
Postprint of article in Information Sciences 194 (7): 254–269 (2012)

An enhanced flow analysis technique for detecting

unreachability faults in concurrent systemsI,II

Tsong Yueh Chena, Peifeng Hub, Hao Lic, T.H. Tsec

aCentre for Software Analysis and Testing, Swinburne University of Technology, Hawthorn 3122, Australia
bChina Merchants Bank, 21/F, 12 Harcourt Road, Central, Hong Kong
cDepartment of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong

Abstract

We present a flow analysis technique for detecting unreachable states and actions in concurrent systems. It is an

enhancement of the approach by Cheung and Kramer. Each process of a concurrent system is modeled as a finite state

machine, whose states represent process execution states and whose transitions are labeled by actions. We construct

dependency sets incrementally and eliminate spurious paths by checking the execution sequences of actions. We

prove mathematically that our algorithm can detect more unreachability faults than the well-known Reif/Smolka and

Cheung/Kramer algorithms. The algorithm is easy to manage and its complexity is still polynomial to the system size.

Case studies on two commonly used communication protocols show that the technique is effective.

Key words: concurrency; distributed systems; reachability analysis; static analysis

1. Introduction

Concurrent systems such as network protocols and gate-level hardware are more complex than conventional

sequential programs. Communications among processes in such systems may bring about synchronization anomalies

such as deadlock or starvation. Reliable communications is of prime importance [36]. It is essential to provide an

effective and tractable technique for detecting concurrency faults [22].

Reachability analysis is a static method that analyzes the reachability properties of nodes and edges in the flow

graph model that represents program behavior. Reachability analysis has been widely used to detect concurrency

faults. According to the IEEE Standard Glossary of Software Engineering Terminology [18], a fault is an “incorrect

step, process, or data definition”. A concurrent system may be modeled, for example, as a set of communicating finite

state machines with synchronous communications. Thus, the presence of any state or action unreachable from the

initial state of the finite state model indicates the presence of a fault, which will be referred to as an unreachability

fault. In particular, unreachability faults in concurrent systems are mainly caused by anomalies in synchronization.

Unfortunately, because of the state explosion problem, it is infeasible to search exhaustively for unreachable states or

actions in concurrent systems: the number of states increases exponentially with the number of processes [27]. Many

I c© 2011 Elsevier. This material is presented to ensure timely dissemination of scholarly and technical work. Personal use

of this material is permitted. Copyright and all rights therein are retained by authors or by other copyright holders. All persons

copying this information are expected to adhere to the terms and constraints invoked by each author’s copyright. In most cases,

these works may not be reposted without the explicit permission of the copyright holder. Permission to reprint/republish this

material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists,

or to reuse any copyrighted component of this work in other works must be obtained from Elsevier.
IIThis research is supported in part by a grant of the Australian Research Council and a grant of the Research Grants Council of Hong Kong

(Project No. 717308).

Corresponding author. Tel.: +852 2859 2183; fax: +852 2858 4141. E-mail address: thtse@cs.hku.hk (T.H. Tse).

Postprint of article in Information Sciences

Administrator
 HKU CS Tech Report TR-2012-01

techniques have been proposed to resolve the problem in the literature. They include flow analysis [7, 8, 10, 12, 13,

19, 26, 28], compositional analysis [1, 5, 9, 21, 31, 35], and model checking [2, 4, 14, 15, 17, 23, 24]. In particular,

flow analysis with reachability graph techniques are recognized as the most precise and popular [13, 25].

In this paper, we present an approximate flow analysis technique for detecting unreachable states and actions in

concurrent systems. It improves on an existing technique by Cheung and Kramer [6, 8]. Like most flow analysis

techniques, the enhanced algorithm strikes a balance between accuracy and computational complexity. It can detect

provably more unreachability faults in concurrent systems than current algorithms, and is polynomial in complexity

to the system size. To the best of our knowledge, this is the first paper that identifies and solves the shortcomings

of the well-known Reif/Smolka and Cheung/Kramer algorithms in revealing unreachability in concurrent systems.

It is also the first work that applies the reachability algorithms to case studies on two commonly used protocols —

the alternating bit protocol and the CSMA/CD protocol. The analyses show that a more effective algorithm is indeed

required for solving the problems in the applicability of the Cheung/Kramer algorithms to popular communication

protocols. The proposed algorithm bridges this important real-world gap.

The paper is organized as follows: Section 2 reviews different concurrency fault detection techniques. Section 3

defines the flow graph model of concurrent systems used in this paper. In Section 4, we analyze the algorithms by

Cheung and Kramer. In Section 5, we propose a new algorithm. Section 6 analyzes the effectiveness and complexity

of our algorithm. Section 7 further studies the applicability of the algorithm to real-life communication protocols.

Finally, the conclusion is presented in Section 8.

2. Related work

Various static techniques have been proposed for detecting concurrency faults. They can be classified into three

categories:

(a) Flow Analysis

Flow analysis is a static approach to analyze the properties of a program based on the flow graph model that

represents the system behavior. Because of the need to strike a balance between precision and efficiency, most

flow analysis techniques are approximate methods. The use of flow graphs was first presented by Taylor [34].

The program flow graph, annotated with synchronization constraints, was used to generate a state-transition

graph representing the concurrency history. The technique enumerated all the possible execution paths based

on concurrency histories for the analysis of programs having rendezvous-like synchronization. Peng and

Puroshothaman [26] set up flow equations to compute the set of pending messages in the queues at any given

state of system. They proposed an approximate solution for the ensuing equations. Duesterwald et al. [12]

developed a framework for generating algorithms for demand-driven data flow analysis. It was based on a

partial search that proceeds in the reverse direction of an exhaustive data flow analysis. Reif and Smolka [28]

considered the problem of reachability in a concurrent system that communicates over unbounded buffers. They

presented an approximate linear algorithm for detecting unreachable statements in programs using Petri nets.

Cheung and Kramer [6, 7, 8] refined the work of Reif and Smolka. They used dependency sets and history

sets to eliminate many of the spurious paths and obtain better results. Cobleigh and others [10, 13] presented

FLAVERS, a finite state verification approach that analyzed the behavioral properties of concurrent systems.

They proposed to express such behavioral properties in terms of event patterns. A flow graph would then be

generated automatically by FLAVERS. In this way, event sequences, synchronization, and message passing could

be modeled without the need to traverse the state space. They pointed out [13], however, that their static model

is less precise than reachability graph approaches such as that by Cheung and Kramer. Iyer and Ramesh [19]

presented an apportioning technique to tackle safeness and efficiency problems in concurrent object-oriented

programs. A program synchronization point was said to be local if it interacted with another method of the

same object; otherwise, it was known as global. An abstract representation of every class was produced by

removing its global points, while an abstract representation of the whole program was produced by removing

all the local points. Subproperties at each synchronization point were checked via the respective reachability

graphs generated. However, the checking of reachability subproperties relied on existing standard algorithms.

2

(b) Compositional Techniques

Generally, compositional techniques are based on a global compositional model that represents system behavior.

Compositional techniques are considered more suitable for analyzing systems with well-defined subsystems.

