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1 Introduction

The set of test cases used in software testing, usually known as a test suite, should

be comprehensive and effective so that any software failure can be revealed [8]. Thus,

test suite generation remains a core issue in testing [21]. In general, test cases can be

generated according to the program code or the specification. The former approach

is known as code-based or white-box testing while the latter approach is known as

specification-based or black-box testing.

Traditionally, code-based testing received more attention in the literature [9, 15]. In

contrast, specification-based testing is relatively less extensively studied, even though

its advantages have been widely known [20]. Among various specification-based meth-

ods, two popular ones are the choice relation framework and the classification-tree

methodology [5–7, 10, 12, 14, 18, 22]. Both of these methods are considered to be useful

because they can be applied to informal specifications that are primarily written in a

narrative language. Both of them come with associated tools. The CHOiCe reLATion

framEwork (CHOC’LATE) [7, 18] is an extension of the category-partition method [17]

by incorporating formal concepts and practical techniques such as choice relations and

their automatic deductions and consistency checks. The Classification-Tree Method-

ology (CTM) was originally developed by Grochtmann and Grimm [10] and was ex-

tended into an integrated classification-tree methodology by Chen et al. [6]. In this

paper, for ease of presentation, we will refer to both the (original) classification-tree

method and the (extended) integrated classification-tree methodology as CTM.

In general, CHOC’LATE and CTM are input domain partitioning methods [11, 16].

The set of all possible inputs (known as the input domain) is divided into subsets

(called subdomains) according to the specification such that all the elements in each

subdomain have essentially the same type of behavior. Test cases are then selected from

each subdomain instead of from the entire input domain. In this way, the resulting test

suite may better represent the behavior of the software under test.

Despite the growing popularity of CHOC’LATE and CTM, software testers often

find it difficult to decide which of them should be used in a given testing scenario,

partly because of the similarities among both methods as explained above. This paper

aims to provide a solution by first contrasting the strengths and weaknesses of the two

methods, followed by suggesting practical selection guidelines to cater for different

testing scenarios.

The rest of the paper is structured as follows: Section 2 gives an overview of

CHOC’LATE and CTM, and discusses their applicability. Section 3 contrasts the strengths

and weaknesses of the two methods in several important aspects. Section 4 then pro-

vides guidelines to help the tester decide whether CHOC’LATE or CTM should be used

in a given testing scenario. Section 5 discusses some work related to CHOC’LATE and

CTM. Finally, Section 6 summarizes the paper.
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2 Overview of CHOC’LATE and CTM

2.1 CHOC’LATE

First, let us outline a few fundamental concepts for the understanding of CHOC’LATE [7,

18]. A parameter is an explicit input to a system, while an environment condition is a

state of the system. A category is a property specified in a parameter or an environment

condition that affects the execution behavior of the software under test. For an admis-

sion system for a master degree program in accounting, an example of a category is

the GMAT score. The possible values associated with a category are partitioned into

disjoint subsets known as choices. An example of a choice is the set of GMAT scores

below 650. Given a category P, Px is used to denote a choice in P. When there is no

ambiguity, we will simply write Px as x.

A test frame is a set of choices. For instance, a test frame for the qualifications

of a master degree applicant is {Qualified Accountantyes, GMAT Score<650}. A test

frame is said to be complete if, when an element is selected from every choice in

that test frame, a standalone test case can be formed. Suppose the admission system

for the master degree program in accounting requires all applicants to state whether

they are qualified accountants. Then, {Qualified Accountantyes, GMAT Score<650} is

a complete test frame but {GMAT Score<650} is incomplete.

Given any choice x, its relation with another choice y (denoted by x 7→ y) must be

one of the following: (a) x is fully embedded in y (denoted by x ⊏ y) if and only if every

complete test frame that contains x also contains y. (b) x is partially embedded in y

(denoted by x ⊏P y) if and only if there are some complete test frames that contain both

x and y while there are also others that contain x but not y. (c) x is not embedded in y

(denoted by x ⊏6⊐ y) if and only if there is no complete test frame that contains both x

and y. These three types of choice relations are exhaustive and mutually exclusive, and

hence x 7→ y can be uniquely determined [5, 7, 18].

