

1

To appear in Proceedings of the 11th International Conference on Quality Software (QSIC 2011),

IEEE Computer Society Press, Los Alamitos, CA (2011)

A Dynamic Fault Localization Technique with Noise Reduction
for Java Programs*

Jian Xu

Department of Computer Science
Zhejiang University
Hangzhou, China
jxu@zju.edu.cn

W. K. Chan
†

Department of Computer Science
City University of Hong Kong
Tat Chee Avenue, Hong Kong

wkchan@cs.cityu.edu.hk

Zhenyu Zhang

State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences

Beijing, China
zhangzy@ios.ac.cn

T. H. Tse

Department of Computer Science
The University of Hong Kong

Pokfulam, Hong Kong
thtse@cs.hku.hk

Shanping Li

Department of Computer Science
Zhejiang University
Hangzhou, China
shan@zju.edu.cn

Abstract—Existing fault localization techniques combine
various program features and similarity coefficients with the
aim of precisely assessing the similarities among the dynamic
spectra of these program features to predict the locations of
faults. Many such techniques estimate the probability of a
particular program feature causing the observed failures.
They ignore the noise introduced by the other features on the
same set of executions that may lead to the observed failures.
In this paper, we propose both the use of chains of key basic
blocks as program features and an innovative similarity coef-
ficient that has noise reduction effect. We have implemented
our proposal in a technique known as MKBC. We have empir-
ically evaluated MKBC using three real-life medium-sized
programs with real faults. The results show that MKBC out-
performs Tarantula, Jaccard, SBI, and Ochiai significantly.

Keywords—fault localization; key block chain; noise
reduction

INTRODUCTION

Fault localization is an important and yet time-
consuming activity in the software development process.
Coverage-based fault localization (CBFL) techniques, also
known as statistical or spectrum-based techniques, have
been developed to alleviate the problem. Better known
examples include Jaccard [2], Tarantula [14], CBI [16],
SOBER [17], and CP [26]

A typical CBFL technique involves a number of phases.
It first selects a set of program features, and then collects the
execution statistics of such features for both passed and
failed executions. By comparing the similarities between
two such sets of statistics for each feature, it estimates the
extents of the program features correlated to a fault, and
ranks the program features accordingly. Thus, two basic
elements that affect the fault localization effectiveness in a
CBFL technique are the choice of the program features and
the similarity coefficient used by the technique.

Existing work has proposed to use nodes [3][15], edges
[19][26], predicates [16][17], sequences of edges [8][18],
sequences of conditionals in predicates [1][27], and data
values [12] as program features. Moreover, the program
locations to collect execution statistics for these features
have been studied [3][8]. At the same time, many similarity
coefficients [2][16][17][24][26] or derived coefficients [19]
[26][27] have been formulated.

Nonetheless, on a closer look at the experimental results
of these techniques, such as [3][14][17][19][26], the mean
fault localization effectiveness, even for medium-sized pro-
grams, is far below 10% when a small portion of the code
(say, 2 percent) is examined. CBFL techniques are still
inadequate in consistently locating program faults with a
high probability.

A CBFL technique abstractly models a program as a set
of features, and estimates the probability of each feature
(such as fault suspiciousness) being related to the observed

 © 2011 IEEE. This material is presented to ensure timely dissemination
of scholarly and technical work. Personal use of this material is permit-
ted. Copyright and all rights therein are retained by authors or by other
copyright holders. All persons copying this information are expected to
adhere to the terms and constraints invoked by each author’s copyright.
In most cases, these works may not be reposted without the explicit
permission of the copyright holder. Permission to reprint / republish this
material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works must be
obtained from the IEEE.

* This research is supported in part by grants from the Natural Science
Foundation of China (project nos. 61003027 and 61073006), a grant
from the General Research Fund of the Research Grants Council of
Hong Kong (project nos. 111410 and 716507), and a strategy research
grant of City University of Hong Kong (project no. 7008039).

† Corresponding author: Dr. W. K. Chan at Department of Computer
Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong.
Tel: (+852) 3442 9684. Fax: (+852) 2788 8614. Email:
wkchan@cs.cityu.edu.hk.

Administrator
 HKU CS Tech Report TR-2011-09

2

failures. Ideally, a program can be statically and completely
partitioned into a set of equivalent classes of these features.
For instance, nodes can be used as an equivalence criterion,
in which case every node in a given program can be
assigned to exactly one partition. Such a partitioning process
may also be applied when edges or predicates are used as a
criterion. Intuitively, the use of a finer-grained partitioning
scheme enables a more sensitive diagnosis. However, not all
kinds of models preserve such a property. For example,
owing to the numerous number of possible choices, a static
approach to constructing partitions such that each partition
contains exactly one path or data value is impractical.
Existing techniques [8][12] resolve to use dynamic parti-
tioning strategies, which only identify a particular program
feature when a program execution exhibits that feature.
Methods using sequence of conditionals, such as DES [27],
allow a static partitioning of predicates into sequences of
conditionals. Nonetheless, to the best of our knowledge,
existing approaches (such as [27]) are limited to the
handling of individual compound predicates. In any case,
the granularity of DES is finer than those of pure predicate-
based counterparts [17]. An adaptive version of DES may
consider all the predicates in a program and enumerate all
possible sequences of decision values formed by these
predicates, but such a simple adaptation is tedious, non-
scalable, and intractable in the presence of loops.

In this paper, we propose a strategy that can statically
divide a Java program into a set of partitions, each of which
typically contains a series of predicates. The granularity of
our method is finer than that of a node-based, edge-based,
predicate-based, or the DES approach, but coarser than that
of a path-based approach.

Our strategy works on an intermediate representation of
the Java language, which can be described in terms of basic
blocks, transition edges, and control flow graphs (CFGs)
[5]. Every such block has at most one atomic predicate. We
assign a sequence of such blocks into the same partition if
the atomic predicate of each block is evaluated to be false.
Then, a sequence of blocks to be executed will be in the
same partition. We refer to such a sequence to as a Key
Block Chain (KBC). Our crucial observation is that KBC
provides precise information to represent the set of
evaluation sequences [27] in the partition. Moreover, KBC
gives clear relationships among statements, basic blocks,
and predicates, which ease the tracing of a fault from the
position of a predicate to a particular statement in the same
block chain.

Any estimate on a particular program feature based on
the result of a full path (that is, the output of an execution) is
affected by the presence of other program features on the
same path. Surprisingly, most existing CBFL techniques do
not directly address this problem. We propose an innovative
similarity coefficient that has a noise reduction effect. For
each evaluation sequence, we estimate the noise factor by
computing the ratio between (a) the percentage of failed
executions that does not exercise the given evaluation
sequence and (b) the percentage of all executions (passed or
failed) that does not exercise the given evaluation sequence.
We subtract this noise factor from an existing similarity

coefficient. We call our technique Minus and Key Block
Chain (MKBC). In this paper, we use the suspiciousness
metric in Tarantula as the existing similarity coefficient. We
note that the use of the suspiciousness metric merely serves
as an illustration of our approach. Our approach is general.

