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Abstract

Peer Data Management Systems (PDMS) are an attractive solution for managing distributed heteroge-
neous information. When a peer (client) requests data from another peer (server) with a different schema,
translations of the query and its answer are done by a sequence of intermediate peers (translators). There
are two privacy issues in this P2P data integration process: (i) answer privacy: no unauthorized parties
(including the translators) should learn the query result; (ii) mapping privacy: the schema and the value
mappings used by the translators to perform the translation should not be revealed to other peers. PPP
[7], is the first protocol proposed to support privacy-preserving querying in PDMS. However, PPP suf-
fers from several shortcomings. First, PPP does not satisfy the requirement of answer privacy, because
it is based on commutative encryption; we show that this issue can be fixed by adopting another cryp-
tographic technique called oblivious transfer. Second, PPP adopts a weaker notion for mapping privacy,
which allows the client peer to observe certain mappings done by translators. In this paper, we develop a
lightweight protocol, which satisfies mapping privacy and extend it to a more complex one that facilitates
parallel translation by peers. Furthermore, we consider a stronger adversary model where there may be
collusions among peers and propose an efficient protocol that guards against collusions. We conduct an
experimental study on the performance of the proposed protocols using both real and synthetic data. The
results show that the proposed protocols not only achieve a better privacy guarantee than PPP, but they
are also more efficient.

1 Introduction

Peer Data Management Systems (PDMS) have become popular in the recent years [19, 23, 27], because
they enable the management of heterogeneous data in a decentralized fashion. Real-life systems include
Hyperion [23], PeerDB [19] and BestPeer'. In a PDMS, each peer owns or hosts a heterogeneous database.
Due to the dynamic nature of the system, it is infeasible for the peers to agree on a global schema. Trans-
lations, in the form of mappings, are required for the communication between two peers. An example is
shown in Figure 1; two peers hold two medical databases that have different schemas. Differences may
exist in attribute names (e.g., ‘Name’ in Peer 1, ‘Patient’ in Peer 2) or in object values (e.g., ‘LC’ in Peer
1, ‘Lung Cancer’ in Peer 2). If Peer 1 knows the mappings of attributes and values of its database to the
database of Peer 2, then Peer 1 can send queries to Peer 2 and translate the answers.

Two peers are said to be acquainted if there are direct mappings between them, i.e., one peer can
translate the schema of the other.” By adding an edge between two acquainted peers (nodes), we can form
an acquaintance graph [26, 4], which captures the feasible data flow in a P2P network. If a peer (client)
wants to issue a query to another peer (server), it first finds a path to the server in the acquaintance graph.
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Schema: T1 Schema: T2
Attribute | Domain Attribute | Domain
Name String Patient | String
Disease |{LC, HD} Disease |{Lung Cancer, Heart Disease}
Mappings (from Peer 1 to Peer 2) Mappings (from Peer 2 to Peer 1)
T1.Name — T2.Patient T2.Name — T1.Patient
T1.Disease — T2.Disease T2.Disease — T1.Disease
LC — Lung cancer Lung cancer — LC
HD — Heart Disease Heart Disease — HD
Query: Query:
SELECT Disease SELECT Disease
FROM T1 Tfﬁns'ate> FROM T2
WHERE Name = "Alice’ WHERE Patient = "Alice’

Answer
Answer Translate | ——————
LC Lung Cancer

Figure 1: An example of query and answer translation between two peers with different schemas.

The intermediate peers on this path (translators) provide the translation service for the query and its answer.
Thus, the query processing framework in a PDMS allows communication between peers even if they do
not have direct mappings.

In this paper, we consider applications, where the privacy of the peers during this process must be
protected. Consider the case where some peers are hospitals, which share information about their patients
in the PDMS so that an authorized party (e.g., a registered doctor) can issue queries on the shared data.
For example, the doctor asks from the client peer for the medications received by a patient at a server
peer. During the process, a translator can observe the query answers; thus, the privacy of the patient is
breached. The need for privacy in PDMS when used by healthcare applications is highlighted by a recent
NIH report [18]. Besides query answers, which must be protected from the translators, the schema and
value mappings owned by the translators should also be protected from other peers. Generating mappings
between two peers requires specialized knowledge on the schemas of the two peers; this is an expensive
process that involves significant human effort. Thus, it is fair to allow translators to charge clients for
the translation service. This encourages more pairs of peers to establish accurate mappings between them
and eventually improves the connectivity of the P2P network. At the same time, we need to protect the
mappings of peers so that they are hidden from others while the translations of queries and answers can still
be performed>. In other words, the query issuer and the server should only observe the query and answer
in their own context and not obtain any mappings between peers.

These privacy issues in a PDMS have been recently considered in the pioneering work of [7]. A new
privacy notion called k-protection is proposed.* The idea is similar to k-anonymity [25]: a translator
should not determine whether a value belongs to the query result with certainty greater than % Besides,
the client is allowed to view only the mappings related to the query answer to protect mapping privacy.
This requirement is referred to as fairness. A novel query processing protocol, called PPP, is proposed in
[7] to address k-protection.

PPP makes use of two techniques, fake answer injection and commutative encryption, to solve the
problem. The server injects noise to the query answer to confuse the translators while the client uses
commutative encryption to retrieve the necessary mappings for the query answer from the translator. Figure
2 shows an example of PPP. For the ease of discussion, we assume there is only one translator between the
client and the server. The server first sends the answer (in the server’s schema) to the client (Step 1 of Figure
2) and then issues a mapping request that contains the answer (assume there is one value only in answer)
and k — 1 additional fake values to the translator (Step 2). Based on this mapping request, the translator

3Note that composition of mappings should also be protected, otherwise a client can avoid the charges of some intermediate
translators.

4k-protection is not the strongest possible privacy requirement [12] but it offers a reasonable privacy protection while allowing
efficient computation of queries;it is used in many applications like location-based services [31]. To strike a balance between privacy
and efficiency, we adopt k-protection in our study.



retrieves the mappings, encrypts them, then sends the list to the client (Step 3). Note that the client cannot
see the mapped values, but he is able to pick the corresponding encrypted value from the list. In order to
securely decrypt the value with the help of the translator, commutative encryption is used. The client selects
only the encrypted answer of the query and encrypts it using his own key and sends this double encrypted
value to the translator (Step 4). The translator has no way to find out what value the client has selected.
Commutative encryption enables the client to obtain the original value by applying decryption in any order
independent to the encryption order. Thus, the translator can still apply the decryption procedure on the
double encrypted value although he cannot understand the decrypted value. Finally, the client applies his
own decryption again to obtain the original value (Step 5).

/®\

/ Mappings (Disease)
Answer LC — Lung cancer Answer Noise
AD HD — Heart Disease AD LC
AD — AIDS \ /
l Mapping request
EL(E,(‘AIDS") LC, E4(“Lung cancer”) ( 2)_ LC
AD, E{("AIDS”) AD

Answer
AIDS

Figure 2: Execution of PPP with k£ = 2. The messages between peers are: (1) S — C: query result in the
context of S. (2) S — T: mapping request. (3) T — C: encrypted mappings. (4) C — T: double-encrypted
mapping. (5) encrypted mapping that can be decrypted by C.

1.1 Contributions and Qutline

The security of PPP relies on the security of the commutative encryption. The most popular commutative
encryption scheme (also used in the implementation of [7]) is Pohlig-Hellman [21]. As shown in [15]
and independently in Section 3 and our technical report [32], Pohlig-Hellman can easily be attacked, thus
PPP is not secure in practice. To our knowledge, there is no secure commutative encryption scheme in
practice. Our first contribution (POT and POT-opt protocols, Section 3) is to fix this security issue of PPP
by replacing commutative encryption by oblivious transfer (OT), a well-developed construct with strong
security guarantee, that allows the client to obtain the necessary mappings without letting the translators
know the selected items by the client. We remark that the OT protocol that we describe in this paper is
customized to PDMS and is more efficient than the OT protocol in general case. However, even with this
fix, we note that the PPP framework itself has several drawbacks:

1. Poor protection of mapping privacy. PPP does not completely protect mapping privacy: during query
evaluation, several mappings of the translators are revealed to the client. A protection scheme that
does not reveal any mappings is desired.

2. Low efficiency. PPP requires a large number of heavy cryptographic operations and thus the entire
protocol has a high execution cost. For example, translating a query result with 20 values requires
almost 20 seconds, as reported in [7], when the client and server are located 9 peers apart and k£ = 5.

3. High communication cost. The client communicates with each translator to obtain the required
mappings using 3 rounds of communication. In addition, the use of encryption typically increases
the message sizes. For example, Pohlig-Hellman with n-bit key generates ciphertexts of size O(n)
regardless of the original message size.’