They exploit modularity by dividing the system into smaller subsystems. They then verify each subsystem

individually and combine the results incrementally. Context constraints [9] and incremental integration [21]

have been used to simplify the compositional procedure. Tsai and Juan [35] developed heuristic techniques

for efficient compositional verification of component-based software systems. Sampaio et al. [31] applied the

notion of refinement checking in communicating sequential processes (CSP) [29] to compositional verification.

Ahrendt and Dylla [1] presented a system for the compositional verification of Creol, an object-oriented model

for distributed concurrent applications [20].

(c) Model Checking

Model checking refers to the techniques for verifying the conformance of behavior between an encoded finite-

state transition system and the specification, which is usually written as formulas in temporal logic. Binary

decision diagrams (BDDs) [4, 23] were first used to encode a transition relation symbolically. A propositional

temporal logic formula was encoded in a BDD to represent graph transition rules. Rather than encoding all states,

Enders et al. [14] improved the technique by using BDDs to encode the next-state function. Holzmann [17]

devised a SPIN model checker for verifying program properties. A concurrent system was described by the

process metalanguage PROMELA. Properties to be verified were expressed as linear temporal logic formulas.

Anderson et al. [2] demonstrated how model checking could be used to verify the correctness of e-commerce

protocols. Francesco et al. [15] proposed a user-friendly interface for model checking of system properties

expressed in temporal logic. Meolic et al. [24] proposed a new temporal logic with an additional unless operator

for model checking.

However, although symbolic encoding can reduce the space and time required for model checking, it proves to

be very difficult to analyze the effectiveness of such techniques.

Among these approaches, flow analysis is the most popular [25] because it is conceptually simple and relatively

straightforward to automate. It has been adopted in various applications [33]. In particular, reachability graph

techniques have been recognized as more precise than other techniques in flow analysis [13]. The algorithm in

this paper falls under this category. It is an enhancement of the algorithms by Cheung and Kramer [6, 8]. It detects

unreachable states and actions in a concurrent system that communicates through unbounded buffers.

3. Flow graph model

Following Cheung and Kramer [7, 8], we will use finite state machines (FSMs) as the flow graph model of

concurrent systems in our analysis. Each process in a concurrent system is modeled as a communicating finite

state machine. The nodes in the flow graph represent the execution states of the process while the arcs represent

the transitions labeled by actions that may need to be synchronized across different processes. Formally, the FSM of a

process P is a quadruple 〈State, Σ, →, P0〉 such that

(i) State is a set of states.

(ii) Σ is a set of actions, known collectively as the alphabet of P.

(iii) →⊆ State×Σ×State is a relation among an action and two states. For the sake of readability, we

will write (S1, a, S2) ∈→ as S1
a
−→ S2 for any a ∈ Σ and any S1, S2 ∈ State. Each S1

a
−→ S2 is known

as a transition.

(iv) P0 is the initial state.

Although the notation is slightly different from that of Cheung and Kramer [6], we adopt the same philosophy

for the synchronization of processes: A transmitting action in one process and a receiving action in another process

are labeled by the same alphabet. They can only be executed synchronously. We will refer to them as synchronous

actions. On the other hand, every internal action is labeled by a unique alphabet and does not need to be synchronized

with any other action.

3

process A

x, y, z, w: variables;

loop

read(x, y, z);

0: send x to channel a;

1: send y to channel b;

2: send z to channel c;

3: receive w

from channel d;

print(w);

end loop;

process B

p, q, r: variables;

loop

read(p);

0: receive q

from channel a;

if p < q then

1: receive r

from channel c;

else

1: send p to channel d;

2: receive r

from channel e;

end if;

print(r);

end loop;

process C

s, t: variables;

loop

read(s);

0: receive t

from channel b;

1: send s+ t

to channel e;

end loop;

Figure 1: A system S of 3 processes A, B, and C.

a

e0 1

b

C

a

c

A

bd

0

23

1 B

d

e

1

0

2

c

Figure 2: FSMs of processes A, B, and C.

We note also that no restriction is imposed on the relation “→” in (iii). In other words, nondeterminism is allowed

in FSMs at the same level of generality as Cheung and Kramer [6, 8].

Consider, for example, a system consisting of three processes A, B, and C as shown in Fig. 1, where a, b, c, d, and

e are synchronous actions. The FSMs that model their behavior are shown in Fig. 2.1 For process A, for instance,

State = {A0, A1, A2, A3}

Σ = {a, b, c, d}

→ = {A0
a
−→ A1, A1

b
−→ A2, A2

c
−→ A3, A3

d
−→ A0}

P0 = A0

Unreachability in concurrent systems is different from that in sequential programs. In sequential programs,

unreachable statements are mainly due to problematic logic in certain paths. In concurrent systems, however,

1In the FSMs, we will ignore all the internal actions and only consider the states involving synchronous actions. Please refer to Section 5.2 for

more details.

4

a

c

b

000 110

211301

Figure 3: Global FSM of system S .

unreachable states and actions may be due to synchronization anomalies. In our analysis, we only consider the

unreachability caused by synchronization anomalies, since we can use a conventional path analysis technique to

detect unreachable statements due to problematic logic.

We introduce the concept of a global FSM to explain the reachability and unreachability in concurrent systems.

The global FSM of a concurrent system is a finite state machine that represents the behavior of the whole system. It

can be constructed by applying the composition operator ||, which is similar to the interaction operator in CSP [29].

Given T1 = 〈State1, Σ1, →1, P1〉 and T2 = 〈State2, Σ2, →2, P2〉, the composition FSM of T1 || T2 is defined as the tuple

〈State, Σ, →, P0〉 such that

State = State1 ×State2

Σ = Σ1 ∪Σ2

P0 = (P1, P2)

and “→” is given by the following transition rules:

P
a
−→1 P ′

(P, Q)
a
−→ (P ′, Q)

if a < Σ2

Q
a
−→2 Q ′

(P, Q)
a
−→ (P, Q ′)

if a < Σ1

P
a
−→1 P and Q

a
−→2 Q ′

(P, Q)
a
−→ (P ′, Q ′)

if a ∈ Σ1 ∩Σ2

T1 || T2 is the composition FSM of T1 and T2. The || rule states that if an action a is common to both alphabets Σ1

and Σ2, it must be executed synchronously by both processes.

Fig. 3 is the global FSM of the system S that consists of processes A, B, and C.

The global FSM of a concurrent system may have many possible execution paths. We say that a global state S

or an action a is reachable if it is contained in some execution path leading from the initial state; otherwise, we say

that it is unreachable. A state Si in a process Ti is reachable if it is part of a reachable global state; otherwise, it is

unreachable. An action a in a process Ti is reachable if it is reachable in the global FSM; otherwise, it is unreachable.

For system S in Fig. 2, for instance, state B2 and actions d and e are unreachable.

In theory, by checking the reachability properties of the global FSM, we can obtain the reachability properties

of each process. Unfortunately, the number of states in a global FSM increases exponentially with the number of

processes in the integrated system, thus resulting in the state explosion problem [27].

We propose a flow analysis technique for detecting unreachability faults using the flow graph model of each

process without the need to construct a global FSM. It is an enhancement of the algorithms by Cheung and Kramer [6,

5

8]. In their algorithms, not all the necessary criteria for true reachability have been verified. Hence, an action or state

identified as “reachable” by these algorithms may not be truly reachable. Fortunately, all truly reachable states or

actions will not be wrongly identified as unreachable by their algorithms. Thus, all the actions or states that are not

identified as reachable are truly unreachable.

