two particular machine learning methods for two lev-
els of editing history granularity:

Semantic navigation On a coarse level, we use support vec-
tor machines (SVM) to identify high level semantic seg-
ments, such as skin smoothing or hair coloring for portrait
retouching.

Smart undo On a fine level, we use n-gram analysis to iden-
tify operations often grouped together to accomplish spe-
cific micro tasks, such as “patch tool, patch selection, des-
elect” for blemish removal in Photoshop.

Administrator
 HKU CS Tech Report TR-2012-07

Overall, our approach belongs to the emerging trend of data-
driven user interfaces (e.g. [7, 24, 9, 18, 16]), with specific
applications in interactive image editing and history naviga-
tion.

Our approach is easy for users to learn and easy for devel-
opers to integrate into existing systems. On the user side,
we incur only minimal changes to the appearances and be-
haviors of traditional linear history lists: for appearances, we
enhance traditional linear history lists with visual cues with
colors and foldable items; for behaviors, users still interact
with our adaptive history lists as usual, but have the option
to navigate through semantic chunks rather than just indi-
vidual commands. On the developer side, all they need to
do is to plug in properly trained classifiers into existing sys-
tem plumbing with corresponding UI changes as described
above.

We evaluate our system through user studies containing both
quantitative measurements and qualitative feedbacks. Both
evaluations are very positive and in particular, our study sub-
jects, all of them professional artists, unanimously commented
that our system could be very helpful to their daily work
flows.

PREVIOUS WORK
Here we review prior art most relevant to our work.

Operation Sequence Analysis
Data analysis has been extensively applied for operation se-
quences of content creation tools. However, efforts so far
have been primarily focusing on text editing, such as word
processing [11, 19] and software development [21]. Simi-
lar efforts for image editing have started to emerge only very
recently [17, 16, 18], probably due to the difficulty of instru-
mentation. These works have demonstrated the versatility of
applying data analysis for image editing, such as command
vocabularies [17], command recommendation [18], and UI
customization [16]. Such data driven analysis has yet to
be applied for facilitating common undo, redo, and history
navigation operations, which our work targets.

Graphical History
Graphical history visualization has long been an active re-
search field; See Heer et al. [10] for a comprehensive survey.
Here, we focus on works most relevant to operation history
in real-world settings (where each history may contain hun-
dreds of commands). These focus on two main strategies:
clustering and filtering.

The basic idea behinds clustering is to group similar or re-
lated commands together to reduce visual clutter [14, 22,
7]. Some recent works include Chronicle from Grossman
et al. [8] which builds the history hierarchy based on the user
“save” commands, Meshflow from Denning et al. [5] which
clusters operations based on hand-crafted regular expression
rules, and Chen et al. [4] which visualizes editing histories
via hierarchical graphs.

The basic idea behinds filtering is to selectively display in-
formation based on contextual criteria, including spatial re-
lationships [20, 22, 5, 4], temporal relationships [8, 5], and
content properties [13, 2, 23].

A notable difference between these prior techniques and our
method is that they are all heuristic or rule-based whereas
ours is data driven. Such hand crafted rules or heuristics
are usually difficult to derive and have built-in assumptions
that can break when facing the diversity of command history
in real-world cases. A data-driven approach could instead
learn from such diversity and provide better results.

Undo Management
Navigating editing history is one of the most common op-
erations for interactive editing tools, in particular undo and
redo. For digital content creation, Meng et al. [20], Su [23]
and Chen et al. [4] provided the functionality of “undo by se-
lection”, and Edward et al. [6] allowed users to bound atomic
operations into semantic “chunks” for better navigation while
also prevent accidental undo that breaks such chunk. Inspired
by Edward et al. [6], the short-term undo function in our sys-
tem also serves a similar purpose: “smart undo” for semantic
groups instead of just individual operations. However, in-
stead of manually defined rules as in these prior works, we
learn the operation patterns from analyzing collected user
data. Thus, our algorithm is not constrained to any pre-
defined rules and thus can adapt to different users, tasks, and
tool versions.

USER INTERFACE
The history panel serves as a core UI component in com-
mon image editing systems such as Photoshop and GIMP,
with main usages including undo, redo and history naviga-
tion. However, its basic representation and interaction have
not evolved much from the original linear text-based lists.
We propose a data-driven adaptive history with two key en-
hancements over traditional history lists: semantic naviga-
tion at a coarse level and smart undo at a fine level.

This two-level design was based on our informal discussion
with artists as well as field observations on their workflows.
In particular, we noticed that artists tend to work on two dif-
ferent levels of granularity:

• On a coarse level, they usually used layers or files to man-
age and store progress milestones, e.g. finished eye re-
touching or skin smoothing.

• On a fine level, they frequently undid through history list
progresses that were considered to be unsatisfactory or ex-
ploratory.