SThe original message, however, should be less than 1024 bits; otherwise, we have to break the message into two or more blocks.



Our second contribution is to address the above issues, by developing a simpler and more secure pro-
tocol PD, which does not rely on cryptographic operations, making it significantly more efficient than PPP
(Section 4). We also develop a parallel version of our protocol (IMP protocol, Section 5), which is suit-
able for the case where large amounts of data need to be translated. Our third contribution is to extend
the study to consider collusion, a stronger adversary assumption, and develop a novel lightweight protocol
PC that achieves privacy under this assumption (Section 6). Finally, we conduct extensive experiments on
both synthetic and real data to evaluate our solution (Section 7). The results show that our methods are
more efficient than the state-of-the-art protocol [7] and at the same time they provide a stronger privacy
guarantee.

2 Background and problem definition

In this section, we provide a formal definition for the problem of preserving privacy in a PDMS, give some
background on security techniques, and describe the PPP [7] protocol.

2.1 Querying in PDMS

When a query is issued in a PDMS, peers may take one of following three roles: ‘client’ (C'), ‘server’
(S) and ‘translator’ (7; where i is a positive integer). C' issues a query to be answered by S and T is an
intermediate peer who performs translations. Without loss of generality, we assume that there are ¢ > 0
translators and the path from C to S is {C, Ty, Tz, ..., Tt, S}. Each two consecutive peers T; and ;11 on
the path from C' to S own the mappings for translating to each other’s schema; i.e., 7; can translate the
query/answer from his own schema to 75, ;’s schema and vice versa. There are two different types of map-
pings: (i) attribute-to-attribute mappings (e.g., fname and firstname are attribute names used by two
different peers to store first names of patients); (ii) value-to-value mappings (e.g., ‘heart disease’ is encoded
as dO1 at peer A and as dO5 at peer B). Note that attribute-to-attribute mappings do not involve translation
of sensitive data in the query result; therefore, in this paper, we consider value-to-value mappings only.

2.2 Privacy-preserving querying in PDMS

We assume that the query answer contains sensitive information about individuals; therefore it should only
be accessed by authorized parties (in our case, the client C). All translators 7; are assumed to be semi-
honest, i.e., they provide the correct messages for the protocol and follow the protocol properly but they
are curious to obtain more information based on the messages they obtained in the protocol. Let Q¥ be the
query and RX be the query answer in the context of the peer X. The goals of the translations are (i) the
query Q¢ issued by C is translated to Q°; (ii) the query answer R® of the query Q° is translated to RC.
Like [7], we assume that a query does not contain sensitive information; thus, query translation (the first
goal) can be achieved as in a non-privacy preserving protocol (i.e., the query trivially travels in the path
from C to S and gets translated on the way)®. On the other hand, we require that the privacy of the answer
is protected (answer privacy); i.e., no translator can learn the query result. A formal privacy requirement
for this purpose, called k-protection, was proposed in [7]:

Definition 1 (k-protection [7]) Let RX, DX, URYX be the query answer, domain of the query answer,
and the set of unique values in the query answer respectively in the context of X. Let R(m, X) be the
information observed by the peer X during the execution of the protocol w. A protocol 7 is said to provide
k-protection if for each Ty, i € [1,t], Prlv € RT | R(w, T;)] < 1 forallv € DT

Apart from the client’s privacy concerns on the query answer, for fairness, the mappings of translators
should also be protected from the client (mapping privacy) [7]. The mappings are important assets of
translators: they allow them to charge clients for translation and they should not be revealed to clients.

STf the query needs to be protected, it can be translated in a similar fashion as the query answer.

7 ; |DS|
In [7], k is at most RS
|UR®|
[DS]

as it is assumed that |U RS | and | D | are not sensitive and can be leaked to the translators. Therefore,

acts as a default upper bound.



2.3 Security Techniques and Basic Concepts

A symmetric key encryption consists of three (probabilistic) algorithms (Gen, E, D). Given a security
parameter (e.g., 80), Gen algorithm will generate a key ICr for every user 7. Using KCp, T" can encrypt a
message m to ciphertext ¢ = E(ICp, m) (simply denoted by ¢ = Er(m)) and decrypt a valid ciphertext
ctom = D(Kr,c) (or simply m = Dr(c)). Loosely speaking, a good encryption scheme will prevent
adversaries from learning any information on m (other than the length |m|) from its ciphertext.

A symmetric key encryption scheme is commutative if for any two users .S, T' and message m, we have
Er(Es(m)) = Es(Er(m)) = cand Dg(Dr(c)) = Dr(Dg(c)) = m. Loosely speaking, commutative
encryption is oblivious to the order of encryption/decryption.

We now provide some background on modular arithmetic concepts, used in this paper. For two integers
a,b € N, we say that a mod n = b if and only if b € [0,n — 1] and @ — b = kn for some integer k.
Two integers a, b are co-prime if and only if their greatest common divisor ged(a, b) equals 1. A known
fact is that there exists a ¢ € [1,n — 1] such that ac mod n = 1 if and only if ged(a,n) = 1; c is called
the multiplicative inverse of a (mod n) and c is unique. The Extended Euclidean Algorithm is an efficient
algorithm for computing ¢ from two integers a, n such that ged(a,n) = 1.

2.4 The PPP protocol

Figure 2 illustrates PPP. If there are = values in the answer set, the server will insert (k — 1)z random
values as noise to provide k-protection. Then the answer set is randomly shuffled to prevent immediate
identification of the noise. In addition, the noise for the same query issued at different times should be
the same; otherwise, it may be possible for an attacker to identify the common values of multiple answer
sets of the same query, as the query answer. To simplify the discussion, let xt = 2 and k = 2. Let the
true answer set be (mi,ms) and the answer set with noise be (mq, mg, m1, mg). The true answer set
is sent to the client directly. The answer set with noise (mapping request) is sent to a translator 7' for
translation. Let (m(,, my,m7, mj;) be the translated values by T'. To prevent the client C' from learn-
ing unnecessary mappings, T encrypts them using its private encryption key. Let Fr(x), Ec(z) be the
encryption functions on value  used by T' and C' respectively. The encrypted result ((mg, Er(m.)),
(ma, Er(my)), (m1, Er(m)), (mg, Er(mj))) is sent to C. C selects the two encrypted mappings
((my, Ex(m})), (ma, Ex(m}))) (i.e., the true answer set) and generates the ciphertexts (Ec(Er(m})),
Ec(Er(mf))) which are sent to the translator T'. T decrypts the ciphertexts to (Ec(mf), Ec(m))), based
on the fact that Ec(Ep(M)) = Ep(Ec(M)) for commutative encryption functions E¢, Ep. Finally C
decrypts m/ and m} and obtains the answer set.

3 Fixing the PPP protocol

PPP is proved to be secure in [7], assuming that commutative encryption is secure. However, existing
commutative encryption schemes, like Pohlig-Hellman [21] and SRA[24], do not provide formal proofs of
security [29] and may lead to security breaches in practice, as shown in [15]. Specifically, Pohlig-Hellman
leaks the information whether x is quadratic residue (mod n) or not (a property similar to whether a number
is odd or even). For example, if the query answer is  which is quadratic residue but the k£ — 1 noise results
added are not, then the adversary can directly identify which one is in the answer set. In [32], we provide
more details about this attack. Therefore, we can claim that when instantiating PPP with the existing
commutative encryption schemes, k-protection cannot be enforced.® In the following, we provide a fix to
PPP, which replaces commutative encryption by an oblivious transfer protocol.

3.1 Oblivious transfer

Oblivious transfer (OT) [22] is a well-developed probabilistic approach, allowing a party to retrieve in-
formation from another party, in which the sender does not know what is retrieved by the receiver. In a

80f course, in the above example, on could enforce all added noise to be/form quadratic residue to avoid such an attack. However,
we still cannot prove that Pohlig-Hellman (and SRA etc.) scheme will not leak any other forms of information nikos: what other
information?.



nutshell, the server owns a number of data items, each with a unique index and the receiver wants to retrieve
the data with index ¢ from the sender. An OT protocol allows the receiver to obtain the corresponding data
without seeing other data; at the same time the sender cannot learn . There are different implementations
of OT with varying levels of security guarantee and efficiency. In this paper, we employ the framework
proposed in [5] and instantiate it with Chaum’s signature scheme [3]. The combined algorithm is secure
under the semi-honest model and is relatively simple and computationally efficient (optimized with two
rounds of communication). A high-level description is shown next; the mathematical details can be found
in Appendix B.

