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A B S T R A C T 

A web service may evolve autonomously, making peer web services in the same service composition uncertain as to 
whether the evolved behaviors are compatible with its original collaborative agreement. Although peer services may wish to 
conduct regression testing to verify the agreed collaboration, the source code of the former service may be inaccessible to 
them. Owing to the black-box nature of peer services, traditional code-based approaches to regression testing are inapplica-
ble. In addition, traditional techniques assume that a regression test suite for verifying a web service is available. The location 
to store a regression test suite is also a problem. On the other hand, we note that the rich interface specifications of a web 
service provide peer services with a means to formulate black-box testing strategies. In this paper, we provide a strategy for 
black-box service-oriented testing. We also formulate new test case prioritization strategies using tags embedded in XML 
messages to reorder regression test cases, and reveal how the test cases use the interface specifications of web services. We 
experimentally evaluate the effectiveness of these black-box strategies in revealing regression faults in modified WS-BPEL 
programs. The results show that the new techniques can have a high chance of outperforming random ordering. Moreover, 
our experiment shows that prioritizing test cases based on WSDL tag coverage can achieve a smaller variance than that based 
on the number of tags in XML messages in regression test cases, even though their overall fault detection rates are similar. 
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1.  Introduction 

The testing and analysis of web services have posed 
new foundational and practical challenges, such as the non- 
observability problem (Canfora and Di Penta, 2006; Mei et 
al., 2009d), the extensive presence of non-executable 

artifacts within and among web services (Mei et al., 2008a, 
2009b), safeguards against malicious messages from 
external parties (Xu et al., 2005; Martin et al., 2007), 
ultra-late binding (Bartolini et al., 2008), and 
cross-organizational issues (Ye et al., 2009). Researchers 
have proposed diverse techniques to address the test case 
selection problem (Martin et al., 2007), the test adequacy 
problem (Mei et al., 2008b, 2009b), the test oracle problem 
(Tsai et al., 2005a; Chan et al., 2007), and the test case 
prioritization problem (Hou et al., 2008; Mei et al., 2009c, 
2009d). 

Regression testing is the de facto activity to address the 
testing problems caused by software evolution (Onoma et 
al., 1998). It aims to detect software faults by retesting 
modified software versions. However, many existing re-
gression testing techniques (such as Harrold et al., 1993; 
Kim and Porter, 2002; Mei et al., 2009c; Rothermel et al., 
2001) assume that the source code is available for 
monitoring (Mei et al., 2009d), and use the coverage 
information of executable artifacts (such as statement 
coverage achieved by individual test cases) to conduct 
regression testing. Nonetheless, the coverage information 
on an external service may not be visible to the service 
composition that utilizes this service. Moreover, even 
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though a technique may insert probing services to collect 
and compute coverage (Mei et al., 2008b, Section 5.3; 
Bartolini et al., 2009), the effect depends on whether the 
service being sampled is willing to provide such informa-
tion accurately. Since such code coverage information 
cannot be assumed to be available, it is vital to consider 
alternative sources of information to facilitate effective 
regression testing. 

Many web services (or services for short) use the Web 
Services Description Language (WSDL) (W3C, 2007a) to 
specify their functional interfaces and message parameters. 
They also use XML documents to represent the messages. 
To quantify the transfer of type-safe XML messages with 
external partners, the WSDL documents of a service further 
embed the types of such messages (Mei et al., 2008b). 

WSDL documents are rich in interface information. 
Moreover, such documents are often observable by external 
services. Despite the richness of such documents, to the 
best of our knowledge, the use of WSDL documents to 
guide regression testing without assuming code availability 
has not been proposed or evaluated in the literature. 

In general, different services developed by the same or 
multiple development teams may be modified indepen-
dently of one another, and the evolution of services may not 
be fully known by every other service. With respect to a 
service maintained by a development team, a service 
maintained by another development team can be regarded 
as a service collaborator or a service consumer of the 
former service. 

Let us consider a scenario that a service A (as a service 
consumer) would like to pair up with a service B, and yet 
the latter service may evolve over time or contain faults 
that lead to failures in some executions of their service 
collaborations. The service consumer A may want to 
execute some tests on the functions provided by B to ensure 
that A’s service composition has not been adversely 
affected (at least from A’s perspective). For instance, a 
company may want to make use of the electronic payment 
gateway provided by a bank to conduct payment 
transactions with the bank. Under this scenario, the internal 
service of the company is the service consumer of the 
payment gateway service of the bank. To the benefit of the 
company, the development team of the internal service 
would like to test its service collaboration with the payment 
gateway service comprehensively. In terms of testing, it 
typically means that many test cases will be used, which is 
costly to execute. 

Furthermore, the program code of B (such as the 
payment gateway service of the bank in the above scenario) 
is generally inaccessible to A (the internal service of the 
company in the above scenario). Therefore, even though A 
may be able to discover and invoke a test suite to conduct 
regression testing on B, the above scenario makes 
impossible the test execution schedule that applies existing 
code-based regression testing techniques (Leung and 
White, 1989; Harrold et al., 1993) in general, and test case 

prioritization techniques (Rothermel et al., 2001) in 
particular, to improve the fault detection rate and achieve 
other goals. 

The WSDL documents of services are accessible among 
peer services. It is well known, however, that black-box 
testing is not adequate and must be supplemented by 
white-box testing (Chen et al., 1998). How well does the 
richness of information embedded in typical WSDL 
documents help alleviate this deficiency in service-oriented 
testing? Is it effective to use the black-box information in 
WSDL documents to guide regression testing to overcome 
the difficulties in testing services with hidden implementa-
tion details such as source code? These questions motivate 
the study presented in this paper. 

We observe that, in a regression test suite for service 
testing, existing test cases may record the associated XML 
messages that have been accepted or returned by a 
(previous) version of the target service. Because the 
associated WSDL documents capture the target service’s 
functions and types of XML message, the tags defined in 
such documents and encoded in individual test cases can be 
filtered through all the WSDL documents. Moreover, we 
observe that a WSDL tag may occur several times in the 
same or different XML messages within a test case. For 
instance, to collect room booking information, multiple 
instances of room information often appear in the XML 
messages. 

Following up on these observations, we propose two 
aspects in formulating test case prioritization techniques. 
The first aspect to make use of the tags in XML messages 
in relation to the WSDL documents of the service under 
test. We propose the use of WSDL tag coverage statistics 
and WSDL tag occurrence statistics. Based on these two 
statistics, we can cluster the test cases and iteratively select 
them from the sequence of clusters. The second aspect is to 
define the order of the sequence of clusters. There are many 
ways to do so, including simple orderings such as 
randomization, sorting, as well as more advanced sampling 
strategies. To facilitate further comparison of future 
research, we choose a simple strategy (namely, sorting 
according to the count statistics) so that researchers can 
easily compare it with their own strategies in the context of 
service regression testing. 

Following these directions, we formulate four priori-
tization techniques as proofs of the concepts. We further 
conduct an empirical study on a suite (from Mei et al., 

2009d) of WS-BPEL applications (OASIS, 2007) using 
both adequate test suites and random test suites to verify 
the effectiveness of our techniques. The results show that 
our techniques can have high chances of outperforming 
random ordering. Moreover, our experiment shows that 
prioritizing test cases based on WSDL tag coverage by 
regression test cases can achieve a smaller variance than 
that based on the number of WSDL tag occurrences 
resulting from regression test cases, even though their 
overall fault detection rates are similar. Our experiment 
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also shows that the fault detection rates of our techniques 
on the subject applications can be less effective than 
white-box techniques, but this finding is not statistically 
significant. 

Techniques for the construction of effective regression 
test suites are not within the scope of this paper. We appre-
ciate that invalid test cases can be costly because they still 
require the execution of the service under test despite the 
lack of fruitful results. We assume that all the test cases in a 
given regression test suite are valid. Invalid regression test 
cases can be removed, for instance, using the information in 
the fault handler messages returned by the service, or using 
the WSDL documents of the services to validate the format 
of the test cases in advance. Once a test case has been 
identified to be invalid, it can be permanently removed 
from the regression test suite for that service. Thus, during 
the next regression testing of the service (without knowing 
in advance whether the service has evolved), the test case 
does not need to be considered in test case prioritization. 

Existing techniques, such as Rothermel et al. (2001) and 
Mei et al. (2009d), assume that information on regression 
test cases is already available. In service-oriented applica-
tions, however, since the coordination program may use 
both in-house and external services to implement the func-
tionality, the test suite for evaluating a service composition 
needs to be determined dynamically before each round of 
testing. We will, therefore, discuss how to model the entire 
testing procedure in this paper. 