Compared with existing algorithms, the new algorithm uses more stringent criteria to obtain a more precise

reachable set. It can detect provably more unreachability faults in concurrent systems. The complexity of the algorithm

naturally increases, but is still polynomial in relation to the system size. Please refer to Section 6.2 for more details.

4. Algorithms by Cheung and Kramer

The work of Cheung and Kramer [8] is based on the original algorithm by Reif and Smolka [28], which we will

call Algorithm A. An outline of Algorithm A is as follows. All the states specified in the algorithm are local states

without the need to construct a global FSM.

(i) Set the initial states of all the processes to be RS-reachable.2 Set all the actions and non-initial states of all the

processes to be initially unreachable.

(ii) Set an action a to be RS-reachable if each process having a in its alphabet contains a transition S
a
−→ S ′ such that

S is RS-reachable.

(iii) For the transition S
a
−→ S ′ in (ii), set S ′ to be RS-reachable if a is RS-reachable. �

The algorithm by Reif and Smolka does not consider the execution sequences of the actions in paths, so that some

spurious paths that cannot be executed may be misinterpreted as reachable. As a result, some unreachable states or

actions may be identified as reachable. Hence, the fault detection capability of the algorithm is limited. Cheung and

Kramer [8] proposed the use of dependency sets and history sets to obtain better results.

An action b is dependent on another action a if and only if b cannot be executed unless a has been executed. A

dependency set △b is the set of actions on which b depends. A history set HS is the set of actions in the reachable paths

from the initial state to the current state S. The dependency sets and history sets can partially reflect the execution

sequences of the actions in paths. In their algorithm, an action a is identified as CK-reachable3 if, for any process T ,

there exists a transition S
a
−→ S ′ in T such that S is CK-reachable and ΣT ∩△a is a subset of HS. In other words, all

the actions in the dependency set of a in T should have taken place before a is executed. As a result, more faults

are detected by the constraint on action dependency. Any spurious path containing an action that does not satisfy the

constraint will be eliminated.

A general description of the first algorithm by Cheung and Kramer, which we will call Algorithm B, is as follows:

Initialization:

(i) Set the initial states of all the processes to be CK-reachable. Set all the actions and non-initial states

of all the processes to be initially unreachable. Set the history sets of all the states to be empty. For

every action a, compute the dependency set △a. This is worked out by checking whether a can still

be RS-reachable after removing another action b from all the processes. For example, after b has

been removed, if action a is unreachable by Reif and Smolka’s method, then b ∈△a.

Iteration:

(ii) Set an action a to be CK-reachable if each process T having a in its alphabet contains a transition

S
a
−→ S ′ such that S is CK-reachable and ΣT ∩△a ⊆ HS.

(iii) For the transition S
a
−→ S ′ in (ii), set S ′ to be CK-reachable if a is CK-reachable.

2Unless it is obvious from the context, we will use the expression RS-reachable to describe the actions and states identified to be “reachable”

by Reif and Smolka’s algorithm, as distinct from actions and states that are truly reachable according to the basic definition.
3Unless it is obvious from the context, we will use the expression CK-reachable to describe the actions and states identified to be “reachable”

by Cheung and Kramer’s algorithm, as distinct from actions and states that are truly reachable or RS-reachable.

6

History Set Propagation:

(iv) For any transition S
a
−→ S ′, if S and a are CK-reachable, then set HS ′ to be HS ′ ∪{a}∪HS.

Termination:

(v) The algorithm will terminate when all the history sets cease to grow. �

Algorithm B delivers a more accurate result than Algorithm A, but does not eliminate all spurious paths either.

Consider the example in Fig. 2. Action d in process A, and state B2 and actions d and e in process B, are unreachable

in the actual system. According to Algorithm B, however, action d is reachable. The following are the computations

according to Algorithm B:

The dependency sets of actions are first computed using the algorithm of Reif and Smolka.

△a = {}

△b = {a}

△c = {a, b}

△d = {a, b, c}

△e = {a, b, c, d}

Iteration 1: States A0, B0, and C0 are reachable. HA0
= {}, HB0

= {}, HC0
= {}.

Iteration 2: States A1 and B1 and action a are reachable. HA1
= {a}, HB1

= {a}.

Iteration 3: States A2 and C1 and action b are reachable. HA2
= {a, b}, HC1

= {b}.

Iteration 4: State A3 and action c are reachable. HA3
= {a, b, c}, HB0

= {a, c}, and HB1
= {a, c}.

Iteration 5: Action d is reachable.

Cheung and Kramer [6] further extended the algorithm using the concept of re-reachability. An action a is re-

reachable if and only if it is reachable via some execution sequence ε that contains a. A state S is re-reachable if

and only if it is reachable via some execution sequence ε more than once. Their improved algorithm, which we will

call Algorithm C, differentiates actions that can only be executed once from those that are re-reachable. They revised

step (iv) of Algorithm B as follows:

History Set Propagation

(iv′) For any transition S
a
−→ S ′, if S and a are CK-reachable, then

if a is re-reachable, set HS ′ to be HS ′ ∪ {a} ∪HS; otherwise, set HS ′ to be HS ′ ∪ {a} ∪
(HS \{b |a ∈△b}).

As a result of this revision, HB1
in iteration 4 above should be {a} instead of {a, c} because action a is not re-reachable.

In iteration 5, action d will not be identified as reachable since ΣB ∩△d = {a, c} * {a} = HB1
.

Despite the introduction of the re-reachability concept, Algorithm C still has its limitations. We present a simple

steam boiler system (Fig. 4) to illustrate this point. The system consists of four units: a steam boiler, a steam detector

used to monitor the steam pressure in the steam boiler, a boiler controller, and a power switch to turn the power on or

off. When the power is on and the steam pressure is low, the steam boiler will run. Otherwise, the steam boiler will

stop.

The FSM in Fig. 5(a) describes the behavior of the steam detector. When a low steam pressure is detected, it

notifies the boiler controller through an action safe. When a high pressure is detected, it notifies the controller through

an action danger. The FSM in Fig. 5(b) specifies the behavior of the power switch. The boiler controller, modeled

in Fig. 5(c), activates or de-activates the steam boiler depending on the pressure information it receives. If the steam

pressure is at a safe level, as indicated by the action safe, it sends a run action to the steam boiler. If it is at a dangerous

level, as indicated by the action danger, it sends a stop action to the boiler. The FSM in Fig. 6(a) shows the correct

behavior of the steam boiler. When the power is on and it receives a run action, the steam boiler begins to run. If it

7

Boiler

Controller

Power

Switch

Steam Detector

on/off

run/stop

safe/danger

Steam Boiler

Figure 4: A steam boiler system.

receives a stop signal, it stops until another run signal is received. When the boiler is stopped, the power can be turned

off, in which case the boiler returns to the initial state. On the other hand, Fig. 6(b) models the behavior of a faulty

steam boiler.

Thus, the correct system is Detector || Switch || Controller || Boiler, as summarized in Fig. 7(a), while

Detector || Switch || Controller || Boiler ′ is the faulty system, as summarized in Fig. 7(b). In the faulty system,

the action stop is unreachable. If we use Algorithm C to detect errors in the faulty system, however, we find

ΣController∩△stop = {safe, danger} ⊆ {safe, run, danger}= HController2
and ΣBoiler ′ ∩△stop = {on}= HBoiler ′1

. Hence,

Algorithm C misinterprets the action stop as reachable.