The goal of OT in our protocol (POT protocol) is to allow the client C' to retrieve the necessary map-
pings from a translator 7. For each mapping entry x — y, T preserves the left part = in plain form.
This allows C' to choose the required mappings. The right part y is encrypted by a special encryption
function. The goal of the encryption is to prevent C' from observing unnecessary mappings while C' can
decrypt some entries that he has chosen. In the encryption of y, we include = in the parameters so that
the encrypted value of y depends on both = and y. We denote the encrypted value of y by Er(z,y). A
customized key in decrypting Er(x,y) is needed and is composed of (i) the secret key of the encryption
algorithm Er and (ii) the choice of x. We denote the customized key for decrypting Er(z,y), K(x). T
sends to C' the list of encrypted mappings, in the form of z — Er(z,y). To decrypt Er(x,y), C has to ask
T for decryption keys for selected entries. However, directly informing 7; the selection of mapping entries
violates the privacy of the query answer. Suppose C' desires the mapping of « (x — Er(z,y)). C encrypts
his selection by E¢(x) and sends to T' E¢(z). In our implementation, E7 and E¢ are specially designed
algorithms so that 7" can transform E¢ (), by using his private key of Er, to the encrypted decryption key
for y Ec(K(x)). In the transformation process, ' cannot observe the selection of C' since he works on the
encrypted domain only. The encrypted key is sent back to C. C can get the decryption key KC(z) and thus
recovers y. The decryption key cannot be used on other encrypted mapping entries since the key is specific
to entry x — y only.

Theorem 1 The POT protocol satisfies k-protection.

Proof: The proof is shown in Appendix B.1.

3.2 Optimizations

In our implementation, we apply some optimizations to reduce the computational cost of OT, which are
shown in our empirical study to significantly improve efficiency.

3.2.1 Pre-computation of encrypted mappings

Each encrypted mapping entry deterministically depends on the value of the mapping and the mapping
owner’s key. In our implementation, the translators pre-compute and cache the encrypted mappings, in
order and avoid their online computation whenever they are requested.

3.2.2 Algorithmic Speeding up Techniques

A major component in our oblivious transfer protocol is the exponential cipher. This involves computing
modular exponentials of large values (a typical message length is 1024 bits). These operations are very
expensive. One way to reduce the cost is to use Garner’s algorithm [17]. The basic idea is the Chinese
Remainder Theorem: computing b = z° mod pq is equivalent to computing b = [(z® mod ¢ — z°
mod p) x (p~! mod ¢) mod ¢] x p+ (¢ mod p). The theorem reduces the computation of a modular
exponentiation to two 512-bit modular exponentiations with some cheaper additions and multiplications.

Note that the cost of computing modular exponential 7 highly depends on the value of e, where e is
part of the public key in our case. To reduce this cost, we set e = 3 at each translator. Setting e = 3 does
not improve an adversary’s knowledge, since the key is public’. Without knowing the factorization of n,
an adversary cannot determine the private key by simply knowing that e = 3.

9In practice, RSA usually sets the public exponent e to be a small constant to support efficient computations.



4 An efficient alternative to PPP

Oblivious transfer helped us to fix a security hole of PPP. Still, the PPP framework suffers from the fol-
lowing problems: (i) incomplete protection of mapping privacy; (ii) high response time; (iii) high commu-
nication cost. To tackle the above issues, we develop a simple lightweight protocol, which does not rely
on cryptographic operations and not only preserves k-protection but also protects mapping privacy. In this
section we describe the new protocol and compare its security and efficiency with PPP.

4.1 Order-preserving translation

Our proposed protocol (denoted by PD, Privacy preserving and Direct simple method) Nikos: explain
what PD means! operates as follows. After the server S computes the query answer, S carefully adds
noise to it to form a mapping request. For a query answer with x distinct values to be translated, a noise of
(k — 1) values in the domain is added. Thus, the mapping request composes of kz values to be translated.
In addition, the positions of values to be translated in the mapping request are randomly shuffled at S. The
query answer is represented using the corresponding positions of values in the mapping request and the
query answer is sent to C'. For example, suppose that the query answer is (m1, m2, m1) and the mapping
request after random permutation is (mq, Mg, m1, mg). The server S first sends directly to C' an answer
key (3,2,3); ie., the positions of the true answer values in (mq, mga, m1,mg). The noise generation
process is the same as [7] to prevent query replay attack. That is, for two identical queries to S, exactly the
same noise and permutation will be generated.

If the path from C to S is {C, T}, T, ..., T}, S}, the mapping request is transferred from S to Ty for
translation. Each translator 7; translates all the values in the mapping request and forwards the translated
mapping request to the next translator 7;_; until it reaches the client. Differently from PPP, each translator
does not permute the positions of values in the mapping request. Eventually, the client C' will receive the
mapping request, which is a set of translated values under C’s context. In our example, assuming that the
pathis {C, T1, S} and that T} translates each m; to m;, C' will obtain (my,, m5, m’, mj). With the query
answer key (3, 2, 3) that C has received from S, C recovers the query result (m}, m5, m}).

4.2 Security proof and cost analysis

In this section, we prove the security of the proposed protocol and analyze its cost.

Theorem 2 (Answer privacy) The PD protocol satisfies k-protection.

Proof: Each translator T} receives a mapping request from 75,1 with kz values, where « is the number of
distinct values in the query answer to be translated and k is the privacy parameter. Without the answer key
from the server S, each value has the same probability (Pr = ;= = %) to be in the query answer, i.e., k-
protection is enforced. In addition, every possible mapping request corresponds to a specific answer set and
a specific permutation (by .S), thus for the same query 7; receives the same mapping request. Therefore,

T; cannot learn anything about the query answers even if the same query is repeatedly sent from C'to S.

Theorem 3 (Mapping privacy) The PD protocol enforces mapping privacy.

Proof: Each translator 7; observes only one message: a mapping request with kx values from translator
T;+1 and no messages from any other peer. The mapping request received by 7; contains only a set of
values in 71 1’s context, therefore 7; learns nothing about 77 ;’s mappings.

Compared to PPP, our simple protocol offers better privacy protection because mapping privacy is fully
protected. The only exception is that PPP has a better worst case protection on privacy mappings in case of
collusion. In PPP, translators also permute the mapping request randomly at the price of letting the client
learn certain mappings. This means that even when several parties collude together and exchange their
knowledge to beach mapping privacy, PPP can protect one’s mappings from being seen (except the entries
that are already revealed to the client). In Section 6, we study the issue of collusion in detail and provide a
complete lightweight solution that protects both answer privacy and mapping privacy in case of collusions.



Cost analysis. Our simple protocol is very efficient and has a low message communication cost. Let
n be the number of distinct values to be translated, ¢ be the number of translators, and %k be the privacy
parameter of k-protection. At the server, the preparation cost of the mapping request and the answer key
takes O(kn) time. The server sends two messages: (i) the mapping request to the neighbor translator 77,
which contains kn values; (ii) the answer key, which has the same size as the query answer. Each trans-
lator T; takes O(kn) times to translate the mapping request and forward the request to the next translator
T;_1 (or the client). Compared to PPP, our protocol has fewer rounds of communication and much lower
computational cost, especially because it does not require cryptographic operations.

S5 A parallelized protocol for large scale translation

When transferring a large amount of data, a large proportion of the mappings are involved in the translation
process. For example, if a query is to retrieve all diseases diagnosed in a hospital within a month, most
diseases in the domain are returned. Answer privacy is still required as it may breach the privacy of
minorities if a rare disease (associated to certain patients) is included in the result. At the same time, we still
need to enforce mapping privacy to protect the translators’ rights. Another issue is that, with a large number
of mappings, each translator takes more time. Since translators work in a serial fashion, it takes long for
the client to receive the results and most translators stay idle during the process, waiting for the entire
mapping request to be received by the previous peer. In this section, we develop a parallelized privacy-
preserving translation protocol (denoted by IMP, Item Mapping with Parallelization) Nikos: explain what
IMP means! that addresses these issues.

We first explain the feasibility of parallelization. Without the presence of mapping request, a translator
normally remains idle, as it is not able to determine what data should be translated. To overcome this diffi-
culty, we propose a scheme, where the translator prepares all mapping entries for all values in the domain
unconditionally. This ensures that the necessary mappings in the translation have been precomputed and
they are ready to use, as soon as the mapping request is received. On the other hand, additional cost is
required in preparing mapping entries for values that do not appear in the mapping request. Fortunately,
the size of the mapping request can be determined by the server before any translation; thus, the server can
decide whether the system should switch to the parallelized protocol or use the simple protocol. We now
focus on the case of full-domain translation and discuss its parallelization.