The main contribution of this paper with its preliminary 
version (Mei et al., 2009c) is threefold: (i) We propose a 
new set of black-box techniques to prioritize test cases for 
regression testing of services having observable and rich 
content interface. It eases the problem of autonomous 
evolution of individual services in service compositions, so 
that peer services can gain confidence on the service under 
test with lower cost in regression testing. Our technique is 
particularly useful when the source code of the service 
under test is not available or is too costly to obtain. (ii) We 
address the challenges in performing black-box regression 
testing for service-oriented applications, and develop a 
strategy to facilitate such testing. (iii) We report the first 
controlled experimental evaluation of the effectiveness of 
black-box regression testing in the context of service 
testing. Our empirical results indicate that the use of the 
information captured in WSDL documents (paired with 
regression test suites) is a promising way to lower the cost 
of quality assurance of workflow services. Our empirical 
results also indicate that the different partitions generated 
according to the different perspectives (white-box coverage 
or black-box coverage information) have different effects 
on the fault detection rates for different kinds of faults. 

The rest of the paper is organized as follows: Section 2 
introduces the foundations of test case prioritization. Sec-
tion 3 introduces the preliminaries of our approach through 
a running service scenario. Section 4 discusses the 
challenges in regression testing of services, and presents 

new test case prioritization techniques for regression testing 
of services. Section 5 presents an experiment design and its 
results to evaluate our proposal. Section 6 presents the 
discussions, Section 7 reviews the related work, and finally, 
Section 8 concludes the paper and discusses future work. 

2.  Preliminaries 

This section introduces the terminology of test case 
prioritization. 

Test case prioritization (Rothermel et al., 2001) is a 
kind of regression testing technique (Li et al., 2007). 
Through the use of information from previous rounds of 
software evaluation, we can design techniques to rerun the 
test cases to achieve certain goals (such as to increase the 
fault detection rate of a test suite). We adopt the test case 
permutation problem from Rothermel et al. (2001) as 
follows: 

Given: A test suite T; the set of permutations PT of T; 
and a function f from PT to real numbers. (For instance, f 
may calculate the fault detection rate of a permutation of T.) 

Problem: Find T’ ∈ PT such that ∀T’’ ∈ PT, 
f (T’) ≥ f (T’’). 

The Average Percentage of Faults Detected (APFD) 
(Elbaum et al., 2002) measures the weighted average of the 
percentage of faults detected over the life of a test suite. 
APFD has been widely used in regression testing research. 
As Elbaum et al. (2002) point out, a higher APFD value 
implies a better fault detection rate. Let T be a test suite 
containing n test cases, and F be a set of m faults revealed 
by T. Let TFi be the index of the first test case in a 
permutation T’ of T that reveals fault i. The APFD value for 
test suite T’ is defined as follows: 

nnm

TFTFTF
APFD m

2

1...
1 21 ++++−=  

From this formula, we observe that APFD treats all 
faults equally. We further adopt an example from Mei et al. 
(2009c) to show how APFD measures the fault detection 
rates of different test suite permutations, as illustrated in 
Figure 1. The left-hand table shows the faults that test cases 
tA to tE can detect. T1 tB, tA, tD, tC, tE and T2 tC, tD, tE, tA, tB 
are two permutations of tA to tE. The APFD measures for T1 

and T2 are given in Figures 1(a) and (b), respectively. 

3.  A scenario of service interaction 

This section presents the scenario of a running service 
and introduces the preliminaries of our approach. 

Let us consider a HotelBooking service adapted from the 
TripHandling project (IBM, 2006). Figure 2 depicts its 
control flow using an activity diagram in UML. A node 
represents an activity and a link represents a transition 
between two activities. We also annotate the nodes with 
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information (such as an XPath) extracted from the program. 
We label the nodes as Ai for i = 1–8. The service aims to 
find a hotel room whose price is not more than a ceiling set 
by the user. 

 

 
Figure 2. Activity diagram for HotelBooking. 

 
 

The service needs to handle the information in the reply 
messages from different hotels. An XML schema hotel for 
such messages is shown in Figure 3. A hotel has two types 
of room: doubleroom (line 3) and singleroom (line 4). Both 
doubleroom and singleroom are defined by the type room 
(lines 6–9). This XML schema is kept in a WSDL docu-
ment. For a given service, there may be multiple WSDL 
documents (having relationships with one another) to 
define the set of service operations and message data types. 
For example, the schema of hotel and the schema of room 
may be defined in two different WSDL documents. For 
simplicity, however, we will simply show one XML 
schema in one WSDL document. Furthermore, we will use 
WSDL to refer to all the .wsdl and .xsd files (including 
local and remote files) that the master .wsdl of the web 

services points to. 
 

<xsd:complexType name="hotel"> 

   <xsd:element name="name" type="xsd:string"/> 

   <xsd:element name="doubleroom" type="xsd:room"/> 

   <xsd:element name="singleroom" type="xsd:room" /> 

</xsd:complexType> 

<xsd:complexType name="room"> 

   <xsd:element name="roomno" type="xsd:int" /> 

   <xsd:element name="price" type="xsd:int"/> 

</xsd:complexType> 

Figure 3. XML schema hotel in WSDL document. 

As we have highlighted in Section 1, in such 
cross-service scenarios, the internal model of a service 
(Figure 2) is unobservable by another service that wants to 
conduct regression (or conformance) test on the former 
service (to check whether the former service still conforms 
to the already established interoperability requirements 
with the latter service). Figure 4 depicts this problem. 

Suppose the TripHandling service (the rightmost part of 
Figure 4) needs to invoke both the HotelBooking and 
FlightBooking services to handle the user’s trip arrange-
ment request. TripHandling may wish to run a regression 
test suite to assure the quality of HotelBooking inside its 
service composition. A test on such a service is usually 
done by sending request messages followed by receiving 
and handling response messages. Both the request and re-
sponse messages are in XML format. These XML messages 
are visible to both TripHandling and HotelBooking, and the 
WSDL documents can be accessed publicly. However, the 
internal mechanism (see Figure 2) of HotelBooking service 
is hidden from TripHandling. 

4.  Test case prioritization 

This section demonstrates how we adapt coverage-based 
test case prioritization strategy to formulate new prioritiza-
tion techniques using WSDL information. 

XQ: XPath Query
XQ(Variable, Exp): XPath Query with input variable and XPath expression.

Input: 
RoomPrice
Output: 
BookingResult

RoomPrice = 
XQ

(HotelInformation, 
//price/)

if Price ≥ XQ(HotelInformation, //price/)

Input: BookRequest

A4:
Validate

Price

A5: Fault Handling

A6: Assign RoomPrice

A7: Invoke HotelBookService

A8: Reply HotelBookResponse

Price= 
XQ(BookRequest, //price/)

Input:    Price
Output: HotelInformation

No Yes

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

0
10
20
30
40
50
60
70
80
90

100

0.0 0.2 0.4 0.6 0.8 1.0 

P
er

ce
nt

 D
et

ec
te

d 
F

au
lt

s

Test Suite Fraction

0
10
20
30
40
50
60
70
80
90

100

0.0 0.2 0.4 0.6 0.8 1.0 

P
er

ce
nt

 D
et

ec
te

d 
F

au
lt

s

Test Suite Fraction
(a) APFD for test suite T1 (b) APFD for test suite T2

APFD = 47.5% APFD = 75.0%

Test Case
Fault

f1 f2 f3 f4 f5 f6 f7 f8

tA • • •

tB

tC • • • •

tD • • •

tE • •

Example on test suite and faults exposed

T1: tB, tA, tD, tC, tE T2: tC, tD, tE, tA, tB  
Figure 1. Example illustrating the measure (from Mei et al. (2009c, 2009d)). 
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<hotel>
<name>Times</name>
<doubleroom>

<roomno>R101</roomno>
<price>180</price>

</doubleroom>     
<doubleroom>

<roomno>R103</roomno>
<price>150</price>

</doubleroom>
<singleroom>

<roomno>R106</roomno>
<price>120</Price>

</singleroom>
</hotel >

Test Case 1 Test Case 2 Test Case 3

Test Case 6

<hotel>
<name>Times</name>
<doubleroom>

<roomno>R103</roomno>
<price>150</price>

</doubleroom>
<singleroom>

<roomno>R106</roomno>
<price>120</Price>

</singleroom>
</hotel >

<hotel>
<name>Times</name>
<doubleroom></doubleroom>
<singleroom>

<roomno></roomno>
<price>100</Price>

</singleroom>
</hotel >

<hotel>
<name>Times</name>
<doubleroom></doubleroom>
<singleroom></singleroom>

</hotel >

Test Case 5

<hotel>
</hotel >

Test Case 7

null

<hotel>
<name>Times</name>
<doubleroom></doubleroom>
<singleroom>

<roomno>R106</roomno>
<price>120</Price>

</singleroom>
</hotel >

Test Case 4

 
Figure 5. XML messages for HotelInformation used in XQ(HotelInformation, //price/). 

