

Postprint of article in the Journal of Systems and Software 84 (4): 603–619 (2011)

XML-manipulating test case prioritization for XML-manipulating services

*

†

Lijun Mei
a, W.K. Chan

b

‡, T.H. Tse
a, Robert G. Merkel

c

a Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong
b Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong
c Faculty of Information Technology, Monash University, Clayton, Victoria, Australia

A B S T R A C T

A web service may evolve autonomously, making peer web services in the same service composition uncertain as to
whether the evolved behaviors are compatible with its original collaborative agreement. Although peer services may wish to
conduct regression testing to verify the agreed collaboration, the source code of the former service may be inaccessible to
them. Owing to the black-box nature of peer services, traditional code-based approaches to regression testing are inapplica-
ble. In addition, traditional techniques assume that a regression test suite for verifying a web service is available. The location
to store a regression test suite is also a problem. On the other hand, we note that the rich interface specifications of a web
service provide peer services with a means to formulate black-box testing strategies. In this paper, we provide a strategy for
black-box service-oriented testing. We also formulate new test case prioritization strategies using tags embedded in XML
messages to reorder regression test cases, and reveal how the test cases use the interface specifications of web services. We
experimentally evaluate the effectiveness of these black-box strategies in revealing regression faults in modified WS-BPEL
programs. The results show that the new techniques can have a high chance of outperforming random ordering. Moreover,
our experiment shows that prioritizing test cases based on WSDL tag coverage can achieve a smaller variance than that based
on the number of tags in XML messages in regression test cases, even though their overall fault detection rates are similar.

Keywords:

Test case prioritization; Black-box regression testing; WS-BPEL; Service testing; Service-oriented testing

1. Introduction

The testing and analysis of web services have posed
new foundational and practical challenges, such as the non-
observability problem (Canfora and Di Penta, 2006; Mei et
al., 2009d), the extensive presence of non-executable

artifacts within and among web services (Mei et al., 2008a,
2009b), safeguards against malicious messages from
external parties (Xu et al., 2005; Martin et al., 2007),
ultra-late binding (Bartolini et al., 2008), and
cross-organizational issues (Ye et al., 2009). Researchers
have proposed diverse techniques to address the test case
selection problem (Martin et al., 2007), the test adequacy
problem (Mei et al., 2008b, 2009b), the test oracle problem
(Tsai et al., 2005a; Chan et al., 2007), and the test case
prioritization problem (Hou et al., 2008; Mei et al., 2009c,
2009d).

Regression testing is the de facto activity to address the
testing problems caused by software evolution (Onoma et
al., 1998). It aims to detect software faults by retesting
modified software versions. However, many existing re-
gression testing techniques (such as Harrold et al., 1993;
Kim and Porter, 2002; Mei et al., 2009c; Rothermel et al.,
2001) assume that the source code is available for
monitoring (Mei et al., 2009d), and use the coverage
information of executable artifacts (such as statement
coverage achieved by individual test cases) to conduct
regression testing. Nonetheless, the coverage information
on an external service may not be visible to the service
composition that utilizes this service. Moreover, even

* © 2011 Elsevier Inc. This material is presented to ensure timely dissemi-
nation of scholarly and technical work. Personal use of this material is
permitted. Copyright and all rights therein are retained by authors or by
other copyright holders. All persons copying this information are
expected to adhere to the terms and constraints invoked by each author’s
copyright. In most cases, these works may not be reposted without the
explicit permission of the copyright holder. Permission to reprint /
republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or
lists, or to reuse any copyrighted component of this work in other works
must be obtained from Elsevier Inc.

† This research is supported in part by the General Research Fund of the
Research Grant Council of Hong Kong (project no. 717308), a strategic
research grant of City University of Hong Kong (project no. 7002464),
and a discovery grant of the Australian Research Council (project no.
DP0984760). A preliminary version of this paper was presented in QSIC
2009 (Mei et al., 2009c).

‡ Corresponding author. Tel.: +852 3442 9684.

E-mail addresses: ljmei@cs.hku.hk (L. Mei), wkchan@cs.cityu.edu.hk
(W.K. Chan), thtse@cs.hku.hk (T.H. Tse), robert.merkel@benambra.org
(R.G. Merkel).

Administrator
 HKU CS Tech Report TR-2010-11

2

though a technique may insert probing services to collect
and compute coverage (Mei et al., 2008b, Section 5.3;
Bartolini et al., 2009), the effect depends on whether the
service being sampled is willing to provide such informa-
tion accurately. Since such code coverage information
cannot be assumed to be available, it is vital to consider
alternative sources of information to facilitate effective
regression testing.

Many web services (or services for short) use the Web
Services Description Language (WSDL) (W3C, 2007a) to
specify their functional interfaces and message parameters.
They also use XML documents to represent the messages.
To quantify the transfer of type-safe XML messages with
external partners, the WSDL documents of a service further
embed the types of such messages (Mei et al., 2008b).

WSDL documents are rich in interface information.
Moreover, such documents are often observable by external
services. Despite the richness of such documents, to the
best of our knowledge, the use of WSDL documents to
guide regression testing without assuming code availability
has not been proposed or evaluated in the literature.

In general, different services developed by the same or
multiple development teams may be modified indepen-
dently of one another, and the evolution of services may not
be fully known by every other service. With respect to a
service maintained by a development team, a service
maintained by another development team can be regarded
as a service collaborator or a service consumer of the
former service.

Let us consider a scenario that a service A (as a service
consumer) would like to pair up with a service B, and yet
the latter service may evolve over time or contain faults
that lead to failures in some executions of their service
collaborations. The service consumer A may want to
execute some tests on the functions provided by B to ensure
that A’s service composition has not been adversely
affected (at least from A’s perspective). For instance, a
company may want to make use of the electronic payment
gateway provided by a bank to conduct payment
transactions with the bank. Under this scenario, the internal
service of the company is the service consumer of the
payment gateway service of the bank. To the benefit of the
company, the development team of the internal service
would like to test its service collaboration with the payment
gateway service comprehensively. In terms of testing, it
typically means that many test cases will be used, which is
costly to execute.

Furthermore, the program code of B (such as the
payment gateway service of the bank in the above scenario)
is generally inaccessible to A (the internal service of the
company in the above scenario). Therefore, even though A
may be able to discover and invoke a test suite to conduct
regression testing on B, the above scenario makes
impossible the test execution schedule that applies existing
code-based regression testing techniques (Leung and
White, 1989; Harrold et al., 1993) in general, and test case

prioritization techniques (Rothermel et al., 2001) in
particular, to improve the fault detection rate and achieve
other goals.

The WSDL documents of services are accessible among
peer services. It is well known, however, that black-box
testing is not adequate and must be supplemented by
white-box testing (Chen et al., 1998). How well does the
richness of information embedded in typical WSDL
documents help alleviate this deficiency in service-oriented
testing? Is it effective to use the black-box information in
WSDL documents to guide regression testing to overcome
the difficulties in testing services with hidden implementa-
tion details such as source code? These questions motivate
the study presented in this paper.

We observe that, in a regression test suite for service
testing, existing test cases may record the associated XML
messages that have been accepted or returned by a
(previous) version of the target service. Because the
associated WSDL documents capture the target service’s
functions and types of XML message, the tags defined in
such documents and encoded in individual test cases can be
filtered through all the WSDL documents. Moreover, we
observe that a WSDL tag may occur several times in the
same or different XML messages within a test case. For
instance, to collect room booking information, multiple
instances of room information often appear in the XML
messages.

Following up on these observations, we propose two
aspects in formulating test case prioritization techniques.
The first aspect to make use of the tags in XML messages
in relation to the WSDL documents of the service under
test. We propose the use of WSDL tag coverage statistics
and WSDL tag occurrence statistics. Based on these two
statistics, we can cluster the test cases and iteratively select
them from the sequence of clusters. The second aspect is to
define the order of the sequence of clusters. There are many
ways to do so, including simple orderings such as
randomization, sorting, as well as more advanced sampling
strategies. To facilitate further comparison of future
research, we choose a simple strategy (namely, sorting
according to the count statistics) so that researchers can
easily compare it with their own strategies in the context of
service regression testing.