We evaluate MKBC using a controlled experiment, and
compare its effectiveness with those of Jaccard [2], SBI
[24], Ochiai [2], Tarantula [14], DES [27], and CBI [16].
We use jtopas, xml-security, and ant as subject programs,
which are real-life medium-sized programs and contain real
faults in multiple releases. The experimental results show
that, in terms of fault localization effectiveness, MKBC
significantly outperforms all the other techniques studied in
the experiment. For example, when checking no more than 1
percent of the code, the best peer technique (Ochiai) can
find 3.45% of all faults, while MKBC finds 10.35% of them.

The main contribution of this paper is fourfold: (i) It
investigates the use of KBC as feature for fault diagnosis.
(ii) It proposes a formula with an explicit noise reduction
term. (iii) It initiates a new fault localization technique
called MKBC. (iv) It validates MKBC via an experiment.

The rest of this paper is organized as follows. Section II
shows a motivating example. Section III presents our
technique. Section IV presents an experimental evaluation.
Section V and VI review related work and conclude this
paper, respectively.

I. MOTIVATING EXAMPLE

This section uses an example to motivate the use of Key
Block Chains for fault localization. Fig. 1 shows the
program code excerpted from a faulty version of the
program ant, downloaded from the Software-artifact Infra-
structure Repository (SIR) [9]. The functionality of this
code excerpt is to translate the path of a file from OS-format
into VM-format. A fault exists on statement S2, where the
second parameter of the method path.indexOf() should be 1
(rather than 0). In this example, exercising S2 followed by S4
triggers a failure.

1) Jimple

Jimple is an intermediate representation [20][21] of Java.
We observe that Jimple has several desirable properties to
support fault localization. First, Jimple always normalizes
every compound Boolean expression into atomic Boolean
expressions, each of which resides in exactly one basic
block. Second, each basic block contains at most one atomic
Boolean expression. Third, mapping a Boolean expression
in Jimple code to its corresponding statement in Java code is
easy.

The Jimple code of the program excerpt
1 and the control

flow graph (CFG) based on Jimple code are also shown in
Fig. 1. We observe that the compound predicate at S6 is split
into two basic blocks. Also, a basic block B2 contains the
statements S2 and S3. Its preceding block is B1 and its
succeeding blocks are B3 and B4. The connections between a

1
 Note that, to realize the streamline design [20][21] in Jimple, the source

code has been transformed with some branches switched without altering

the program behavior. For example, the condition “index == –1” in S3

is changed to “index != –1” with the corresponding branches swapped.

 3

J
a

v
a

 S
ta

te
m

en
ts

 a
n

d
 J

im
p

le
 S

ta
te

m
en

ts

T
es

t

C
a

se
s

t 1

t 2

t 3

t 4

t 5

t 6

t 7

t 8

t 9

t 1
0

J
a

cc
a
rd

[2
]

S
B

I

[2
4

]

T
a

ra
n

tu
la

[1
4

]

C
B

I

[1
6

]

H
O

L
M

E
S

[8
]

M
in

u
s

(t
h

is
 p

a
p

e
r)

M
K

B
C
–

(t
h

is
 p

a
p

e
r)

M
K

B
C

(t
h

is

p
a

p
er

)

P
a
ss

/F
a

il

F

P

F

P

P

P

P

P

P

P

su
s

r
su

s
r

su
s

r
su

s
r

su
s

r
su

s
r

su
s

r
co

n
f

r
i
f

(
i
s
A
b
s
o
l
u
t
e
)

{

i
n
d
e
x

=

p
a
t
h
.
i
n
d
e
x
O
f
(
F
i
l
e
.
s
e
p
a
r
a
t
o
r
C
h
a
r
,

0
)
;

i
f

(
i
n
d
e
x

=
=

-
1
)

{

r
e
t
u
r
n

p
a
t
h
.
s
u
b
s
t
r
i
n
g
(
1
)

+

"
:
[
0
0
0
0
0
0
]
"
;

}

e
l
s
e

{

d
e
v
i
c
e

=

p
a
t
h
.
s
u
b
s
t
r
i
n
g
(
1
,

i
n
d
e
x
+
+
)
;

}
}

.
.
.

i
f

(
!
i
s
A
b
s
o
l
u
t
e

&
&

d
i
r
e
c
t
o
r
y

!
=

n
u
l
l
)

{

d
i
r
e
c
t
o
r
y
.
t
r
i
m
(
)
;

d
i
r
e
c
t
o
r
y
.
i
n
s
e
r
t
(
0
,

'
.
'
)
;

}

S
1

■

■

■

■

■

■

■

■

■

■

0
.2

6

0

.2

7

0
.5

6

N

/A

5

N
/A

8

0

.5

3

0
.4

4

4

–
0

.0
9

4

S
2

■

■

■

■

■

■

■

■

0
.2

5

5

0
.2

5

5

0
.5

7

5

N
/A

7

N

/A

8

0
.5

7

2

0
.4

4

4

0
.1

6

3

S
3

■

■

■

■

■

■

■

■

0
.2

5

5

0
.2

5

5

0
.5

7

5

N
/A

6

N

/A

8

0
.5

7

2

0
.4

4

4

0
.1

6

3

S
4

■

■

0
.3

3

1

0
.5

1

0

.8

1

N
/A

7

N

/A

8

0
.4

4

4

0
.4

4

4

0
.4

4

1

S
5

■

■

■

■

■

■

0
.1

7

7

0
.2

2

6

0
.4

4

7

N
/A

5

N

/A

8
 –
0

.1
3

7

–
0

.1
3

8

N
/A

8

S
6

■

■

▲

▲

■

▲

■

■

0
.1

1

8

0
.1

3

8

0
.3

6

8

N
/A

1

N

/A

8

–
0

.4
4

8

0
.2

7

7

–
0

.1
5

7

S
7

■

■

■

0

.2
5

5

0
.3

3

3

0
.6

6

3

N
/A

5

N

/A

8

0
.2

7

6

0
.2

7

7

0
.2

7

6

S
8

■

■

■

0

.2
5

5

0
.3

3

3

0
.6

6

3

N
/A

5

N

/A

8

0
.2

7

6

0
.2

7

7

0
.2

7

6

B
l
o
c
k

1
:
[
p
r
e
d
s
:
]

[
s
u
c
c
s
:

2

5
]

.
.
.

1
:

i
f

i
s
A
b
s
o
l
u
t
e

=
=

0

g
o
t
o

i
f

i
s
A
b
s
o
l
u
t
e
!
=
0

.
.
.

 B
l
o
c
k

2
:
[
p
r
e
d
s
:

1
]

[
s
u
c
c
s
:

3

4
]

2
:

$
c
0

=

<
j
a
v
a
.
i
o
.
F
i
l
e
:

c
h
a
r

s
e
p
a
r
a
t
o
r
C
h
a
r
>

2
:

i
n
d
e
x

=

v
i
r
t
u
a
l
i
n
v
o
k
e

p
a
t
h
.