Our semantic navigation and smart undo have been designed
in response to these two levels of common artist workflows.
Even though prior work has proposed fancier multi-resolution
navigation (e.g. [4, 5]), we believe this is not necessary, due
to both prior user studies (e.g. “users tended to stay on a sin-
gle resolution to avoid losing context of their navigations” as
in [4]) as well as our own observations as described above.

From the user’s perspective, our interface design minimally
changes the feel and look of the traditional history lists. In
particular, users still interact with our adaptive history as
usual, but with enhanced interaction through semantic nav-
igation and smart undo, and enhanced perception through
color coding and foldable tile-based command grouping. From
the developer’s perspective our interface design, due to its
minimal change from traditional history lists, should be straight-

(a) Photoshop history list (b) Our history with semantic segments (c) Our semantic navigation

Figure 2: (a) is the Photoshop history list. (b) is our data-driven adaptive history list. Our UI assigns a unique color to all entries
belonging to the same semantic segment, with the scroll bar (right) colored accordingly. Our UI also groups repeating commands into
tiles, which can be folded/unfolded via the corresponding plus/minus signs. Double clicking a thumbnail image would lead users
to the corresponding segment in the history list. (Note: all screen shots display the same image; the perceived color differences are
caused by different color spaces of Photoshop and our Qt-based UI.)

(a) List (b) Tile (c) Folded tile

Figure 3: History list display modes. Our history list
has three display modes: list, tile, and group. We provide
zoom-in views from our main UI in Figure 2 for easier com-
parison. List mode (a) is the basic text-based list with se-
mantic colors, tile mode (b) groups the detected repeating
commands into a single tile, and group mode (c) folds the
command groups in (b) into single entries. Users can also
manually fold/unfold by clicking on the plus/minus sign on
each group tile.

forward to port into their existing UIs. Our underlying algo-
rithms are all data-driven; with proper training data, devel-
opers can trained their own classifier as either a fixed prepro-
cess or as an ongoing process that dynamically adapts to user
behaviors.

Semantic Navigation
Scenario Alex is in the middle of a photo retouching ses-
sion. He has just finished up retouching the hair part of the
portrait and was performing the skin smoothing. Feeling un-
comfortable about the overall feeling of skin, he decided to
undo all the skin smoothing work he has done and starts over.
At this point, as the history list has already grown too long
and the image already contains too many layers, Alex found
that he had to go through lots of trial-and-error to figure out

to the right roll-back spot via the Photoshop history list (Fig-
ure 2a).

With our system, Alex can clearly see the automatically col-
ored and aggregated segments of his work (Figure 2b) and
could easily found the right spot of interest. He can also
switch to the thumbnail view (Figure 2c) and performs anal-
ogous operations.

Design We design our system with simplicity and mini-
mum changes to traditional linear histories. The segments are
visualized with different colors and correspond to semantic
chunks such as hair retouch, skin smoothing, and eye sharp-
ening. We pick the color scheme with following goals in
mind: 1) segment colors should differ sufficiently from each
other for distinctiveness, and 2) the colors should be dark
enough to visualize the text labels, which we designed to be
all white instead of in different colors to avoid confusion. In
our early design phase, we have tried to use colors based on
the underlying color changes of the corresponding image re-
gions. However, this might not produce distinctive enough
colors. For example, the representative colors for retouching
eyes and retouching hair can be very similar.

The segmentation is performed on the fly, based on the clas-
sifier trained from the data collected from the professional
artists. Users can adjust the granularity of the segmentation
using the slider bar at the top of the UI (Figure 2b). In ad-
dition, we also modify the color of the scroll bar beside the
history list, so that users can see the relative lengths of the
segments (Figure 2b).

Smart Undo
Scenario During skin smoothing, Alex use the healing patch
tool to remove larger area of undesired features on the skin.

Figure 4: Spatial filter. Users can select particular regions
of interest (A), and review the corresponding history via the
thumbnail images at (B).

Each removal operation involves three steps: (1) select the
target region to be retouched, (2) drag the target region to the
artifact-free source region, and (3) deselect the target region.
If he is not satisfied with the result, Alex would have to is-
sue the undo commands three times in a row to fully undo
the retouching effect. Similar scenarios also happen on other
tools such as the clone stamp tool, the pen tool (add anchor
point, drag anchor point) and common action patterns such
as copy-paste-move. Also as Alex is using the brush tool,
the history list is quickly filled with identical “brush tool”
entries. If he is not satisfied with the outcome, using the tra-
ditional interface he would have to continuously issue undo
commands and visually check the result to find the point he
wishes to return to.

With our system (Figure 3), such repeating commands are
automatically grouping into a foldable single entry. Alex
can smart undo the whole chunk of command and navigate
through the history list more easily.