Following these directions, we formulate four priori-
tization techniques as proofs of the concepts. We further
conduct an empirical study on a suite (from Mei et al.,

2009d) of WS-BPEL applications (OASIS, 2007) using
both adequate test suites and random test suites to verify
the effectiveness of our techniques. The results show that
our techniques can have high chances of outperforming
random ordering. Moreover, our experiment shows that
prioritizing test cases based on WSDL tag coverage by
regression test cases can achieve a smaller variance than
that based on the number of WSDL tag occurrences
resulting from regression test cases, even though their
overall fault detection rates are similar. Our experiment

3

also shows that the fault detection rates of our techniques
on the subject applications can be less effective than
white-box techniques, but this finding is not statistically
significant.

Techniques for the construction of effective regression
test suites are not within the scope of this paper. We appre-
ciate that invalid test cases can be costly because they still
require the execution of the service under test despite the
lack of fruitful results. We assume that all the test cases in a
given regression test suite are valid. Invalid regression test
cases can be removed, for instance, using the information in
the fault handler messages returned by the service, or using
the WSDL documents of the services to validate the format
of the test cases in advance. Once a test case has been
identified to be invalid, it can be permanently removed
from the regression test suite for that service. Thus, during
the next regression testing of the service (without knowing
in advance whether the service has evolved), the test case
does not need to be considered in test case prioritization.

Existing techniques, such as Rothermel et al. (2001) and
Mei et al. (2009d), assume that information on regression
test cases is already available. In service-oriented applica-
tions, however, since the coordination program may use
both in-house and external services to implement the func-
tionality, the test suite for evaluating a service composition
needs to be determined dynamically before each round of
testing. We will, therefore, discuss how to model the entire
testing procedure in this paper.

The main contribution of this paper with its preliminary
version (Mei et al., 2009c) is threefold: (i) We propose a
new set of black-box techniques to prioritize test cases for
regression testing of services having observable and rich
content interface. It eases the problem of autonomous
evolution of individual services in service compositions, so
that peer services can gain confidence on the service under
test with lower cost in regression testing. Our technique is
particularly useful when the source code of the service
under test is not available or is too costly to obtain. (ii) We
address the challenges in performing black-box regression
testing for service-oriented applications, and develop a
strategy to facilitate such testing. (iii) We report the first
controlled experimental evaluation of the effectiveness of
black-box regression testing in the context of service
testing. Our empirical results indicate that the use of the
information captured in WSDL documents (paired with
regression test suites) is a promising way to lower the cost
of quality assurance of workflow services. Our empirical
results also indicate that the different partitions generated
according to the different perspectives (white-box coverage
or black-box coverage information) have different effects
on the fault detection rates for different kinds of faults.

The rest of the paper is organized as follows: Section 2
introduces the foundations of test case prioritization. Sec-
tion 3 introduces the preliminaries of our approach through
a running service scenario. Section 4 discusses the
challenges in regression testing of services, and presents

new test case prioritization techniques for regression testing
of services. Section 5 presents an experiment design and its
results to evaluate our proposal. Section 6 presents the
discussions, Section 7 reviews the related work, and finally,
Section 8 concludes the paper and discusses future work.

2. Preliminaries

This section introduces the terminology of test case
prioritization.

Test case prioritization (Rothermel et al., 2001) is a
kind of regression testing technique (Li et al., 2007).
Through the use of information from previous rounds of
software evaluation, we can design techniques to rerun the
test cases to achieve certain goals (such as to increase the
fault detection rate of a test suite). We adopt the test case
permutation problem from Rothermel et al. (2001) as
follows:

Given: A test suite T; the set of permutations PT of T;
and a function f from PT to real numbers. (For instance, f
may calculate the fault detection rate of a permutation of T.)

Problem: Find T’ ∈ PT such that ∀T’’ ∈ PT,
f (T’) ≥ f (T’’).

The Average Percentage of Faults Detected (APFD)
(Elbaum et al., 2002) measures the weighted average of the
percentage of faults detected over the life of a test suite.
APFD has been widely used in regression testing research.
As Elbaum et al. (2002) point out, a higher APFD value
implies a better fault detection rate. Let T be a test suite
containing n test cases, and F be a set of m faults revealed
by T. Let TFi be the index of the first test case in a
permutation T’ of T that reveals fault i. The APFD value for
test suite T’ is defined as follows:

nnm

TFTFTF
APFD m

2

1...
1 21 ++++−=

From this formula, we observe that APFD treats all
faults equally. We further adopt an example from Mei et al.
(2009c) to show how APFD measures the fault detection
rates of different test suite permutations, as illustrated in
Figure 1. The left-hand table shows the faults that test cases
tA to tE can detect. T1 tB, tA, tD, tC, tE and T2 tC, tD, tE, tA, tB
are two permutations of tA to tE. The APFD measures for T1

and T2 are given in Figures 1(a) and (b), respectively.

3. A scenario of service interaction

This section presents the scenario of a running service
and introduces the preliminaries of our approach.

Let us consider a HotelBooking service adapted from the
TripHandling project (IBM, 2006). Figure 2 depicts its
control flow using an activity diagram in UML. A node
represents an activity and a link represents a transition
between two activities. We also annotate the nodes with

4

information (such as an XPath) extracted from the program.
We label the nodes as Ai for i = 1–8. The service aims to
find a hotel room whose price is not more than a ceiling set
by the user.

Figure 2. Activity diagram for HotelBooking.

The service needs to handle the information in the reply
messages from different hotels. An XML schema hotel for
such messages is shown in Figure 3. A hotel has two types
of room: doubleroom (line 3) and singleroom (line 4). Both
doubleroom and singleroom are defined by the type room
(lines 6–9). This XML schema is kept in a WSDL docu-
ment. For a given service, there may be multiple WSDL
documents (having relationships with one another) to
define the set of service operations and message data types.
For example, the schema of hotel and the schema of room
may be defined in two different WSDL documents. For
simplicity, however, we will simply show one XML
schema in one WSDL document. Furthermore, we will use
WSDL to refer to all the .wsdl and .xsd files (including
local and remote files) that the master .wsdl of the web

services points to.

<xsd:complexType name="hotel">

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="doubleroom" type="xsd:room"/>

 <xsd:element name="singleroom" type="xsd:room" />

</xsd:complexType>

<xsd:complexType name="room">

 <xsd:element name="roomno" type="xsd:int" />

 <xsd:element name="price" type="xsd:int"/>

</xsd:complexType>

Figure 3. XML schema hotel in WSDL document.

As we have highlighted in Section 1, in such
cross-service scenarios, the internal model of a service
(Figure 2) is unobservable by another service that wants to
conduct regression (or conformance) test on the former
service (to check whether the former service still conforms
to the already established interoperability requirements
with the latter service). Figure 4 depicts this problem.

Suppose the TripHandling service (the rightmost part of
Figure 4) needs to invoke both the HotelBooking and
FlightBooking services to handle the user’s trip arrange-
ment request. TripHandling may wish to run a regression
test suite to assure the quality of HotelBooking inside its
service composition. A test on such a service is usually
done by sending request messages followed by receiving
and handling response messages. Both the request and re-
sponse messages are in XML format. These XML messages
are visible to both TripHandling and HotelBooking, and the
WSDL documents can be accessed publicly. However, the
internal mechanism (see Figure 2) of HotelBooking service
is hidden from TripHandling.

4. Test case prioritization

This section demonstrates how we adapt coverage-based
test case prioritization strategy to formulate new prioritiza-
tion techniques using WSDL information.

XQ: XPath Query
XQ(Variable, Exp): XPath Query with input variable and XPath expression.