Algorithms A, B, and C exhibit an ascending order of capability in detecting unreachability faults in concurrent

systems. The complexities of the algorithms are naturally in ascending order also. For example, given s states and

n actions in a process flow graph, the complexity of Algorithm A is O(s + n) while that of Algorithm C with re-

reachability is O(s× (s + n)) [6]. Nevertheless, even for Algorithm C, the fault detection capability is limited. First,

the dependency set cannot reflect the actual dependency relationships among actions, since it is computed according

to Algorithm A and, hence, inherits the limitations of the latter. Second, the history set only records all the actions

in the path from the initial state to the current state. It does not record the execution sequences of all the actions in

reachable paths from the initial state to the current action. The condition that “the dependency set of a belongs to the

history set of S” is only necessary but not sufficient for the true reachability of a. As a result, an action satisfying the

condition may still be unreachable.

Following up on Cheung and Kramer’s algorithm, we propose a new algorithm that can alleviate the limitation.

We will prove in Section 6 that it can detect more unreachability faults than existing algorithms, even though it is still

polynomial in complexity.

5. Our algorithm

5.1. Terminology

The following is the terminology used in the proposed algorithm:

• In-Action: An action a is an in-action of state S ′ if and only if there exists a transition S
a
−→ S ′.

• Out-Action: An action a is an out-action of state S if and only if there exists a transition S
a
−→ S ′.

8

Detector
on

off
0 1Switch

(b) FSM for Power Switch

safe

danger

(a) FSM for Steam Detector

0 1

1

safe

run
Controller 0

2

danger stop

(c) FSM for Boiler Controller

Figure 5: FSMs of steam detector, power switch, and boiler controller.

(a) FSM for Correct Steam Boiler

on

stop

Boiler

runoff

0 1

23
run

(b) FSM for Faulty Steam Boiler

on

stop

Boiler
run

off

0 1

2

Figure 6: FSMs of correct and faulty steam boilers.

• Predecessor: The predecessors of an out-action of a state are the in-actions of that state. The default predecessor

of the out-action of the initial state is the null action #.

• Reachable Successor: The reachable successors of an in-action of a state are the reachable out-actions of that

state.

• Synchronous Action: An action a is a synchronous action of two processes if and only if a is in the alphabets of

both processes. Intuitively, action a must be executed synchronously by these two processes.

• Internal Action: An action a is an internal action of a process if and only if a is in the alphabet of only

that process. Intuitively, internal actions are executed locally without the need for synchronization. For any

transition S
a
−→ S ′, if state S is reachable and a is an internal action, then a must be reachable.

In the next section, we will show how to capture more precise information on the execution sequences of actions,

with a view to eliminating spurious paths.

9

run

on safe

safe on danger

0101 1010

0000

11001111

0120

(b) FSM for Faulty Steam Boiler System(a) FSM for Correct Steam Boiler System

run

on stop

0103

safe

safe on danger

off

0101 1010

0000

11021111

0122 1113

safe

run

Figure 7: Global FSMs of correct and faulty steam boiler systems.

5.2. Description of algorithm

For ease of description of the algorithm, we will ignore all internal actions of each process as follows: If a process

A contains a transition S
a
−→ S ′ involving an internal action a and two states S and S ′, we let S ′ = S and remove the

internal action a from process A. Continuing in this way for all internal actions, the process A can be turned into a

process A′ that does not contain internal actions. Then, we can concentrate on the detection of unreachability faults of

the simplified process A′. If state S of process A′ is identified as reachable by the algorithm, then internal action a and

state S ′ of the original process A are also identified as reachable. Otherwise, action a is treated as unreachable. Thus,

in the description of the algorithm, all actions are synchronous actions in the alphabets of two or more processes. This

simplification technique has been commonly used in existing algorithms.

We recall that an action a is reachable if and only if it is in some execution path of the global FSM leading from

the initial state. Suppose action a is a synchronous action of processes T1 and T2, and it is reachable via a path ε in

the global FSM. Suppose, further, that a is an out-action of a state S1 in T1 and an out-action of a state S2 in T2. Then,

there must be a reachable in-action m for state S1 in T1 and a reachable in-action n for state S2 in T2. In other words,

after executing m in process T1 and executing n in process T2, a can be executed synchronously by processes T1 and

T2.

Similar to the history set of a state, we use Ha to denote the history set of an action a. It is the set of actions in the

reachable paths from the initial state to action a in the global FSM. We define

△m,n = △m ∪△n ∪{m, n}

Since action a is reachable via the path ε, all the actions in △m,n must be executed before a. Hence,

ΣT1
∩△m,n ⊆ ΣT1

∩ (Hm ∪{m}) and

ΣT2
∩△m,n ⊆ ΣT2

∩ (Hn ∪{n})
(1)

In our algorithm, when we want to check whether an action a is reachable, we look for the existence of the

processes T1 and T2 having a as a synchronous action, and check whether there is a reachable predecessor m of a in

T1 and a reachable predecessor n of a in T2 such that statement (1) is satisfied. A state is set to be reachable if it has a

reachable in-action.

A summary of the algorithm is as follows:

10

Initialization:

(i) Set the initial states of all the processes to be CHLT-reachable.4 Set all the actions and non-initial

states of all the processes to be initially unreachable. Set the dependency set of the null action to be

empty and the history set of the null action to contain only itself.

Iterations:

(ii) For any action a that is common to any processes T1 and T2 and has not yet been identified as

CHLT-reachable, check whether there exist a transition S1
a
−→ S ′

1 in T1 and a transition S2
a
−→ S ′

2 in T2

satisfying the following condition:

S1 and S2 have been identified as CHLT-reachable and there exist a CHLT-reachable in-

action m for state S1 and a CHLT-reachable in-action n for state S2 such that ΣT1
∩△m,n ⊆

ΣT1
∩ (Hm ∪{m}) and ΣT2

∩△m,n ⊆ ΣT2
∩ (Hn ∪{n}).

If so,

• set the action a to be CHLT-reachable,

• set the dependency set △a to be △m,n,

• set the history set Ha to be Hm ∪Hn ∪{m, n}, and

• if the states S ′
1 and S ′

2 have been identified as CHLT-reachable, set them to be re-reachable;

otherwise, set them to be CHLT-reachable.

For any other pair of action (m′, n′) (, (m, n)) that also satisfies the above condition, update the

dependency set △a to △a ∩△m′,n′ and update the history set Ha to be Ha ∪Hm′ ∪Hn′ ∪{m′, n′}.

Iterative Set Propagation:

(iii) For each pair of CHLT-reachable predecessors m and n of action a in processes T1 and T2,

respectively, if Hm, Hn, △m, or △n changes, check whether a can be reached from m and n. If

it can be so reached, update the dependency set △a to △a ∩△m,n and update the history set Ha as

follows:

• If the state that has m as in-action is re-reachable, set Ha to be Ha ∪Hm; otherwise, set Ha to be

Ha ∪ (Hm \{b |m ∈△b}).