Design We provide three different display modes for vi-
sualizing the repeating command patterns (Figure 3). Be-
sides the basic command list, users can switch to “tile” mode,
where repeating patterns are grouped into single tiles. In
“group” mode, tiles are automatically folded into single en-
try, while users can manually fold/unfold the entry by click-
ing on the plus/minus icons. In these modes, the smart undo
function can undo a whole tile/group rather than a single
command entry.

Spatial Filter
Besides two major functions mentioned above, we also pro-
vide a spatial filter function to enhance the usability of our

system. Spatial filter allows users to select particular image
regions of interest and see only the relevant portions of the
command history. For example, Alex might want to roll back
to the point before he retouched the eyes. With this function,
he can select the region of interest and our system will show
the thumbnail image of the region in each semantic segmen-
tation (Figure 4).

DATA COLLECTION
In this section, we describe how we collected data to feed into
our machine learning algorithms for semantic segmentation
(SVM) and smart undo (n-gram).

Instrumentation We picked Photoshop as our target soft-
ware due to its popularity among digital artists. The instru-
mentation is achieved by the history log tool provided in Pho-
toshop, which outputs command and parameters in human-
readable text form, as well as a Photoshop scripts written by
ourselves that recorded intermediate frames of every com-
mand in the history. We need such script for recording the
complete history because the history log tool did not output
the stroke motions and parameters of brush-operations.

Artists To collect the training data, we hired 10 freelancer
artists on oDesk. They were all professional photo retouch-
ers with at least 5 years of working experiences residing in
different countries including Belarus, Bulgaria, Colombia,
Philippines, Serbia, Ukraine and United States. The aver-
age hourly payment was 14.3 U.S. dollars (σ = 5.4). Six
of them used keyboards and mice as their primary interaction
devices while the other four used Wacom pen tablets.

Tasks We then gave each artist four portrait photos down-
loaded from Flickr for retouching. We were aware of the fact
that some artists may prefer to perform minimal retouching
to keep the portraits as natural as possible. To avoid such
situation and make sure our collected data contains enough
information, we gave artists a minimum retouch requirement
list, e.g. you mush retouch the hair, whiten the eyes, remove
blemish, etc. Interestingly, in the end we noticed that all re-
touchers actually performed much more retouches than we
asked. We believed this implied that these professional re-
touchers truly respected their works and had a very high bar
on the quality of the portrait shot. For the retouching of all
four photos, the average working time was 9 hours and 28
min (σ = 1 hour and 55 min) and the average number of col-
lected operations per artist was 852 (σ = 444, min = 893,
max = 5977).

After done retouching, we asked the artists to segment and
label their own retouching processes into smaller sub-tasks
based on the reference retouching tag lists we provided them.
The list was compiled with the chapter/section names of the
photo retouching tutorial book [12] with entries like “eye
sharpening”, “blemish removal”, “skin smooth”, etc (com-
plte list at Appendix). We also made it clear to artists that
they can add their own tag descriptions if necessary.

In summary, we collected three types of data: fine-grained
operation sequences (in text), corresponding image content
of each operation, and the text labels describing the operation
sequences provided by the artists.

ALGORITHM
We analyze the collected data with machine learning approaches;
SVM (Support Vector Machine) classifier for semantic seg-
mentation for semantic navigation and n-gram analysis for
extracting repeating patterns for smart undo.

The semantic segments typically consist of tens to hundreds
of commands thus we deploy SVM classification to facilitate
its particular strength in handling high-level feature vectors.
While the repeating patterns are often much shorter and thus
we extract it via a light-weighted n-gram approach that ba-
sically only involves efficient hash table searching and sub-
string matching.

Semantic Segmentation
Observation Some meta operations, such as layer creation,
have a higher probability than others to correspond to seman-
tic segmentation boundaries. However, simply treating every
layer creation command a as segmentation boundary may not
produce the desired outcomes. For example, skin smoothing
often involves the creation and combination of multiple lay-
ers, which should belong to one instead of multiple semantic
segments.

Our key observations are 1) some commands are more likely
to appear between the semantic segments, e.g. layer creation,
layer merge, and 2) operation sequences spanning multiple
segments usually contain very different command sets and
modify different image regions (corresponding to different
segments), if compared to those belonging to a single seg-
ment. The implication is that a properly trained classi-
fier based on both operation histograms and image contents
should perform better than methods based on operation types
alone.

Operation Space Dimensionality Reduction We trained our
classifier in the operation space. However, there are about
168 basic operations in Photoshop (command information
obtained from Photoshop→ Edit→ Keyboard Shortcuts→
Summarize). The large number of operations can hamper
the ability of our analyzers to extract meaningful informa-
tion from collected user editing sequences.