Input:
RoomPrice
Output:
BookingResult

RoomPrice =
XQ

(HotelInformation,
//price/)

if Price ≥ XQ(HotelInformation, //price/)

Input: BookRequest

A4:
Validate

Price

A5: Fault Handling

A6: Assign RoomPrice

A7: Invoke HotelBookService

A8: Reply HotelBookResponse

Price=
XQ(BookRequest, //price/)

Input: Price
Output: HotelInformation

No Yes

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

0
10
20
30
40
50
60
70
80
90

100

0.0 0.2 0.4 0.6 0.8 1.0

P
er

ce
nt

 D
et

ec
te

d
F

au
lt

s

Test Suite Fraction

0
10
20
30
40
50
60
70
80
90

100

0.0 0.2 0.4 0.6 0.8 1.0

P
er

ce
nt

 D
et

ec
te

d
F

au
lt

s

Test Suite Fraction
(a) APFD for test suite T1 (b) APFD for test suite T2

APFD = 47.5% APFD = 75.0%

Test Case
Fault

f1 f2 f3 f4 f5 f6 f7 f8

tA • • •

tB

tC • • • •

tD • • •

tE • •

Example on test suite and faults exposed

T1: tB, tA, tD, tC, tE T2: tC, tD, tE, tA, tB
Figure 1. Example illustrating the measure (from Mei et al. (2009c, 2009d)).

5

<hotel>
<name>Times</name>
<doubleroom>

<roomno>R101</roomno>
<price>180</price>

</doubleroom>
<doubleroom>

<roomno>R103</roomno>
<price>150</price>

</doubleroom>
<singleroom>

<roomno>R106</roomno>
<price>120</Price>

</singleroom>
</hotel >

Test Case 1 Test Case 2 Test Case 3

Test Case 6

<hotel>
<name>Times</name>
<doubleroom>

<roomno>R103</roomno>
<price>150</price>

</doubleroom>
<singleroom>

<roomno>R106</roomno>
<price>120</Price>

</singleroom>
</hotel >

<hotel>
<name>Times</name>
<doubleroom></doubleroom>
<singleroom>

<roomno></roomno>
<price>100</Price>

</singleroom>
</hotel >

<hotel>
<name>Times</name>
<doubleroom></doubleroom>
<singleroom></singleroom>

</hotel >

Test Case 5

<hotel>
</hotel >

Test Case 7

null

<hotel>
<name>Times</name>
<doubleroom></doubleroom>
<singleroom>

<roomno>R106</roomno>
<price>120</Price>

</singleroom>
</hotel >

Test Case 4

Figure 5. XML messages for HotelInformation used in XQ(HotelInformation, //price/).

4.1. Motivating example

Let us consider seven test cases, in which the message
has a price tag with the following values:

Test case 1 (t1): Price = 200 Test case 2 (t2): Price = 160

Test case 3 (t3): Price = 150 Test case 4 (t4): Price = 100

Test case 5 (t5): Price = 50 Test case 6 (t6): Price = 0

Test case 7 (t7): Price = −100

Figure 5 shows the XML messages for HotelInformation
received in an XPath query (HotelInformation, //price/) by
executing test cases t1–t7 on the HotelBooking service.

Our scenario further assumes that HotelBookService at
A7 fails in handling the fourth test case (t4) because no
available room satisfies this price (that is, the value kept by

the message content RoomPrice). Therefore, the branch A7,
A5 in Figure 2 is covered by t4. The activity coverage and
workflow transition coverage of these test cases are
summarized in Tables 1 and 2, respectively. We use a “•”
to represent the item that has been covered by a test case.

We have the following observations from Tables 1
and 2: (i) The respective coverage scores of the activities
by t5–t7 are identical; the same is true for the coverage of
their transitions. (ii) The numbers of covered activities are
identical for t1–t4; the same is true for their transitions.
(iii) Suppose t1 is first selected; using the “additional”
coverage information (Rothermel et al., 2001), the
remaining covered activities or transitions for t4–t7 are the
same, while those for t2 and t3 are 0. In such a tie case,
existing test case prioritization techniques such as

HotelBooking service

No Yes

A4:
Validate

Price

A5: Fault
Handling

A6: Assign RoomPrice

A7: Invoke BookHotel

A8: Reply
HotelBookResponse

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

TripHandling service
book hotel request

book hotel response

A2: Book Hotel A3: Book Flight

A4: Reply

A1: Receive TripRequest

XML messages

see example
in Figure 2

WSDL of
HotelBooking

Use Regression Test Suite
for HotelBooking

Invoking
HotelBooking Service

see example
in Figure 3

see example
in Figure 5

Figure 4. Service interaction scenario.

6

Figure 6. UML sequence diagram for black-box service-oriented testing.

Rothermel et al. (2001) simply order them randomly to
break the tie. As we have discussed in Section 1, such
coverage data may not be observable by the service
consumer in a service environment. Therefore, even though
these statistics help prioritize test cases effectively, testers
may find them impractical to obtain.

Table 1. Activity coverage by t1–t7.

Activity t1 t2 t3 t4 t5 t6 t7

A1 • • • • • • •

A2 • • • • • • •

A3 • • • • • • •

A4 • • • • • • •

A5 • • • •

A6 • • • •

A7 • • • •

A8 • • •

Total 7 7 7 7 5 5 5

Table 2. Transition coverage by t1–t7.

Transition t1 t2 t3 t4 t5 t6 t7

A1, A2 • • • • • • •

A2, A3 • • • • • • •

A3, A4 • • • • • • •

A4, A5 • • •

A4, A6 • • • •

A6, A7 • • • • • • •

A7, A8 • • •

A7, A5 •

Total 6 6 6 6 5 5 5

Every XML message resulting from a test case is of the

form “<tag> ... </tag>”, where <tag> is a WSDL tag. If a

regression test case contains an XML message with a
WSDL tag <tag>, we say that <tag> has been covered by
the test case. Table 3 summarizes the coverage of the
WSDL tags by test cases t1–t7 for the service interaction
scenario. The WSDL tag coverage scores by t5–t6 are
different. Similarly, the coverage by t1 and t2 are different
from that of t3 and t4. If t1 is first selected, since there is a
reset procedure for coverage information, the remaining
covered WSDL tags for t3–t7 are still different (Rothermel
et al., 2001). These observations motivate us to study the
use of WSDL tag coverage in prioritizing test cases.

However, t1 and t2 report the same coverage from
Tables 1–3. Since there can be duplicated WSDL tags in an
XML message (such as the two <doubleroom> tags in the
reply message for test case 1 in Figure 5), we further count
the number of occurrences of WSDL tags in Table 4. Using
the number of WSDL tag occurrences, we can further
differentiate between t1 and t2.

Table 3. WSDL tag coverage by t1–t7.

Element t1 t2 t3 t4 t5 t6 t7

hotel • • • • • •

name • • • • •

doubleroom • • • • •

singleroom • • • • •

room (doubleroom) • • • • •

roomno
(doubleroom)

• •

price (doubleroom) • •

room (singleroom) • • • • •

roomno
(singleroom)

• • • •

price (singleroom) • • • •

Total 10 10 8 8 6 1 0

7

As we have described in Section 1, peer services in a

service composition may not have access to the source code
of a target service. To know whether the target service still
exhibits the desirable functions previously demonstrated in
a service composition, peer services may run regression test
suites on the target service. We explore the coverage of
WSDL documents in our test case prioritization techniques
with the intent to detect failures of the target services faster
than random ordering. Moreover, in cases where white-box
coverage information cannot be visible, our techniques can
be used as replacements; otherwise, only random ordering
can be adopted in such situations.

Table 4. WSDL tag occurrences resulting from t1–t7.