• If the state that has n as in-action is re-reachable, set Ha to be Ha ∪Hn; otherwise, set Ha to be

Ha ∪ (Hn \{b |n ∈△b}).

• Set Ha to Ha ∪{m, n}.

Termination:

(v) Terminate the algorithm when no new action is identified as CHLT-reachable. �

Compared with existing algorithms, the proposed algorithm captures information on execution sequences among

actions more accurately in two ways: First, the computation of dependency sets is more precise. In our algorithm,

the computation is based on the general concept that the dependency set of an action a is decided by the actions

prior to a in the reachable paths of a global FSM. To avoid the state explosion problem, however, we do not want to

process the entire global FSM. The trick is that we need only take into account the two actions immediately prior to

the (synchronous) action a in the reachable paths of the global FSM. Thus, the two actions and the dependency set of

these actions should be included in the dependent set of action a. When an action is identified as reachable via a path,

its dependency set is computed. When the action is also found to be reachable via another path, its dependency set is

updated. Second, when deciding whether an action a is reachable, the algorithm also checks how a is reached from

4Unless it is obvious from the context, we will use the expression CHLT-reachable to describe the actions and states identified to be “reachable”

by our algorithm, as distinct from actions and states that are truly reachable, RS-reachable, or CK-reachable.

11

other actions, whereas Algorithms B and C only check whether all the other actions on which a depends are executed

before a.

Let us illustrate the usefulness of the enhanced algorithm in detecting more faults through a couple of examples

below. We will give a rigorous theoretical analysis in Section 6. Further case studies on real-life communication

protocols will be given in Section 7.

Let us use the algorithm to check the reachability of system S in Fig. 2. The actions a, b, and c will be identified as

reachable. Consider action c, for instance. It has a reachable predecessor b in process A and a reachable predecessor

a in process B. We note that △b = {#, a} and △a = {#}, so that △b,a = {#, a, b}. We note also that Hb = {#, a}
and Ha = {#}. Hence, ΣA ∩△b,a = {#, a, b} = ΣA ∩ (Hb ∪{b}) and ΣB ∩△b,a = {#, a} = ΣB ∩ (Ha ∪{a}). On the

other hand, action d will not be identified as reachable because its reachable predecessors are actions a and c but

ΣB ∩△a,c = {#, a, c} * {#, a} = ΣB ∩ (Ha ∪{a}).
Using the algorithm to check the reachability of the faulty steam boiler system in Fig. 6(b), the actions on, safe,

run, and danger will be identified as reachable. Consider the action run, for example. It has a reachable predecessor

safe in Controller (see Fig. 5(c)) and a reachable predecessor on in Boiler ′ (see Fig. 6(b)). We note that △safe = {#}
and △on = {#}, so that △safe,on = {#, on, safe}. We note also that Hsafe = {#} and Hon = {#}. Hence, ΣController ∩
△safe,on = {#, safe} = ΣController ∩ (Hsafe ∪{safe}) and ΣBoiler ′ ∩△safe,on = {#, on} = ΣBoiler ′ ∩ (Hon ∪{on}). On the

other hand, the action stop will not be identified as reachable because its reachable predecessors are the actions danger

and on but ΣBoiler ′ ∩△danger,on = {#, on, run} * {#, on} = ΣBoiler ′ ∩ (Hon ∪{on}).

6. Algorithm analysis

6.1. Effectiveness analysis

We would like to compare the effectiveness of our algorithm, which we call Algorithm D, with those of

Algorithms A, B, and C. Let U be the set of truly unreachable actions of a real system and UA, UB, UC, and UD

be the sets of unreachable actions given by Algorithms A, B, C, and D, respectively. From Cheung and Kramer [7, 8],

we have

UA ⊆UB ⊆UC ⊆U.

First, we prove that UD ⊆U by proving that all the truly reachable actions in the global FSM will be identified as

reachable by Algorithm D. Thus, all the actions identified as unreachable by Algorithm D are truly unreachable in the

real system.

Lemma 1

Given any state G in a global FSM, if there exists a path from the initial state to G such that all the actions in the

path prior to G have been identified as reachable by Algorithm D, then any out-action of G will also be identified as

reachable by this algorithm.

Proof

Let G = T1 || T2 || . . . || Tn be the global FSM, where T1, T2, . . . , Tn are processes. Let G
a
−→ G ′ be a transition in G .

Suppose an out-action a is present in both Ti and Tj but absent in other processes. Suppose also that, when G is in

state G, Ti is in state Gi and Tj is in state G j.

Suppose G is the end state of a path ε in G that leads from the initial state. Let m be the in-action of state Gi in

process Ti via the path ε, and n be the in-action of state G j in process Tj via the path ε. Then, action m must be a

reachable predecessor of action a in process Ti, and action n must be a reachable predecessor of action a in process

Tj. Without loss of generality, suppose m is executed before n.

(i) Obviously, ΣTj
∩△m,n ⊆ ΣTj

∩(Hn∪{n}) because △m,n ⊆Hn∪{n} and Hn∪{n} contains at least all the actions

in the path ε.

(ii) Assume ΣTi
∩△m,n * ΣTi

∩ (Hm ∪{m}). In other words, there exists some (synchronous) action x ∈ ΣTi
∩△m,n

such that x < Hm ∪{m}. This is possible only if action x is executed between actions m and n. In other words,

m is not an in-action of state Gi in process Ti via the path ε, which contradicts the definition of m. Hence,

ΣTi
∩△m,n ⊆ ΣTi

∩ (Hm ∪{m}).

12

Thus, the reachability criteria in statement (1) for Algorithm D are satisfied. Action a will be identified as reachable.

�

Proposition 1

All the reachable actions of a global FSM can be identified as reachable by Algorithm D.

Proof

According to Algorithm D, all the out-actions of the initial state of a global FSM are identified as reachable. Using

induction and Lemma 1, we can conclude that all the reachable actions in a global FSM can be identified as reachable

by Algorithm D. �

Thus, we obtain UD ⊆U .

Let us now consider the relationship between UC and UD. We have already seen an example showing that there

exists some unreachable action x ∈UD such that x <UC. We would like to prove that, in general, UC ⊆UD.

Similarly, we can also conclude that all the states of a global FSM can be identified as reachable by Algorithm D,

since any state in the global FSM can be reached from a reachable action.

Lemma 2

Given any action a, if its dependency sets computed by Algorithms D and C are △a and △′
a, respectively, then

△′
a ⊆△a.

Proof

Assume the contrary. Then, there exists an action x ∈ △′
a such that x <△a. Since x ∈ △′

a, x must be present in all

the paths in the global FSM that lead from the initial state to action a. Otherwise, if x were absent from a path ε, then

a could be executed via ε without executing x. According to Algorithm D, therefore, x ∈ △a, which contradicts the

assumption above. Hence, we must have △′
a ⊆△a. �

Lemma 3

Suppose a is an in-action of state S in process T1 and a is identified as reachable by Algorithm D. Let Ha be the

history set of action a computed by Algorithm D and HS be the history set of state S computed by Algorithm C. Then,

ΣT1
∩ (Ha ∪{a}) ⊆ ΣT1

∩HS.