.
.
.

3
:

i
f

i
n
d
e
x

!
=

-
1

g
o
t
o

i
n
d
e
x

=

i
n
d
e
x

+

1

 B
l
o
c
k

3
:
[
p
r
e
d
s
:

2
]

[
s
u
c
c
s
:
]

.
.
.

4
:

r
e
t
u
r
n

$
r
3

 B
l
o
c
k

4
:
[
p
r
e
d
s
:

2
]

[
s
u
c
c
s
:

5
]

5
:

i
n
d
e
x

=

i
n
d
e
x

+

1

5
:

v
i
r
t
u
a
l
i
n
v
o
k
e

p
a
t
h
.

.
.
.

.
.
.

 B
l
o
c
k

5
:
[
p
r
e
d
s
:

1

4
]

[
s
u
c
c
s
:

6

8
]

6
:

i
f

i
s
A
b
s
o
l
u
t
e

!
=

0

g
o
t
o

r
e
t
u
r
n

 B
l
o
c
k

6
:
[
p
r
e
d
s
:

5
]

[
s
u
c
c
s
:

7

8
]

6
:

i
f

d
i
r
e
c
t
o
r
y

=
=

n
u
l
l

g
o
t
o

r
e
t
u
r
n

 B
l
o
c
k

7
:
[
p
r
e
d
s
:

6
]

[
s
u
c
c
s
:

8
]

7
:

v
i
r
t
u
a
l
i
n
v
o
k
e

d
i
r
e
c
t
o
r
y
.

.
.
.

 B
l
o
c
k

8
:
[
p
r
e
d
s
:

5

6

7
]

[
s
u
c
c
s
:

]

r
e
t
u
r
n

B
1

■

■

■

■

■

■

■

■

■

■

P
a
th

s
o

f
H

O
L

M
E

S

1
. B

1

B
5

N
/A

7

B
2

■

■

■

■

■

■

■

■

2
. B

1

B
5

B
6

N
/A

7

3
. B

1

B
5

B
6

B
7

N
/A

7

4
. B

1

B
2

B
3

0
.2

1

2

5
. B

1

B
2

B
4

B
5

N
/A

7

6
. B

1

B
2

B
4

B
5

B
6

N
/A

7

B
3

■

■

7
. B

1

B
2

B
4

B
5

B
6

B
7

0
.2

1

2

P
re

d
ic

a
te

s
a
n

d
 P

a
th

s
o
f

M
K

B
C

B
4

■

■

■

■

■

■

N
1
 {

P
1
,
P

2
}

1
.

B
1

B
5

P
(1

,
5
)

–
0

.5
7

6

2
.

B
1

B
2

B
3

P
(1

,
2
,
3

)
0

.4
4

1

3
.

B
1

B
2

B
4

P
(1

,
2
,
4

)
–

0
.1

3

3

N
2
 {

P
5
,
P

6
}

B
5

■

■

■

■

■

■

■

■

4
.

B
5

B
8

P
(5

,
8
)

–
0

.5
7

6

5
.

B
5

B
6

B
8

P
(5

,
6
,
8

)
–

0
.5

7

6

B
6

■

■

■

■

■

6
.

B
5

B
6

B
7

P
(5

,
6
,
7

)
0

.2
7

2

P
re

d
ic

a
te

s
fo

r
C

B
I

1
.

p
1

0
.0

5

2

B
7

■

■

■

2

.
p

3

0

3

3
.

p
6

0
.2

1

1

%
 o

f
co

d
e

ex
a

m
in

ed
 t

o
 l

o
ca

te
 f

a
u

lt

6
2

.5
%

6

2
.5

%

6
2

.5
%

8

7
.5

%

1
0

0
%

2

5
%

5

0
%

3

7
.5

%

F
ig

u
re

 1
.

A
 f

au
lt

y
 v

er
si

o
n

 o
f

p
ro

g
ra

m
 a

n
t
an

d
 e

ff
ec

ti
v

en
es

s
co

m
p

ar
is

o
n

 o
f

d
if

fe
re

n
t

fa
u

lt
 l

o
ca

li
za

ti
o

n
 t

ec
h
n

iq
u

es

(s
u

s.
:

su
sp

ic
io

u
sn

es
s

o
f

a
st

at
em

en
t/

b
lo

ck
/p

at
h

 b
ei

n
g

 r
el

at
ed

 t
o

 a
 f

au
lt

;
r.

:
ra

n
k

in
g

 o
f

a
st

at
em

en
t/

b
lo

ck
/p

at
h

;
co

n
f.

:
co

n
fi

d
en

ce
 w

it
h
 r

es
p

ec
t

to
 t

ie
 b

re
ak

in
g

).

B
1

B
4

B
3

B
2

B
5

B
6

B
7

B
8

4

basic block and its preceding/succeeding basic blocks are
explicitly captured in Jimple representation. For ease of
presentation, we add a dummy block B8 (marked as a dashed
box) and four edges (marked as dashed arrows) to make the
mapping between the Jimple code and the CFG more
explicit.

We further denote the predicate in a block Bi by Pi and
the corresponding predicate at a statement Si by pi. For
instance, we use P1 to denote predicate for B1 and p3 to
denote predicate for S3.

2) Test Cases and Executions

Fig. 1 shows 10 sample test cases, together with their
pass/fail statuses. The statement- and block-execution
information is also shown in the figure. A cell filled with “■”
indicates that the corresponding statement or block is
exercised by the execution of that test case. A cell filled
with “▲” indicates that the corresponding statement or block
is only partially exercised. Let us take the fourth test case T4
as an example. When the program executes T4, statement S1
is exercised, S6 is partially exercised, and basic blocks B1 and
B5 are exercised. The compound predicate of S6 is split into
two basic blocks B5 and B6 at the Jimple level, where B5
represents the first conditional of S6, which is exercised by
T4; B6 represents the second conditional of S6, which is not
exercised. Consequently, we mark S6 by “▲” in the T4
column. Other test cases can be interpreted similarly.

3) Peer Techniques

 We apply techniques Jaccard [2], SBI [24], Tarantula
[14], CBI [16], and HOLMES [8] on the same example and
compute, for each statement or block, the corresponding
suspiciousness scores and their ranks. They are shown in the
“sus” and “r” columns, respectively. By calculating the value
of expense [24] for each technique, their effectiveness in
locating the fault in S2 is measured by the percentage of code
that must be examined (as recommended by the expense
technique) to include S2. The value of expense is shown in
the “% of code examined to local fault” row.

None of Tarantula, Jaccard, and SBI can rank S2 as the
most suspicious statement. Nonetheless, statements S6, S7,
and S8 are mistakenly deemed as highly suspicious by these
techniques. Intuitively, these statements are considered
dubious because they are closest to the fault and, at the same
time, have been executed by both failed and passed test
cases.