Element t1 t2 t3 t4 t5 t6 t7

hotel 1 1 1 1 1 1 0
name 1 1 1 1 1 0 0

doubleroom 2 1 1 1 1 0 0
singleroom 1 1 1 1 1 0 0

room (doubleroom) 2 1 1 1 1 0 0
roomno

(doubleroom) 2 1 0 0 0 0 0

price (doubleroom) 2 1 0 0 0 0 0
room (singleroom) 1 1 1 1 1 0 0

roomno
(singleroom) 1 1 1 1 0 0 0

price (singleroom) 1 1 1 1 0 0 0
Total 14 10 8 8 6 1 0

4.2. Black-box service-oriented testing

This section presents our black-box service-oriented
testing strategy.

When considering testing scenarios of individual
services, some test suites can be provided by third parties
such as service consumers, or from public registers that
record the invocations of services. On the other hand, test
suites may not be provided in full to service consumers For
example, some test cases may require a reset operation of
the service contexts, and some may incur a charge. The
utilization of test cases and test suites should therefore be
more flexible and adaptive to facilitate the testing
procedure.

The advantage of defining each major step of regression
testing as a service is that such services can be dynamically
changed and, furthermore, each service may be provided by
a different service provider. The service representation of
these steps provides service-oriented testers with a more
flexible way to configure the regression testing procedure.
For example, since the test suite for evaluating a service
may be dynamically changed, we need to collect the latest
version of a test suite from time to time, such as before
starting a new round of regression test. Provision in the
form of a service is therefore useful.

We first present formal definitions of the roles in
black-box service-oriented testing.

Definition 1 (Test Case Service and Test Suite
Service). A test case service tcs is a triple url, t, s, where
url is the location of the WSDL document of tcs, and t is
the test case that can be used to evaluate service s. A test
suite service tss is a triple url, TS, s, where url is the
location of tss, TS is a collection of test case services, each
of which can evaluate service s.

Suppose we have a service s' that holds the test suites of
another service s. We consider each test suite T in s' as a
service. Therefore, s' can discover T by asking s about its
test suite service by, for instance, finding the test suite
service location in the interface specification of s.

Definition 2 (TCP Service and TCP Metrics Service).
A test case prioritization (or TCP) service tcps is a triple
url, tcp, tcpms, where url is the location of the WSDL
document of tcps, tcp is the test case prioritization
technique used, and tcpms is the metrics service supporting
tcp.

Definition 3 (Target Service). A target service ts is a
tuple s, url, where s is the service that needs to be tested
and url is the location of the WSDL document of s.

Definition 4 (Test Monitoring Service). A test
monitoring service tms is a triple url, s, Ψ, where url is
the location of the WSDL document of tms, s is the service
monitored by tms, and Ψ records the execution information
of s, such as the sequence of exchange messages.

Definition 5 (RT Service). A regression testing (or RT)
service rts is a tuple url, ts, tss, tcps, tcpms, where url is
the location of the WSDL document of rts, ts is the target
service to be evaluated by using rts, tss is the test suite
service that can be used to request for the test suite to
evaluate ts, tcps is the test case prioritization service used to
reorder test cases in tss, and tcpms is the prioritization
metrics used by tcps.

Based on the above definitions of participating roles, we
further propose the strategy of black-box service-oriented
testing through the UML sequence diagram in Figure 6. We
briefly explain the invocation sequence of this diagram.
Regression Testing (RT) Service first collects a test suite
from Test Suite Service, and then invokes Test Case
Prioritization (TCP) Service to reorder this test suite. TCP
Service further invokes TCP Metrics Service when
calculating the weights of individual test cases in the test
suite. TCP Service also needs to retrieve execution
information on the test suite. After that, RT Service
executes the reordered test suite on Target Service and, at
the same time, the execution information (such as the
message sequence) is recorded by Test Monitor Service.

In general, conducting a test on a service may involve
multiple test monitors, multiple test cases, multiple TCP
services, and multiple metric services. Ideally, the
combination of such services can be changed dynamically

8

and adaptively. It poses a workload demand on the
underlying infrastructure to provide necessary computation
and storage resources as well as the necessary bandwidth
for different services to communicate efficiently. However,
the variation of different combinations may pose very
different workload demands. Putting these services in a
cloud computing environment (Mei et al., 2008c) allows
the target test (which is conceptually a service composition)
to use the resources for support without bearing the cost of
the underlying infrastructure when some resources are not
used. For instance, if a particular test requires only one test
monitor and demands to execute merely one percent of all
applicable test cases, the provider of the service composi-
tion does not need to pay the charge for accommodating all
test monitors and need not pay for the provision to keep or
initialize the other 99 percent of applicable test cases. In the
rest of the paper, we will present how to conduct test case
prioritization for black-box services.

4.3. Our prioritization techniques

In this section, we first briefly review representative test
case prioritization techniques for regression testing, and
then introduce our adaptation. Among them, M1–M6 are
adopted from Rothermel et al. (2001).

To study the effectiveness and tradeoffs of different
techniques, we follow the styles of Elbaum et al. (2002)
and Rothermel et al. (2001) in comparing other control
techniques with ours. All the techniques and examples are
listed in Table 5. Techniques M1–M6, representing
random, optimal, total-statement, additional-statement,
total- branch, and additional-branch, respectively, are taken
from Rothermel et al. (2001).

Many WSDL documents define XML schemas used by
services. Each XML schema contains a set of elements.
Intuitively, the coverage information on these WSDL tags
reveals the usage of the internal messages among activities.

Table 5. Prioritization techniques and examples.

Category Name Index t1 t2 t3 t4 t5 t6 t7

Benchmark
Random M1 6 7 3 4 5 1 2

Optimal M2 – – – – – – –

Traditional
White-Box

Total-Activity M3 1 3 4 2 5 7 6

Additional-Activity M4 1 3 5 2 4 6 7

Total-Transition M5 2 3 4 1 5 6 7

Additional-Transition M6 1 6 4 2 3 7 5

Our
Black-Box

Ascending-WSDL-TagCover M7 5 7 6 4 3 2 1

Descending-WSDL-TagCover M8 1 2 3 7 4 5 6

Ascending-WSDL-TagCount M9 7 6 5 4 3 2 1

Descending-WSDL-TagCount M10 1 2 3 7 4 5 6

The coverage of all tags in a WSDL document may be

easily satisfied (as illustrated, for instance, by t1 or t2 in
Table 3). If a technique schedules test cases in the order of
tag coverage of the WSDL document, then t1 or t2 will be
selected first. Therefore, quantifying the tag coverage of

WSDL documents provides a new way to explore the
partitioning of test cases for service-oriented regression
testing.

Intuitively, test cases with different WSDL tag coverage
scores may indicate different types of messages (noting that
although we have recorded the sequence of messages for a
test case, the WSDL tags do not differentiate such
sequences). We observe that a reply to a normal service
invocation (which may include, say, a user profile indicating
name, age, and other user information in XML format with a
large number of WSDL tags) may provide more message
contents than a reply to an abnormal service invocation
(which often contains failure information only). WSDL tag
coverage provides a feasible way to quantify the messages.
The ordering generated according to such quantification
may help achieve the following goal:

If testers think that the failures are triggered by normal
service invocations, they can generate orderings in
ascending number of WSDL tags in test cases. On the other
hand, if testers think that the failures are more likely to be
triggered by abnormal service invocations, they can
generate orderings in descending number of WSDL tags in
test cases. Based on the above analysis, we propose two
techniques, namely M7 and M8.

M7: Ascending WSDL tag coverage prioritization
(Ascending-WSDL-TagCover). This technique first parti-
tions the test suite into groups where test cases in the same
group have the same WSDL tag coverage, then sorts the
groups in ascending order of the number of tags covered by
a test case, and finally selects test cases iteratively from the
ordered sequence of groups. (For each iteration, M7 selects
one test case randomly from each group.)

M8: Descending WSDL tag coverage prioritization
(Descending-WSDL-TagCover). This technique is the
same as Ascending-WSDL-TagCover, except that it sorts
the groups in descending order (instead of ascending order)
of the WSDL tag coverage of each test case.