4.1. Motivating example 

Let us consider seven test cases, in which the message 
has a price tag with the following values: 

Test case 1 (t1): Price = 200 Test case 2 (t2): Price = 160 

Test case 3 (t3): Price = 150 Test case 4 (t4): Price = 100 

Test case 5 (t5): Price = 50 Test case 6 (t6): Price = 0 

Test case 7 (t7): Price = −100 

Figure 5 shows the XML messages for HotelInformation 
received in an XPath query (HotelInformation, //price/) by 
executing test cases t1–t7 on the HotelBooking service. 

Our scenario further assumes that HotelBookService at 
A7 fails in handling the fourth test case (t4) because no 
available room satisfies this price (that is, the value kept by 

the message content RoomPrice). Therefore, the branch A7, 
A5 in Figure 2 is covered by t4. The activity coverage and 
workflow transition coverage of these test cases are 
summarized in Tables 1 and 2, respectively. We use a “•” 
to represent the item that has been covered by a test case. 

We have the following observations from Tables 1 
and 2: (i) The respective coverage scores of the activities 
by t5–t7 are identical; the same is true for the coverage of 
their transitions. (ii) The numbers of covered activities are 
identical for t1–t4; the same is true for their transitions. 
(iii) Suppose t1 is first selected; using the “additional” 
coverage information (Rothermel et al., 2001), the 
remaining covered activities or transitions for t4–t7 are the 
same, while those for t2 and t3 are 0. In such a tie case, 
existing test case prioritization techniques such as 

HotelBooking service

No Yes

A4:
Validate

Price

A5: Fault 
Handling

A6: Assign RoomPrice

A7: Invoke BookHotel

A8: Reply 
HotelBookResponse

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

TripHandling service
book hotel request

book hotel response

A2: Book Hotel A3: Book Flight

A4: Reply

A1: Receive TripRequest

XML messages

see example 
in Figure 2

WSDL of 
HotelBooking

Use Regression Test Suite 
for HotelBooking

Invoking 
HotelBooking Service

see example 
in Figure 3

see example 
in Figure 5

 
Figure 4. Service interaction scenario. 
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Figure 6. UML sequence diagram for black-box service-oriented testing. 

Rothermel et al. (2001) simply order them randomly to 
break the tie. As we have discussed in Section 1, such 
coverage data may not be observable by the service 
consumer in a service environment. Therefore, even though 
these statistics help prioritize test cases effectively, testers 
may find them impractical to obtain. 

 
Table 1. Activity coverage by t1–t7. 

Activity t1 t2 t3 t4 t5 t6 t7

A1 • • • • • • • 

A2 • • • • • • • 

A3 • • • • • • • 

A4 • • • • • • • 

A5    • • • • 

A6 • • • •    

A7 • • • •    

A8 • • •     

Total 7 7 7 7 5 5 5 
 

 
Table 2. Transition coverage by t1–t7. 

Transition t1 t2 t3 t4 t5 t6 t7

A1, A2 • • • • • • • 

A2, A3 • • • • • • • 

A3, A4 • • • • • • • 

A4, A5     • • • 

A4, A6 • • • •    

A6, A7 • • • • • • • 

A7, A8 • • •     

A7, A5    •    

Total 6 6 6 6 5 5 5 
 
Every XML message resulting from a test case is of the 

form “<tag> ... </tag>”, where <tag> is a WSDL tag. If a 

regression test case contains an XML message with a 
WSDL tag <tag>, we say that <tag> has been covered by 
the test case. Table 3 summarizes the coverage of the 
WSDL tags by test cases t1–t7 for the service interaction 
scenario. The WSDL tag coverage scores by t5–t6 are 
different. Similarly, the coverage by t1 and t2 are different 
from that of t3 and t4. If t1 is first selected, since there is a 
reset procedure for coverage information, the remaining 
covered WSDL tags for t3–t7 are still different (Rothermel 
et al., 2001). These observations motivate us to study the 
use of WSDL tag coverage in prioritizing test cases. 

However, t1 and t2 report the same coverage from 
Tables 1–3. Since there can be duplicated WSDL tags in an 
XML message (such as the two <doubleroom> tags in the 
reply message for test case 1 in Figure 5), we further count 
the number of occurrences of WSDL tags in Table 4. Using 
the number of WSDL tag occurrences, we can further 
differentiate between t1 and t2. 

 
Table 3. WSDL tag coverage by t1–t7. 

Element t1 t2 t3 t4 t5 t6 t7

hotel • • • • • •  

name • • • • •   

doubleroom • • • • •   

singleroom • • • • •   

room (doubleroom) • • • • •   

roomno 
(doubleroom) 

• •      

price (doubleroom) • •      

room (singleroom) • • • • •   

roomno 
(singleroom) 

• • • •    

price (singleroom) • • • •    

Total 10 10 8 8 6 1 0 
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As we have described in Section 1, peer services in a 

service composition may not have access to the source code 
of a target service. To know whether the target service still 
exhibits the desirable functions previously demonstrated in 
a service composition, peer services may run regression test 
suites on the target service. We explore the coverage of 
WSDL documents in our test case prioritization techniques 
with the intent to detect failures of the target services faster 
than random ordering. Moreover, in cases where white-box 
coverage information cannot be visible, our techniques can 
be used as replacements; otherwise, only random ordering 
can be adopted in such situations. 

 
Table 4. WSDL tag occurrences resulting from t1–t7. 

Element t1 t2 t3 t4 t5 t6 t7

hotel 1 1 1 1 1 1 0 
name 1 1 1 1 1 0 0 

doubleroom 2 1 1 1 1 0 0 
singleroom 1 1 1 1 1 0 0 

room (doubleroom) 2 1 1 1 1 0 0 
roomno 

(doubleroom) 2 1 0 0 0 0 0 

price (doubleroom) 2 1 0 0 0 0 0 
room (singleroom) 1 1 1 1 1 0 0 

roomno 
(singleroom) 1 1 1 1 0 0 0 

price (singleroom) 1 1 1 1 0 0 0 
Total 14 10 8 8 6 1 0 

4.2. Black-box service-oriented testing 

This section presents our black-box service-oriented 
testing strategy. 

When considering testing scenarios of individual 
services, some test suites can be provided by third parties 
such as service consumers, or from public registers that 
record the invocations of services. On the other hand, test 
suites may not be provided in full to service consumers For 
example, some test cases may require a reset operation of 
the service contexts, and some may incur a charge. The 
utilization of test cases and test suites should therefore be 
more flexible and adaptive to facilitate the testing 
procedure. 

The advantage of defining each major step of regression 
testing as a service is that such services can be dynamically 
changed and, furthermore, each service may be provided by 
a different service provider. The service representation of 
these steps provides service-oriented testers with a more 
flexible way to configure the regression testing procedure. 
For example, since the test suite for evaluating a service 
may be dynamically changed, we need to collect the latest 
version of a test suite from time to time, such as before 
starting a new round of regression test. Provision in the 
form of a service is therefore useful. 

We first present formal definitions of the roles in 
black-box service-oriented testing. 

Definition 1 (Test Case Service and Test Suite 
Service). A test case service tcs is a triple url, t, s, where 
url is the location of the WSDL document of tcs, and t is 
the test case that can be used to evaluate service s. A test 
suite service tss is a triple url, TS, s, where url is the 
location of tss, TS is a collection of test case services, each 
of which can evaluate service s. 

Suppose we have a service s' that holds the test suites of 
another service s. We consider each test suite T in s' as a 
service. Therefore, s' can discover T by asking s about its 
test suite service by, for instance, finding the test suite 
service location in the interface specification of s. 

Definition 2 (TCP Service and TCP Metrics Service). 
A test case prioritization (or TCP) service tcps is a triple 
url, tcp, tcpms, where url is the location of the WSDL 
document of tcps, tcp is the test case prioritization 
technique used, and tcpms is the metrics service supporting 
tcp. 

Definition 3 (Target Service). A target service ts is a 
tuple s, url, where s is the service that needs to be tested 
and url is the location of the WSDL document of s. 

Definition 4 (Test Monitoring Service). A test 
monitoring service tms is a triple url, s, Ψ, where url is 
the location of the WSDL document of tms, s is the service 
monitored by tms, and Ψ records the execution information 
of s, such as the sequence of exchange messages. 

Definition 5 (RT Service). A regression testing (or RT) 
service rts is a tuple url, ts, tss, tcps, tcpms, where url is 
the location of the WSDL document of rts, ts is the target 
service to be evaluated by using rts, tss is the test suite 
service that can be used to request for the test suite to 
evaluate ts, tcps is the test case prioritization service used to 
reorder test cases in tss, and tcpms is the prioritization 
metrics used by tcps. 