CBI also fails to assign high suspiciousness values to the
predicates p1 and p2, which are the predicates closest to the
faulty position. Apparently, this is because these predicates
have been evaluated to be true by quite a number of passed
test cases. CBI even ranks other predicates such as p6 higher
than the predicates p1 and p2. HOLMES uses paths as a
feature to locate faults. In the example, the 10 test cases
result in seven paths as shown in the “Paths of HOLMES”
section of Fig. 1. We observe that the same predicate may
appear in multiple paths, and a path may contain many
predicates. Obviously, many non-faulty statements need to
be examined before the most fault-relevant paths can be
identified by HOLMES.

4) A Sketch of Our Approach

Our approach consists of three steps. We first construct
KBC predicates as a program feature, then use a similarity
coefficient formula to estimate the fault suspiciousness, and
finally map the feature suspiciousness into block suspicious-
ness.

We traverse the Jimple code block by block, starting
from the first block. We iteratively mark every block con-
taining a predicate until we encounter a block whose last
statement isn’t a predicate. We link all the marked blocks
during this search to form a chain, and clear all the marks.
We then repeat the search. In this way, we partition the
Jimple code into a number of sections, and refer to each
section as a Key Block Chain (KBC). We further extract the
set of predicates from each KBC as a program feature for the
KBC, and refer to each feature as a KBC predicate. In Fig. 1,
for example, we start the search from B1. Because the last
statement in B1 is a predicate, we mark B1 and continue to
traverse B2. B2 is also marked because it also contains a
predicate. We then visit B3, which contains no predicate. As
such, we link blocks B1 and B2 to form a KBC. We then clear
the marks in B1 and B2, and repeat the search at the next
block B4. Note that we do not include B3 into the formed
KBC because it contains no predicate. Finally, we construct
another KBC by linking B5 and B6. We therefore obtain two
sets of KBC predicates, {P1, P2} and {P5, P6}.

A KBC predicate may contain several atomic Boolean
expressions. We use them to construct evaluation sequences
[27] according to their decision results. Given a KBC Ni, let
P(Ni, j) denote the sub-path j of Ni. We compute its suspi-
ciousness score using a formula in the form of “α – β”. The
first term α calculates the ratio between (i) the percentage of
failed executions that exercise P(Ni, j) and (ii) the percentage
of all executions (passed or failed) that exercise P(Ni, j).
Thus, α estimates the probability of exercising P(Ni, j) when
failures occur. We use the suspiciousness metric

 in Tarantula as the similarity

coefficient to compute α. The second term β calculates the
ratio between (iii) the percentage of failed executions that do
not exercise P(Ni, j) and (iv) the percentage of all executions
that do not exercised P(Ni, j). In this way, β estimates the
probability of not exercising P(Ni, j) when failures occur. We

use the term

 to compute β.

As a result, the formula α – β is a more precise estimation of
how much a sub-path P(Ni, j) relates to the observed failures.

Surprisingly, many existing fault suspiciousness formulas
ignore the second term. Attributing it to the nature of noise
reduction, we call our formula Minus. We note that by
substituting P(Ni, j) for a statement Si into the formula, it can
be adapted to work at the statement level. For example, the

suspiciousness of statement S4 can be computed as

 The term 0.80 is due to

Tarantula while the term 0.36 is the noise reduction using
Minus, so that the suspiciousness score of the correct state-
ment S4 is reduced accordingly.

5

We recall that a block may reside on more than one sub-
path under the same KBC predicate. We define the suspi-
ciousness of a block to be the maximal suspiciousness of all
the sub-paths of the KBC predicate that the block resides on.
Moreover, we use the mean value of these suspiciousness
scores as the tie breaker value for the block in case it is in tie
with any other block.

We call our technique Minus and Key Block Chain
(MKBC). For example, the suspiciousness of statement S2 is
finally calculated as (sus = 0.44, conf = 0.16) and (sus =
0.44) by MKBC with and without tie breaking, respectively.
The details are given in Section III.

In the example, we compare five peer techniques with
Minus (which adopts our formula to work on statements),
MKBC– (which adopts our method but works at the KBC
predicate level), and MKBC (with our tie breaking strategy).
As shown in Fig. 1, the expense values [24] of the various
techniques are (from left) 62.5%, 62.5%, 62.5%, 87.5%,
100%, 25%, 50%, and 37.5%, respectively. The example
shows that the use of our formula at either the statement
level or the KBC predicate level, either with or without tie
breaking, can be promising.

II. OUR MODEL

A. Preliminaries

Given a program, we use G(P) = B, E to denote the

control flow graph (CFG) of its Jimple code, where B = B1,

B2, …, Bn is the set of basic blocks [5]. Let T = t1, t2, …, tu

be a set of passed test cases, and T' = t1', t2', …, tv' be a set
of failed test cases.

B. Key Block Chain Model

Our model consists of three major steps: the construction
of KBC predicates as a program feature, the calculation of
suspiciousness scores for the KBC predicates, and the map-
ping of the suspiciousness scores to the blocks.

1) Constructing KBC Predicates as Program Feature

As illustrated in the motivating example, we start from
the first block B1 in the Jimple code, and create an empty
sequence s. We then conduct the following general
procedure: If a block Bi contains a predicate, we append Bi to
s. If Bi contains no predicate, then we output s as a KBC and
reset s to empty. After the checking, we increase the counter
i by 1, and repeat the procedure until the last block has been
processed. Since the process is straightforward, we do not
include the formal algorithm in this section.

Every KBC contains a sequence of blocks, each of which
contains exactly one atomic predicate. This sequence of
atomic predicates is called a KBC predicate. According to
Jimple semantics, if such an atomic predicate in a block is
evaluated to be true, the block following the atomic predicate
(which is a block in the same KBC) will not be executed.
Moreover, the execution will jump to a succeeding block
(defined by the “[succ]” annotation) of that block. For each
KBC, by enumerating the possible underlying decision value
of each atomic predicate, the corresponding KBC predicate
can be mapped to a set of sub-paths in the program. We use
the notation P(Ni, j) to denote such a sub-path j with respect

to the KBC Ni. In Fig. 1, for example, the KBC N1, which
contains the KBC predicates (P1, P2), may be resolved into
three sub-paths P(1, 5), P(1, 2, 3), and P(1, 2, 4), where
P(1, 5) denotes the sub-path B1B5 and so on.

2) Calculating Suspiciousness Scores for Features

To calculate the suspiciousness score of P(Ni, j), which is
denoted by θ(P(Ni, j)), we propose the following equation:

(1)

.