M7 and M8 examine the effect of WSDL tag coverage
by a test case during test case prioritization for services.
Both techniques include a grouping phase that partitions the
test suite into groups. During the grouping phase, we count
multiple occurrences of the same WSDL tag only once. In
this way, two test cases in the same group have the same
WSDL tag coverage (while their actual number of WSDL
tags may be different). We then iteratively select test cases
from each group. For example, possible prioritization
orders for WSDL tag coverage by t1–t7 according to M7
and M8 may be t7, t6, t5, t3, t4, t2, t1 and t2, t1, t3, t4, t5, t6, t7,
respectively.

In the context of black-box testing, the internal structure
of a service-oriented program is not known. Thus, it is
impossible to know the relative importance of different tags
from the perspective of the technique. Without further
information, M7 and M8 consider that the coverage of one
tag is as important as the coverage of another. Such an

9

assumption also applies to M9 and M10. Of course, in case
there is any knowledge on the internal structure of the
service-oriented program, we may differentiate among
various tags according to their usages by the service-
oriented program, and design appropriate techniques.
However, this will be beyond the scope of black-box
testing.

Next, we propose two techniques (M9 and M10) to
prioritize test cases according to the number of occurrences
of WSDL tags in each test case. The basic motivation of
M9 and M10 is the same as that of M7 and M8, and hence
we do not repeat the description here. However, M9 and
M10 count the number of WSDL tag occurrences resulting
from each test case, rather than the WSDL tag coverage by
each test case. This handling can differentiate tie cases
where multiple test cases have the same WSDL tag
coverage but different WSDL tag occurrences.

M9: Ascending WSDL tag occurrence prioritization
(Ascending-WSDL-TagCount). This technique first parti-
tions a test suite into groups where test cases in the same
group cover the same occurrences of WSDL tags, then sorts
the groups in ascending order of the occurrence of tags
covered by a test case, and finally selects test cases itera-
tively from groups. In each iteration, M9 selects one test
case randomly from each group.

M10: Descending WSDL tag coverage prioritization
(Descending-WSDL-TagCount). This technique is the
same as Ascending-WSDL-TagCount, except that it sorts
the groups in the descending order (instead of ascending
order) of the occurrence of tags covered by a test case.

For instance, based on M9 and M10, possible prioritiza-
tion orders for WSDL tag occurrence resulting from t1–t7

are t7, t6, t5, t4, t3, t2, t1 and t1, t2, t4, t3, t5, t6, t7,
respectively.

Figure 7 further summarizes the difference between
black-box testing techniques (M7−M10) and conventional
(white-box) techniques (M3−M6). The figure shows that
our black-box testing techniques only require interactive
messages and the corresponding WSDL documents (as
demonstrated in Section 3). In contrast, white-box testing
techniques require the source programs of the services
under test. Our techniques can be applied to services that
may evolve over time. We assume that any given service
provides a public test suite for consumers to verify its
functionality and coordination. In case this is not provided,
however, we may randomly create a test suite according to
its public WSDL documentations (such as those stored in
UDDI registries).

Moreover, to apply the techniques, we can reconstruct
the document model (such as W3C, 2007a) based on the set
of XML data. Our techniques can therefore be applied even
when no WSDL is available for some application scenarios.

A valid test input with a new test result requires a test
oracle to determine its correctness. We further assume that
there is a test oracle. For instance, the developers or users
of peer services may judge whether the returned test results
are useful or meaningful.

Compared to our technique, a traditional function
coverage prioritization strategy does not consider
parametrical values or their dynamic types; nor does it
determine the coverage achieved by individual test cases
based on “tags”. For instance, when polymorphic objects
are used as parameters of a function, traditional techniques
simply ignore this information, whereas such information
has been considered in our techniques when covering

WSDL of
HotelBooking

HotelBooking service

No Yes

A4:
Validate

Price

A5: Fault
Handling

A6: Assign RoomPrice

A7: Invoke BookHotel

A8: Reply
HotelBookResponse

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

TripHandling service
book hotel request

book hotel response

A2: Book Hotel A3: Book Flight

A4: Reply

A1: Receive TripRequest

XML messages

Required knowledge
for white-box testing

Required knowledge
for black-box testing

Figure 7. Different required knowledge for black- and white-box testing.

10

different tags of the XML schema captured in WSDL
documents. Furthermore, while the collection of such
information in traditional programs is costly, we observe
that this information is available in services as a byproduct
of their message interchange.

5. Experiment

This section reports on an experimental verification of
our proposal.

5.1. Experimental design

5.1.1. Subject programs, versions, and test suites

We use a set of WS-BPEL applications to evaluate our
techniques. The same set of artifacts has been used in the
experiments in Mei et al. (2008b, 2009d). These appli-
cations have been used as benchmarks or examples in many
WS-BPEL studies. Among them, the applications atm,
gymlocker, loanapproval, marketplace, purchase, and
triphandling are from BPEL repository (IBM, 2006), the
application buybook is from Oracle BPEL Process Manager
(Oracle Technology Network), and the application
dslservice is from Web Services Invocation Framework
(Apache Software Foundation, 2006).

Like many other studies that evaluate testing tech-
niques, we seed known faults to measure the effectiveness
of the prioritization techniques. Thus, we create a set of
mutants for each benchmark program. Each mutant is a
modified version of the original program with one fault
seeded. A mutant is considered as an evolving version of an
autonomous service. The fault-seeding procedure is similar
to that of Hutchins et al. (1994). It has long been recog-
nized (DeMillo et al., 1978) and verified experimentally
(Offutt, 1992) that test cases that kill single-fault mutants
are “very successful” in killing multiple-fault mutants as
well. Jia and Harman (2009) point out the existence of
“rare” combinations of faults that may mask one another
and hence difficult to detect. However, test cases to kill
such combinations are still under investigation by the said
authors and hence we will not study them in the present
paper.

Easily exposed faults are more likely to be detected and
removed during program testing by developers, rather than
allowed to persist until regression testing. Instead, we focus
on relatively hard-to-detect faults when comparing the fault
detection capabilities of various techniques. Hence, follow-
ing Elbaum et al. (2000, 2002) and Jiang et al. (2009), we
discard any faulty version if more than 20 percent of all test
cases can detect failures due to the seeded fault. As such, 43
mutants are selected from the 60 mutants that are originally
seeded. For any test experiment, one would always prefer a
larger experiment that involves more subject programs and
more faults. Some readers may therefore consider that the set
of faults used in this experiment is not large enough. In our
experience, however, simply executing a test case on one

WS-BPEL program is already very tedious. Moreover, to the
best of our knowledge, the scale of the experiment, both in
terms of the number of subject programs and the number of
faults, is already the largest among the experiments in
published articles in service-oriented testing.

Table 6 shows the subject programs and their
descriptive statistics. The descriptive statistics of the appli-
cable modified versions are shown in the rightmost column
of the table.

We constructed test cases randomly for each subject
application. One thousand (1000) test cases were generated
to form a test pool for each application. From each gener-
ated test pool, we randomly selected test cases to form a
test suite. Selection continued iteratively until all the work-
flow activities, all the workflow transitions and all types of
XML message had been covered by at least one test case.
The procedure is similar to the test suite construction in
Elbaum et al. (2002) and Mei et al. (2009c). We then
applied the test suite to all the applicable faulty versions of
the corresponding application. We successfully generated
100 test suites for every application. Table 7 shows the
maximum, average, and minimum sizes of the test suites
(where the size of a test suite refers to the number of test
cases it contains).

Table 6. Subject programs and statistics.

Ref. Application

V
er

si
on

E
le

m
en

t

L
O

C

W
S

D
L

S

p
ec

.