CHOC’LATE generates a test suite using the following procedure:

(1) Decompose the specification into individual functional units that can be tested

separately.

(2) Define the categories according to the specification of each functional unit. Partition

each category into choices.

(3) Construct a choice relation table that captures the constraint (formally known as

the choice relation) between every pair of choices.

(4) Specify the preferred maximum number of test frames M and the minimal priority

level m. Construct a choice priority table that captures the relative priority levels

(denoted by r(x)) of individual choices x. The lower the value of r(x), the higher

will be the priority for x to be used for test frame generation. Any choice x with

r(x) 6 m will always be selected for inclusion as part of a test frame, no matter

whether the number of generated test frames exceeds M.

(5) There are two associated algorithms in CHOC’LATE: one for constructing test

frames and the other for extending them. Use the algorithms to generate complete

test frames. Form test cases from the complete test frames.
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Table 1. Categories and choices for ADMIT.

Categories Associated Choices

Qualified Accountant Qualified Accountantyes , Qualified Accountantno

Professional Qualification Professional Qualification local, Professional Qualificationoverseas

GMAT Score GMAT Score<650, GMAT Score>650

Example 1 (Test Suite Generation by CHOC’LATE)

The following is a university admission system (ADMIT) for a master degree program

in accounting:

ADMIT captures the following types of information about an applicant in order to determine their

eligibility for the program: (a) whether the applicant is a qualified accountant, that is, holder

of a professional accounting qualification such as CPA; (b) if yes, whether the professional

qualification is obtained locally or overseas; and (c) the GMAT score if known. Preference will be

given to applicants with a professional accounting qualification, particularly obtained locally. To

cater for the situation that an applicant is about to take or has just sat for the GMAT examination,

ADMIT allows an applicant to apply for the program before knowing the GMAT score. However,

if such an applicant is given a provisional offer, a GMAT score of 650 or above must be obtained

before the program starts.

We describe how CHOC’LATE generates a test suite TSADMIT(CHOC) for

ADMIT:

(1) Because of the simplicity of ADMIT, the specification can be treated as one func-

tional unit in its entirety. No decomposition is needed.

(2) The categories and choices are defined according to ADMIT and shown in Table 1.

(3) The choice relation between every pair of choices is determined according to

ADMIT, as shown in the choice relation table TADMIT in Table 2. For example, we

have (Professional Qualification local) ⊏ (Qualified Accountantyes), indicating that

every complete test frame containing “Professional Qualification local” must also

contain “Qualified Accountantyes”. The rationale is that “Professional Qualificat-

ion local” assumes that the applicant must be a qualified accountant. An example

of a partial embedding relation is (Professional Qualificationoverseas) ⊏P (GMAT

Score>650). Any complete test frame containing “Professional Qualificationoverseas”

may or may not contain “GMAT Score>650”. This is because a complete test frame

containing “Professional Qualificationoverseas” may contain “GMAT Score<650” in-

stead of “GMAT Score>650”, or the complete test frame may not contain any choice

from the category “GMAT Score” (when the applicant does not know the GMAT

score when applying for the program). Finally, an example of the nonembedding

relation is (Qualified Accountantno) ⊏6⊐ (Professional Qualification local). In other

words, if the applicant is not a qualified accountant, whether the professional ac-

counting qualification is obtained locally or from overseas is irrelevant.

In essence, the choice relations in TADMIT determine how choices are combined

to form complete test frames.

(4) Suppose, for instance, the software tester judges that, according to experience in the

application domain, “GMAT Score<650” and “GMAT Score>650” are most likely
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Table 2. Choice relation table TADMIT for ADMIT.