Based on the above definitions of participating roles, we 
further propose the strategy of black-box service-oriented 
testing through the UML sequence diagram in Figure 6. We 
briefly explain the invocation sequence of this diagram. 
Regression Testing (RT) Service first collects a test suite 
from Test Suite Service, and then invokes Test Case 
Prioritization (TCP) Service to reorder this test suite. TCP 
Service further invokes TCP Metrics Service when 
calculating the weights of individual test cases in the test 
suite. TCP Service also needs to retrieve execution 
information on the test suite. After that, RT Service 
executes the reordered test suite on Target Service and, at 
the same time, the execution information (such as the 
message sequence) is recorded by Test Monitor Service. 

In general, conducting a test on a service may involve 
multiple test monitors, multiple test cases, multiple TCP 
services, and multiple metric services. Ideally, the 
combination of such services can be changed dynamically 
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and adaptively. It poses a workload demand on the 
underlying infrastructure to provide necessary computation 
and storage resources as well as the necessary bandwidth 
for different services to communicate efficiently. However, 
the variation of different combinations may pose very 
different workload demands. Putting these services in a 
cloud computing environment (Mei et al., 2008c) allows 
the target test (which is conceptually a service composition) 
to use the resources for support without bearing the cost of 
the underlying infrastructure when some resources are not 
used. For instance, if a particular test requires only one test 
monitor and demands to execute merely one percent of all 
applicable test cases, the provider of the service composi-
tion does not need to pay the charge for accommodating all 
test monitors and need not pay for the provision to keep or 
initialize the other 99 percent of applicable test cases. In the 
rest of the paper, we will present how to conduct test case 
prioritization for black-box services. 

4.3. Our prioritization techniques 

In this section, we first briefly review representative test 
case prioritization techniques for regression testing, and 
then introduce our adaptation. Among them, M1–M6 are 
adopted from Rothermel et al. (2001). 

To study the effectiveness and tradeoffs of different 
techniques, we follow the styles of Elbaum et al. (2002) 
and Rothermel et al. (2001) in comparing other control 
techniques with ours. All the techniques and examples are 
listed in Table 5. Techniques M1–M6, representing 
random, optimal, total-statement, additional-statement, 
total- branch, and additional-branch, respectively, are taken 
from Rothermel et al. (2001). 

Many WSDL documents define XML schemas used by 
services. Each XML schema contains a set of elements. 
Intuitively, the coverage information on these WSDL tags 
reveals the usage of the internal messages among activities. 

 
Table 5. Prioritization techniques and examples. 

Category Name Index t1 t2 t3 t4 t5 t6 t7

Benchmark 
Random M1 6 7 3 4 5 1 2

Optimal  M2 – – – – – – –

Traditional 
White-Box 

Total-Activity M3 1 3 4 2 5 7 6

Additional-Activity M4 1 3 5 2 4 6 7

Total-Transition M5 2 3 4 1 5 6 7

Additional-Transition M6 1 6 4 2 3 7 5

Our 
Black-Box 

Ascending-WSDL-TagCover M7 5 7 6 4 3 2 1

Descending-WSDL-TagCover M8 1 2 3 7 4 5 6

Ascending-WSDL-TagCount M9 7 6 5 4 3 2 1

Descending-WSDL-TagCount M10 1 2 3 7 4 5 6

 
The coverage of all tags in a WSDL document may be 

easily satisfied (as illustrated, for instance, by t1 or t2 in 
Table 3). If a technique schedules test cases in the order of 
tag coverage of the WSDL document, then t1 or t2 will be 
selected first. Therefore, quantifying the tag coverage of 

WSDL documents provides a new way to explore the 
partitioning of test cases for service-oriented regression 
testing. 

Intuitively, test cases with different WSDL tag coverage 
scores may indicate different types of messages (noting that 
although we have recorded the sequence of messages for a 
test case, the WSDL tags do not differentiate such 
sequences). We observe that a reply to a normal service 
invocation (which may include, say, a user profile indicating 
name, age, and other user information in XML format with a 
large number of WSDL tags) may provide more message 
contents than a reply to an abnormal service invocation 
(which often contains failure information only). WSDL tag 
coverage provides a feasible way to quantify the messages. 
The ordering generated according to such quantification 
may help achieve the following goal: 

If testers think that the failures are triggered by normal 
service invocations, they can generate orderings in 
ascending number of WSDL tags in test cases. On the other 
hand, if testers think that the failures are more likely to be 
triggered by abnormal service invocations, they can 
generate orderings in descending number of WSDL tags in 
test cases. Based on the above analysis, we propose two 
techniques, namely M7 and M8. 

M7: Ascending WSDL tag coverage prioritization 
(Ascending-WSDL-TagCover). This technique first parti-
tions the test suite into groups where test cases in the same 
group have the same WSDL tag coverage, then sorts the 
groups in ascending order of the number of tags covered by 
a test case, and finally selects test cases iteratively from the 
ordered sequence of groups. (For each iteration, M7 selects 
one test case randomly from each group.) 

M8: Descending WSDL tag coverage prioritization 
(Descending-WSDL-TagCover). This technique is the 
same as Ascending-WSDL-TagCover, except that it sorts 
the groups in descending order (instead of ascending order) 
of the WSDL tag coverage of each test case. 

M7 and M8 examine the effect of WSDL tag coverage 
by a test case during test case prioritization for services. 
Both techniques include a grouping phase that partitions the 
test suite into groups. During the grouping phase, we count 
multiple occurrences of the same WSDL tag only once. In 
this way, two test cases in the same group have the same 
WSDL tag coverage (while their actual number of WSDL 
tags may be different). We then iteratively select test cases 
from each group. For example, possible prioritization 
orders for WSDL tag coverage by t1–t7 according to M7 
and M8 may be t7, t6, t5, t3, t4, t2, t1 and t2, t1, t3, t4, t5, t6, t7, 
respectively. 

In the context of black-box testing, the internal structure 
of a service-oriented program is not known. Thus, it is 
impossible to know the relative importance of different tags 
from the perspective of the technique. Without further 
information, M7 and M8 consider that the coverage of one 
tag is as important as the coverage of another. Such an 
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assumption also applies to M9 and M10. Of course, in case 
there is any knowledge on the internal structure of the 
service-oriented program, we may differentiate among 
various tags according to their usages by the service- 
oriented program, and design appropriate techniques. 
However, this will be beyond the scope of black-box 
testing. 

Next, we propose two techniques (M9 and M10) to 
prioritize test cases according to the number of occurrences 
of WSDL tags in each test case. The basic motivation of 
M9 and M10 is the same as that of M7 and M8, and hence 
we do not repeat the description here. However, M9 and 
M10 count the number of WSDL tag occurrences resulting 
from each test case, rather than the WSDL tag coverage by 
each test case. This handling can differentiate tie cases 
where multiple test cases have the same WSDL tag 
coverage but different WSDL tag occurrences. 

M9: Ascending WSDL tag occurrence prioritization 
(Ascending-WSDL-TagCount). This technique first parti-
tions a test suite into groups where test cases in the same 
group cover the same occurrences of WSDL tags, then sorts 
the groups in ascending order of the occurrence of tags 
covered by a test case, and finally selects test cases itera-
tively from groups. In each iteration, M9 selects one test 
case randomly from each group. 

M10: Descending WSDL tag coverage prioritization 
(Descending-WSDL-TagCount). This technique is the 
same as Ascending-WSDL-TagCount, except that it sorts 
the groups in the descending order (instead of ascending 
order) of the occurrence of tags covered by a test case. 

For instance, based on M9 and M10, possible prioritiza-
tion orders for WSDL tag occurrence resulting from t1–t7 

are t7, t6, t5, t4, t3, t2, t1 and t1, t2, t4, t3, t5, t6, t7, 
respectively. 

Figure 7 further summarizes the difference between 
black-box testing techniques (M7−M10) and conventional 
(white-box) techniques (M3−M6). The figure shows that 
our black-box testing techniques only require interactive 
messages and the corresponding WSDL documents (as 
demonstrated in Section 3). In contrast, white-box testing 
techniques require the source programs of the services 
under test. Our techniques can be applied to services that 
may evolve over time. We assume that any given service 
provides a public test suite for consumers to verify its 
functionality and coordination. In case this is not provided, 
however, we may randomly create a test suite according to 
its public WSDL documentations (such as those stored in 
UDDI registries). 

Moreover, to apply the techniques, we can reconstruct 
the document model (such as W3C, 2007a) based on the set 
of XML data. Our techniques can therefore be applied even 
when no WSDL is available for some application scenarios. 

A valid test input with a new test result requires a test 
oracle to determine its correctness. We further assume that 
there is a test oracle. For instance, the developers or users 
of peer services may judge whether the returned test results 
are useful or meaningful. 