Proof

Assume that ΣT1
∩ (Ha ∪{a}) * ΣT1

∩HS. Then, there exists an action x ∈ ΣT1
∩ (Ha ∪{a}) such that x < HS. Since

x ∈ Ha∪{a}, x is in a path from the initial state to action a in the global FSM. Suppose a is the in-action of a state G in

the global FSM. When the global FSM is in state G, the process T1 should be in state S. Hence, x ∈ HS, contradicting

the assumption above. We must, therefore, have ΣT1
∩ (Ha ∪{a}) ⊆ ΣT1

∩HS. �

Proposition 2

All actions that are identified as unreachable by Algorithm C will also be identified as unreachable by Algorithm D.

Proof

Let △x and △′
x be the dependency sets of action x computed by Algorithms D and C, respectively. Let Hx be the

history set of an action x computed by Algorithm D, and HS be the history set of a state S computed by Algorithm C.

Suppose action a is the out-action of a state S1 in process T1 and the out-action of a state S2 in process T2. If action

a is identified as reachable by Algorithm D, there exist a reachable in-action m of state S1 and a reachable in-action n

of state S2 such that ΣT1
∩△m,n ⊆ ΣT1

∩ (Hm ∪{m}) and ΣT2
∩△m,n ⊆ ΣT2

∩ (Hn ∪{n}). Since △a will be iteratively

updated to either △m,n or △a∩△m,n, we have △a ⊆△m,n, By Lemma 2, △′
a ⊆△a, so that △′

a ⊆△m,n. By Lemma 3,

ΣT1
∩(Hm∪{m})⊆ ΣT1

∩HS1
and ΣT2

∩(Hn∪{n})⊆ ΣT2
∩HS2

. Hence, ΣT1
∩△′

a ⊆ ΣT1
∩△m,n ⊆ ΣT1

∩(Hm∪{m})⊆
ΣT1

∩HS1
and ΣT2

∩△′
a ⊆ ΣT2

∩△m,n ⊆ ΣT2
∩ (Hn ∪{n}) ⊆ ΣT2

∩HS2
. As a result, action a will also be identified

as reachable by Algorithm C. Thus, all the actions identified as reachable by algorithm D will also be identified

as reachable by Algorithm C. In other words, all the actions identified as unreachable by Algorithm C will also be

identified as unreachable by Algorithm D. �

In this way, we can conclude that UA ⊆UB ⊆UC ⊆UD ⊆U .

13

ack0

0

1 2

3

10

23

ack0

data1

ack1

data0

data1

ack1

(a) FSM for Sender (b) FSM for Receiver

ack1

timeout

error

ack0

error

timeout
data0

error

data1

error
data0

S

R

Figure 8: Original FSMs of alternating bit protocol.

6.2. Complexity analysis

In Algorithm D, we only store the dependency sets and the history sets. Let n be the number of actions in the

system. The space complexity of the algorithm is O(n2 +n2) = O(n2). Hence, the algorithm will not result in a state

explosion problem.

Now, we discuss the time complexity of our algorithm by calculating the time complexity of each step. In step (ii),

the time complexity to find a CHLT-reachable action is O(n× n2), where O(n2) is the time complexity to decide

whether an action is CHLT-reachable. We may need to check at most n actions in order to find a CHLT-reachable

action. In step (iii), the time complexity of iterative set propagation is O(n3). Therefore, the total time complexity of

the algorithm is O(n× (n3 +n3)) = O(n4).

6.3. Limitation analysis

Our algorithm cannot detect all unreachability faults because, for efficiency reasons, it only checks how actions

are reached from their predecessors rather than checking the execution sequences of all the actions in reachable paths,

similar to other data flow methods. The criteria in the algorithm are only necessary but not sufficient conditions for

true reachability. Consider, for example, Fig. 5 again. Suppose we add a transition Detector0
jumpstart
−−−−−→ Detector1 to

the FSM for steam detector in Fig. 5(a) and another transition Boiler ′1
jumpstart
−−−−−→ Boiler ′0 to the FSM for the faulty steam

boiler in Fig. 6(b). According to the algorithm, the action stop has a reachable predecessor danger in Detector and a

reachable predecessor on in Boiler ′. We note that △danger = {#} and △on = {#}, so that △danger,on = {#, on, danger}.

We note also that Hdanger = {#, on, safe, run} and Hon = {#}. Hence, ΣDetector ∩△danger,on = {#, danger} ⊆
{#, safe, danger} = ΣDetector ∩ (Hdanger ∪{danger}) and ΣBoiler ′ ∩△danger,on = {#, on} = ΣBoiler ′ ∩ (Hon ∪{on}). As

a result, the action stop in the modified example will be interpreted by the new algorithm as reachable. On the other

hand, we realize from the global FSM of the faulty system in Fig. 7(b) that the action stop is, in fact, unreachable.5

There is no way to efficiently enumerate all execution paths because the enumeration problem is exponential in

complexity. In the proposed technique, we only aim at a balance between practicality and completeness.

5Assume that we can add the action stop into the global FSM in Fig. 7(b). Since the action danger is a reachable predecessor, stop can only

be added after it. Hence, there will be 3 execution paths from the initial state to the action stop: (i) safe—on—run—danger—stop, (ii) on—safe—

run—danger—stop, and (iii) on—jumpstart—danger—stop. Since the actions on, run, jumpstart, and stop are in the modified Boiler ′, these 3 paths

contradict the fact that on is a predecessor of stop. Thus, the action stop cannot be added to the global FSM. In other words, stop is unreachable.

14

0

1 2

3

10

23

ack0

data1

ack1

data0

data1

ack1

(a) FSM for Sender (b) FSM for Receiver

ack1

ack0

data0

data1

data1

data0
data0

ack0

ack1
ack0

S

R

Figure 9: Nondeterministic FSMs of alternating bit protocol.

7. Further case studies

In this section, we further investigate whether our algorithm can detect real-life unreachability faults through

two case studies on communicating finite state machines in common communication protocols: the alternating bit

protocol [3, 11, 32] and the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) protocol [16, 32].

Fig. 8 portrays the alternating bit protocol, which is a data-link-level communication protocol that supports the

retransmission of erroneous or lost messages. The actions data0 and data1 in the sender FSM mean sending data;

data0 and data1 in the receiver FSM mean receiving data; and ack0 and ack1 mean acknowledgements. Furthermore,

error can occur in both the sender and receiver FSMs. As a result, synchronization may occur between data0 and

error. Similar synchronizations may occur between data1 and error, between error and ack0, and between error and

ack1. Similarly, timeout can occur in the sender FSM. Thus, synchronization may also occur between timeout and

ack0 and between timeout and ack1. Consider a revised version of the protocol such that, for the sender FSM, error

and timeout are changed to ack0 and ack1, respectively. Suppose also that, for the receiver FSM, error associated with

the transition from state R0 to state R3 is changed to data0; error associated with the transition from state R2 to state

R1 is changed to data1. In this revised version (as shown in Fig. 9), the state machine is nondeterministic. It is well

known that, for any nondeterministic FSM, there exists an equivalent deterministic FSM. The equivalent deterministic

FSMs for Fig. 9 are given in Fig. 10. Let us then consider a faulty version as shown in Fig. 11. In the sender FSM of

this faulty version, the transition ack1 from state S1 to state S0 is missing, the original transition ack0 from state S1 to

state S2 is changed to ack1, the original transition ack0 from state S3 to state S2 is changed to data0, and the original

transition data1 from state S2 to state S3 is changed to ack0. In the receiver FSM, the transition data1 from state R0 to

R3 is missing.