Qualified

Accountantyes

Qualified

Accountantno

Professional

Qualification local

Professional

Qualificationoverseas

GMAT

Score<650

GMAT

Score>650

Qualified Accountantyes ⊏ ⊏6⊐ ⊏P ⊏P ⊏P ⊏P

Qualified

Accountantno
⊏6⊐ ⊏ ⊏6⊐ ⊏6⊐ ⊏P ⊏P

Professional

Qualification local
⊏ ⊏6⊐ ⊏ ⊏6⊐ ⊏P ⊏P

Professional

Qualificationoverseas
⊏ ⊏6⊐ ⊏6⊐ ⊏ ⊏P ⊏P

GMAT Score<650 ⊏P ⊏P ⊏P ⊏P ⊏ ⊏6⊐

GMAT Score>650 ⊏P ⊏P ⊏P ⊏P ⊏6⊐ ⊏

Table 3. Complete test frames generated by CHOC’LATE for ADMIT.

Complete Test Frames

Bc
1 = {Qualified Accountantyes , Professional Qualification local}

Bc
2 = {Qualified Accountantyes , Professional Qualification local , GMAT Score<650}

Bc
3 = {Qualified Accountantyes , Professional Qualification local , GMAT Score>650}

Bc
4 = {Qualified Accountantyes , Professional Qualificationoverseas}

Bc
5 = {Qualified Accountantyes , Professional Qualificationoverseas, GMAT Score<650}

Bc
6 = {Qualified Accountantyes , Professional Qualificationoverseas, GMAT Score>650}

Bc
7 = {Qualified Accountantno}

Bc
8 = {Qualified Accountantno , GMAT Score<650}

Bc
9 = {Qualified Accountantno , GMAT Score>650}

to reveal faults in ADMIT. In this case, the tester will assign higher priorities to

r(GMAT Score<650) and r(GMAT Score>650) than other choices. As a result,

“GMAT Score<650” and “GMAT Score>650” will first be used to generate test

frames. Suppose further that, after considering the testing resources available, the

tester sets M to a very high value, indicating to the associated algorithms that all

complete test frames are to be generated for testing. (See Section 3.4 for more

details.)

(5) The associated algorithms generate a set of test frames SFADMIT(CHOC) for ADMIT.

In particular, nine test frames are complete, as shown in Table 3. Obviously, the test

frames Bc
2, Bc

3, Bc
5, Bc

6, Bc
8, and Bc

9 are complete. The test frames Bc
1, Bc

4, and Bc
7 are

also complete because ADMIT allows an applicant to apply for the program before

knowing the GMAT score, so that the score is not a necessary input to the system.

During the generation process, several incomplete test frames are also formed.

An example is {Qualified Accountantyes, GMAT Score<650}. It is incomplete

because it needs a choice from the category “Professional Qualification” to form

a complete test frame. The tester needs to check SFADMIT(CHOC) and remove any

incomplete test frames. After the removal process, the nine complete test frames in

Table 3 remain in SFADMIT(CHOC). For each of these complete test frames, a test

case is formed by randomly selecting and combining an element from each choice

in that test frame. Consider, for instance, Bc
9. A test case {Qualified Accountant =

no, GMAT Score = 720} can be formed.
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Fig. 1. Classification tree ϒADMIT and combination table for ADMIT

2.2 CTM

CTM is similar to CHOC’LATE in its approach to test suite generation [6, 10, 12, 22]. It

consists of the following steps:

(1) Decompose the specification into individual functional units that can be tested

separately. This step is identical to step (1) in CHOC’LATE.

(2) For each functional unit, identify classifications and their associated classes. Clas-

sifications and classes in CTM are identical to categories and choices, respectively,

in CHOC’LATE. For ease of presentation, in the rest of this paper, classifications and

classes will be stated as categories and choices.

(3) Construct a classification tree to capture the relation between any choice Px and any

category Q ( 6= P).

(4) Use the associated algorithm to construct the combination table, through which

valid combinations of choices are selected as complete test frames. A test case is

then formed from each complete test frame as in CHOC’LATE.

Example 2 (Test Suite Generation by CTM)

Refer to the university admission system ADMIT in Example 1. Steps (1) and (2) of CTM

are identical to their counterparts in CHOC’LATE. Let us illustrate steps (3) and (4) of

CTM for generating a set of test frames SFADMIT(CTM) and its corresponding test suite

TSADMIT(CTM):

(3) We construct a classification tree ϒADMIT (as shown in the upper half of Fig. 1),

capturing the relations between the relevant categories and choices. Categories in

the classification tree are enclosed in boxes whereas choices are not.