Compared to our technique, a traditional function 
coverage prioritization strategy does not consider 
parametrical values or their dynamic types; nor does it 
determine the coverage achieved by individual test cases 
based on “tags”. For instance, when polymorphic objects 
are used as parameters of a function, traditional techniques 
simply ignore this information, whereas such information 
has been considered in our techniques when covering 

WSDL of 
HotelBooking

HotelBooking service

No Yes

A4:
Validate

Price

A5: Fault 
Handling

A6: Assign RoomPrice

A7: Invoke BookHotel

A8: Reply 
HotelBookResponse

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

TripHandling service
book hotel request

book hotel response

A2: Book Hotel A3: Book Flight

A4: Reply

A1: Receive TripRequest

XML messages

Required knowledge 
for white-box testing

Required knowledge 
for black-box testing

Figure 7. Different required knowledge for black- and white-box testing. 
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different tags of the XML schema captured in WSDL 
documents. Furthermore, while the collection of such 
information in traditional programs is costly, we observe 
that this information is available in services as a byproduct 
of their message interchange. 

5.  Experiment 

This section reports on an experimental verification of 
our proposal. 

5.1. Experimental design 

5.1.1. Subject programs, versions, and test suites 

We use a set of WS-BPEL applications to evaluate our 
techniques. The same set of artifacts has been used in the 
experiments in Mei et al. (2008b, 2009d). These appli-
cations have been used as benchmarks or examples in many 
WS-BPEL studies. Among them, the applications atm, 
gymlocker, loanapproval, marketplace, purchase, and 
triphandling are from BPEL repository (IBM, 2006), the 
application buybook is from Oracle BPEL Process Manager 
(Oracle Technology Network), and the application 
dslservice is from Web Services Invocation Framework 
(Apache Software Foundation, 2006). 

Like many other studies that evaluate testing tech-
niques, we seed known faults to measure the effectiveness 
of the prioritization techniques. Thus, we create a set of 
mutants for each benchmark program. Each mutant is a 
modified version of the original program with one fault 
seeded. A mutant is considered as an evolving version of an 
autonomous service. The fault-seeding procedure is similar 
to that of Hutchins et al. (1994). It has long been recog-
nized (DeMillo et al., 1978) and verified experimentally 
(Offutt, 1992) that test cases that kill single-fault mutants 
are “very successful” in killing multiple-fault mutants as 
well. Jia and Harman (2009) point out the existence of 
“rare” combinations of faults that may mask one another 
and hence difficult to detect. However, test cases to kill 
such combinations are still under investigation by the said 
authors and hence we will not study them in the present 
paper. 

Easily exposed faults are more likely to be detected and 
removed during program testing by developers, rather than 
allowed to persist until regression testing. Instead, we focus 
on relatively hard-to-detect faults when comparing the fault 
detection capabilities of various techniques. Hence, follow-
ing Elbaum et al. (2000, 2002) and Jiang et al. (2009), we 
discard any faulty version if more than 20 percent of all test 
cases can detect failures due to the seeded fault. As such, 43 
mutants are selected from the 60 mutants that are originally 
seeded. For any test experiment, one would always prefer a 
larger experiment that involves more subject programs and 
more faults. Some readers may therefore consider that the set 
of faults used in this experiment is not large enough. In our 
experience, however, simply executing a test case on one 

WS-BPEL program is already very tedious. Moreover, to the 
best of our knowledge, the scale of the experiment, both in 
terms of the number of subject programs and the number of 
faults, is already the largest among the experiments in 
published articles in service-oriented testing. 

Table 6 shows the subject programs and their 
descriptive statistics. The descriptive statistics of the appli-
cable modified versions are shown in the rightmost column 
of the table. 

We constructed test cases randomly for each subject 
application. One thousand (1000) test cases were generated 
to form a test pool for each application. From each gener-
ated test pool, we randomly selected test cases to form a 
test suite. Selection continued iteratively until all the work-
flow activities, all the workflow transitions and all types of 
XML message had been covered by at least one test case. 
The procedure is similar to the test suite construction in 
Elbaum et al. (2002) and Mei et al. (2009c). We then 
applied the test suite to all the applicable faulty versions of 
the corresponding application. We successfully generated 
100 test suites for every application. Table 7 shows the 
maximum, average, and minimum sizes of the test suites 
(where the size of a test suite refers to the number of test 
cases it contains). 

 
Table 6. Subject programs and statistics. 
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A Atm 8 94 180 3 12 5 
B Buybook 7 153 532 3 14 5 
C Dslservice 8 50 123 3 20 5 
D Gymlocker 7 23 52 1 8 5 
E Loanapproval 8 41 102 2 12 7 
F Marketplace 6 31 68 2 10 4 
G Purchase 7 41 125 2 10 4 
H Triphandling 9 94 170 4 20 8 

Total 60 527 1352 20 106 43 

 
Table 7. Statistics of test suite sizes. 

Ref. 
Size 

A B C D E F G H Avg. 

Maximum 146 93 128 151 197 189 113 108 140.5 

Average 95 43 56 80 155 103 82 80 86.3 

Minimum 29 12 16 19 50 30 19 27 25.2 

 
For every subject program and for every test suite thus 

constructed, we used each of the test case prioritization 
techniques (M1−M10) presented in Section 4 to prioritize 
the test cases. For every faulty version of the subject 
program and every corresponding prioritized test suite, we 
executed the test cases one by one according to their order 
in the test suite, and collected the test results. 

5.1.2. Effectiveness measure 

To compare the effectiveness (in terms of fault 
detection rates) among M1−M10, we use the Average Per-
centage of Faults Detected (APFD) as the metric, which 
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measures the weighted average of the percentage of faults 
detected over the life of a test suite. The APFD metric has 
been introduced in Section 2. 

5.2. Data analysis 

5.2.1. Overall effectiveness 

In this section, we analyze the data to evaluate the 
effectiveness of different techniques. We apply techniques 
M1–M10 on each application and calculate the APFD 
values. We repeat this procedure 100 times using the 
generated test suites. The results are collected and summa-
rized in the box plots in Figure 8. 

These box plots are drawn using the PTS box-and- 
whisker plot chart utility available through Microsoft 
Excel. Each box plot shows the 25th, 50th, and 75th 

percentiles of a technique. The result for each application is 
given in Figures 8(a)–(h). The overall 25th, 50th, and 75th 
percentiles as well as the overall mean of all subject 
programs are shown in Figures 8(1)–(4). 

We observe from Figures 8(1)−(4) that M1 and M2 
show the worst and the best performances, respectively, in 
terms of APFD values. This result is consistent with 
previous studies such as Rothermel et al. (2001). 

We first use the 25th percentile APFD to compare 
M1−M10. Figure 8(1) shows that random prioritization 
(M1) achieves a mean value of 0.788. The minimum and 
maximum mean APFD achieved for the white-box 
techniques (M3−M6) are 0.817 and 0.839, respectively. On 
the other hand, the mean APFD for M8 is 0.844, which is 
higher than the corresponding values for M3−M6. 

(a) atm (b) buybook (c) dslservice

(f) marketplace

(d) gymlocker

(g) purchase (h) triphandling(e) loanapproval

(1) 25th APFD (2) 50th APFD (3) 75th APFD (4) Mean APFD
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Figure 8. Comparisons of APFD measures among M1–M10 using coverage-adequate test suites. 

 (The x-axes show the techniques and the y-axes show the APFD values.) 
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M7−M10 demonstrate much smaller variances than M1 and 
M3−M6. 

Then, we compare M1−M10 using the median (that is, 
the 50th percentile) APFD value in Figure 8(2). M4 shows 
better results than all the other techniques from all perspec-
tives except for the minimum APFD value. 

Next, we compare M1−M10 using the 75th percentile 
APFD value in Figure 8(3). The variance of M10 is much 
smaller than that of any other technique. M3 and M5 have 
similar APFD values (which we call performance for ease 
of reference). The performance of M9 is similar to that of 
M7. M10 is a bit better than M8. This observation is not too 
surprising because of the lack of knowledge of the detailed 
program code for M7–M10. 

Finally, we compare the mean APFD values. The mean 
APFD for M8 is 0.879, which is higher than that for M3 or 
M5 but lower than that for M4 or M6. This observation 
indicates that our black-box testing techniques (particularly 
M8) can achieve similar (or even better) APFD results 
when compared with the white-box testing techniques 
(M3−M6). The results of M9 and M10 are similar to those 
of M7 and M8, respectively. 

Figure 8(4) shows that M8 and M10 are better than all 
the other techniques (except the optimal) at the 25th 
percentile of mean APFD results. Moreover, M3−M6 are 
also better than M1 at the 75th percentile. On average, as 
reported in Figures 8(1)–(4), our black-box testing 
techniques M7–M10 are close to white-box testing 
techniques (M3–M6) for the mean APFD values and at the 
25th and 50th percentiles of APFD results. However, when 
considering the 75th percentile values in Figures 8(1)−(4), 
we observe that the performance of M7–M10 is worse than 
that of M3–M6. 