Equation (1) is in the form of “α – β”. The first term α
calculates the ratio between (i) the percentage failed execu-
tions that exercise P(Ni, j) and (ii) the percentage all execu-
tions (passed or failed) that exercise P(Ni, j). This roughly
estimates the extent that the exercising of P(Ni) causes the
observed failures. Similarly, the second term β calculates the
ratio between (iii) the percentage of failed executions that do
not exercise P(Ni, j) and (iv) the percentage all executions
that do not exercise P(Ni, j). In this way, the expression α – β
is a more precise estimation of the extent that the exercising
of P(Ni, j) relates to the observed failures. This expression
represents a change in failure probability from not executing
a path to executing a path, aiming at reducing the effect of
the tailing parts of the first term (that is, exercising some
other sub-paths when we measure the probability based on
P(Ni, j)). Owing to the noise reduction involved, we refer to
equation (1) as Minus.

Consider P(1, 2, 4) in Fig. 1 as an example. %failed(P(1,
2, 4) = 0.5 and %passed(P(1, 2, 4) = 0.625. Hence, α = 0.5 /
(0.5 + 0.625) = 0.44 and β = (1 – 0.5) / (1 – 0.5 + 1 – 0.625)
= 0.57, giving θ(P(1, 2, 4)) = α – β = –0.13.

3) Mapping to Suspiciousness Scores to Blocks

A block may appear in multiple sub-paths. We therefore
define the suspiciousness of a block in a sub-path to be the
maximum of the suspiciousness scores of all the sub-paths of
the same KBC that the block resides on, thus:

 (2)

We choose to use the maximum operator because we aim to
keep a close relationship between the block and the most
effective sub-path that the block resides on.

Finally, we give a tie breaking strategy to resolve tie
cases [14]. We use the mean suspiciousness value of all the
sub-paths of the same KBC that the block resides on as the
tie breaker value of the block. The formula is

 (3)

For example, the tie breaker value of B2 is calculated as
conf(B2) = (0.44 + (–0.13)) / 2 = 0.16.

4) Further Issues
After obtaining the suspiciousness score for every block,

it is simple to compute the suspiciousness score for every
statement. A statement in the source code may be split into

6

multiple Jimple statements, which may belong to different
blocks. We choose the highest suspicious value of all those
Jimple statements to be the suspiciousness value of the
statement at the source code. Finally, we may assign ranks to
statements. Like previous work, the rank of a statement is
defined as the total number of statements whose suspicious-
ness values are higher or equal to it.

Sometimes, a function in a program may contain no
predicate. In that case, we simply add a dummy predicate
that is always evaluated to be false at the end of the first
block, so that the faults in the function will not be
overlooked. We also note that we need only check the last
statement of each block to determine whether it is a predi-
cate. This search can be performed in O(n) time, where n is
the number of blocks in the Jimple code.

III. CONTROLLED EXPERIMENT

In this section, we report a controlled experiment that
evaluates the effectiveness of our techniques and compare
them with peer techniques.

A. Experimental Setup

1) Subject Programs

The experiment uses three real-life programs, namely,
jtopas, xml-security, and ant, as subject programs. We have
downloaded them (including all the faulty versions and
associated test suites) from the SIR site [9]. Table I shows
the descriptive statistics of each subject program, including
the versions, the program size (in LOC), the number of faulty
versions, and the size of the associated test pool. Following
[14], we execute each version with each test case, and input
the entire set of executions to each technique, which will be
described below.

TABLE I. DESCRIPTIVE STATISTICS OF SUBJECT PROGRAMS

Real-Life

Versions

Program

Description
LOC

No. of

Versions

No. of

Test Cases

jtopas 0.4 – 0.6 Text parser 5400 25 207

xml-
security

1.0.4 –

1.0.71

XML signature

and encryption
16800 49 94

ant 1.6 beta Tool building 80500 12 830

Total 86 1131

Following the documentation of SIR [9] and previous

experiments [1][10][17][26], we exclude the versions whose
faults cannot be revealed by any test case. This is because
both our techniques and peer techniques do comparisons on
profiling produced by failed test cases and passed test cases.
In addition, several old program versions such as ant
versions prior to 1.6, which are based on JDK 1.4, are
excluded. Our instrumentation tool, implemented on Soot
[20] version 2.3.0 running on JDK 1.6, does not support
them. We finally use all the remaining 86 faulty versions, as
shown in Table I, in the experiment.

2) Experimental Environment

Our experiments were run on a Ubuntu 8.04 Desktop
system serving a VMware virtual machine with a configura-

tion of a single Intel Core Duo 2.66 GHz CPU, 512 MB
memory, and 20 GB hard disk. Our tool is developed on top
of Soot version 2.3.0 [20]. All the programs and tools are
compiled with JDK 1.6. Test cases are managed by the JUnit
framework version 3. All the work was run automatically
using bash scripts.

3) Peer Techniques

Because our techniques can be adopted to operate at the
statement level, we select four statement-level peer tech-
niques to compare with in the experiment. Tarantula [14]
with its tie breaking strategy is used because the use of a tie
breaking strategy has been shown to give Tarantula a better
result owing to a finer division of ranks. Jaccard [2] and
Ochiai [2], with strong mathematical theory, are shown to be
effective in fault localization. SBI [24] has been adapted
from CBI [16] to statement level. In short, all the four
selected techniques have been validated to be excellent fault
localization techniques by existing research.

4) Effectiveness Metric

Each of these techniques produces a ranked list of all the
executed statements in descending order of their computed
suspiciousness values. The rank of a statement is defined as
the largest number of statements from the top of the list until
and including this statement and all the next following
statements sharing the same suspicious score with it.

Previous work [24] defines the expense metric as the
ratio between the rank of the faulty statement and the total
number of executable statements. We consider, however,
that the use of the number of executed statements as the
denominator in the expense formula is more suitable because
other unrelated statements do not need to be checked in
practice.

At the same time, if a fault is on a non-executable
statement (such as a code omission fault), the use of dynamic
execution information cannot help locate the fault directly.
Following [12], we mark the directly affected statement or an
adjacent executable statement as the faulty position, followed
by applying the expense metric.

5) Experimental Procedure

We compare Jaccard, Ochiai, SBI, and Tarantula with
our techniques. We use the data created from the techniques
described in papers [2], [2], [24], and [14], respectively, and
compare them with MKBC and its variant Minus. Minus is
an adapted technique from MKBC, where we use statements
at the source code level (instead of KBCs) as the program
feature. The aim of the experiment is to study whether
MKBC is an effective technique to locate faults.

In the experiment, we input the entire test pool for each
version to each technique studied and measure their expense
values accordingly.

B. Data Analysis

1) Overall Results

Fig. 2 shows a comparison of overall effectiveness. The
x-axis indicates the percentage of code that needs to be
examined to locate the fault. We also refer to it as the code
examination effort in this paper. The y-axis indicates the
percentage of faults located. Take the curve of MKBC in

7

Fig. 2 as an illustration. MKBC locates 35.63% of all the
faults by examining no more than 10 percent of the code in a
faulty version. The curves of Jaccard, Ochiai, SBI, Tarantula,
and Minus can be interpreted similarly. Note that the curves
of Jaccard and Ochiai are almost completely overlapping.