A small circle at the top of a classification tree is the general root node, covering

the entire input domain. The categories directly under the general root node, such

as “Qualified Accountant” and “GMAT Score” in Fig. 1, are called top-level cate-

gories. In general, a category P may have several choices Px directly under it. P is

known as the parent category and Px is known as a child choice. In Fig. 1, for
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example, “Qualified Accountant” is the parent category of “Qualified Account-

antyes” whereas “Qualified Accountantyes” is a child choice of “Qualified Accoun-

tant”. Similarly, a choice Px may have one or more categories Q ( 6= P) directly under

it. Then Px is known as the parent choice and Q is known as a child category. In

Fig 1, for example, “Qualified Accountantyes” is the parent choice of “Professional

Qualification” while “Professional Qualification” is the child category of “Qualified

Accountantyes”.

(4) Use the associated algorithm to construct the combination table and to generate

complete test frames (as shown, for example, in the lower half of Fig. 1). The

process makes use of the following rules:

(a) Draw the grids of the combination table under a classification tree. The columns

of the table correspond to the terminal nodes of the classification tree. The rows

correspond to test frames.

(b) Generate a test frame in the combination table by selecting a combination of

choices in a classification tree as follows: (i) select one and only one child

choice for each top-level category, and (ii) for every child category of each

selected choice, recursively select one and only one child choice.

For the given classification tree ϒADMIT, the above rules generate SFADMIT(CTM)

containing six test frames. For instance, the test frame corresponds to row 1 of

the combination table is {Qualified Accountantyes, Professional Qualification local,

GMAT Score<650}. Since a classification tree may not fully capture the relations

among the relevant categories and choices, resulting in the occurrence of incom-

plete test frames, we need to check the set of test frames generated and remove any

incomplete ones. After checking, we find that all the six test frames in SFADMIT

(CTM) are complete. For each of these test frames, a test case is formed by randomly

selecting and combining an element from each choice in that test frame.

2.3 Applicability of CHOC’LATE and CTM

It is obvious that a testing method may not be applicable to all types of systems. CHOC’

LATE and CTM are no exception. Both methods are not specifically developed for

testing real-time systems or embedded systems. Having said that, it should be noted

that CHOC’LATE and CTM are generic testing methods and, as such, they can be used to

generate test suites when the following two conditions are met: (a) the software can

be decomposed into functional units to be tested independently, and (b) categories,

choices, and relations at the category-level or at the choice-level can be identified from

the specification. For example, CHOC’LATE has been successfully applied to different

application domains, including the inventory registration module and the purchase-

order generation module of an inventory management system, an online telephone in-

quiry system, and the meal scheduling module of an airline meal ordering system [7]. As

for CTM, its successful applications to an airfield lighting control system, an automatic

mail sorting system, an integrated ship management system, and a parser as part of a

software development environment have been reported [10].
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3 Strengths and Weaknesses of CHOC’LATE and CTM

3.1 Relations among Categories and Choices

CHOC’LATE and CTM use different approaches to capture and represent relations among

choices or categories. These relations then determine how choices are combined

together to form complete test frames. CHOC’LATE captures the relation between every

pair of choices. They are expressed in terms of three choice relations (full embed-

ding, partial embedding, and nonembedding) and captured in a choice relation table.

In contrast, CTM captures the relations at the category level, or more specifically, the

relations between a choice Px and a category Q ( 6= P). Furthermore, these relations

are expressed in a hierarchical tree structure known as a classification tree. Obviously,

category-level constraints are coarser than choice-level constraints. On the other hand,

since the number of category-level constraints is much less than that of choice-level

constraints, the former type requires less effort to identify.