To address this issue, we first reduce the dimensionality of
operation space before applying our analysis algorithm. Among
these operations, some have similar semantic meanings, such
as (“New Layer”, “New Color Filled Layer”, “Layer from
Background Color”) and (“Rotate 90 degree clockwise”, “Ro-
tate 180 degree clockwise”), while others are designed for
similar purposes, such as 15 different blurs in Photoshop.
Fortunately, the Photoshop menu hierarchy already provides
good suggestions about command clusters; for example, all
blurs commands are clustered under the menu item of “blur”.
This allows us to reduce the dimension of the command space
from 168 to 41 by simply classifying all non-root-level com-
mands into its ancestor command at the root level menu.

Classification We treat the problem of finding segmentation
points as a binary classification: given an input operation se-
quence, the trained classifier labels each operation either as
“segmentation point” or not based on the predicted floating-
point probability.

We associate a feature vector with each operation; the vector
is defined as the combination of the operation histogram and
corresponding affected image regions of the operations pre-
ceding the associated one. (Note that we use a causal window
so that we can perform on-the-fly prediction based on users’
current operation.) Formally, for the jth operation, we
define its previous k operations as its neighbor N(j) and its
feature vector F (j) can be written as:

F = {O,P} (1)

where:
• O ∈ Ro indicates the histogram of operations in N , Ro

the o-dimensional (reduced) operation space, and O[i] the
number of the operations of type i appears in N .

• P ∈ Rp is the position vector; we divide the image into p
grids (default p = 16), and Pi equals to 1 if the content at
ith grid is modified and 0 otherwise.

With the feature vector defined as above, we train the SVM
classifier using LIBSVM [3].

Validation To exam the precision of our SVM classifier, we
performed a 4-fold validation. In our data set, each of 10
artists was asked to retouch and label four photos. We trained
the classifier from 3 of the 4 photos (i.e. 30 photo retouch
history in sum) and predict the one left (i.e. 10 photo retouch
history). The average prediction precision is 96%.

However, our data set is asymmetric where most positions
are negative and only very few of them, which lie on seg-
mentation boundaries, are positive. If we only look at the
positive label and ignore the negative ones, the prediction
precision is 70%. We believe that the lower prediction rate
is due to the different granularity of labeling in our data set.
For example, some artists might label the whole chunk of
operations as face retouch while others might separate it into
skin smoothing, blemish removal, etc. As a result, applying a
classifier with finer granularity to data with coarse labels will
produce many false positive labels. Fortunately, in our user
study, such false positive results did not turn out to negatively
affect users’ experience of semantic navigation, as it is still
better than traditional non-segmented history lists.

Smart Undo
Observation There are many short repeating patterns with
high frequency and are semantically inseparable. Common
examples include “Patch Tool, Patch Selection, Deselect” for
skin retouch, “Add Anchor Point, Drag Anchor Point” for
path selection, and “Master Opacity Change, Merge Layer”
for finishing retouching sub-tasks. The inseparability means
that it is usually meaningless to undo or navigate to the mid-
dle of such chunk. This leads to our idea of highlighting the
last location of these small chunks for easier navigation and
the smart undo for entire chunks instead of individual com-
mands.

N-gram Analysis To extract the useful repetitions, we per-
form standard n-gram analysis (n >= 3). If the patterns
occur more than three times , we insert it into a hash ta-
ble. There are lots of redundant patterns in the n-gram
table, e.g. the pattern of ABCABC is the complete repe-
tition of ABC; and we should only insert the ABC pattern

4	
6	

11	

35	

56	

0	

10	

20	

30	

40	

50	

60	

50%	 40%	 30%	 20%	 10%	

N
um

be
r	 o

f	 R
ep

ea
-n

g	
Pa

1
er
ns
	

Percentage	 of	 Users	

Repea-ng	 Pa1erns	 Sharing	 among	 Users	

Figure 5: Pattern usage chart. There are 4 patterns (aver-
age length 3) shared by half of the artists while 56 patterns
(average length 3.7) used by only one artist.

Pattern Count User%
Eraser, Master Opacity Change, Eraser 26 50%
Move, Free Transform, Move 11 50%
Master Opacity Change, Hue/Saturation
Layer, Modify Hue/Saturation Layer

8 50%

Brush Tool, New Layer, Brush Tool 7 50%
Patch Tool, Patch Selection, Deselect 295 40%
Blending Change, Master Opacity Change,
Blending Change

12 40%

Table 1: Pattern usage table. Here we shows top patterns
that are used by most artists.