5.1 Mapping representation: Index mapping

The current representation of mapping (x — y) is content-dependent. In order to achieve composition of
mappings, we have to match the right part of the first mapping to the left part of the second mapping; e.g.,
given x — y and y — z, we have £ — z. From a privacy perspective, the above matching mechanism is
not allowed because one can then tell which value is involved in the translation; thus, a more sophisticated
protocol is required. In this section, we present a novel representation of mappings, called index mapping,
which enables such a protocol.

The mappings of a translator 7; is a function that maps a value from a domain D; to another domain
D;_1. The mappings of the next translator in the path T;_; convert D;_; to D;_o. Note that the neighbor-
ing peers along the path share the same domain in the mappings as an interface to communicate. Each peer
agrees on the same order (say alphabetical order) in each domain and represents each value in the domain
as its index. The mapping function then operates at the index level. For example, suppose the domain D,
is ordered as { AIDS, heart disease, lung cancer}, the domain D;_ is ordered as {d01, d02, d03}, and the
original mapping function is { AIDS — d02, heart disease — d03, lung cancer — d01}. The index mapping
is then {1 — 2,2 — 3,3 — 1}. Index mapping only captures the mapping structure, without consider-
ing the semantics of values. Thus, one can compute the composition of index mappings without knowing
the semantics of the values. However, in our case, translators also know the (ordered) domains of other
translators. So, the index mappings cannot be revealed directly in our protocol. We adopt a token-based
translation to hide them.

With index mapping, if one would like to translate the first value in D; (AIDS), he could construct a
size-3 vector with a token ¢ in the first element while leaving the other two elements random (¢, 71, 72)



where t # ry,ry. The index mapping then swaps the position of the values accordingly and returns
(rq,t,r1). By finding the position of ¢, we know that it is mapped to the 2nd value of D;_; (d02). In
this way, the translator has performed the translation task without learning the value to be translated. Note
that, the output and the input of the index mapping are in the same format, meaning that we can repeatedly
apply different mappings to compute a composition of mappings. In fact, each mapping can be regarded as
a permutation of the values in the set.

With index mappings, the server generates a random unique token for each value in the domain as
initial encryptions to the values. This forms a token set V;,; that represents the values in the context of the
server. V;41 is sent to translators for translation. Consider a serial translation. Each translator shuffles the
tokens according to his index mapping and sends the shuffled tokens to the next translator. As the tokens
are random, the shuffled tokens after applying an index mapping will appear random to translators; this
protects the privacy of translators. At the same time the server sends V;y;; i.e, the values in the query
result are replaced by the corresponding tokens. The tokenized query result is sent to the client. So, by
looking up the position of a token in the query result, the client is able to recover the translated value in his
own context. In this process, the client is not able to observe the mappings of any translators, even when
there is one translator only. Figure 3 shows an example illustrating the entire translation procedure. The
server computes the query and the result contains 1 tuple only - ‘Bob’. Instead of sending to the client
the result in the server’s context (‘Bob’), the server sends the tokens representing the result (‘0’). Note
that ‘Bob’ is the 2nd value in the server’s domain, and it should be mapped to the 1st value in the client’s
domain. The translator permutes the set of tokens and the token representing ‘Bob’ (‘0’) is put to the first
slot in the tokens. The client, by identifying the positions of tokens in the query result, recovers the query
result in its context.

Server 4. recover the tokens
query result token
query result = / 0 (male3)
Bob ST male
. | query result ~ 1 (male6)
0 [[send to query result 2 (fel8)
value | token /‘2 tokenize the 0 2
Alice |2 result g
Cat |1 token token
Send to
1. generate tokens 2 0
0 1
1 2

3. apply the mapping
Figure 3: An example illustrating the procedure of the protocol.

Note that in order to ensure the correctness of the protocol, the tokens for different values in the domain
must be different. On the other hand, the domain of tokens does not affect the correctness and the security
of the protocol. For a domain D, we need to use |D| tokens. A simple token domain is [1,|D|]; thus,
randomly generating a set |D| of unique tokens in the domain of [1,|D]|] is the same as generating a
random permutation of [1, | D|], which can be done in O(|D|) time.

5.2 Parallelized permutation composition

Recall that an index mapping can be viewed as a permutation. A permutation can be represented by a
matrix'%; e.g., index mapping {1 — 2,2 — 3,3 — 1} can be modeled by:

01 0
M=10 01
1 00

10We remark that although we present our approach using a matrix representation, the actual content form of messages in the
communication is permutation.



Similarly, we can represent the set of tokens as a row matrix so that (¢, ¢o,t3) - M = (to,t3,¢1). If the

path from the client C to the server S is C, 11,15, ... T}, S, each translator 7; has an index mapping, which

is represented by M;. The initial tokens generated are also a permutation, so they can also be represented

by a matrix M; ;. The goal is to compute HEi%Mi, i.e., My41M,...M;. By using divide and conquer, we
t41

41
can divide the computation into two halves: II, 2, M; and H’;J_“% i1, 1Mi' Similarly, we recursively divide
-T2

the computation until there are only two parties involved. This reduces the number of rounds from O(¢) to
O(log(t)).

In the first round, every two consecutive peers 7;_1 and 7; form a group to compute M; M;_;. One of
the two peers must contribute his mappings to the other peer for the computation. For example, 7; should
send his mappings M; to T;_;. However, this violates the privacy of T;. To protect M;, T; generates a
random permutation R; (represented as a matrix too). 7;’s mapping is applied on the random mapping,
ie., M] = M;R; (if T;_; is sending his mappings, R;_1M;_1 is used). M/ is sent to T;_1 to compute
M;+1 M. In order to maintain the correctness of the computation, R; must be eliminated in the final result.
T; sends the inverse of the random noise R, Lto T;_1 and T;_; computes M;_; = R, 1Mi_1 as his input to
the computation procedure (if 7;_1 is sending his mappings, the inverse is sent to 7;_o and T;_, computes
M;_1 R _11 ). In the boundary case (e.g., T1), the inverse is sent to the client. This is to ensure the correctness
of the protocol when we combine different parts together, i.e., M/M/_; = MiRileMi,l = M;M,;_4.
Note that, for each group of peers T;_1, T;, it must be the peer on the same side (either left - smaller index
or right - larger index) to send the mappings to the other peer. So, alternate peers will be generating a
random permutation.

Now, we do not need to consider the peers who have contributed their mappings to other peers. So,
half of the peers remain. Another round is carried out similarly. Every two consecutive of the remaining
peers form a group but now one of the peers just contributes his composite mappings to another peer
without generating the random permutation again. This is because the composite mappings already contain
a random permutation generated by the partner in the first round. For example, 75 receives M1 R; from
T, and Ry L from T 5. T5 combines everything together and sends R LMy My Ry to Ty. Note that Ty does
not know R3 and R; and the resulting permutation looks random to 7. The same procedure is applied at
later rounds. Figure 4 shows an example illustrating the computation of the composite mappings with 7
translators.

MgM,...M,R,

Figure 4: Parallelized Permutation Composition.

5.3 Security proof

Theorem 4 The IMP protocol presented in this section satisfies k-protection for any k < n.

Proof: Since no query request is sent to translators, the IMP protocol enforces n-protection for the full
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domain size n; i.e., the probability that each value is in the answer set is %

k-protection for any k < n as well.

Trivially, IMP achieves

Theorem 5 The IMP protocol enforces mapping privacy.

Proof: The intermediate mappings are hidden from the client. The client only knows the final mapping
results from the server to the client. However, without knowledge of the value-token table on the server,
the client cannot utilize these final results; therefore, the protocol enforces mapping privacy.

6 A Collusion-resistant scheme

Our previous schemes cannot guard against collusions where the parties in the colluding group share the
messages they obtained in the protocol. For example, in Figure 4, translators 75 and T, can share their
knowledge (M3 3 and R; 1)y and they can recover the mappings of Ts. In this section, we perform an
analysis on the collusion problem and derive an efficient and collusion-resistant solution (denoted by PC,
Privacy preserving with Collusion) Nikos: explain what PC means!. First, we study the potential risks
of colluding scenarios in our protocols.

1. Answer privacy: In our proposed protocols, the server sends the necessary hints (i.e., answer key) to
the client directly. Thus, translators cannot breach the privacy of the query result without the client
or the server getting involved in the collusion. This is indeed the best that we can achieve; if either
the server or the client is involved in the collusion, then the entire query result will be revealed to
colluding parties regardless what translation protocol we use.

2. Mapping privacy: In our proposed protocols, the mappings of a translator can be recovered with a
minimum of two colluding parties. We aim at raising the resistance of the protocol so that even when
certain parties collude together, the mappings of a particular peer (not in the colluding group) cannot
be recovered. Note that it is not possible to protect one’s mappings if all other parties collude.'! In
this paper, we target the case of at least two parties being not in the colluding group.