Suppose we use Algorithm C to check the reachability of the faulty protocol in Fig. 11. We note that △data0 = {},

△ack1 = {data0}, △ack0 = {data0, ack1}, and △data1 = {data0, ack1, ack0}. The action data0 will be identified as

reachable, with HS1
= {data0} and HR1

= {data0}. Since ΣSender ∩△ack1 = {data0} ⊆ {data0} = HS1
and ΣReceiver ∩

△ack1 = {data0} ⊆ {data0} = HR1
, the action ack1 will be identified as reachable. Because data0 is re-reachable,

we have HS2
= {data0, ack1}, HS1

= {data0, ack1}, HR0
= {data0, ack1}, and HR1

= {data0, ack1}. Since ΣSender ∩
△ack0 = {data0, ack1} ⊆ {data0, ack1} = HS2

and ΣReceiver ∩△ack0 = {data0, ack1} ⊆ {data0, ack1} = HR1
, the

action ack0 will also be identified as reachable. However, it is actually unreachable. Thus, Algorithm C fails to

identify reachability faults in a faulty version of the classical alternating bit protocol, even though some researchers

consider this protocol to be “too simple” [30].

On the other hand, we can reveal ack0 as unreachable using our Algorithm D. Since △data0 = {#} and

Hdata0 = {#}, the states S1 and R1 are reachable. Since △ack1 = {#, data0} and Hack1 = {#, data0}, the action

15

0

1 2

3

10

23

ack0

data1

ack1

data0

data0

data1

data1ack1

(a) FSM for Sender (b) FSM for Receiver

ack1data0 ack0 ack0

data1

data0 ack1

ack0
S

R

Figure 10: Deterministic FSMs of alternating bit protocol.

ack1 is identified as reachable. As for ack0, we have ΣReceiver ∩△data0,ack1 = {data0, #, ack1} * {data0} =
ΣReceiver ∩ (Hdata0 ∪{data0}). Hence, ack0 will be correctly identified as unreachable by the new algorithm.

Next, let us consider the CSMA/CD protocol, which has been made popular by its application to the Ethernet.

Fig. 12, adapted from Gouda and Chang [16], describes the protocol. A and B are two communicating machines and

C is the controller. Fig. 13 shows a faulty version of the protocol, where the original transitions RqstA from state C0

to state C9 and NoRqstB from state C9 to state C12 in the controller have been swapped.

According to Algorithm C, △NoRqstA = {}, △NoRqstB = {}, and △RqstB = {NoRqstB}. NoRqstA and

NoRqstB will be identified as reachable, with HA1
= {NoRqstA}, HB1

= {NoRqstB}, HC1
= {NoRqstA}, HC2

=
{NoRqstB, NoRqstA}, and HC9

= {NoRqstB}. Then, the action offA will be identified as reachable, with HA0
=

{NoRqstA, offA}. Similarly, offB will be identified as reachable, with HB0
= {NoRqstB, offB}. Next, RqstB will also be

identified as reachable because ΣB∩△RqstB = {NoRqstB} ⊆ {NoRqstB, offB}= HB0
and ΣC ∩△RqstB = {NoRqstB} ⊆

{NoRqstB} = HC9
. However, RqstB is in fact unreachable.

Applying the new algorithm, the actions NoRqstA and NoRqstB will be identified as reachable first, with

△NoRqstA = {#}, △NoRqstB = {#}, HNoRqstA = {#}, and HNoRqstB = {#}. Next, offA will be identified as reachable, with

△offA = {#, NoRqstA, NoRqstB} and HoffA = {#, NoRqstA, NoRqstB}. Similarly, offB will be identified as reachable,

with △offB = {#, NoRqstA, NoRqstB, offA} and HoffB = {#, NoRqstA, NoRqstB, offA}. Let us then consider RqstB.

Its in-actions are {#, offB, NoRqstB}. When we take the in-actions # and NoRqstB, we have ΣB ∩△#,NoRqstB =
{NoRqstB} * {#} = ΣB ∩ (H# ∪{#}). When we take the in-actions offB and NoRqstB, we have ΣC ∩△offB,NoRqstB =
{offA, NoRqstB, offB} * {NoRqstB} = ΣC ∩ (HNoRqstB ∪ {NoRqstB}). Hence, RqstB will be correctly identified as

unreachable by our algorithm.

8. Conclusion

In this paper, we have presented a flow analysis approach to detecting unreachability faults in communicating

processes. The proposed algorithm is an enhancement of the technique by Cheung and Kramer. We construct

dependency sets incrementally and obtain more accurate dependency relationships by checking the execution

sequences of actions. We check how an action is reached from other actions in a more precise manner. Our

algorithm can detect provably more unreachability faults than the Reif/Smolka and Cheung/Kramer algorithms. It

is still polynomial in complexity to number of actions. We have conducted case studies on two commonly used

communication protocols. The analyses show that a more effective algorithm is indeed required for solving the

16

0

1 2

3

10

23

ack1

ack0

ack1

data0

data0

data1

ack1

(a) FSM for Faulty Sender (b) FSM for Faulty Receiver

data0 data0 ack0

data1

data0 ack1

ack0
S

R

Figure 11: FSMs of faulty alternating bit protocol.

problems in the applicability of the Cheung/Kramer algorithms to real-world protocols. The enhanced algorithm

bridges this important gap.

Concurrent systems are becoming extremely common. Such systems are very difficult to analyze, test, and debug

because of the state explosion problem. Our approach is a good compromise between efficiency and effectiveness. It

can be used for preliminary analysis, to be supplemented by other techniques in the behavioral analyses of concurrent

systems, if necessary. It will be interesting future work to study how the approach may be applied in conjunction with

some of the compositional or model-checking techniques for the detection of concurrency faults in Section 2.

Acknowledgments

We are grateful to Shing-Chi Cheung of the Hong Kong University of Science and Technology, Robert G. Merkel

of Monash University and Dave Towey of United International College for their encouraging comments and invaluable

suggestions to the paper.

References

[1] W. Ahrendt, M. Dylla, A system for compositional verification of asynchronous objects, Science of Computer Programming (2010). doi:

10.1016/j.scico.2010.08.003.

[2] B.B. Anderson, J.V. Hansen, P.B. Lowry, S.L. Summers, Standards and verification for fair-exchange and atomicity in e-commerce

transactions, Information Sciences 176 (8) (2006) 1045–1066.

[3] B. Bollig, J.-P. Katoen, C. Kern, M. Leucker, Learning communicating automata from MSCs, IEEE Transactions on Software Engineering

36 (3) (2010) 390–408.

[4] J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan, D.L. Dill, Symbolic model checking for sequential circuit verification, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 13 (4) (1994) 401–424.

[5] Y.-P. Cheng, M. Young, C.-L. Huang, C.-Y. Pan, Towards scalable compositional analysis by refactoring design models, in: Proceedings of

the Joint 9th European Software Engineering Conference and 11th ACM SIGSOFT International Symposium on Foundations of Software

Engineering (ESEC 2003/FSE-11), ACM, New York, NY, 2003, pp. 247–256.