Pattern Count User%
Healing Brush, Layer Via Copy, Gaus-
sian Blur, High Pass, Curves Layer, Mod-
ify Curves Layer, Group Layers, Blending
Change, Channel Mixer Layer, Modify Chan-
nel Mixer Layer

4 10%

Duplicate Layer, High Pass, Gaussian Blur,
Invert, Blending Change, Blending Options,
Add Layer Mask, Invert, Brush Tool

4 10%

Duplicate Layer, High Pass, Blending
Change, Add Layer Mask, Invert, Eraser

5 10%

Master Opacity Change, Duplicate Layer,
Merge Layers, Selective Color Layer, Fill,
Brush Tool

4 20%

Lasso, Paste, Layer Order, Move, Free Trans-
form, Eraser

5 10%

Table 2: Table with longer command patterns. There
are some longer repeating patterns, but they are usually the
reflection of users’ personal habit or only shared by small
amount of users.

into our pattern hash table. We solve such redundancy by
a top-down → bottom-up approach. We first scan the table
from top-down (larger n to smaller n), and remove the pat-
terns that are complete repetitions of some existing patterns
(e.g., ABCABC is the complete repetition of ABC). Then
in second pass, we perform a bottom-up scan that removes
patterns which are sub-strings of other longer patterns (e.g.
ABC is the sub-string of ABCD).

Repeating Pattern By performing the n-gram analysis, we
extract command patterns with length equal to or longer than
3 and occur more than 3 times in the data. We found 112 such
patterns with the average occurrence count of 7 (σ= 27).

Figure 5 shows that users usually have their own particu-

lar personal usage patterns but about half of them are still
shared by two or more users. While Table 1 and Table 2 show
that shorter command patterns are more likely to be shared
among users while longer ones usually reflects the personal
usage patterns.

The command pattern with high number of occurrence across
users imply that it should be treated as an atomic operation
in the history list and thus lead to our idea of “smart undo”.
Such pattern can also serve as precious data to improve the
design of image editing softwares or as macros to distribute
over the community [1, 16].

Identical Repetition It is common for users to issue identi-
cal commands repeatedly, such as brush, clone tool or move.
Some previous works counts all such repeating commands
as single entries [15, 16], which we believe is not correct
since users actually spent most of their time on such repeti-
tive operations and actions of same command type could still
have different semantic meanings (e.g. brush operations for
retouching hair and retouching skin should not be clustered
together). In our system, we group such identical repeating
commands based on the position of modified region and time
spent on operations. More specifically, we group commands
together if they modify the same region of the image (based
on the position vector) or is issued in less than 500 ms inter-
val. (Note that parameters of operations could also serve as
a good factor for grouping, but currently it is not possible to
obtain parameters related to brush operations in Photoshop
due to the SDK constraint.)

SYSTEM IMPLEMENTATION

We built our system as a standalone application instead of
part of Photoshop; the core algorithms are implemented with
Qt and the user interface with QML. With newly announced
Connection SDK from Adobe, our application communicates
and synchronizes with Photoshop via TCP protocol.

It is certainly possible to implement our system via Photo-
shop plug-in for direct integration, allowing users to perform
all the interaction and editing in one place. However, af-
ter some considerations, we chose not to do so for our first
prototype because the plugin SDK imposes too many limi-
tations on UI design. For example, it is not clear how we
can create important UI components in our system such as
a list with foldable items or a scrollbar with multiple colors
through Photoshop plug-in SDK. Another main reason for
using Connection SDK is that our standalone application can
run on a variety of other devices such as tablets and smart-
phones to provide additional flexibility and screen space.

One implementation detail worth mentioning is that due to
the latency and performance issues, it is currently not pos-
sible for Photoshop to transmit every intermediate frame to
clients, especially when users issue commands in a high fre-
quency or when the images are large. Our solution is to syn-
chronize only the text history list when user is actively inter-
acting with Photoshop, and sync the intermediate images in
undo stack only when Photoshop is idle.

EVALUATION
We evaluate and compare our system with traditional linear
text history lists and time-based clustering of command his-
tory in [18] through both quantitative user studies and quali-
tative user feedbacks.

We recruited 6 professional artists who used Photoshop on
daily basis in their works, including two professional photo
retouchers, three professional photographers, and one digi-
tal image sketcher. The test session runs about one hour in
average and we paid each artist 30 dollars for the studies.

Quantitative Study
Scenario We constructed the user study scenario as fol-
lows. The user was in the middle of the photo retouching
process; dissatisfied by the overall progress, she would like
to roll-back to some previous states. We pre-recorded three
photo retouching processes from professional artists and an-
notated the videos with high-level semantic descriptions, such
as skin smoothing, eye retouching. We asked testers to
follow such prerecorded videos instead of giving them com-
pletely freedom to improvise for two main reasons. First,
without some predefined rules or constraints, the testers might
not use the functions of interest enough (e.g. undo and his-
tory navigation) and they might not even use history list at
all (e.g. some testers were used to manage progress via lay-
ers). Second, our user study involves the comparisons be-
tween three different systems and a pre-recorded scenario
could provide a better control.