To protect one’s private mappings, we need to hide them by adding some secret parameters (like en-
cryption with a key). On the other hand, the ‘decryption key’ has to be sent to other parties in order to
cancel out the secret key in the final result. Since any other party may be in the colluding group, we break
the decryption key into shares and each share is sent to a different party. Thus, each other party obtains a
share of the decryption key. No party can recover the decryption key without acquiring all the shares. In
addition, each share should be of O(n) size or otherwise there is a leak of statistical information (O(2")
possible mappings but O(2*) key space for a size-k key). Each party needs to generate the shares of the
decryption key and it also receives the shares of other decryption keys from other parties. The processing
cost for each party is O(mn): a significantly increase compared to the O(n) cost in the previous protocols.
Thus, the protocol having perfect security is very expensive.

Our goal is to design a more efficient protocol. In particular, we aim at limiting the processing cost
to O(n) while keeping adequate protection for guarding against collusions. In other words, we want the
secret parameters and shares of decryption key to be of O(1) size and to be aggregated efficiently (with
linear cost). In summary, the protocol goals are as follows:

1. The colluding group cannot derive the query result unless the client or the server is involved in the
group.

2. The colluding group cannot derive the mappings of a party not in the group as long as there are at
least two parties not in the group.

3. The protocol incurs a low overhead.

I'The client obtains the mappings from the server’s context to the client’s context by matching the query results under the two
schemas when the client and the server collude together. This mapping is equivalent to the composition of mappings of translators.
Since all parties except one collude together, we can solve the mappings of the remaining party.
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6.1 Guarding against collusion via pseudo-permutation

This section describes a protocol satisfying the above requirements. One technical challenge is that we
need to cancel out the secret parameters added by each translator. Encryption is usually not commutative.
This requires a correct ordering in encrypting or decrypting the mappings using the partial keys and makes
the protocol complicated and expensive. To solve this problem, we use a pseudo-permutation approach,
which resembles commutative encryption but it is simple and cost-friendly.

Definition 2 (Pseudo-permutation) Consider a vector v (tokens) that is a permutation of n numbers (aq,
as, ..., ap). A pseudo-permutation f takes a parameter r that is randomly sampled in [1,n] and gives
f(r,v)=(ra; mod n+1, ray mod n+1, ..., ra, mod n+1)wherer andn+1 are relatively prime.

Note that we require 7 and n + 1 are relatively prime. This is true if we consider n + 1 is a prime.

For example, consider a set of tokens v (1,2,3,4) (n + 1 = 5) and » = 3. The resulting set of
tokens is (3, 1,4,2) (e.g., 2nd position: (2 -3) mod 5 = 1). To recover the original set of tokens, we
can multiply the set of tokens with the modular multiplicative inverse of r (we can compute the modular
multiplicative inverse using the Extended Euclidean algorithm). In our example, using r ' = 2, we get the
tokens (1,2, 3,4) (e.g., 3rd position: (4 -2) mod (5) = 3). The constraint that  and n + 1 are relatively
prime ensures that the modular multiplicative inverse of  exists and thus makes the pseudo-permutation
‘decryptable’.

Pseudo-permutation is like a random permutation (Lemma 1) but has a smaller key size; it is more effi-
cient, but offers a weaker protection. If we use a matrix representation, a pseudo-permutation is equivalent

r 0 0
toR=| 0 7 0 | =rl, wherer isanumeric value and [ is the identity matrix. Pseudo-permutation
0 0 r

is commutative to other permutations. Given any pseudo-permutations R, Re and a permutation P, we
have R1 P = PR; and R1R2 = RoR1. Besides, composition of two pseudo-permutations can be done
by a simple multiplication. Given any pseudo-permutation Ry = r11, Ro = roI, R1Ro = (r172)I. With
pseudo-permutation, we can construct the protocol for guarding against collusion as follows:

(1) Preparation phase. The server .S computes the query result and generates noise to form the mapping
request. S also generates a token set V/, that is a permutation of [1,n], to represent the values in the
mapping request. The query answer is re-written using the tokens and sent to the client C. At the same
time, S informs all other peers about the size of the mapping request.

(2) Anti-collusion parameter generation phase. Each translator T; generates a random pseudo-permutation

by generating ¢ pairs r;; and T;jl with respect to the modulo n + 1, where n is the number of values in the

mapping request. Each r;; is sent to a different peer while T; keeps its secret parameter \; = (Hfié rigl)

mod n + 1 (we denote the client as Ty and the server as T;1 here for easier discussion). As a result, each
peer (including the server, the client and translators) denoted by T, will receive a set of random numbers
35, which is a share of the decryption key of T;. The peer aggregates them into one value by multiplying
them together. If the peer is a translator, he also multiplies his secret parameter \; as generated above. We
denote the resulting value by R x where X denotes the peer having the value.

(3) Translation phase. S sends to the neighboring translator 73, RV and the mapping request. Let T; be
a translator, which receives a set of tokens and the mapping request. Let V' be the set of tokens received.
After T; applies his mapping on the mapping request, he randomly permutes the values in the mapping
request. Let the permutation be P;, T; also applies the same permutation P; on the set of tokens, followed
by Rr,, i.e., T; sends to the next translator R, B;V".

(4) Answer recovery phase. The client C' obtains a set of translated values: the mapping request and a set
of tokens V’. C replaces the query answer, that is written using tokens, according to the position of the
tokens.

Correctness. The correctness of the protocol relies on whether the permutation of the tokens is the
same as the permutation of the values in the mapping request. Given the initial set of tokens V' generated
by .S, our goal is to allow C to observe (szl P;)V. Note that the set of tokens that the client received in
the protocol is ([T'_, R, P)V = ([T'_; Rz, )(IT'—, P:)V (due to the commutative property of pseudo-
permutation). Since we generate each component of pseudo-permutation in pairs of multiplicative inverse,
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we have H§:1 R, = 1. The client obtains the set of tokens that go through the same permutation as the
mapping request and thus he can recover the query answer correctly.

Example. Assume there is one translator 7" only. Suppose the query answer is (m1, ma, m) and the
mapping request after random permutation at .S is (mq, ma, m1, mg). S also generates a set of tokens, a
permutation of 1 to 4 to represent the values. Assuming the set of tokens is (2, 1, 3, 4), S re-writes the query
answer using the tokens and sends to C' the query answer (3, 1, 3). Then, we go to the second phase to gen-
erate the random parameters. Suppose 1’ generates two pairs of multiplicative inverse (2, 3) and (4, 4) (note
that (2-3) mod 5= 1and (4-4) mod 5= 1). T sends to .S a number in the first pair, say 2, and sends
to C' a number in the second pair, 4. T" keeps 3 - 4 mod 5 = 2 for eliminating the pseudo-permutations.
Then, we go to the translation phase. S first applies his pseudo-permutation R g = 27 on the set of tokens.
The resulting set of tokens (4,2, 1, 3) is then sent to 7. Assume the mapping of T" is m, — m/. After
translation on the mapping request, 1" applies the same random permutation on the mapping request and
the tokens. Assume that the mapping request and the tokens become (msy, mj, mg,, m}) and (2, 3,4, 1),
respectively. T then applies his pseudo-permutation Ry = 21 and the tokens become (4, 1,3,2). The
translated mapping request and the tokens are sent to C' and C' applies his pseudo-permutation R = 41
on the tokens. The tokens become (1,4, 2, 3). Finally, C recovers the query answer. Recall that the query
answer is expressed using tokens (3, 1, 3). C replaces each token by the value in the mapping request that
has the same position of the token, i.e., (m}, m5, m}).

6.2 Security proof and cost analysis

Theorem 6 (Answer privacy) The PC protocol satisfies k-protection.

Proof: The necessary hint to recover the query answer (the answer key expressed using tokens) is shared
between the server and the client only. Thus, translators are not able to observe the query answer with the
presence of tokens. Translators can observe hints of the query answer from the mapping request, but the
fake values in the mapping request enforce k-protection.

Theorem 7 (Mapping privacy) Assuming that n + 1 is prime, the PC protocol enforces mapping privacy
on any translator T, unless all parties except T' collude together.

Lemma 1 Let n be a prime number. Let 1 be a random number chosen from [1,n—1] such that ged(r,n) =
1. We define f, : [0,n — 1] — [0,n — 1] via f.(a) = ra mod n for any a € [0,n — 1]. Then, f, is a
(pseudo) random permutation on [0,n — 1].

Proof: First, we show that f;,. is a permutation. Suppose that there exists a1, as such that ra; mod n =
rag mod n. Then, as ged(r,n) = 1, there exists ¢ such that cr mod n = 1. Therefore, a1 = cra,
mod n = cras mod n = as.