W
S

D
L

T

ag

N
o.

 o
f

V
er

si
on

s
U

se
d

A Atm 8 94 180 3 12 5
B Buybook 7 153 532 3 14 5
C Dslservice 8 50 123 3 20 5
D Gymlocker 7 23 52 1 8 5
E Loanapproval 8 41 102 2 12 7
F Marketplace 6 31 68 2 10 4
G Purchase 7 41 125 2 10 4
H Triphandling 9 94 170 4 20 8

Total 60 527 1352 20 106 43

Table 7. Statistics of test suite sizes.

Ref.
Size

A B C D E F G H Avg.

Maximum 146 93 128 151 197 189 113 108 140.5

Average 95 43 56 80 155 103 82 80 86.3

Minimum 29 12 16 19 50 30 19 27 25.2

For every subject program and for every test suite thus

constructed, we used each of the test case prioritization
techniques (M1−M10) presented in Section 4 to prioritize
the test cases. For every faulty version of the subject
program and every corresponding prioritized test suite, we
executed the test cases one by one according to their order
in the test suite, and collected the test results.

5.1.2. Effectiveness measure

To compare the effectiveness (in terms of fault
detection rates) among M1−M10, we use the Average Per-
centage of Faults Detected (APFD) as the metric, which

11

measures the weighted average of the percentage of faults
detected over the life of a test suite. The APFD metric has
been introduced in Section 2.

5.2. Data analysis

5.2.1. Overall effectiveness

In this section, we analyze the data to evaluate the
effectiveness of different techniques. We apply techniques
M1–M10 on each application and calculate the APFD
values. We repeat this procedure 100 times using the
generated test suites. The results are collected and summa-
rized in the box plots in Figure 8.

These box plots are drawn using the PTS box-and-
whisker plot chart utility available through Microsoft
Excel. Each box plot shows the 25th, 50th, and 75th

percentiles of a technique. The result for each application is
given in Figures 8(a)–(h). The overall 25th, 50th, and 75th
percentiles as well as the overall mean of all subject
programs are shown in Figures 8(1)–(4).

We observe from Figures 8(1)−(4) that M1 and M2
show the worst and the best performances, respectively, in
terms of APFD values. This result is consistent with
previous studies such as Rothermel et al. (2001).

We first use the 25th percentile APFD to compare
M1−M10. Figure 8(1) shows that random prioritization
(M1) achieves a mean value of 0.788. The minimum and
maximum mean APFD achieved for the white-box
techniques (M3−M6) are 0.817 and 0.839, respectively. On
the other hand, the mean APFD for M8 is 0.844, which is
higher than the corresponding values for M3−M6.

(a) atm (b) buybook (c) dslservice

(f) marketplace

(d) gymlocker

(g) purchase (h) triphandling(e) loanapproval

(1) 25th APFD (2) 50th APFD (3) 75th APFD (4) Mean APFD
Overall Statistics

Individual Statistics

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Figure 8. Comparisons of APFD measures among M1–M10 using coverage-adequate test suites.

 (The x-axes show the techniques and the y-axes show the APFD values.)

12

M7−M10 demonstrate much smaller variances than M1 and
M3−M6.

Then, we compare M1−M10 using the median (that is,
the 50th percentile) APFD value in Figure 8(2). M4 shows
better results than all the other techniques from all perspec-
tives except for the minimum APFD value.

Next, we compare M1−M10 using the 75th percentile
APFD value in Figure 8(3). The variance of M10 is much
smaller than that of any other technique. M3 and M5 have
similar APFD values (which we call performance for ease
of reference). The performance of M9 is similar to that of
M7. M10 is a bit better than M8. This observation is not too
surprising because of the lack of knowledge of the detailed
program code for M7–M10.

Finally, we compare the mean APFD values. The mean
APFD for M8 is 0.879, which is higher than that for M3 or
M5 but lower than that for M4 or M6. This observation
indicates that our black-box testing techniques (particularly
M8) can achieve similar (or even better) APFD results
when compared with the white-box testing techniques
(M3−M6). The results of M9 and M10 are similar to those
of M7 and M8, respectively.

Figure 8(4) shows that M8 and M10 are better than all
the other techniques (except the optimal) at the 25th
percentile of mean APFD results. Moreover, M3−M6 are
also better than M1 at the 75th percentile. On average, as
reported in Figures 8(1)–(4), our black-box testing
techniques M7–M10 are close to white-box testing
techniques (M3–M6) for the mean APFD values and at the
25th and 50th percentiles of APFD results. However, when
considering the 75th percentile values in Figures 8(1)−(4),
we observe that the performance of M7–M10 is worse than
that of M3–M6.

Overall, M7−M10 are more effective at early fault
detection than random ordering. This indicates that
black-box test case prioritization techniques (instead of
M1) are a promising method to use for service testing. As
reported in Figures 8(1)−(4), the overall performance
between M8 and M10 and that between M7 and M9 are

similar. But we observe that, in some cases such as Figures
8(b) and (f), M8 is better than M10 while, in some other
cases such as Figure 8(c), M10 is better than M8.

We further compare the overall performances of each
technique in terms of the minimum, mean, and maximum
APFD values in Table 8. We observe that the mean APFD
values of M3–M10 are close to one another, and all are
higher than that of M1. When considering the minimum
APFD values, we find that M7–M10 all achieve higher
values, which indicate that our techniques have smaller
variances than M3–M6. An interesting observation is that
M6 reports the same minimum APFD value as M1. This
shows that sometimes the use of M6 may not contribute to
an increase of the fault detection rate.

We also briefly compare M1−M10 from individual
benchmark applications. We find that our technique M8 can
even be better than M3−M6 in some benchmark
applications (such as Figures 8(c) and (e)). Among all these
subject applications, M7 and M8 are significantly better
than M1 in five cases out of eight (Figures 8(b), (c), and
(e)–(g)), close to M1 in two (Figures 8(d) and (h)), and only
a little worse than M1 in one case (Figures 8(a)).

Table 8. Further comparisons of APFD measures

among M1–M10.

Tech.
APFD

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Max. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Mean. 0.84 0.99 0.86 0.88 0.87 0.88 0.87 0.88 0.87 0.88

Min. 0.04 0.90 0.28 0.25 0.30 0.04 0.31 0.38 0.43 0.44

We further observe that the results of M7 and M9 are

similar, and those of M8 and M10 are also similar. Figure
8(3) shows that M10 has a much smaller variance than
M1–M9 in all (in terms of the 75th percentile APFD
values). This result indicates that M7–M10 have a high
chance in outperforming random ordering. Thus, our
techniques can be more effective than random ordering for
black-box service-oriented testing.

(1) BPEL (2) XPath (3) WSDL

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Figure 9. Categorized comparisons of APFD measures among M1–M10.

(The x-axes show the techniques and the y-axes show the APFD values.)

13

5.2.2. Effectiveness on categorized faults

In this section, we analyze the capability of detecting
different kinds of faults. We categorize faults into three
categories, namely, BPEL faults, XPath faults, and WSDL
faults, and collect APFD results for each category.

The results, as shown in Figure 9, are interesting.
Before conducting the experiment, we expected that our
black-box testing techniques might be better than white-box
techniques in detecting WSDL faults. The actual results
show, however, that our techniques have variances smaller
than white-box techniques in detecting BPEL faults, but
have variances larger than white-box techniques in
detecting XPath and WSDL faults. Through further
investigation, we find that some BPEL faults cannot be
revealed using one kind of XML message input (which
apply to a large proportion of a test suite) but can easily be
revealed by another kind of XML message (which may
apply to a small proportion of a test suite). In any case, our
techniques can detect BPEL faults earlier (in terms of the
25th percentile APFD values) than M1, M4, and M5.

Next, let us analyze the performance in detecting XPath
faults. Since an XPath fault may lead to a change in activity
and transition coverage, it is not surprising that white-box
techniques can achieve better results.