Session Each test session started with a 5 minute introduc-
tion to our system and its features, followed by asking the
testers to perform several simple trial tasks such as “fold/unfold
the command group”, “perform partial comparison on eye
region”, and “increase the number of semantic segments via
slider”.

After the simple trials, we briefly described the comparison
study we were going to conduct as well as the two other sys-
tems involved, i.e. the text-based history and the time-based
one. Then we conducted the official comparison studies.
Specifically, we asked the testers to perform the following
three tasks on all three photos using three different systems in
turn (e.g. first photo with text-based history system, second
photo with time-based system and third photo with ours):

1. Located the approximate start point of eye retouching

2. Located the approximate start point of skin smoothing

3. Located the approximate start point of lip retouching

Given the nine different combinations between three photo
sets and three systems and six different permutations on the
order of using these three systems, we have carefully coun-
terbalanced these factors by adjusting the order and photo/system
pair during the test session as well as randomizing the order
of these three tasks. We measured the quantitative data
based on rate of success, time to completion, and number of
mouse clicks over each session.

Result Table 6 showed the result of the comparison test.
We also performed the one-way ANOVA on three measured

292	
262	

165	
141	

111	

55	
17	 11	 11	

text	 list	 /me-‐based	 list	 ours	

Comparison	 Study	 Result	
/me-‐on-‐task	 mouse	 click	 count	 failure	 rate	

Figure 6: Comparison study chart. We use failure-rate in-
stead of success-rate (as in the main text) for more coherent
visualization, so that all quantities are the lower the better.

factors: time-on-task: F = 11.83, p-level = 0.0014; mouse
click count: F = 10.56, p-level = 0.0022; success rate:
F = 0.75, p-level = 0.49. The lack of sufficient differences
on the success rate indicates that testers were pretty good at
finding the target states using all three kinds of systems. But
for two other measurements, time-on-task and mouse-click-
count, the differences are significant and our system exhib-
ited significant improvements over the other two systems.

Qualitative Feedback
After each quantitative study session, we gave each tester ad-
ditional 20 minutes to explore our system and soliciting their
opinions. Our 7-point Likert survey consisted of questions
regarding two major aspects: 1) test case scenarios and 2) our
system features. The first part was to make sure the designed
scenario was sensible while second part was for evaluating
our system design.

On Test Case Scenario On the design rationality of the test
case scenarios, we asked two questions. On the first question
“your level of understanding on the recorded photo retouch
process”, the average score was 6.3 (two testers with low-
est score at 5). When we were designing the test cases, one
of the biggest concern was that testers might not be able to
comprehend others’ retouching process. However, during the
test session, most testers actually mentioned that they could
easily understand the retouch techniques upon watching the
retouched image and did not mind us fast-forwarding or even
skipping the video as long as we provided them a simple list
of retouching order. It showed that these professional artists
shared their own professional languages on photo retouching
and relieved our initial worry on the design of our test cases.
On the second question “does our designed scenario usually
happen in your daily retouching work?”, the average score
was 6 (three testers with lowest score at 5). They all agreed
that the scenario of rolling back to some previous states hap-
pened a lot during their daily works. The three low scores
of 5 came from the comment that there are other alternative
approaches for rolling back than history list navigation, e.g.
layers or the history snapshots functions.

On System Features On features of our system, the re-
sponses from testers were very positive (Figure 7) and they

0	 1	 2	 3	 4	 5	 6	 7	

Seman/c	 Naviga/on	 UI	 Ease	 of	 Use	
Seman/c	 Naviga/on	 Usefulness	

Dual	 View	 UI	 Ease	 of	 Use	
Dual	 View	 Usefulness	

Smart	 Undo	 UI	 Ease	 of	 Use	
Smart	 Undo	 Usefulness	

Spa/l	 Filter	 UI	 Ease	 of	 Use	
Spa/l	 Filter	 Usefulness	
Overall	 UI	 Ease	 of	 Use	

Overall	 Usefulness	

Figure 7: Likert scale rating for importnat functions in our
system. Error bars show 95% CI.

all genuinely looked forward to see these new features being
added over the current dull history list of Photoshop. Aver-
aged across all features, the ranking were 6.5 for both “ease
of use” and “usefulness”. One tester gave lower scores on se-
mantic navigation (5) and dual view (4) and he commented
that he has to deal with hundreds of photos in limited time
and thus the history list for his retouching tends to be quite
short and he does not think the semantic segmentation would
be very useful for him. On the other hand, he gave the com-
mand grouping function the score of 7 for he believed such
function could make the history list more compact and lead
to better efficiency.