Now we show f, is pseudo random. Let b be chosen randomly from [0, n — 1]. If  is a random number,
then Pr[f.(a) = b] = Pr[ra modn = b] = Prla = (r~! mod n)b] = . We note that the above
argument is true only if 7 is random. When n is prime, this is true, as gcd(r,n) = 1 forany r € [1,n — 1].

Proof: (Proof of Theorem 7) The worst case is when neighboring peers of a translator 7" collude together.
In such a case, the colluding group observes the mapping request and the tokens before and after 71”s
translation. However, since 71" applies a random permutation P on the mapping request, the colluding
group cannot recover the exact mapping of 7" unless the group recovers P. Let V' be the set of tokens that
T receives and R be the pseudo-permutation applied by 7', provided that n + 1 is prime (Lemma 1).
The colluding group observes V and V' = R PV. With V and V' known there are |V| equations with
|V| + 1 unknowns; we can solve the above system but there are multiple solutions to Rr and P. Since
the components of R are pairs of modular multiplicative inverses and each pair is owned by two peers,
the colluding group can also invite others to join the group in order to obtain the necessary information to
recover Rp. However, R contains shares of every other peer. Therefore, unless all parties except T' are
in the colluding group, R cannot be recovered.
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Cost analysis. Compared to the protocols we discussed in previous sections, our protocol here incurs
additional cost for the anti-collusion measures. Each component of pseudo-permutation is a pair of modular
multiplicative inverses. Thus, the parameters are all of O(1) size. Each translator generates O(t) pairs and
receives O(t) pairs from other parties. The communication cost and the computational cost to aggregate
them into a single pseudo-permutation are both O(t). In the translation phase, each translator translates
the mapping request (at O(kn) time) and applies permutations on the mapping request and the tokens (at
O(kn) time). Thus, the overall cost at a translator is O(kn + t), where k is the privacy parameter and
n is the number of distinct values in the query answer. Note that since ¢ is usually smaller than kn, the
complexity of the protocol here is basically the same as the simple protocol we described in Section 4.

7 Experimental Study

In this section, we evaluate the performance of the proposed solutions. Our implementation of the PPP
protocol using oblivious transfer is denoted by POT (see Section 3). POT-opt denotes the same protocol,
after applying all the optimizations proposed in Section 3.2. The lightweight protocol proposed in Section 4
that does not use cryptographic operations is denoted by PD. The parallelized protocol using index mapping
(Section 5.2) is denoted by IMP. Finally, PC denotes the collusion-resistant protocol of Section 6.

We compared our methods with two approaches. (1) The PPP protocol which is implemented using
Pohlig-Hellman commutative encryption [21]. (2) NP is a basic query processing algorithm which does
not consider privacy; in NP, the server sends the query result directly to client and also sends the distinct
values to the client through the path of the translator peers, which translate them on the way to the client.
The cost of NP is a lower bound for any privacy preserving protocol. Table 1 summarizes the security level
of the evaluated privacy-preserving protocols.

All algorithms are implemented in C++. Each peer is executed on an individual Intel Core2 Duo
2.83GHz machine with 3.2GB RAM, running Windows. The peers are connected through a 1Gbps LAN.
In the experiments of Sections 7.1-7.3 we use synthetic data. Real data are used in Section 7.4. The
synthetic dataset contains one attribute, which is the attribute queried by the client. Each tuple is assigned
a random unique value on this attribute. So, the number of tuples equals the domain size of the attribute,
denoted by | D|. We do not include duplicate values in the dataset, because the performance of the protocols
mainly depends on the number of distinct values in the result. The mappings of each peer are randomly
generated. In the experiments, we measure the time (time spent since client issues the query until he
receives the plain results) and the communication cost of a random range query. Table 2 summarizes the
privacy, network, data, and query parameters for the synthetic data experiments, and shows the range and
default value of each parameter. Note that although we evaluate the costs of all protocols together, their
security level strengths vary. Table 1 shows the different security levels achieved by each protocol. The
detailed security proofs are derived from Theorems 1 to 4.

Note that PPP and POT (POT-opt) protocols do not strictly provide mapping privacy. Translators will
not see each other’s mappings but the client can. In the extreme case, the client can request and store all the
mappings eventually in PPP and POT protocols and remove the translators from the chain at future queries.

without collusion with collusion
Protocol k-protection mapping k-protection mapping
privacy privacy
PPP X reveal to X reveal to
client only client only
POT v reveal to v reveal to
POT-opt client only client only
PD v v v X
IMP v (forall k < n) v v X
PC v ' ' v

Table 1: Privacy protection strength of algorithms.
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Parameter Values
Privacy parameter k 2,4, 6,8, 10 (for k-protection only)
Domain size | D| 2000, 6000, 10000,
20000, 40000, 60000, 80000
Number of peers n,, 3,5,9,17,33
Query selectivity s (in %) | 1, 5, 10, 15, 20, 25, 30

Table 2: Parameters used in experiments on synthetic data. Default values in bold font.

7.1 k-protection

In the first experiment (Figure 5), we examine the performance of algorithms w.r.t. k-protection. Note k
does not exceed 10 because the query selectivity in this experiment is 10%. IMP operates on the entire
domain. Noise in mapping requests is not required and thus the performance of the protocol is not affected
by k. The query times and communication costs of other privacy-preserving protocols (PPP, POT, PC, PD)
increase with k. Our lightweight protocols (PC, PD, IMP) have lower query times and communication
costs than PPP and POT because they do not use expensive cryptographic operations. The communication
costs of cryptography-based protocols are also higher. This is because each plain data item has a small size
(4 bytes in our experiment) while the encrypted data are much larger (up to 1024 bits (128 bytes) for PPP,
POT, POT-opt). Observe also that £ has little effect on the message cost of POT approaches. This is because
our implementation of OT has an optimized size for encrypted mapping, where the encrypted mapping has
the same size as the plain text (line 4, Algorithm 1). Thus, the cost of sending encrypted mapping entries of
fake items is relatively low compared to other messages like OT requests. Note that a bigger k only affects
the number of mapping entries to be transferred in POT-opt because we have pre-computed the encrypted

mapping.
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Query time (in s)

——PPP —e—POT —&—POT-opt —~PC ——IMP —&—PD —#—NP

Figure 5: Query time and communication cost vs k on synthetic data.

7.2 Scalability

Figures 6 and 7 compare query times and communication costs, showing that all algorithms are scalable
to both domain size and number of peers, respectively. PPP has the highest cost; the method becomes
impractical for values of |D| and n, that are not trivially small. PC, PD, IMP have the lowest costs
among all privacy-preserving protocols. Compared to NP, all methods are significantly expensive; the
major overhead is due to the additional work on translation. Since we set k = 6, the number of values to
be translated is 6 times more than in NP. For example, the overhead introduced by PD over NP at n,, = 33
has a factor close to k (%'67 = 6.04). This indicates that PD incurs the minimal overhead to ensure k-
protection. In general, the overhead of our methods over NP is bearable given the privacy protection that
they provide. Compared to PPP, all our algorithms have a significant cost improvement (besides the better
privacy protection they offer). The cost of IMP increases slower with n,, compared to the other methods.
Atn, = 33, IMP takes 5.9s while NP takes 2.6s. This shows that parallelization can effectively control the
cost when the query result has to travel along a long path, which is likely to happen in a large peer-to-peer
network.
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Figure 6: Query time and communication cost vs | D| on synthetic data.
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Figure 7: Query time and communication cost vs n,, on synthetic data.

7.3 Varying selectivity

Figure 8 shows the query times and communication costs of the algorithms with varying query selectivity.
When s reaches 20, the query times of PC and PD become stable, because all values in the domain are
included in the mapping requests when s > %. Further increase in s does not increase the size of
mapping request and thus the query time is stabilized. In contrast, PPP and POT approaches show a stable
increase with varying s; the major overhead in these protocols are at clients obtaining required mappings
from translators using cryptographic operations. The number of the required mapping entries increases

with s. Thus our lightweight protocols are especially beneficial when the query answer is large.

7.4 Experiments on real data

We also evaluated the performance of algorithms (PPP, POT-opt, PC, IMP, PD, NP) on two real datasets:
(1) CENSUS (downloadable from ‘http://www.ipums.org’), containing personal information of 50K indi-
viduals with 8 dimensions (average domain size 28.1) (ii) ADULT [2], containing personal information of
32,561 individuals with 15 dimensions (average domain size 1476.4). We generate for each peer a random
mapping that maps each value to a different integer. Using the default values for the parameters, as shown
in Table 2, we issue 20 random queries in the form of ‘SELECT A1 FROM DATASET WHERE A2 IN
(QS)’, where Al and A2 are two randomly chosen attributes in the dataset (A1, A2 can be the same) and
QS is a set of values in the domain of A2 and QS contains around 10% elements in the domain. In addition
to query time (query processing + answer translation), we also measure the query processing time alone at
the server, denoted by QP. Table 3 shows the results.