Consider, for example, the classification tree ϒADMIT in Fig. 1. According to the

selection rules, because “Qualified Accountantyes” is the parent choice of “Profes-

sional Qualification”, whenever either “Professional Qualification local” or “Professional

Qualificationoverseas” is selected to form part of any complete test frame, “Qualified

Accountantyes” must also be selected. This part of the tree structure is similar in effect

to the definition of the choice relations (Professional Qualification local ⊏ Qualified

Accountantyes) and (Professional Qualificationoverseas ⊏ Qualified Accountantyes) in

CHOC’LATE.

Because CHOC’LATE captures the relations at a more fine-grained level (namely,

the choice level instead of the category level), CHOC’LATE is generally more com-

prehensive in generating complete test frames. Let us compare SFADMIT(CHOC) and

SFADMIT(CTM). As explained in Example 1, SFADMIT(CHOC) contains all the nine

complete test frames Bc
1, Bc

2, . . . , Bc
9 that should be generated, as shown in Table 3.

SFADMIT(CTM), however, only contains six complete test frames, namely Bc
2, Bc

3, Bc
5,

Bc
6, Bc

8, and Bc
9, corresponding to rows 1, 2, . . . , 6 in the combination table of Fig. 1 (see

Example 2). In other words, CTM cannot generate the complete test frames Bc
1, Bc

4, and

Bc
7. This problem affects the comprehensiveness of SFADMIT(CTM) and TSADMIT(CTM),

and hence the effectiveness of testing.

A close examination of the structure of the classification tree ϒADMIT in Fig. 1

reveals the reason for the omission of Bc
1, Bc

4, and Bc
7. “GMAT Score” is a top-level

category in ϒADMIT. According to the selection rules, a child choice of “GMAT Score”

must be selected as part of any complete test frame. This requirement prevents Bc
1, Bc

4,

and Bc
7 from being generated, because all these three complete test frames do not contain

any choice in “GMAT Score”. 4

In contrast, CHOC’LATE can generate Bc
1, Bc

4, and Bc
7 by using the partial embedding

relation. For example, by defining (Qualified Accountantyes ⊏P GMAT Score<650),

(Qualified Accountantyes ⊏P GMAT Score>650) and other relevant choice relations (see

4 One may argue that ϒADMIT is only one of the many possible tree structures with respect

to the categories and choices in Table 1. We must point out, however, that no matter how a

classification tree is drawn using these categories and choices, it is unable to generate all the

nine complete test frames in Table 3.
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Table 2), any complete test frame Bc generated by CHOC’LATE containing “Qualified

Accountantyes” must be one of the following three types:

(a) Bc contains “GMAT Score<650” but does not contain “GMAT Score>650”,

(b) Bc contains “GMAT Score>650” but does not contain “GMAT Score<650”, and

(c) Bc does not contain both “GMAT Score<650” and “GMAT Score>650”.

Because of type (c), Bc
1 and Bc

4 (which are omitted from SFADMIT(CTM)) will

exist in SFADMIT(CHOC). Similarly, we can define (Qualified Accountantno ⊏P GMAT

Score<650), (Qualified Accountantno ⊏P GMAT Score>650), and other relevant choice

relations to guarantee the generation of Bc
7.

3.2 Inherent Limitation of Tree Structure

Given any pair of distinct categories P and Q, Chen et al. [6] define four possible types

of hierarchical relations: (a) P is a loose ancestor of Q (denoted by P ⇔ Q), (b) P is

a strict ancestor of Q (denoted by P ⇒ Q), (c) P is incompatible with Q (denoted by

P ∼ Q), and (d) P has other relations with Q (denoted by P⊗Q). Note that, for the

ancestor relation, type (a) is symmetric whereas type (b) is anti-symmetric. Readers

may refer to [6] for details.

The hierarchical relations (b), (c), and (d) affect the relative positions of P and Q

in a classification tree. Consider, for example, the categories “Qualified Accountant”

and “Professional Qualification” in the classification tree ϒADMIT. We have (Quali-

fied Accountant ⇒ Professional Qualification), causing “Professional Qualification” to

appear under the choice “Qualified Accountantyes” (but not “Qualified Accountantno”)

of “Qualified Accountant”.