We also received many encouraging comments from our testers.
One professional photographer who seldom uses layers but
mostly use history list and snapshot for daily photo retouch-
ing works said “The history list hasn’t changed too much
since around Photoshop 5.0, which added the function of
snapshot; your system would be really really useful for my
workflow and I cannot wait to use it”. The image sketcher
said “I appreciate the fact that you add these cool features
without increasing the size of history list. History list re-
view is very important to me, and although there are plug-ins
available, they often took additional spaces and distracted my
work”. And from the professional retoucher “I mainly man-
age my progress via layers because the history list in Photo-
shop is really not that helpful. With your system, it seems
like that I could finally use fewer layers in my workflow!”.

LIMITATIONS AND FUTURE WORK

Data Variety We have designed our UI scenarios and sys-
tem algorithms for general digital image editing, even though
only portrait retouching is considered for the data collection
and evaluation parts of our project. This is mainly due to the
need for project cost and budget control. We chose photo
retouching as the primary subject of our pilot study for the
following reasons: it is one of the most common and pop-
ular type of photo editing tasks among professional photo
retouchers, and usually contains sufficiently long, varying,
and complex editing histories to benefit from good naviga-
tion mechanisms as well as contribute to data analysis + ma-
chine learning. As a future work, we would like to collect
data and perform studies from different kinds of image edit-
ing tasks, such as scenery retouching, graphics design, and
digital sketching.

Adaptive Learning Our current implementation performs both
SVM learning and n-gram analysis as an offline preprocess
based on the collected data from professional artists. This
fixed initialization might not adapt well to individual users
or tasks with different preferences or characteristics from the
initial training data. One interesting potential is to perform
both learning processes periodically in an incremental fash-
ion so that our system can better adapt to individual users and
tasks. However, doing so requires cares in both the UI design
and system implementation aspects. In the UI part, past user
studies indicated that an adaptable UI may confuse users in
certain situations [16]. In the system implementation part,
the n-gram analysis is already real-time as it involves only
hash-table look-up. But the SVM classifier would take min-
utes for training, which is not fast enough for online learning.
We are looking at potential incremental learning algorithms
as well as the possibility of stealing idle CPU times for such
training tasks.

Nonlinear navigation Our system currently supports only
linear undo, redo, and navigation. As demonstrated in ear-
lier works such as Chen et al. [4], nonlinear explorations can
provide extra flexibilities and possibilities not possible with
linear exploration, such as undo a specific image region (e.g.
left eye of a portrait) with histories preceding other regions
that we wish to keep (e.g. right eye of the same portrait). We
believe extending our current methodology from linear lists
to non-linear graphs should be quite feasible from the algo-
rithm and design perspective. However, the main issues lie
in usability; non-linear histories will differ more from tra-
ditional linear histories than our linear adaptive approach.
Thus, further user studies will be needed for this.

Segment Labeling We are also interested in the possibil-
ity of automatic labeling the semantics segments extracted
from command histories. In our preliminary experiments,
we have found it a difficult task due to the high amount of
ambiguity among different photo retouching techniques. For
example, artists might use very similar operation sets for dif-
ferent tasks (e.g. retouching eyes and hairs), and they might
also use very different operation sets for similar tasks (e.g.
skin smoothing). We believe that with better similarity mea-
surements (e.g. region segmentation for facial structures in
Berthouzoz et al. [1]), it should be possible to automatically
label the command histories.

CONCLUSIONS
In this paper we introduced a data-driven adaptive history
that enhances the usability of traditional linear history with
two main mechanisms: semantic navigation and smart undo.
Our design minimally changes the look and feel of traditional
history lists, while significantly enhances their usability and
satisfaction for history navigation. Users can easily adapt to
our UI, while the developers will find it straightforward to in-
tegrate our design into common image editing systems. Our
methodology is data-driven; with proper data collection, it
can be applied to different image editing tasks and systems.
Our design has shown significant improvements over tradi-
tional history lists through user studies that incorporate both
quantitative measurements and qualitative feedbacks. We be-
lieve that our data-driven history list could be of great benefit

to digital artists, who tend to have long editing histories due
to the complexity and the trial-and-error nature of their com-
mon tasks.
REFERENCES

1. F. Berthouzoz, W. Li, M. Dontcheva, and M. Agrawala. A
framework for content-adaptive photo manipulation macros:
Application to face, landscape, and global manipulations.
ACM Trans. Graph., 30:120:1–14, 2011.

2. S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T.
Silva, and H. T. Vo. Vistrails: visualization meets data man-
agement. In SIGMOD ’06: Proceedings of the 2006 ACM
SIGMOD international conference on Management of data,
pages 745–747, 2006.