Overall, M7−M10 are more effective at early fault 
detection than random ordering. This indicates that 
black-box test case prioritization techniques (instead of 
M1) are a promising method to use for service testing. As 
reported in Figures 8(1)−(4), the overall performance 
between M8 and M10 and that between M7 and M9 are 

similar. But we observe that, in some cases such as Figures 
8(b) and (f), M8 is better than M10 while, in some other 
cases such as Figure 8(c), M10 is better than M8. 

We further compare the overall performances of each 
technique in terms of the minimum, mean, and maximum 
APFD values in Table 8. We observe that the mean APFD 
values of M3–M10 are close to one another, and all are 
higher than that of M1. When considering the minimum 
APFD values, we find that M7–M10 all achieve higher 
values, which indicate that our techniques have smaller 
variances than M3–M6. An interesting observation is that 
M6 reports the same minimum APFD value as M1. This 
shows that sometimes the use of M6 may not contribute to 
an increase of the fault detection rate. 

We also briefly compare M1−M10 from individual 
benchmark applications. We find that our technique M8 can 
even be better than M3−M6 in some benchmark 
applications (such as Figures 8(c) and (e)). Among all these 
subject applications, M7 and M8 are significantly better 
than M1 in five cases out of eight (Figures 8(b), (c), and 
(e)–(g)), close to M1 in two (Figures 8(d) and (h)), and only 
a little worse than M1 in one case (Figures 8(a)). 

 
Table 8. Further comparisons of APFD measures 

among M1–M10. 

Tech.
APFD 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

Max. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Mean. 0.84 0.99 0.86 0.88 0.87 0.88 0.87 0.88 0.87 0.88 

Min. 0.04 0.90 0.28 0.25 0.30 0.04 0.31 0.38 0.43 0.44 

 
We further observe that the results of M7 and M9 are 

similar, and those of M8 and M10 are also similar. Figure 
8(3) shows that M10 has a much smaller variance than 
M1–M9 in all (in terms of the 75th percentile APFD 
values). This result indicates that M7–M10 have a high 
chance in outperforming random ordering. Thus, our 
techniques can be more effective than random ordering for 
black-box service-oriented testing. 
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Figure 9. Categorized comparisons of APFD measures among M1–M10. 

(The x-axes show the techniques and the y-axes show the APFD values.) 
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5.2.2. Effectiveness on categorized faults 

In this section, we analyze the capability of detecting 
different kinds of faults. We categorize faults into three 
categories, namely, BPEL faults, XPath faults, and WSDL 
faults, and collect APFD results for each category. 

The results, as shown in Figure 9, are interesting. 
Before conducting the experiment, we expected that our 
black-box testing techniques might be better than white-box 
techniques in detecting WSDL faults. The actual results 
show, however, that our techniques have variances smaller 
than white-box techniques in detecting BPEL faults, but 
have variances larger than white-box techniques in 
detecting XPath and WSDL faults. Through further 
investigation, we find that some BPEL faults cannot be 
revealed using one kind of XML message input (which 
apply to a large proportion of a test suite) but can easily be 
revealed by another kind of XML message (which may 
apply to a small proportion of a test suite). In any case, our 
techniques can detect BPEL faults earlier (in terms of the 
25th percentile APFD values) than M1, M4, and M5. 

Next, let us analyze the performance in detecting XPath 
faults. Since an XPath fault may lead to a change in activity 
and transition coverage, it is not surprising that white-box 
techniques can achieve better results. 

Finally, when comparing Figure 9(3) with Figures 9(1) 
and (2), we find that WSDL faults are easier to detect than 
BPEL and XPath faults. Figure 9(3) also indicates that the 
performance of test cases using M7–M10 may not as good 
as the use of M3–M6, and therefore the chance of achieving 

a higher fault detection rate is lower than M3–M6. 
In summary, we observe the following through the 

analysis of the categorized fault detection rates: (i) proper 
partitioning of test cases can affect the fault detection rate, 
and (ii) when attempting to detect faults in an artifact of a 
program, if there are multiple kinds of artifacts in the 
program, it may be more effective to use other kinds of 
artifacts to partition test cases. 

We also observe from Figures 8 and 9 that, overall 
speaking, the two (ascending and descending) sorting 
strategies provide observable differences in terms of 
medium APFD, and that the use of the descending strategy 
is better than using the ascending strategy. 

 

5.2.3. Hypothesis testing 

One may wonder whether the differences between our 
WSDL-related techniques and conventional techniques are 
significant. To answer this question, we conduct hypothesis 
testing to study the differences among the above 
techniques. We follow Li et al. (2007) and perform one- 
way ANalysis Of VAriance (ANOVA) to find out whether 
the means of APFD distributions for different techniques 
differ significantly. Since M2 (the optimal technique) is 
much better than the other techniques (see Figure 8), we 
skip the comparison with M2 in the hypothesis testing. 

The null hypothesis is that the means of APFD values 
for M1 and M3–M10 are equal. To decide whether to 
accept or reject the null hypothesis, we set the significance 
level to 5%. If the p-value is smaller than 5%, the differ-
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Figure 10. Multiple comparisons among M1 and M3-M10 using coverage-adequate suites. 

(The y-axes show the techniques and the x-axes show the APFD values.) 



 

14 

ence between the techniques is deemed to be statistically 
significant. For each of the subject programs, ANOVA 
returns a p-value much less than 0.05, which successfully 
rejects the null hypothesis at a significance level of 5%. 
Since there is no outliner or exception case in the ANOVA 
results, we will not list the detailed statistics. 

Following Rothermel et al. (2001), we further conduct 
multiple comparisons (Li et al., 2007; Jiang et al., 2009) to 
study whether the means of test case prioritization 
techniques differ significantly from one another at a signi-
ficance level of 5%. We present the multiple comparison 
results in Figure 10, styled after Jiang et al. (2009) and 
generated by MATLAB using the default setting of alpha 
value = 0.05 and ctype = “hsd” (for Tukey’s honestly 
significant difference criterion). The thick (blue) lines 
represent the target technique to be compared with other 
techniques. The thin (red) lines represent the techniques 
whose means differ significantly from the target technique, 
while the dashed (black) lines represents techniques 
comparable to the target technique. 

First, we compare M7–M8 with M1. We observe that 
the pairs (M1, M7) and (M1, M8) are significantly differ-
ent. This observation shows that our black-box testing 
techniques are better than random ordering in terms of the 
overall mean APFD. On the other hand, when we compare 
M7–M8 with M3–M6, we do not observe a significant 
difference apart from the pair (M3, M8). This indicates that 
the overall performance of M3–M6 is close to that of 
M7–M8. This result also verifies the observation that we 
have discussed in Figures 8(1)–(4) above. 

When comparing M7 with M8, the result shows that 
recursively selecting test cases from the highest coverage to 
the lowest coverage of WSDL tags is more likely to 
achieve a higher fault detection rate. However, we do not 
find a significant difference between M7 and M8 using the 
overall APFD values. 

Next, we compare M7−M8 with M9−M10. We do not 
observe significant differences between them. We can 
observe that the performances of M7 and M9 are similar, 
and those of M8 and M10 are similar. The differences 
between M9−M10 and M1−M6 are similar to those be-
tween M7−M8 and M1−M6. This shows different ways of 
counting the number of WSDL tags (namely, whether 
multiple occurrences of a WSDL tag should be counted as 
one) does not produce very different results on the 
benchmark applications we have used. 

5.2.4. Comparisons of randomly created test suites 

In the experimental setting presented in Section 5.1, we 
follow some specified criterion for the adequacy of a test 
suite (say, each workflow transition must have been 
covered by at least one test case). The test suite construc-
tion process randomly adds a test case to the test suite 
(initially empty) until the criterion has been met. 
Nevertheless, it is sometimes infeasible to create such test 
suites for a black-box service whose internal structure is not 

available. In such situations, we randomly add test cases to 
a test suite (initially empty) until a predefined size has been 
met. In this way, we have created 100 test suites having the 
same sizes as those in Table 7, and examine the fault 
detection rates of M1–M10 on these test suites. We further 
note that if the service is a black-box service whose internal 
structure is not known, it is generally impractical to apply 
M3–M6 in reordering test cases. However, we only use 
M3–M6 as benchmarks. 

The result for each application is given in Figures 
11(a)−(h). The overall 25th, 50th, and 75th percentiles as 
well as the overall means of all subject programs are shown 
in Figures 11(1)−(4). M1 and M2 show the worst and the 
best performances in all these figures. 

We first use the 25th percentile APFD values to 
compare M1–M10 in Figure 11(1). All of M3−M10 
demonstrate better results than M1. The white-box 
techniques have results similar to the black-box techniques. 
However, in terms of the 25th value (the bottom transversal 
line of the box) and the 75th value (the top transversal line 
of the box) in the box plots, the black-box techniques show 
slightly better results than the white-box techniques. This 
shows that our black-box techniques are close to (and even 
a little better than) white-box techniques in the worst 
orderings generated. 