[6] S.C. Cheung, J. Kramer, Tractable flow analysis for anomaly detection in distributed programs, in: Proceedings of the 4th European Software

Engineering Conference (ESEC 1993), Lecture Notes in Computer Science, vol. 717, Springer, Berlin, Germany, 1993, pp. 283–300.

[7] S.C. Cheung, J. Kramer, An integrated method for effective behaviour analysis of distributed systems, in: Proceedings of the 16th International

Conference on Software Engineering (ICSE 1994), IEEE Computer Society, Los Alamitos, CA, 1994, pp. 309–320.

17

[8] S.C. Cheung, J. Kramer, Tractable dataflow analysis for distributed systems, IEEE Transactions on Software Engineering 20 (8) (1994)

579–593.

[9] S.C. Cheung, J. Kramer, Context constraints for compositional reachability analysis, ACM Transactions on Software Engineering and

Methodology 5 (4) (1996) 334–377.

[10] J.M. Cobleigh, L.A. Clarke, L.J. Osterweil, FLAVERS: a finite state verification technique for software systems, IBM Systems Journal 41 (1)

(2002) 140–165.

[11] M. Diaz, Petri Nets: Fundamental Models, Verification and Applications, Wiley, Hoboken, NJ, 2009.

[12] E. Duesterwald, R. Gupta, M.L. Soffa, A practical framework for demand-driven interprocedural data flow analysis, ACM Transactions on

Programming Languages and Systems 19 (6) (1997) 992–1030.

[13] M.B. Dwyer, L.A. Clarke, J.M. Cobleigh, G. Naumovich, Flow analysis for verifying properties of concurrent software systems, ACM

Transactions on Software Engineering and Methodology 13 (4) (2004) 359–430.

[14] R. Enders, T. Filkorn, D. Taubner, Generating BDDs for symbolic model checking in CCS, Distributed Computing 6 (3) (1993) 155–164.

[15] N. De Francesco, A. Santone, G. Vaglini, A user-friendly interface to specify temporal properties of concurrent systems, Information Sciences

177 (1) (2007) 299–311.

[16] M.G. Gouda, C.-K. Chang, Proving liveness for networks of communicating finite state machines, ACM Transactions on Programming

Languages and Systems 8 (1) (1986) 154–180.

[17] G.J. Holzmann, The SPIN Model Checker: Primer and Reference Manual, Addison-Wesley, Reading, MA, 2003.

[18] IEEE Standard Glossary of Software Engineering Terminology, IEEE Std 610.12-1990, IEEE Computer Society, Los Alamitos, CA, 1990.

[19] S. Iyer, S. Ramesh, Apportioning: a technique for efficient reachability analysis of concurrent object-oriented programs, IEEE Transactions

on Software Engineering 27 (11) (2001) 1037–1056.

[20] E.B. Johnsen, O. Owea, I.C. Yua, Creol: a type-safe object-oriented model for distributed concurrent systems, Theoretical Computer Science

365 (1–2) (2006) 23–66.

[21] P.V. Koppol, R.H. Carver, K.-C. Tai, Incremental integration testing of concurrent programs, IEEE Transactions on Software Engineering 28

(6) (2002) 607–623.

[22] S. Lu, S. Park, E. Seo, Y. Zhou, Learning from mistakes: a comprehensive study on real world concurrency bug characteristics, in: Proceedings

of the 13th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS XIII), ACM,

New York, NY, 2008, pp. 329–339.

[23] K.L. McMillan, Symbolic Model Checking, Kluwer Academic Publishers, Norwell, MA, 1993.

[24] R. Meolic, T. Kapus, Z. Brezočnik, ACTLW: an action-based computation tree logic with unless operator, Information Sciences 178 (6)

(2008) 1542–1557.

[25] G. Naumovich, L.A. Clarke, Classifying properties: an alternative to the safety-liveness classification, in: Proceedings of the 8th ACM

SIGSOFT International Symposium on Foundations of Software Engineering (SIGSOFT 2000/FSE-8), ACM, New York, NY, 2000, pp. 159–

168.

[26] W. Peng, S. Puroshothaman, Data flow analysis of communicating finite state machines, ACM Transactions on Programming Languages and

Systems 13 (3) (1991) 399–442.

[27] J.H. Reif, S.A. Smolka, The complexity of reachability in distributed communicating processes, Acta Informatica (3) (1988) 333–354.

[28] J.H. Reif, S.A. Smolka, Data flow analysis of distributed communicating processes, International Journal of Parallel Programming 19 (1)

(1990) 1–30.

[29] A.W. Roscoe, The Theory and Practice of Concurrency, Prentice Hall, Hemel Hempstead, Hertfordshire, UK, 1998.

[30] A.W. Roscoe, Understanding Concurrent Systems, Springer, London, UK, 2010.

[31] A. Sampaio, S. Nogueira, A. Mota, Compositional verification of input-output conformance via CSP refinement checking, in: Formal Methods

and Software Engineering, Lecture Notes in Computer Science, vol. 5885, Springer, Berlin, Germany, 2009, pp. 20–48.

[32] R. Sharp, Principles of Protocol Design, Springer, Berlin, Germany, 2008.

[33] M.M. Strout, B. Kreaseck, P.D. Hovland, Data-flow analysis for MPI programs, in: Proceedings of International Conference on Parallel

Processing (ICPP 2006), IEEE Computer Society, Los Alamitos, CA, 2006, pp. 175–184.

[34] R.N. Taylor, A general-purpose algorithm for analyzing concurrent programs, Communications of the ACM 26 (5) (1983) 361–376.

[35] J.J.P. Tsai, E.Y.T. Juan, Model and heuristic technique for efficient verification of component-based software systems, in: Proceedings of the

1st IEEE International Conference on Cognitive Informatics (ICCI 2002), IEEE Computer Society, Los Alamitos, CA, 2002, pp. 59–68.

[36] Y. Yamauchi, D. Bein, T. Masuzawa, L. Morales, I.H. Sudborough, Calibrating embedded protocols on asynchronous systems, Information

Sciences 180 (10) (2010) 1793–1801.

18

0

1

2

3

4
OffAOffA

OnA
OffA

NoRqstA
OffA

CollisionA

RqstA

FrameAFrameA

(a) FSM for Machine A

A

0

1

2

3

4
OffB

OnB
OffB

NoRqstB
OffB

CollisionB

RqstB

FrameBFrameB

(b) FSM for Machine B

B

OffB

14

4

6

9

5

7

13

12

10

11

15

8

03

12

OffA

NoRqstB

NoRqstA

RqstB

OnA

OffB

FrameB
FrameA

OffB

OffA

RqstA

RqstB

CollisionA

NoRqstB

OffA

OnB

FrameA

(c) FSM for Controller

16

OffB CollisionB

C

OffB

OffA

FrameB

Figure 12: FSMs of CSMA/CD protocol.

9

4

5

6

7

8

12

13

14

10

11

16

15

(c) FSM for Faulty Controller

03

12

OffA

NoRqstB

NoRqstA

RqstA

OnA

OffB

FrameB
FrameA

OffB

OffA

NoRqstB

RqstB

CollisionA

OffB

OffA

RqstA

OffA

OnB

FrameB
FrameA

OffB CollisionB

C

Figure 13: FSM of faulty controller in CSMA/CD protocol.

20