3. C.-C. Chang and C.-J. Lin. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems
and Technology, 2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

4. T. Chen, L.-Y. Wei, and C.-F. Chang. Nonlinear revision con-
trol for images. In SIGGRAPH ’11, pages 105:1–10, 2011.

5. J. D. Denning, W. B. Kerr, and F. Pellacini. Meshflow: Inter-
active visualization of mesh construction sequences. In SIG-
GRAPH ’11, 2011.

6. W. K. Edwards, T. Igarashi, A. LaMarca, and E. D. Mynatt. A
temporal model for multi-level undo and redo. In UIST ’00,
pages 31–40, 2000.

7. F. Grabler, M. Agrawala, W. Li, M. Dontcheva, and
T. Igarashi. Generating photo manipulation tutorials by
demonstration. In SIGGRAPH ’09, pages 66:1–9, 2009.

8. T. Grossman, J. Matejka, and G. Fitzmaurice. Chronicle: cap-
ture, exploration, and playback of document workflow histo-
ries. In UIST ’10, pages 143–152, 2010.

9. B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer.
What would other programmers do: suggesting solutions to
error messages. pages 1019–1028, 2010.

10. J. Heer, J. Mackinlay, C. Stolte, and M. Agrawala. Graphical
histories for visualization: Supporting analysis, communica-
tion, and evaluation. IEEE Transactions on Visualization and
Computer Graphics, 14(6):1189–1196, 2008.

11. J. Kay and R. C. Thomas. Studying long-term system use.
Commun. ACM, 38(7):61–69, July 1995.

12. S. Kelby. Professional Portrait Retouching Techniques for
Photographers Using Photoshop. Peachpit, 2011.

13. D. Kurlander and E. A. Bier. Graphical search and replace.
In Proceedings of the 15th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’88, pages
113–120, New York, NY, USA, 1988. ACM.

14. D. Kurlander and S. Feiner. Editable graphical histories: the
video. In CHI ’91, pages 451–452, 1991.

15. D. Kurlander and S. Feiner. A history-based macro by exam-
ple system. In UIST ’92: Proceedings of the 5th annual ACM
symposium on User interface software and technology, pages
99–106, 1992.

16. B. Lafreniere, A. Bunt, M. Lount, F. Krynicki, and M. A.
Terry. Adaptablegimp: designing a socially-adaptable inter-
face. In UIST ’11 Posters, pages 89–90, 2011.

17. B. Lafreniere, A. Bunt, J. S. Whissell, C. L. A. Clarke, and
M. Terry. Characterizing large-scale use of a direct manip-
ulation application in the wild. In Proceedings of Graphics
Interface 2010, GI ’10, pages 11–18, Toronto, Ont., Canada,
Canada, 2010. Canadian Information Processing Society.

18. W. Li, J. Matejka, T. Grossman, J. A. Konstan, and G. Fitz-
maurice. Design and evaluation of a command recommenda-
tion system for software applications. ACM Trans. Comput.-
Hum. Interact., 18:6:1–6:35, July 2011.

19. F. Linton and H.-P. Schaefer. Recommender systems for
learning: Building user and expert models through long-term
observation of application use. User Modeling and User-
Adapted Interaction, 10(2-3):181–208, Feb. 2000.

20. C. Meng, M. Yasue, A. Imamiya, and X. Mao. Visualizing his-
tories for selective undo and redo. In APCHI ’98: Proceedings
of the Third Asian Pacific Computer and Human Interaction,
page 459, 1998.

21. G. C. Murphy, M. Kersten, and L. Findlater. How are java soft-
ware developers using the eclipse ide? IEEE Softw., 23(4):76–
83, July 2006.

22. T. Nakamura and T. Igarashi. An application-independent sys-
tem for visualizing user operation history. In UIST ’08, pages
23–32, 2008.

23. S. L. Su. Visualizing, editing, and inferring structure in 2d
graphics. In Adjunct Proceedings of the 20th ACM Sympo-
sium on User Interface Software and Technology, pages 29–
32, 2007.

24. S. L. Su, S. Paris, and F. Durand. Quickselect: history-based
selection expansion. In GI ’09: Proceedings of Graphics In-
terface 2009, pages 215–221, 2009.

Appendix: Reference Label List
The reference label list provided to hired artists during data
collection.
• global adjustment

– color/tone adjustment
– brightness/contrast adjustment
– transformation (crop/rotation/perspective)
• retouching eyes

– sharpening the eyes
– brightening the whites of the eyes
– removing eye veins
– reducing dark circles under eyes
– deforming eye
– enhancing eyelashes
– enhancing eyebrows
• retouching skin

– smoothing skin
– removing hotsopt
– removing blemishes
– removing wrinkle
– applying digital makeup
• retouching hair

– removing stray hair
– filling hair gap
– adding highlight to hair
• retouching lips

– changing lip shape
– changing lip color
– creating glossy lip
– whitening/repairing teeth
• slimming and trimming

– face thinning
– body slimming