Finally, when comparing Figure 9(3) with Figures 9(1)
and (2), we find that WSDL faults are easier to detect than
BPEL and XPath faults. Figure 9(3) also indicates that the
performance of test cases using M7–M10 may not as good
as the use of M3–M6, and therefore the chance of achieving

a higher fault detection rate is lower than M3–M6.
In summary, we observe the following through the

analysis of the categorized fault detection rates: (i) proper
partitioning of test cases can affect the fault detection rate,
and (ii) when attempting to detect faults in an artifact of a
program, if there are multiple kinds of artifacts in the
program, it may be more effective to use other kinds of
artifacts to partition test cases.

We also observe from Figures 8 and 9 that, overall
speaking, the two (ascending and descending) sorting
strategies provide observable differences in terms of
medium APFD, and that the use of the descending strategy
is better than using the ascending strategy.

5.2.3. Hypothesis testing

One may wonder whether the differences between our
WSDL-related techniques and conventional techniques are
significant. To answer this question, we conduct hypothesis
testing to study the differences among the above
techniques. We follow Li et al. (2007) and perform one-
way ANalysis Of VAriance (ANOVA) to find out whether
the means of APFD distributions for different techniques
differ significantly. Since M2 (the optimal technique) is
much better than the other techniques (see Figure 8), we
skip the comparison with M2 in the hypothesis testing.

The null hypothesis is that the means of APFD values
for M1 and M3–M10 are equal. To decide whether to
accept or reject the null hypothesis, we set the significance
level to 5%. If the p-value is smaller than 5%, the differ-

(b) Compared with M8

(c) Compared with M9 (d) Compared with M10

(a) Compared with M7

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91

M10

M9

M8

M7

M6

M5

M4

M3

M1

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91

M10

M9

M8

M7

M6

M5

M4

M3

M1

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91

M10

M9

M8

M7

M6

M5

M4

M3

M1

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91

M10

M9

M8

M7

M6

M5

M4

M3

M1

Figure 10. Multiple comparisons among M1 and M3-M10 using coverage-adequate suites.

(The y-axes show the techniques and the x-axes show the APFD values.)

14

ence between the techniques is deemed to be statistically
significant. For each of the subject programs, ANOVA
returns a p-value much less than 0.05, which successfully
rejects the null hypothesis at a significance level of 5%.
Since there is no outliner or exception case in the ANOVA
results, we will not list the detailed statistics.

Following Rothermel et al. (2001), we further conduct
multiple comparisons (Li et al., 2007; Jiang et al., 2009) to
study whether the means of test case prioritization
techniques differ significantly from one another at a signi-
ficance level of 5%. We present the multiple comparison
results in Figure 10, styled after Jiang et al. (2009) and
generated by MATLAB using the default setting of alpha
value = 0.05 and ctype = “hsd” (for Tukey’s honestly
significant difference criterion). The thick (blue) lines
represent the target technique to be compared with other
techniques. The thin (red) lines represent the techniques
whose means differ significantly from the target technique,
while the dashed (black) lines represents techniques
comparable to the target technique.

First, we compare M7–M8 with M1. We observe that
the pairs (M1, M7) and (M1, M8) are significantly differ-
ent. This observation shows that our black-box testing
techniques are better than random ordering in terms of the
overall mean APFD. On the other hand, when we compare
M7–M8 with M3–M6, we do not observe a significant
difference apart from the pair (M3, M8). This indicates that
the overall performance of M3–M6 is close to that of
M7–M8. This result also verifies the observation that we
have discussed in Figures 8(1)–(4) above.

When comparing M7 with M8, the result shows that
recursively selecting test cases from the highest coverage to
the lowest coverage of WSDL tags is more likely to
achieve a higher fault detection rate. However, we do not
find a significant difference between M7 and M8 using the
overall APFD values.

Next, we compare M7−M8 with M9−M10. We do not
observe significant differences between them. We can
observe that the performances of M7 and M9 are similar,
and those of M8 and M10 are similar. The differences
between M9−M10 and M1−M6 are similar to those be-
tween M7−M8 and M1−M6. This shows different ways of
counting the number of WSDL tags (namely, whether
multiple occurrences of a WSDL tag should be counted as
one) does not produce very different results on the
benchmark applications we have used.

5.2.4. Comparisons of randomly created test suites

In the experimental setting presented in Section 5.1, we
follow some specified criterion for the adequacy of a test
suite (say, each workflow transition must have been
covered by at least one test case). The test suite construc-
tion process randomly adds a test case to the test suite
(initially empty) until the criterion has been met.
Nevertheless, it is sometimes infeasible to create such test
suites for a black-box service whose internal structure is not

available. In such situations, we randomly add test cases to
a test suite (initially empty) until a predefined size has been
met. In this way, we have created 100 test suites having the
same sizes as those in Table 7, and examine the fault
detection rates of M1–M10 on these test suites. We further
note that if the service is a black-box service whose internal
structure is not known, it is generally impractical to apply
M3–M6 in reordering test cases. However, we only use
M3–M6 as benchmarks.

The result for each application is given in Figures
11(a)−(h). The overall 25th, 50th, and 75th percentiles as
well as the overall means of all subject programs are shown
in Figures 11(1)−(4). M1 and M2 show the worst and the
best performances in all these figures.

We first use the 25th percentile APFD values to
compare M1–M10 in Figure 11(1). All of M3−M10
demonstrate better results than M1. The white-box
techniques have results similar to the black-box techniques.
However, in terms of the 25th value (the bottom transversal
line of the box) and the 75th value (the top transversal line
of the box) in the box plots, the black-box techniques show
slightly better results than the white-box techniques. This
shows that our black-box techniques are close to (and even
a little better than) white-box techniques in the worst
orderings generated.

Then, we use the median APFD (that is, the 50th
percentile) to compare M1–M10 in Figure 11(2). The
white-box techniques (except M3) have results similar to
those of M7–M10. Compared with Figure 8(2), we observe
that the variances reported by M3–M6 in Figure 11(2) are
smaller than those in Figure 8(2).

Next, we use the 75th percentile APFD values to
compare M1–M10 in Figure 11(3). M3–M6 all show
slightly better results than M7–M10. M6 shows the best
performance among M3–M10 from many perspectives,
such as the highest 25th percentile, median, and 75th
percentile, as well as the smallest variance. These
observations demonstrate that M8 and M10 are close in
performance to the white-box testing techniques, while M7
and M9 are slightly worse than the white-box techniques.

Finally, we compare the mean APFD values for
M1–M10 in Figures 8(4) and 11(4). In Figure 11(4), the
differences in mean APFD values between M7 and M8 and
between M9 and M10 are similar to their differences in
Figure 8(4). We can, however, observe larger variances of
M7–M10 in Figure 11(4) than in Figure 8(4). Since the
randomly created test suites may be coverage-inadequate,
this observation indicates that the performances (in terms of
mean APFD values) of M7−M10 may have more differ-
ences on coverage-inadequate test suites than on coverage-
adequate test suites.

When comparing M7 and M9 with M8 and M10 in
Figures 11(1)−(4), we observe that the use of the
descending strategies (M8 and M10) may be more effective
than the ascending strategies (M7 and M9).

15

M3–M6 have larger variances in Figure 11(4) than in
Figure 8(4). Among them, M4–M6 show better results than
M7–M10 in terms of the median values in the box plots.
However, the results of M7–M10 are much better than
random prioritization. M8 and M10 are slightly better than
M3–M6 in terms of the 25th percentile values in the box
plots. This indicates that our black-box techniques are
useful.

We also compare the performance of each application
in Figures 8 and 11 to gain more insight. In summary,
random ordering achieves slightly better results in Figure
11 than in Figure 8. This shows that random prioritization
may be slightly affected by the construction procedure of
the regression test suites. Nevertheless, random ordering
still cannot be better than black-box techniques in most
cases.

We observe through the comparison of Figures
11(1)–(4) with Figures 8(1)–(4) that our black-box

techniques outperform random prioritization using either
type of test suite. When comparing the performances of
M3–M10 between Figures 11(1)–(4) and Figures 8(1)–(4),
we find that the variances of these techniques in Figure 11
are larger than those in Figure 8. The relative performances
between the white-box techniques M3–M6 and the
black-box techniques M7–M10 remain similar. Since the
construction procedures of both adequate-coverage test
suites and random test suites consist of random test case
selection, the results may thus differ from each other within
a small range on all the benchmark applications.