We observe that MKBC can locate many more faults
than all the others in the code examination range between 0
to 90 percent, and Minus is almost as effective as (and hence
has little advantage over) the other techniques in most

ranges. The latter shows that merely adopting the formula of
equation (1) has marginal advantages or disadvantages over
existing techniques.

Table II shows the detailed results in Fig. 2. It indicates
that, when no more than 1 percent of the code can afford to
be examined, Jaccard, Ochiai, Tarantula, and Minus locates
3.45% of the faults, while SBI does not locate any fault.
MKBC is the best among all the techniques in the
experiment, locating 10.35% of the faults.

Table III presents the minimums (min), maximums
(max), medians, means, and standard derivations (stdev) of
the effectiveness of these techniques on the 86 faulty ver-
sions. Take the first row as an illustration. MKBC can locate
a fault by examining 0.32% of the code in the best case,
while others need to examine more. Overall, the table shows
that MKBC is the best among the six techniques. The results
show that the use of KBC as a feature is very promising.

To further study the relative merits of our techniques, we
compare the effectiveness of MKBC and Minus with every
peer technique. The results are shown in Table IV.

Take the cell in column “MKBC – Tarantula” and row
“< –5%” as an example. It states that, for 34 (39.53%) of the
86 faulty versions, the code examination effort when using
MKBC to locate a fault is less than that when using
Tarantula by more than 5%. Similarly, for the row “> 5%”,
for only 3 (3.49%) of the 86 versions, the code examination
effort of MKBC is greater than that of Tarantula by more
than 5%. For 49 (56.98%) of the faulty versions, the

Figure 2. Overall effectiveness comparison.

TABLE II. OVERALL EFFECTIVENESS

expense MKBC Minus Jaccard [2] Ochiai [2] SBI [24]
Tarantula

[14]

1% 10.35% 3.45% 3.45% 3.45% 0% 3.45%

2% 13.79% 6.90% 6.90% 6.90% 3.45% 6.90%

5% 20.70% 10.34% 12.64% 12.64% 6.90% 10.34%

7% 28.76% 19.54% 20.70% 20.70% 11.49% 17.24%

10% 35.63% 26.44% 26.44% 26.44% 14.94% 21.84%

20% 42.53% 34.48% 34.48% 34.48% 27.59% 33.33%

30% 49.43% 41.38% 41.38% 41.38% 33.33% 41.38%

40% 56.32% 51.72% 49.43% 49.43% 40.23% 49.43%

50% 63.22% 55.17% 52.87% 52.87% 44.83% 52.87%

60% 65.52% 58.62% 56.32% 57.47% 45.98% 55.17%

70% 75.86% 68.97% 66.67% 66.67% 52.87% 66.67%

80% 81.61% 79.31% 75.86% 75.86% 60.92% 77.01%

90% 89.66% 83.91% 81.61% 81.61% 62.07% 82.76%

100% 100% 100% 100% 100% 100% 100%

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%
 o

f
fa

u
lt

s
lo

ca
te

d

% of code examined

Jaccard

Ochiai

Sbi

Tarantula

Minus

MKBC

8

effectiveness between MKBC and Tarantula cannot be
distinguished at a 5% significance level.

We therefore conclude that, on average, at a 5% signific-
ance level, the probability of MKBC performing better than
Tarantula on the subject programs is higher than that of
Tarantula performing better than MKBC. We further vary
the significance level from 5% to 1% and 10% to check the

sensitivity of our result. It shows that the probability of
MKBC performing better than peer techniques is consis-
tently higher than that in the other way round.

2) Results on Individual Subject Programs

We further compare the effectiveness of Minus and
MKBC with peer techniques on each individual subject pro-
gram. Fig. 3 shows the results. Each plot can be interpreted
similar to Fig. 2.

For example, if 10 percent of the code is examined,
MKBC can locate faults in 56.00%, 28.00%, and 25%, and
of the faulty versions of the program xml-security, jtopas, and
ant, respectively; while Minus can locate 48.00%, 18.00%,
and 16.7% of faults, respectively. Tarantula can only locate
36% and 16%, and 16.7% respectively. The results of
Jaccard, Ochiai, and SBI can be interpreted similarly.

We find that MKBC performs consistently better than
peer techniques on xml-security and ant. For jtopas, there is
only a small code examination range that MKBC is less
effective than Minus or Ochiai. Note that in the initial code
examination range, MKBC still performs better than all the
other techniques studied. We conclude that MKBC is prom-
ising on every subject.

C. Performance Analyses

We compare MKBC and Minus with peer techniques in
terms of the run time from profiling to the output of a ranked
list of statements. We run every version 20 times and then
use the average time as the result, which is shown in Table V.

Take the comparison between Minus and Tarantula as an
example. Let TMinus denotes the run time of Minus and
TTarantula denote that of Tarantula. If the ratio TMinus / TTarantula
is more than 1, the performance of Minus is worse than
Tarantula. Consider the cells in column “Minus / Tarantula”
and rows “> 1.1”, “0.9 to 1.1”, “< 0.9”, and “mean”. They
indicate that (a) the run times from profiling to ranking by
Minus are greater than those by Tarantula in 15 faulty
versions by more than 10%, (b) they cannot be distinguished
in 61 faulty versions at a 10% significance level of 10%,
(c) the run times by Minus are less than those by Tarantula in
10 faulty versions by less than 10%, and (d) the mean ratio

TABLE III. STATISTICS OF OVERALL EFFECTIVENESS

 MKBC Minus
Jaccard

[2]
Ochiai [2] SBI [24]

Tarantula

[14]

min 0.32% 0.65% 0.65% 0.65% 1.02% 0.65%

max 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

median 26.83% 38.12% 38.54% 38.54% 61.87% 39.78%

mean 38.72% 45.39% 46.87% 46.73% 58.30% 47.39%

stdev 34.28% 35.17% 36.28% 36.24% 38.37% 35.37%

TABLE IV. COMPARISONS IN OVERALL EFFECTIVENESS

Difference (Percentage Difference) in Overall Effectiveness

MKBC –

Minus

MKBC –

Jaccard [2]

MKBC –

Ochiai [2]

MKBC –

SBI [24]

MKBC –

Tarantula [14]

< –1%
43

(50.00%)

47

(54.65%)

47

(54.65%)

59

(68.60%)

48

(55.81%)

–1%

to 1%

36

(41.86%)

33

(38.37%)

33

(38.37%)

25

(29.07%)

34

(39.53%)

> 1%
7

(8.14%)

6

(6.98%)

6

(6.98%)

2

(2.33%)

4

(4.65%)

< –5%
26

(30.23%)

28

(32.56%)

28

(32.56%)

49

(56.98%)

34

(39.53%)

–5%

to 5%

56

(65.12%)

53

(61.63%)

53

(61.63%)

35

(40.70%)

49

(56.98%)

> 5%
4

(4.65%)

5

(5.81%)

5

(5.81%)

2

(2.33%)

3

(3.49%)

< –10%
20

(23.26%)

22

(25.58%)

22

(25.58%)

36

(41.86%)

21

(24.42%)

–10%

to 10%

64

(74.42%)

61

(70.93%)

61

(70.93%)

48

(55.81%)

63

(73.26%)

> 10%
2

(2.33%)

3

(3.49%)

3

(3.49%)

2

(2.33%)

2

(2.33%)

(a) jtopas

(b) xml-security

(c) ant

Figure 3. Effectiveness on individual programs.