Dataset PPP | POT | PC | IMP | PD NP QP
-opt
CENSUS | 423 | 2.00 | 0.80 | 1.17 | 0.77 | 0.59 | 0.57
ADULT | 2330 | 343 | 1.90 | 1.97 | 1.33 | 0.68 | 0.58

Table 3: Query time (in s) on real dataset.

The results show that our proposed algorithms are much more efficient than PPP. Besides, our proposed
algorithms have a lower query time overhead over NP than what we observe in the experiments on synthetic
data. This is because our synthetic data do not have duplicate values; with more duplicate values in the
dataset, the query processing time (QP) increases (as the distinct values need to be extracted and translated);
in this experiment, query processing becomes a major component of the entire cost and the overhead in
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Figure 8: Query time and communication cost vs s on synthetic data.

query translation for protecting privacy becomes relatively cheaper. Thus, in realistic cases where the
attribute domain is much smaller than the number of tuples in the database and duplicates are expected to
appear in the query result, our protocols become even more practical, as they only incur a small overhead
on top of query processing.

7.5 Simulation of large P2P network

In this experiment, we simulate large P2P network on an Intel Core2 Duo 2.83GHz machine with 2GB
RAM, running Windows. We vary the number of translators from 1 to 10,000 (i.e. n,, varies from 3 to
10,002). We use the default values for other parameters as shown in Table 2 and test all algorithms except
IMP in this setting, as the parallelism in IMP cannot be realized in the simulation. Figure 9 shows the query
times of different algorithms varying n,,.
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Figure 9: Simulated query time vs n, on synthetic data.

The result shows that cryptographic approaches (PPP, POT and POT-opt) are more expensive than non-
cryptographic approaches (PC and PD). The cryptographic operations are very expensive. By avoiding
them, PC and PD reduce the cost for privacy by orders of magnitude. On the other hand, PC, PD and NP
show a steady cost for small n,; this is because the communication cost is not realized in our simulation.
Translation has a very low processing cost compared to query processing (and noise generation for PC,
PD). Thus, the measured query time is almost constant unless n,, reaches a large value, which renders the
translation cost significant. Compared to the query time measured in a real network setting in Figure 7,
the processing cost we measured here is very low. So, we expect that the communication cost will be the
dominating factor for non-cryptographic algorithms on large-scale networks.

7.6 Mapping privacy leakage

In this experiment, we test on how many mappings are revealed to client as time goes. Note that only
PPP, POT, POT-opt may leak the mappings to the client (see Table 1) and they will leak the same amount
of mappings to client as all algorithms use the same framework to generate the fake answers. We vary
the values of k£ and s and measure how many mappings are revealed to client after « queries for z =1 to
100. The experiment is done on the default synthetic dataset (with 10k domain size). Figure 10 shows the
experiment result.
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Figure 10: Portion of mappings revealed to client as queries are issued.

The result shows that the non-mapping-privacy-preserving algorithms can easily leak most of the map-
pings with a relatively small queries. For example, if & = 6, s = 1%, 47% of mappings are leaked to the
clients in 10 queries while 85% of mappings are leaked in 30 queries. Note in each leakage that, the client
is able to obtain the mappings of each translator on values in the query answer and the fake answers. If
there are 7 translators (9 peers in total with client and server), the client can take the translator jobs that are
destined to the 7 translators and thus reduce the profitability of the original owners of the mappings. This
discourages peers from setting up accurate mappings between them, which usually requires much human
efforts and is thus expensive.

7.7 Mapping privacy leakage in collusion

In this experiment, we test on the security impact on mapping privacy when two peers collude. We assume
a worst case scenario in 2-party collusion. The two neighbor peers of a victim peer (which is a translator)
are colluding, i.e., the two malicious peers are exchanging the messages they observed in the algorithms
and they will try to derive the mappings of the victim peer. Note that PPP, POT, POT-opt and PD have
the same protection strength against collusion and we will use ‘G1’ to represent this group of algorithms.
We use the default settings as shown in Table 2. Figure 11 shows the portion of mappings leaked to the
colluding parties against number of queries issued.
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Figure 11: Portion of mappings revealed to client when two peers are colluding.

The result shows that all algorithms except PC have a very poor protection against collusion. When
two peers collude, they can easily observe the mappings of the victim in a few queries. For IMP, the entire
mapping is revealed in only 1 query because the translation is done on the entire domain. PC, on the other
hand, can protect mapping privacy even in a collusion scenario, as it is designed to be.
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8 Related Work

Peer Database Management Systems (PDMS) that leverage peer-to-peer techniques to manage dynamic
and heterogeneous data have received much attention in the recent years. Examples include [19, 27, 23, 8].
However, none of these works considered the privacy issues in a PDMS as discussed in this paper. The
problem of protecting query answers in PDMS was first investigated in [7], which defined the privacy notion
k-protection for this problem and devised a solution for the semi-honest model [10] based on commutative
encryption. However, to our knowledge, no secure commutative encryption scheme in practice can be
instantiated in this scheme to satisfy k-protection.

There are several works (e.g., [1, 28, 11]) on privacy issues in data mining. Most of them employ
tools from Secure Multi party Computation (SMC) [10]. Generally speaking, each party ¢ in SMC has
its own input x; and the parties want to cooperate to calculate f(z1,...,x,) without any party ¢ learning
anything beyond f(z1,...,2,) and its own input z;. Oblivious transfer [22] is a dedicated SMC protocol
(specifically, secure two-party computation): there is a sender with message M, ..., My and a receiver
with an index o € {1,..., N}, these two parties engage in an OT protocol where the receiver learns M,
only and the sender learns nothing about the receiver’s choice 0. SMC protocols can be built based on
OT, but they are still very expensive. The reason is that SMC works only for some certain NP-complete
problems. Therefore, when we apply SMC to a database problem P, we have to reduce P into a certain NP-
complete problem by embedding P into a circuit. This reduction method is generic but highly inefficiently
involving a large number of OT protocols. Therefore, even when each OT operation is cheap, the resulting
SMC becomes very expensive. We should also note that although the functionality of OT is similar to that
of Private Information Retrieval (PIR) [6, 9, 20], PIR does not protect the mappings of the translators. For
example, PIR allows the client to see the whole mapping table in plaintext (undesired in our problem),
while in OT, the client learns M, only.

In privacy-preserving data publishing, a data owner owns a database and would like to make it public.
The data may contain sensitive information, so data sanitization is required before publication. Several
privacy notions are developed, e.g., k-anonymity [25], I-diversity [16], and ¢-closeness [14]. For exam-
ple, k-anonymity requires that an attacker cannot identify a sanitized tuple in the published data with a
probability larger than % Some of these privacy principles are also used in some other applications, e.g.,
k-anonymity is used in outsourced location-based services [31]. Unfortunately, most of these definitions
are not practical [12, 30], as they consider attackers of limited knowledge, while it is hard to estimate the
attacker’s capability and knowledge in practice.

9 Conclusion

In this paper, we studied the problem of privacy-preserving querying between peers with different schemas
in a PDMS. We first unveiled that the state-of-the-art solution (PPP [7]) is inappropriate if commutative
encryption is used. As a fix, we adopted an oblivious transfer technique and provided optimizations to make
it practically faster. Still, the framework of PPP cannot adequately address the issue of mapping privacy and
it is computational expensive due to the heavy use of cryptographic operations. To address these issues, we
developed two lightweight protocols: one of them adopts serial translation and it is suitable for translating
small query answers; the other adopts parallel translation and it is suitable for large-scale translations.
Finally, we also considered a stronger adversary model where peers may collude. Again, a lightweight
protocol is devised to guard against such scenarios. We analyzed the privacy and cost of our proposed
solutions and experimentally studied their performance on synthetic and real datasets. The results show
that they are much more efficient than PPP despite of the fact that they offer better privacy protection.
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A Attack to Pohlig-Hellman Encryption

To understand the attack, we need to first describe the mechanism of Pohlig-Hellman encryption. The
encryption and decryption keys are defined as (e, p) and (d, p), respectively; p is a large prime number. e
is randomly chosen from [1,p — 2] and ed mod (p — 1) = 1. '? Note that the multiplicative inverse of e
mod (p — 1) exists if and only if ged(e,p — 1) = 1, i.e., e and p — 1 are relatively prime (similar for d).
Both keys are kept secret. Given a message m < p, the encrypted message is F.(m) = m® mod p. Given
a ciphertext c, the decrypted message is Dg(c) = ¢¢ mod p. The correctness of the encryption/decryption
is ensured, so that m*® mod p = mifed mod (p —1) = 1[21].