On the other hand, for relation (a), it indicates a symmetric parent-child or ancestor-

descendent hierarchical relation between P and Q, resulting in a loop in a classification

tree. This relation violates an implicit assumption of classification trees, namely, that

the parent-child or ancestor-descendent hierarchical relation must be anti-symmetric

for any pair of categories; otherwise a classification tree cannot be constructed. Since

CHOC’LATE does not use a tree structure to capture the relations among choices, the

problem associated with the loose-ancestor relation is not applicable.

Example 3 (Loose-Ancestor Hierarchical Relation)

Suppose we have a pair of distinct categories P and Q, where P has two associated

choices Px and Py, and Q has two associated choices Qa and Qb. Suppose further that,

with respect to P and Q, only three complete test frames exist, namely, Bc
1 = {Px, Qa},

Bc
2 = {Py}, and Bc

3 = {Qb}. In view of these complete test frames and according to the

definitions of hierarchical relations [6], we have a loose ancestor relation P ⇔ Q. Thus,

a classification tree cannot be constructed to fully capture the relations between P and

Q such that Bc
1, Bc

2, and Bc
3 can be generated.

If we ignore the ability of classification trees in generating all complete test frames,

various tree structures can be constructed from P, Q, and their associated choices,

including the three depicted in Fig. 2. 5 None of these classification trees (including

5 There are other feasible classification trees that are not shown in the figure, because a category

and its associated choices may occur more than once in a classification tree [6].
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a Px Py

P

Px Py

P

(a) (b) (c)

Px Py

P Q Q

Q

Qa QbQa Qb

QbQ

Fig. 2. Three possible classification trees

the three in Fig. 2 and others not included in the figure) generates all the complete test

frames Bc
1, B2

2, and Bc
3. Consider, for instance, the tree in Fig. 2(a). It generates Bc

1 and

Bc
2 but not Bc

3.

In CHOC’LATE, we can define the following choice relations between P and Q:

(i) Px ⊏ Qa and Qa ⊏ Px; (ii) Py ⊏6⊐ m and m ⊏6⊐ Py, where choice m = Px, Qa, or Qb; and

(iii) Qb ⊏6⊐ n and n ⊏6⊐ Qb, where choice n = Px, Py, or Qa. These definitions will then

cause the associated algorithms to generate Bc
1, Bc

2, and Bc
3, respectively.

3.3 Automatic Deduction and Consistency Checking of Relations

The comprehensiveness of the generated test suite depends on the correctness of choice

relations and hierarchical relations in CHOC’LATE and CTM, respectively. However,

it would be tedious and error prone to manually define all such relations. Chen et

al. [7] have identified various properties of these relations in CHOC’LATE to form

the basis for their automatic deductions and consistency checking. Two examples are:

(Property 1) Given any choices x, y, and z, if x ⊏ y and x ⊏P z, then y ⊏P z.

(Property 2) Given any choices x, y, and z, if x ⊏ z and y ⊏P z, then y ⊏P x or y ⊏6⊐ x.

Property 1 provides a basis for automatic deduction of choice relations because

its “then” part consists of a definite relation. Thus, once x ⊏ y and x ⊏P z are defined,

y ⊏P z can be automatically deduced without manual intervention. As for Property 2, its

“then” part contains two possible relations. Although the property cannot be used for

automatic deduction, it nevertheless allows us to check the consistency of the relations

among choices. For example, we know that when x ⊏ z and y ⊏P z, we cannot have y ⊏ x,

or else it will contradict Property 2.

Similar properties and techniques have been identified in CTM [6]. Two exam-

ples are: (Property 3) Given any categories P and Q, if P ⇒ Q, then Q⊗P. (Prop-

erty 4) Given any categories P and Q, if P⊗Q, then Q ⇒ P or Q⊗P. Properties 3

and 4 can be used for automatic deduction and consistency checking of hierarchical

relations, respectively.

The techniques of automatic deduction and consistency checking are more advanced

and refined in CHOC’LATE than in CTM. In CHOC’LATE, there are five main proposi-

tions and three main corollaries, from which properties such as those mentioned above

are derived. Some of these main propositions and corollaries are further refined into

sub-propositions and sub-corollaries (see [7] for details). On the other hand, in CTM [6],

only three propositions exist and they cannot be further refined.
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3.4 Test Frame Generation

Often, many categories and choices can be defined from a real-life specification [3].