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%
 o

f
fa

u
lt

s
lo

ca
te

d

% of code examined

Jaccard

Ochiai

Sbi

Tarantula

Minus

MKBC
0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%
 o

f
fa

u
lt

s
lo

ca
te

d

% of code examined

Jaccard

Ochiai

Sbi

Tarantula

Minus

MKBC

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%
 o

f
fa

u
lt

s
lo

ca
te

d

% of code examined

Jaccard

Ochiai

Sbi

Tarantula

Minus

MKBC

9

of run times is 1.01. The comparisons among other
techniques can be interpreted similarly.

Considering Tables III to V together, we conclude that
Minus and MKBC can be used in different situations. If we
want to locate faults quickly, Minus is a better choice. Its run
time from profiling to ranking is about the same as other
techniques but can locate a fault by examining less number
of statements than existing peer techniques. On the other
hand, MKBC is much slower than peer techniques, with a
run time almost three times those of the others. However, it
can locate 6% to 8% more faults when examining the same
percentage of code.

D. Threats to Validity and Discussions

We use Soot to insert probes into the Java bytecode. Soot
gives a good solution for specific Java features such as
exception handling. Previous work [11][25] has investigated
on this topic, as exception information in run time contains
plenty of error information, thus providing good support to
fault localization. In this paper, we consider exception han-
dling in programs as normal control flow because Soot is
able to transform a Java program into Jimple and still main-
tain the exception handling structures. Hence, if faults are
located in these “Catch” blocks, the approach in this paper
can still find them.

An interesting strategy is that, since we find ant 1.6 beta
to be our test subject, we also use the latest ant as a build
tool.

Soot 2.3.0 is based on Java 1.5 or higher, but some of our
subject programs are originally based on Java 1.4. We need
to modify these subjects so that they are compatible to Java
1.5 or higher. It entails some modifications, and we have
carefully reviewed the conversion.

The strategy we use to construct a KBC is only one
possible solution among many. Other strategies are also
feasible. We briefly discuss some possible extensions of our
work. The first strategy is to identify blocks containing pre-
dicates that are as long as possible. This strategy is close to
the full path tracking idea used in HOLMES [8]. Such a
strategy, however, requires a search of the longest path from
a graph, which takes more than O(n) time. A second strategy
is to identify blocks containing predicates and use a random
sequence of blocks to construct a chain. Yet another strategy

is to identify sequences of blocks within certain lengths and
split a long chain into several shorter ones. An optimal
length of a block chain is hard to be determined. Moreover,
one obvious limitation of the last two strategies is that they
may knot irrelevant blocks together.

Another important prospect is that KBC can be applied to
any program entity level. In computing, compilers usually
decompose programs into their basic blocks as the first step
in the analysis process. Other languages can also have
streamline representations like Jimple for Java. Applying
KBC to them helps locate faults written in these programs.

IV. RELATED WORK

Tarantula [14] uses the proportions of failed or passed
executions to calculate the suspiciousness of every statement.
Jones et al. [15] further use Tarantula to explore how to
assist multiple developers to debug a program in parallel.
CBI [16] uses predicates as fault indicators to locate faults.
They rank the predicates P according to the probability that
the program under study will fail when P is observed to be
true. Arumuga Nainar et al. [1] use compound Boolean
predicates based on CBI to locate faults. Zhang et al. [27]
show experimentally that short-circuit rules in the evaluation
of Boolean expressions may significantly affect the effec-
tiveness of predicate-based techniques, and propose DES
[27] accordingly. HOLMES [8] uses a full path as a fault
predicator and proposes an iterative way to reduce the cost of
profiling. Jiang and Su [13] propose another way to generate
faulty control flow paths from bug predicators by using a
depth-first search to greedily find paths that connect as many
fault indictors as possible and reducing unlikely faulty paths
to generate fault-related paths interactively. Zhang et al. [26]
develop a CP approach that captures the propagation of
infected program states through edges in a control flow
graph. CP associates suspiciousness scores of control flow
edges to suspiciousness scores of basic blocks to locate
faults. Santelices et al. [19] investigate different program
entities (such as statements, edges, and du-pairs). They show
that integrated results of different entities may perform better
than individual ones. Yilmaz et al. [23] leverage time spectra
as abstractions of program executions. They use them for
functional correctness debugging by identifying program
segments that take a “suspicious” amount of time to execute.

Selecting a set of good test cases is also an important way
to improve the effectiveness of fault localization. Baudry et
al. [6] identify a property known as dynamic basic block to
improve the accuracy of a diagnosis algorithm. Cellier [7]
combines association rules and formal concept analysis to
figuring out whether a failure is due to one statement or
multiple ones.

Abreu et al. [1] propose a new approach to locating faults
in multi-fault programs. We believe that our future work can
incorporate this aspect because the Minus formula appears to
have the potential to insulate the interferences among
multiple faults.

V. CONCLUSION

Various techniques have been proposed in existing
coverage-based fault-localization research. They choose

TABLE V. COMPARISONS OF RUN TIME COSTS

Minus

/Jaccard

Minus

/Ochiai

Minus

/SBI

Minus

/Tarantula

Minus

/MKBC

> 1.1 11 14 12 15 0

0.9 to 1.1 46 53 57 61 0

< 0.9 29 19 17 10 88

mean 0.94 0.98 0.99 1.01 0.37

MKBC

/Jaccard

MKBC

/Ochiai

MKBC

/SBI

MKBC

/Tarantula

MKBC

/Minus

> 1.1 78 82 85 86 86

0.9 to 1.1 7 4 1 0 0

< 0.9 1 0 0 1 1

mean 2.94 3.05 3.06 3.08 3.09

10

different program features, combine some of them, or enrich
individual features with context-sensitive information. They
then compute a ranked list of the suspiciousness of the
program features using different models. It is important to
choose suitable program features and models, as well as
consider the trade-off among them and their computing
costs. On the other hand, in existing problem settings,
similarity coefficients are employed to contrast the feature
spectra in passed and failed executions and pinpoint the
suspicious features.

In this paper, we have proposed a program feature known
as Key Block Chains (KBCs), a suspiciousness estimation
formula known as Minus, and a technique named MKBC.
We have conducted a controlled experiment on three
medium-sized subject programs to evaluate our technique.
The results show that all these three ideas are promising.

Future work may include the study of the localization of
multiple faults in a program, as well as potential generaliza-
tion of our noise reduction technique.