Then, we use the median APFD (that is, the 50th 
percentile) to compare M1–M10 in Figure 11(2). The 
white-box techniques (except M3) have results similar to 
those of M7–M10. Compared with Figure 8(2), we observe 
that the variances reported by M3–M6 in Figure 11(2) are 
smaller than those in Figure 8(2). 

Next, we use the 75th percentile APFD values to 
compare M1–M10 in Figure 11(3). M3–M6 all show 
slightly better results than M7–M10. M6 shows the best 
performance among M3–M10 from many perspectives, 
such as the highest 25th percentile, median, and 75th 
percentile, as well as the smallest variance. These 
observations demonstrate that M8 and M10 are close in 
performance to the white-box testing techniques, while M7 
and M9 are slightly worse than the white-box techniques. 

Finally, we compare the mean APFD values for 
M1–M10 in Figures 8(4) and 11(4). In Figure 11(4), the 
differences in mean APFD values between M7 and M8 and 
between M9 and M10 are similar to their differences in 
Figure 8(4). We can, however, observe larger variances of 
M7–M10 in Figure 11(4) than in Figure 8(4). Since the 
randomly created test suites may be coverage-inadequate, 
this observation indicates that the performances (in terms of 
mean APFD values) of M7−M10 may have more differ-
ences on coverage-inadequate test suites than on coverage- 
adequate test suites. 

When comparing M7 and M9 with M8 and M10 in 
Figures 11(1)−(4), we observe that the use of the 
descending strategies (M8 and M10) may be more effective 
than the ascending strategies (M7 and M9). 
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M3–M6 have larger variances in Figure 11(4) than in 
Figure 8(4). Among them, M4–M6 show better results than 
M7–M10 in terms of the median values in the box plots. 
However, the results of M7–M10 are much better than 
random prioritization. M8 and M10 are slightly better than 
M3–M6 in terms of the 25th percentile values in the box 
plots. This indicates that our black-box techniques are 
useful. 

We also compare the performance of each application 
in Figures 8 and 11 to gain more insight. In summary, 
random ordering achieves slightly better results in Figure 
11 than in Figure 8. This shows that random prioritization 
may be slightly affected by the construction procedure of 
the regression test suites. Nevertheless, random ordering 
still cannot be better than black-box techniques in most 
cases. 

We observe through the comparison of Figures 
11(1)–(4) with Figures 8(1)–(4) that our black-box 

techniques outperform random prioritization using either 
type of test suite. When comparing the performances of 
M3–M10 between Figures 11(1)–(4) and Figures 8(1)–(4), 
we find that the variances of these techniques in Figure 11 
are larger than those in Figure 8. The relative performances 
between the white-box techniques M3–M6 and the 
black-box techniques M7–M10 remain similar. Since the 
construction procedures of both adequate-coverage test 
suites and random test suites consist of random test case 
selection, the results may thus differ from each other within 
a small range on all the benchmark applications. 

We also observe from Figure 11 that arranging the test 
suite in descending order achieves slightly higher medium 
APFD values than ascending order. 

5.2.5. Hypothesis testing of randomly created test suites 

We continue to present the multiple comparison 
(Carmer and Swanson, 1971) results of M1 and M3–M10 
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Figure 11. Comparisons APFD measures among M1–M10 using randomly created test suites. 

(The x-axes show the techniques and the y-axes show the APFD values.) 
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in Figure 12, also generated using MATLAB. Similar to 
Figure 10, the thick (blue) lines represent the target 
technique to be compared with other techniques. The thin 
(red) lines represent the techniques whose means differ 
significantly from the target technique, and the dashed 
(black) lines represents techniques comparable to the target 
technique. 

We observe that both M8 and M10 significantly 
outperform random prioritization. Although M7 and M9 are 
better than M1, the differences are not statistically signifi-
cant. M6 achieves significantly better results than M9. 
However, apart from M6 and M9, there is no significant 
difference between the white-box techniques and the black- 
box techniques. Furthermore, M4–M6 all significantly out-
perform M1. For the sake of brevity, we do not show them 
in Figure 12. 

Compared with the hypothesis testing results in Figure 
10, the differences of M1 and M3 from the black-box 
techniques are less significant. In any case, the results show 
that our techniques can have a high chance of outperform-
ing random ordering, and two of the black-box techniques 
are close to the white-box techniques. 

5.3. Threats to validity 

Threats to construct validity arise if the measuring 
instruments do not adequately capture the concepts they are 
supposed to measure. In the experiment, we use the fault 
detection rate to measure the effectiveness of M1–M10. We 

choose the APFD metric, which has been widely adopted in 
test case prioritization (such as Elbaum et al., 2002) to 
measure the fault detection rate of prioritization techniques. 
There are other metrics proposed for evaluating the 
prioritization techniques (such as Li et al., 2007). Different 
metrics serve to measure different aspects of a testing 
technique. In our experiment, we assume that the test oracle 
of each regression test case is reliable. In practice, however, 
some of the failures miss to be identified. In such cases, the 
APFD values presented in this paper are different from the 
actual APFD values. However, in our controlled experi-
ment setting, the same test case is applied by each of the 
techniques to the same modified version of each subject. 
Moreover, APFD treats all faults equally. We categorize all 
the faults into three categories, namely, BPEL faults, XPath 
faults, and WSDL faults, and compute the APFD results for 
each category to gain more insight. 

Although we have tried our best to search for publicly 
available benchmark programs, we have not found such 
programs with documentation of real-life faults. We have 
therefore used seeded faults in the experiment. 

Threats to internal validity are the influences that can 
affect the dependency of experimental variables involved. 
When executing a test case on a service composition, the 
contexts of the involved services may affect the outcome of 
the test case, making the evaluation result inconclusive. We 
have proposed a framework (Mei, 2009a) to address this 
problem. In this paper, our experiment tool resets the run-
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Figure 12. Multiple comparisons among M1 and M3-M10 using randomly created test suites. 

(The y-axes show the techniques and the x-axes show the APFD values.) 
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time contexts of services to the required values for each test 
case. 

External validity is concerned with whether the results 
are applicable to the general situation. Eight WS-BPEL 
programs have been included in the experiment. Each pro-
gram can be considered as a service. These services were 
not large in size and may not be truly representative of the 
many different types of web service, which may also be 
written in diverse programming languages. Moreover, the 
same WSDL documents may not be applicable to programs 
of different scales. We will conduct other studies to verify 
the techniques further. We also plan to collaborate with the 
industry to design benchmark service-oriented programs in 
larger distributed computing environments, and to evaluate 
our proposed prioritization techniques to gain more insight. 

In our experiment, we have not used multi-fault or other 
single-fault service-oriented applications to verify our 
techniques. Although using more faulty versions may 
strengthen how an experiment addresses the external threats 
to validity, it involves more effort in evaluating each tech-
nique. In our experience in service-oriented testing, in order 
to conduct a test experiment, researchers require the setting 
up of the underlying platform such as web servers, BPEL 
engines, and database servers. It takes non-trivial effort to 
enable these platform applications to support test experi-
ments. For instance, sometimes the BPEL engine may 
simply hang and does not respond as usual when processing 
messages. In such a scenario, researchers are required to 
divert effort not only to run their tests, but also to diagnose 
and fix/bypass the faults in such a testing environment. 
Compared with the effort to run test experiments on more 
traditional subjects (such as the Siemens suite (Elbaum et 
al., 2000)), the effort to run experiments that use 
service-oriented programs as subjects is significantly more 
immense. To balance between our available human 
resources and the completeness of the experiment, we 
choose not to include other faulty versions in the current 
study. 

Another threat to validity is the correctness of our tools. 
We have used Java to develop our tools for program 
instrumentation and test case prioritization, used PTS box 
chart utility to draw the box plots, and used MATLAB to 
do the statistical analysis. To minimize errors, we have 
carefully tested our tools to assure their correctness. 
However, we are unable to conduct a thorough test of PTS 
box chart utility and MATLAB. 

We use a random test case generator to construct 
random test cases for the required test suites. As shown in 
many previous studies, the use of test suites fulfilling 
different testing criteria (such as branch coverage) may 
result in different fault detection capabilities. This will also 
affect the APFD values when comparing different test case 
prioritization techniques. We use the same number of test 
sets for each subject version. The use of different numbers 
of test sets for different versions may affect the results. 

6.  Discussion 

We have assumed in our model that the interface 
specification of a service specifies how the test suite 
services and test case services will be called. However, this 
constraint may be relaxed in many ways, such as using 
method invocation, centralized services, and UDDI 
registries. For example, a service provider may provide an 
entry in its WSDL documents in the UDDI registries to 
illustrate how its test suite service can be accessed. 

We have identified the key roles in black-box 
service-oriented testing in Section 4.2, and have modeled 
these roles by services. Based on such modeling, many 
interesting approaches can be considered, such as how to 
represent the flow of regression testing using a format (e.g., 
WSDL) that can be released to public registries, and how 
our proposed strategy can be dynamically adapted 
according to the feedback from regression testing after a 
round of test suite evaluation of the target services. 