Consequently, CHOC’LATE and CTM will generate many complete test frames (and

hence many test cases) to cover diverse valid combinations of the defined choices. For

instance, it has been reported that real-world protocol software may have 448–2402

test cases per test suite [13]. Such a test suite can be prohibitively expensive to execute

exhaustively owing to its large size.

To alleviate this problem, CHOC’LATE allows testers to control the total number of

test frames generated by specifying (a) the preferred maximum number of test frames

M, (b) the relative priority level r(x) of each individual choice x, and (c) the minimal

priority level m. For M, the word “preferred” implies that the limit is not absolute, as

it may be overwritten by m. For the relative priority level of individual choices, they

determine the order of choices used for test frame generation. The lower the value of

r(x), the higher will be the priority of x. m allows testers to ensure that those choices

x with r(x) 6 m will always be selected for inclusion as part of a test frame, no matter

whether the number of generated test frames exceeds M or not. In the situation where

M should not be waived by m, m should be set to zero, and M becomes the absolute

maximum number of generated test frames.

Testers often face a dilemma that, on one hand, they prefer to set a maximum

number M of generated test frames so as to control the testing effort, but on the other

hand, the choices considered very important should always be used for test frame

generation, even though this may cause the number of generated test frames to exceed

M. Allowing testers to set the values of M, m, and the relative priority level of choices

will provide them with flexibility in dealing with such dilemma.

In contrast, CTM aims at generating valid combinations of choices as complete test

frames without considering the testing resources involved. Grochtmann and Grimm [10]

argue that maximality and minimality criteria can be incorporated into CTM, thus allow-

ing testers to control the number of complete test frames to some extent. The maximality

criterion naturally requires each valid combination of choices to form a complete test

frame. The minimality criterion, on the other hand, requires each choice to be used in

at least one complete test frame, so that the number of complete test frames can be

reduced. Obviously, even with these two criteria, the ability to control the number of

generated complete test frames in CTM is far more restricted than when compared with

CHOC’LATE.

3.5 Documentation of the Software under Test

Both CHOC’LATE and CTM aim to generate a test suite for software testing. In addition,

during the generation process, the choice relation table constructed in CHOC’LATE and

the classification tree constructed in CTM can serve as useful documentation of the

software under test [10].

Briand et al. [2] argue that “devising ... categories and choices is ... necessary to

understand the rationale behind test cases and is a way for the tester to formalize her

understanding of the functional specification”. In CTM, a classification tree is con-

structed, capturing the relations among relevant categories and choices. Since it is in
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a graphic form, a classification tree is more concise and descriptive than a narrative

specification [10]. Similarly, a two-dimensional choice relation table in CHOC’LATE

captures the relation between every pair of choices. This table is better than a narrative

specification for the purpose of documentation and reasoning.

When comparing a classification tree with a choice relation table, there are mixed

opinions. On one hand, some people prefer a classification tree to a choice relation table

for the purpose of presentation. They argue that the pictorial simplicity and vividness of

a tree makes it more understandable [23]. On the other hand, others argue that a choice

relation table is better than a classification tree because the former contains more fine-

grained information to help readers understand the relations among individual choices

(see Section 3.1 for details).

4 Selection Guidelines

Intuitively, every testing method has its own merits and drawbacks. CHOC’LATE and

CTM are no exception. Neither of them is ideal for every testing situation. A software

tester should be knowledgeable enough to decide whether CHOC’LATE or CTM is best

applied to specific testing scenarios. The decision is not straightforward because both of

them are input domain partitioning methods [11, 16] and hence they are fairly similar.

We provide below some guidelines to help a tester decide which of them should be used

in a given testing scenario.