REFERENCES

[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. Spectrum-based

multiple fault localization. In Proceedings of the 24th IEEE/ACM

International Conference on Automated Software Engineering (ASE

2009), pages 88–99. IEEE Computer Society Press, Los Alamitos,

CA, 2009.

[2] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. An evaluation of

similarity coefficients for software fault localization. In Proceedings

of the 12th Pacific Rim International Symposium on Dependable

Computing (PRDC 2006), pages 39–46. IEEE Computer Society

Press, Los Alamitos, CA, 2006.

[3] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the accuracy of

spectrum-based fault localization. In Proceedings of the Testing:

Academic and Industrial Conference: Practice And Research Tech-

niques (TAICPART-MUTATION 2007), pages 89–98. IEEE Computer

Society Press, Los Alamitos, CA, 2007.

[4] P. Arumuga Nainar, T. Chen, J. Rosin, and B. Liblit. Statistical

debugging using compound Boolean predicates. In Proceedings of the

2007 ACM SIGSOFT International Symposium on Software Testing

and Analysis (ISSTA 2007), pages 5–15. ACM Press, New York, NY,

2007.

[5] G. K. Baah, A. Podgurski, and M. J. Harrold. The probabilistic

program dependence graph and its application to fault diagnosis. In

Proceedings of the 2008 ACM SIGSOFT International Symposium on

Software Testing and Analysis (ISSTA 2008), pages 189–200. ACM

Press, New York, NY, 2008.

[6] B. Baudry, F. Fleurey, and Y. Le Traon. Improving test suites for

efficient fault localization. In Proceedings of the 28th International

Conference on Software Engineering (ICSE 2006), pages 82–91.

ACM Press, New York, NY, 2006.

[7] P. Cellier. Formal concept analysis applied to fault localization. In

Companion of the 30th International Conference on Software Engi-

neering (ICSE Companion 2008), pages 991–994. ACM Press, New

York, NY, 2008.

[8] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vaswani.

HOLMES: effective statistical debugging via efficient path profiling.

In Proceedings of the 31st International Conference on Software

Engineering (ICSE 2009), pages 34–44. IEEE Computer Society

Press, Los Alamitos, CA, 2009.

[9] H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled expe-

rimentation with testing techniques: an infrastructure and its potential

impact. Empirical Software Engineering, 10 (4): 405–435, 2005.

[10] S. G. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky.

Selecting a cost-effective test case prioritization technique. Software

Quality Control, 12 (3): 185–210, 2004.

[11] C. Fu and B. G. Ryder. Exception-chain analysis: revealing exception

handling architecture in Java server applications. In Proceedings of

the 29th International Conference on Software Engineering (ICSE

2007), pages 230–239. IEEE Computer Society Press, Los Alamitos,

CA, 2007.

[12] D. Jeffrey, N. Gupta, and R. Gupta. Fault localization using value

replacement. In Proceedings of the 2008 ACM SIGSOFT Interna-

tional Symposium on Software Testing and Analysis (ISSTA 2008),

pages 167–178. ACM Press, New York, NY, 2008.

[13] L. Jiang and Z. Su. Context-aware statistical debugging: from bug

predictors to faulty control flow paths. In Proceedings of the 22nd

IEEE/ACM International Conference on Automated Software

Engineering (ASE 2007), pages 184–193. ACM Press, New York,

NY, 2007.

[14] J. A. Jones and M. J. Harrold. Empirical evaluation of the Tarantula

automatic fault-localization technique. In Proceedings of the 20th

IEEE/ACM International Conference on Automated Software

Engineering (ASE 2005), pages 273–282. ACM Press, New York,

NY, 2005.

[15] J. A. Jones, M. J. Harrold, and J. F. Bowring. Debugging in parallel.

In Proceedings of the 2007 ACM SIGSOFT International Symposium

on Software Testing and Analysis (ISSTA 2007), pages 16–26. ACM

Press, New York, NY, 2007.

[16] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable

statistical bug isolation. In Proceedings of the 2005 ACM SIGPLAN

Conference on Programming Language Design and Implementation

(PLDI 2005), pages 15–26. ACM Press, New York, NY, 2005.

[17] C. Liu, L. Fei, X. Yan, S. P. Midkiff, and J. Han. Statistical debug-

ging: a hypothesis testing-based approach. IEEE Transactions on

Software Engineering, 32 (10): 831–848, 2006.

[18] M. Renieris and S. P. Reiss. Fault localization with nearest neighbor

queries. In Proceedings of the 18th IEEE International Conference on

Automated Software Engineering (ASE 2003), pages 30–39. IEEE

Computer Society Press, Los Alamitos, CA, 2003.

[19] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold. Lightweight

fault-localization using multiple coverage types. In Proceedings of

the 31st International Conference on Software Engineering (ICSE

2009), pages 56–66. IEEE Computer Society Press, Los Alamitos,

CA, 2009.

[20] R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam, and V.

Sundaresan. Soot: a Java bytecode optimization framework. In

Proceedings of the 1999 Conference of the Centre for Advanced

Studies on Collaborative Research (CASCON 1999), page Article No.

13. IBM Press, 1999.

[21] R. Vallée-Rai and L. J. Hendren. Jimple: simplifying Java bytecode

for analyses and transformations. Technical Report 1998-4. Sable

Research Group, McGill University, Montreal, Quebec, Canada,

1998.

[22] W. E. Wong, Y. Qi, L. Zhao, and K.-Y. Cai. Effective fault

localization using code coverage. In Proceedings of the 31st Annual

International Computer Software and Applications Conference

(COMPSAC 2007), volume 1, pages 449–456. IEEE Computer

Society Press, Los Alamitos, CA, 2007.

[23] C. Yilmaz, A. Paradkar, and C. Williams. Time will tell: fault

localization using time spectra. In Proceedings of the 30th

International Conference on Software Engineering (ICSE 2008),

pages 81–90. ACM Press, New York, NY, 2008.

[24] Y. Yu, J. A. Jones, and M. J. Harrold. An empirical study of the

effects of test-suite reduction on fault localization. In Proceedings of

the 30th International Conference on Software Engineering (ICSE

2008), pages 201–210. ACM Press, New York, NY, 2008.

11

[25] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy.

SherLog: error diagnosis by connecting clues from run-time logs. In

Proceedings of the 15th Edition of ASPLOS on Architectural Support

for Programming Languages and Operating Systems (ASPLOS 1010),

pages 143–154. ACM Press, New York, NY, 2010.

[26] Z. Zhang, W. K. Chan, T. H. Tse, B. Jiang, and X. Wang. Capturing

propagation of infected program states. In Proceedings of the 7th

Joint Meeting of the European Software Engineering Conference and

the ACM SIGSOFT International Symposium on Foundations of

Software Engineering (ESEC 2009/FSE-17), pages 43–52. ACM

Press, New York, NY, 2009.

[27] Z. Zhang, B. Jiang, W. K. Chan, T. H. Tse, and X. Wang. Fault

localization through evaluation sequences. Journal of Systems and

Software, 83 (2): 174–187, 2010.