In our problem setting, we consider that the internal 
structure of a workflow service may not be available, and 
thus develop techniques to address regression testing chal-
lenges when only exchanged messages between individual 
workflow steps and services are available. However, if more 
information is known when test cases are executed (such as 
the coverage information of the internal structures of 
services), we can further derive new techniques by adapting 
our proposed techniques. For example, we may use the new 
information to prioritize the tie cases resulting from our 
black-box testing techniques. In addition, we may also apply 
our black-box testing techniques to prioritize the tie cases 
resulting from white-box testing techniques if the relevant 
white-box information is available. 

To the best of our knowledge, existing test case priori-
tization techniques on service-oriented programs either have 
their own assumptions (such as resource constraints in Hou 
et al., 2008), or are not black-box test case prioritization 
techniques (see, for instance, Mei et al., 2009d). Hence, we 
only compare our black-box testing techniques with 
white-box techniques and two control techniques (random 
and optimal). 

The experimental results have shown that our black-box 
techniques can have a high chance of outperforming 
random ordering, and two of our techniques are close to 
white-box techniques. The results have also indicated that 
our black-box techniques are close to (and even a little 
better than) white-box techniques in the worst orderings 
generated for either adequate-coverage test suites or random 
test suites. These observations suggest that our techniques 
may serve as viable choices when conducting regression 
testing for service-oriented programs. 

7.  Related work 

Regression testing is a testing procedure conducted after 
modifications of a program (Leung and White, 1989). It has 
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been widely used in the industry (Onoma et al., 1998). 
Leung and White (1989) have pointed out that simply 
rerunning all existing tests is not an ideal approach. Test 
case prioritization aims to reorder test cases to maximize a 
testing goal (Rothermel et al., 2001), and is one of the most 
important lines in regression testing research. 

Many coverage-based prioritization techniques, such as 
Elbaum et al. (2002) and Rothermel et al. (2001), have been 
proposed. A large number of these techniques prioritize test 
cases by means of the code coverage achieved, such as the 
number of statements or branches covered by individual 
test cases (Rothermel et al., 2001). Furthermore, although 
there are header files and preprocessing macros in C 
programs, existing code-based prioritization techniques that 
use C programs as subjects do not explore such 
information. Specific examples of criteria used include 
fault-exposing potential of individual test cases (Rothermel 
et al., 2001), the series of regression history (Kim and 
Porter, 2002), and test costs and fault severities (Elbaum et 
al., 2002). In the service-oriented environment, because of 
the limited knowledge of potential evolutions of a target 
service as well as the classifications of previously identified 
faults in fault-based techniques, it is not clear how 
history-based or cost-based techniques can be applied 
effectively. The effects of compositions and granularity 
(Rothermel et al., 2002) of a test suite have been studied 
experimentally in conventional testing. To the best of our 
knowledge, however, these two aspects have not been 
examined in the context of service-oriented testing. 

Hou et al. (2008) consider the issue of service invoca-
tion quota in a regression testing technique. Specifically, 
they observe that some web services may not be invoked 
without limit. They use such quota constraints as the metric 
to guide the prioritization of test cases. In our problem 
setting, we do not have any quota constraint. We evaluate 
how well the number of XML tags is used as a metric to 
reorder test cases. Zhai et al. (2010) also study the impact 
of service invocation in regression testing techniques. 
Rather than setting up a quota to constrain the number of 
invocations of a service, they integrate the notion of 
service-oriented architecture to their techniques. They 
observe that, to bind a service, a set of candidate services 
satisfying the required quality-of-service constraint may be 
discovered. Nonetheless, a typical service selection process 
will discard all but one of such services. In verifying the set 
of candidate services, they propose to discard a service 
permanently once it is found to be faulty. Consequently, 
their technique can reduce the average number of service 
invocations and improve the identification rate of faulty 
services. Their approach does not optimize the fault 
detection rate of individual services. On the other hand, our 
work does not use service-oriented architecture as its core, 
but focuses on improving the fault detection rate for a given 
service under test. It will be interesting to explore the 
integration of these two dimensions. 

Our work is also related to the area of testing third-party 
web services. Brenner et al. (2007) study different general 
testing approaches that can be used compatibly to verify 
such web services. Zhai et al. (2010) focus on eliminating 
third-party web services as early as possible from subse-
quent service selection considerations. Their focus is not on 
the testing of such third-party web services. Bartolini et al. 
(2009, 2010) propose a framework to collect and report the 
coverage statistics achieved by a test on a service. We focus 
on using the information captured in messages to guide the 
testing process. None of these studies examines this 
information. 

Next, we review related work in the area of 
service-oriented computing. Martin et al. (2007) outline a 
framework that generates and executes web service 
requests, and collects the corresponding responses from 
web services. They propose to examine the robustness 
aspect of services by perturbing such request-response 
pairs. They have not studied test case prioritization. Tsai et 
al. (2005a) recommend using an adaptive group testing 
technique to address the challenges in testing 
service-oriented applications when a large number of web 
services are available. They rank test cases according to a 
voting mechanism on input-output pairs. Neither the source 
code of the service nor the structure of WSDL is utilized. 

Mei et al. (2008b) use the mathematical definitions of 
XPath (W3C, 2007b) as rewriting rules, and propose a data 
structure known as an XPath Rewriting Graph (XRG). They 
further develop the notion of XRG patterns to capture how 
different XRGs are related even though they may refer to 
different XML schemas or tags (Mei et al., 2009b). They 
have developed test case prioritization techniques (Mei et 
al., 2009c) on top of their XRG structure. However, they 
have not studied whether WSDL can be used in a 
standalone manner for regression testing of services when 
the source code is unavailable or too costly to acquire. 

In the area of test oracles, Tsai et al. (2005b, 2008) 
observe that many web services may produce the same 
output for the same input. They propose to use whether the 
outputs of such web services agree with one another as a 
means to identify web services with desirable outputs by 
the use of a variant of the majority vote strategy. Bai et al. 
(2007) and Bai and Kenett (2009) further propose a 
framework to support this group testing proposal by 
enforcing check-in and check-out features of web service 
registries, and study how to prioritize risky (also known as 
harmful) test cases to be executed earlier. Dai et al. (2007) 
and Di Penta et al. (2007) propose to add contracts to 
service descriptions to serve as a kind of correctness 
criterion (or test oracle) to check test results. Chan et al. 
(2005, 2007) use metamorphic relations of applications to 
test stateless scientific web services. Our experiment uses 
the expected results captured for the regression test cases. 
Our work has not considered the strengths of test oracles 
used to identify failures. 
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There are recent studies on fault-tolerant web services 
(Aghdaie and Tamir, 2009) and (self-)adaptive web 
services. They are not considered in our experiment. 
Nonetheless, we believe that our techniques can be applied 
to validate such web services. 

8.  Conclusion 

In a service composition, a member service may evolve 
without any prior agreement from peer services. Other 
services that relate to this member service may need to 
conduct regression testing to verify whether the functions 
of the latter service conform to their established inter-
operability requirements. Even though the former services 
want to conduct regression testing, the latter service has 
been encapsulated with only an observable interface, 
making it difficult for the former services to apply existing 
code-based test case prioritization techniques to achieve 
certain prioritization goals. 

This paper studies whether the use of WSDL informa-
tion may facilitate effective regression testing of services. 
To the best of our knowledge, it is among the pioneering 
work that formulates black-box regression testing to verify 
web services. The paper also proposes a set of roles to 
support black-box service-oriented regression testing and 
outlines a scenario to illustrate how to collaborate these 
roles. We have also discussed how a cloud computing 
infrastructure may conceptually be helpful to 
service-oriented testing. Specifically, by using a cloud 
computing concept, a test does not need not to bear the cost 
of monitoring and communicating with those services that 
have been excluded from the current test. 

With regard to regression testing techniques, this paper 
has proposed to compute the WSDL tag coverage from the 
input and output messages associated with regression test 
suites, and formulated four black-box test case prioritiza-
tion techniques to verify the concepts. We have evaluated 
our techniques, compared them with both traditional 
techniques and random ordering using a suite of WS-BPEL 
applications in a controlled experimental setting. The 
empirical results have indicated that, overall, our black-box 
testing techniques are only slightly less effective than 
white-box techniques, but not to the level of statistical 
significance, and that they can significantly outperform ran-
dom ordering in achieving higher rates of fault detection. 

Since WSDL is only an interface specification, it may 
be blind to certain regression fault types. For future work, 
one may enhance the proposed techniques by integrating 
with other black-box techniques. Moreover, when testing 
can be done in a field environment, it can be considered as 
a behavior monitoring approach. This is particularly viable 
when testing in a cloud computing infrastructure. Such kind 
of infrastructure and dynamic testing environment, as out-
lined in the paper, warrants further research. 
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