The intuition of the attack to Pohlig-Hellman encryption works as follows. An integer x is said to be
a quadratic residue (QR) modulo p if 3y € Z;,z = y?> mod p. All other values that are not quadratic
residue are called quadratic non-residue (QNR) modulo p. In Theorem 8, we show that the plaintext and
the corresponding ciphertext must be both QR or both QNR. This provides us additional information in
identifying the original value of encrypted messages.

Theorem 8 A message m is QR (modulo p) if and only if its ciphertext c = E.(m) in Pohlig-Hellman
commutative encryption is QR (modulo p).

Proof: If m is QR, we have m = 22 €)2
Hence, c is QR as well.

The only if case can be proven similarly as m = ¢
is QR. Hence, m = (z%)? mod p. m is QR.

To test whether a message is QR, [13] proved that an integer « is QR modulo p if and only if P
mod p = 1. In the case of PPP, a translator observes a set of encrypted mappings M from the client and
the domain of plaintexts D. |D| = k|M| with k-protection. Let Dgp be the set of values in D that are
QR, Mqr be the set of encrypted values in M that are QR. Since the encrypted value of QR must be QR,

|‘Jggg“ . Note that the distribution of QR and

QNR may not be even, the certainty may be as high as 1 in an extreme case when |Mgr| = |Dgr|.

mod p for some x € Zy. Then, ¢ = m® mod p = (v mod p.

d 2

mod p. We have ¢ = z* mod p for some z if ¢

the certainty of a mapping in Dqgg belonging to the result is

12T facilitate the commutative property, different parties have to use the same modulo p. On the other hand, e and d are kept secret
for each party and are not allowed to share among multiple parties.
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Obliviously, there is one (i.e., m}) equal to 1. Note that Pr[m} € RT] = 1 > % has violated k-
protection with k = 2.

Example. Consider a prime number p = 5. {1,4} are QR (1 = 12 mod 5 = 4% mod 5, 4 = 22
mod 5 = 32 mod 5) while {2,3} are QNR. In general, given a prime p, % integers in Z;, are QR and
another prl in Z;, are QNR.

Suppose that the client C' picks (e; = 3,p = 5) and that the translator T" picks (ez = 5,p = 5) as the
encryption keys of Pohlig-Hellman encryption (recall that gcd(e, p — 1) = 1, so e cannot be 2, 4). Assume
‘x — 2’ is the desired mapping by C' and ‘y — 4’ is a fake mapping request added by the server S to
confuse T (x, y are known values). In PPP, the two mappings are encrypted by 7" and are sent to C. C
obtains ‘z — E.,(2) = 2’ and ‘y — E.,(4) = 4” and sends back the double-encrypted mapping of z. T
obtains E, (Fe,(2)) = 3. Note that the double-encrypted value 3 is QNR. 2 is QNR and 4 is QR. Without
knowing the value of e;, 7" can conclude that C' is requesting the mapping x — 2.

We note that the above attack is applicable to other exponential encryption schemes, like SRA, as well.

B The oblivious transfer protocol

To use OT, each translator 7" needs a (public key, private key) pair (pk, sk). The key can be generated by
first generating two prime numbers p and ¢. Then, T' computes n = pq and also randomly chooses e < n
such that ged(e, (p — 1)(¢ — 1)) = 1 (so that there is a multiplicative inverse e~* mod (p — 1)(q — 1)).
T computes d such that ed mod (p — 1)(¢ — 1) = 1, publishes pk = (e,n), and keeps sk = (d,n) as
secret. (This procedure is the same as RSA.) For each mapping + — y, y is a possible data item to be
retrieved by the client C' while z is the index of the data. T encrypts his mappings using: E(z — y) =
r — ¢ = Ho(z, Hi(z)? mod n) ® y where H; and H, are any cryptographic hash functions that are
known to public, and & represents exclusive OR operation.

Assume that C' has received the set of encrypted mappings from 7. In the OT protocol, there are two
rounds of communication. One is a retrieval request from C' and one is the response from 7" which allows
C decrypt the desired mapping without revealing the other mappings. When C requests for a data with an
index z, it first randomly chooses » < n. He prepares an OT request for the data with o = r¢ - Hy(x)
mod 7 (note that pk = (e, n)). The OT request is sent to 7. 7' computes § = ¢ mod n (this can be sped
up by the Chinese Remainder Theorem) and sends it to C. C' then computes v = § - ~! mod n and the
original mapping can be recovered by z = ¢ ® Ha(x, ). Algorithm 1 shows the pseudo-code of the entire
procedure.

The correctness of the algorithm is ensured by

z; = ¢; ® Ho(x;, 0; -r71 mod n)
=¢; ® Hy(z;, [(r® - Hy(z:))? mod n]- (r~! mod n))

= ¢; ® Hy(z;, [(r*mod n) - (Hy(z;)%mod n) - (r~*mod n)])

d

(
= ¢; ® Hy(z;, Hi(2;)? mod n) (since 7 mod n = r)
(

=y ® Ho(xs, Hy () mod n) ® Hy(z;, Hy(x;)? mod n)
=Y

Note that 7~! mod n exists if and only if ged(r,n) = 1 (in which 7=! mod n can be computed by
Extended Euclidean Algorithm). Recall that n = pg where p, g are big primes. If ged(r, n) # 1 (namely,
p or q), the client is able to factorize n which is believed to be extremely hard. Thus, the probability that
a randomly chosen r does not satisfy gcd(r,n) = 1 is negligible. In our experiments, we never observed
such a case.!?

13 Although we can compute the multiplicative inverse modulo n, it is not possible to derive the private key (d, n) with the public
key (e, n) because d is the multiplicative inverse of e modulo (p — 1)(¢ — 1) where n = pg. Without knowing the factorization of
n, i.e., p and g, computing d with e and n is infeasible.
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Algorithm 1: Get required mappings from a translator

Input: Translator 7: mappings x; — y;, private key sk = (p, ¢, n,d)
Input: Client C: indexes of required mappings M., pub. key pk=(e, n)
Output: Client C: mappings x; — y; where x; € M,

/I At T, encrypting the mappings

for each x; — y; do

S; Hl(xi)d mod n ;

¢i « Ho(xi,s;) ®yis

end

Send all encrypted mappings x; — ¢; to C.
/I At C, prepare OT requests

for x; € M, do

7 <— random number in Z}, ;

i < 1¢- Hi(z;) modn;

NI R U I NV S

—
e

end

12 Sendallo; to T'.

13 // At T', answer the OT requests for each OT-Req() do
14 ‘ §i<—a§l mod n ;

15 end

16 Send back all §; to C

17 /I At C, recover the mappings
18 M<—0;

19 for z; € M, do

20 Yi ¢ 0; -~ mod n;
21 zi < ¢ ® Ha(xs,7vi) 5
2 M+ M J{zi = z};
23 end

24 return M

-
=

1

B.1 Proof of Theorem 1

Proof: The only message from the client to the translator is o; = r¢H;(z;) mod n (line 10, Algorithm
1). r is randomly chosen by the client from Z; = {z|z € [0,n — 1] A ged(x,n) = 1} while e and H; (z;)
are both known to the translator.

To prove the security of protocol, we show that o; appears like a random number to the translator, i.e.,
Pr(c; = a) = \le for any fixed a € Z},.

First, we sh(;w that for any fixed b € Z, if r is random, then b mod n is also random. This is true
as b € Z;, and therefore ged(b,n) = 1. So, the multiplicative inverse b~ mod n exists. For any fixed

a € Z7,, we have:

Pr(rb mod n =a) =Pr(r=ab™' mod n)
1
|Zx |

as 7 is chosen uniformly random from Z%;.

A similar logic can be applied to the case that 7* mod n is random given a random 7 and a fixed e.
Specifically, we choose e, d such that ed = 1 mod ¢(n) where ¢(n) = (p = 1)(¢ — 1) for n = pq.
Therefore, there exists some k such that ed = k¢(n)+ 1. Moreover, we know that for any element a € Z,
(a®)? mod n = a. This is true as we have a®(n) mod n = 1 and therefore:

a®® mod n = a**™tl mod n

[(a®(n) modn)® modnxa modn] modn

(1* mod n x a) modn

=aq modn=oa
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Combining the above together, we know that r is random and therefore »¢ mod n is also random.
Then, (r® mod n x H(z1))) mod n is random. So, o; appears random to the translator. As a result,
a translator cannot gain any hints about query answer from the client’s message. In the mapping request,
there are k — 1 fake values for each true value in the answer. The probability of each value in the request
being a query answer is at most % Thus, k-protection is enforced.
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