Given a specification, the tester should first consider the level of abstraction of the

constraints and the relationships among constraints. If the constraints are specified at

the choice level and the tester can afford the effort to identify their relationships, then

CHOC’LATE is preferred because it will generate a more comprehensive set of complete

test frames (see Section 3.1). On the other hand, if all or most of the constraints are only

available at the category level, or if the tester can only afford to identify category-level

relationships among constraints, or if the tester prefers an intuitive graphic presentation

of the relations among constraints (see Section 3.5), then CTM is the option (see also

Section 3.1).

In addition, the possible occurrence of the loose-ancestor hierarchical relation (P ⇔
Q) between two distinct categories P and Q is another factor to consider. If this relation

exists, then CTM should not be chosen (see Section 3.2), unless the use of CHOC’LATE

is prohibited by other factors such as the absence of choice-level constraints in the

specification as explained above.

Next, we consider the process of generating complete test frames. Ideally, the pro-

cess must be well executed so that no complete test frame will be missing. Otherwise,

testing may not be comprehensive and some software failures may never be revealed.

In the generation process, the correctness of the constraints (at the category or choice

level) is of utmost importance because it will affect the comprehensiveness of the

set of complete test frames generated. If the number of constraints to be manually

defined is large (especially when the specification is large and complex), the chance

of making mistakes is high. In this regard, the complexity of the choice relation table

in CHOC’LATE is an additional consideration that needs to be taken into account when

selecting between the two methods. In any case, both CHOC’LATE and CTM offer the
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features of automatic deduction and consistency checking of relations, with a view to

improving the effectiveness and efficiency of constraint definitions. The two features

provided by CHOC’LATE are more advanced and refined than those by CTM. This may

serve to counterbalance the complexity of the choice relation table in CHOC’LATE (see

Section 3.3).

The amount of testing resources available is also an important factor. As we have

mentioned, it would be ideal to test the software with all the complete test frames. In

reality, however, this may be infeasible because of the shortage of testing resources.

If this happens, both CHOC’LATE and CTM allow the tester to select a subset of all

complete test frames to be generated for testing. Among the two methods, CHOC’LATE

is more refined in allowing the tester to control how this subset is generated. Therefore,

if testing constraints are an issue, CHOC’LATE will be a better choice (see Section 3.4).

5 Related Work

Yu et al. [24] proposed some enhancements to CTM by annotating a classification

tree with additional information (including selector expressions, occurrence tags, and

weight tags) to reduce manual effort in the generation, selection, and prioritization

of test cases. They also developed an automated tool (EXTRACT) that implements the

proposed enhancements.

Amla and Ammann [1] analyzed the feasibility of applying the category-partition

method (on which CHOC’LATE is based) to Z specifications and found that testing

requirements can be defined from formal specifications more easily. Hierons, Singh and

their co-workers [12, 22] have also done similar work in the context of Z specifications.

They introduce an approach [22] to generating test cases from Z specifications by

combining CTM with disjunctive normal forms, and present another approach [12] to

extracting predicates from Z specifications and building a classification tree from these

predicates.

Obviously, the comprehensiveness of a test suite generated by CHOC’LATE and CTM

depends on how well categories and choices are identified from the specification. In

this regard, Chen, Poon, and their co-workers [4, 19] have conducted several empirical

studies to investigate the common mistakes made by experienced and inexperienced

testers when the identification process is done in an ad hoc manner. Furthermore, they

have recently developed a DividE-and-conquer methodology for identifying categorieS,

choiceS, and choicE Relations for Test case generation (DESSERT) for large and com-

plex specifications that involve many different components [5].

6 Summary and Conclusion

In this paper, we have outlined the main concepts of two popular specification-based

testing methods, namely, CHOC’LATE and CTM. We have used examples to illustrate

how both methods generate a test suite from the specification, and contrasted their

strengths and weaknesses with respect to five different aspects, namely, (a) relations

among categories and choices, (b) inherent limitation of the tree structure, (c) automatic
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deduction and consistency checking of relations, (d) test frame generation, and (e) docu-

mentation of the software under test. Based on these strengths and weaknesses, we have

provided guidelines to help the tester decide which method to use under different testing

scenarios. Thus, the paper will help the software testing community better understand

CHOC’LATE and CTM, and determine which of them is more appropriate in a specific

testing scenario.
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