We also observe from Figure 11 that arranging the test
suite in descending order achieves slightly higher medium
APFD values than ascending order.

5.2.5. Hypothesis testing of randomly created test suites

We continue to present the multiple comparison
(Carmer and Swanson, 1971) results of M1 and M3–M10

(a) atm (b) buybook (c) dslservice

(f) marketplace

(d) gymlocker

(g) purchase (h) triphandling(e) loanapproval

(1) 25th APFD (2) 50th APFD (3) 75th APFD (4) Mean APFD
Overall Statistics

Individual Statistics

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Figure 11. Comparisons APFD measures among M1–M10 using randomly created test suites.

(The x-axes show the techniques and the y-axes show the APFD values.)

16

in Figure 12, also generated using MATLAB. Similar to
Figure 10, the thick (blue) lines represent the target
technique to be compared with other techniques. The thin
(red) lines represent the techniques whose means differ
significantly from the target technique, and the dashed
(black) lines represents techniques comparable to the target
technique.

We observe that both M8 and M10 significantly
outperform random prioritization. Although M7 and M9 are
better than M1, the differences are not statistically signifi-
cant. M6 achieves significantly better results than M9.
However, apart from M6 and M9, there is no significant
difference between the white-box techniques and the black-
box techniques. Furthermore, M4–M6 all significantly out-
perform M1. For the sake of brevity, we do not show them
in Figure 12.

Compared with the hypothesis testing results in Figure
10, the differences of M1 and M3 from the black-box
techniques are less significant. In any case, the results show
that our techniques can have a high chance of outperform-
ing random ordering, and two of the black-box techniques
are close to the white-box techniques.

5.3. Threats to validity

Threats to construct validity arise if the measuring
instruments do not adequately capture the concepts they are
supposed to measure. In the experiment, we use the fault
detection rate to measure the effectiveness of M1–M10. We

choose the APFD metric, which has been widely adopted in
test case prioritization (such as Elbaum et al., 2002) to
measure the fault detection rate of prioritization techniques.
There are other metrics proposed for evaluating the
prioritization techniques (such as Li et al., 2007). Different
metrics serve to measure different aspects of a testing
technique. In our experiment, we assume that the test oracle
of each regression test case is reliable. In practice, however,
some of the failures miss to be identified. In such cases, the
APFD values presented in this paper are different from the
actual APFD values. However, in our controlled experi-
ment setting, the same test case is applied by each of the
techniques to the same modified version of each subject.
Moreover, APFD treats all faults equally. We categorize all
the faults into three categories, namely, BPEL faults, XPath
faults, and WSDL faults, and compute the APFD results for
each category to gain more insight.

Although we have tried our best to search for publicly
available benchmark programs, we have not found such
programs with documentation of real-life faults. We have
therefore used seeded faults in the experiment.

Threats to internal validity are the influences that can
affect the dependency of experimental variables involved.
When executing a test case on a service composition, the
contexts of the involved services may affect the outcome of
the test case, making the evaluation result inconclusive. We
have proposed a framework (Mei, 2009a) to address this
problem. In this paper, our experiment tool resets the run-

(b) Compared with M8

(c) Compared with M9 (d) Compared with M10

(a) Compared with M7

0.865 0.875 0.885 0.895 0.905 0.915

M10

M9

M8
M7

M6
M5

M4

M3
M1

0.865 0.875 0.885 0.895 0.905 0.915

M10

M9

M8

M7

M6

M5

M4

M3

M1

0.865 0.875 0.885 0.895 0.905 0.915

M10

M9

M8

M7

M6

M5

M4

M3

M1

0.865 0.875 0.885 0.895 0.905 0.915

M10

M9

M8

M7

M6

M5

M4

M3

M1

Figure 12. Multiple comparisons among M1 and M3-M10 using randomly created test suites.

(The y-axes show the techniques and the x-axes show the APFD values.)

17

time contexts of services to the required values for each test
case.

External validity is concerned with whether the results
are applicable to the general situation. Eight WS-BPEL
programs have been included in the experiment. Each pro-
gram can be considered as a service. These services were
not large in size and may not be truly representative of the
many different types of web service, which may also be
written in diverse programming languages. Moreover, the
same WSDL documents may not be applicable to programs
of different scales. We will conduct other studies to verify
the techniques further. We also plan to collaborate with the
industry to design benchmark service-oriented programs in
larger distributed computing environments, and to evaluate
our proposed prioritization techniques to gain more insight.

In our experiment, we have not used multi-fault or other
single-fault service-oriented applications to verify our
techniques. Although using more faulty versions may
strengthen how an experiment addresses the external threats
to validity, it involves more effort in evaluating each tech-
nique. In our experience in service-oriented testing, in order
to conduct a test experiment, researchers require the setting
up of the underlying platform such as web servers, BPEL
engines, and database servers. It takes non-trivial effort to
enable these platform applications to support test experi-
ments. For instance, sometimes the BPEL engine may
simply hang and does not respond as usual when processing
messages. In such a scenario, researchers are required to
divert effort not only to run their tests, but also to diagnose
and fix/bypass the faults in such a testing environment.
Compared with the effort to run test experiments on more
traditional subjects (such as the Siemens suite (Elbaum et
al., 2000)), the effort to run experiments that use
service-oriented programs as subjects is significantly more
immense. To balance between our available human
resources and the completeness of the experiment, we
choose not to include other faulty versions in the current
study.

Another threat to validity is the correctness of our tools.
We have used Java to develop our tools for program
instrumentation and test case prioritization, used PTS box
chart utility to draw the box plots, and used MATLAB to
do the statistical analysis. To minimize errors, we have
carefully tested our tools to assure their correctness.
However, we are unable to conduct a thorough test of PTS
box chart utility and MATLAB.

We use a random test case generator to construct
random test cases for the required test suites. As shown in
many previous studies, the use of test suites fulfilling
different testing criteria (such as branch coverage) may
result in different fault detection capabilities. This will also
affect the APFD values when comparing different test case
prioritization techniques. We use the same number of test
sets for each subject version. The use of different numbers
of test sets for different versions may affect the results.

6. Discussion

We have assumed in our model that the interface
specification of a service specifies how the test suite
services and test case services will be called. However, this
constraint may be relaxed in many ways, such as using
method invocation, centralized services, and UDDI
registries. For example, a service provider may provide an
entry in its WSDL documents in the UDDI registries to
illustrate how its test suite service can be accessed.

We have identified the key roles in black-box
service-oriented testing in Section 4.2, and have modeled
these roles by services. Based on such modeling, many
interesting approaches can be considered, such as how to
represent the flow of regression testing using a format (e.g.,
WSDL) that can be released to public registries, and how
our proposed strategy can be dynamically adapted
according to the feedback from regression testing after a
round of test suite evaluation of the target services.

In our problem setting, we consider that the internal
structure of a workflow service may not be available, and
thus develop techniques to address regression testing chal-
lenges when only exchanged messages between individual
workflow steps and services are available. However, if more
information is known when test cases are executed (such as
the coverage information of the internal structures of
services), we can further derive new techniques by adapting
our proposed techniques. For example, we may use the new
information to prioritize the tie cases resulting from our
black-box testing techniques. In addition, we may also apply
our black-box testing techniques to prioritize the tie cases
resulting from white-box testing techniques if the relevant
white-box information is available.

To the best of our knowledge, existing test case priori-
tization techniques on service-oriented programs either have
their own assumptions (such as resource constraints in Hou
et al., 2008), or are not black-box test case prioritization
techniques (see, for instance, Mei et al., 2009d). Hence, we
only compare our black-box testing techniques with
white-box techniques and two control techniques (random
and optimal).

The experimental results have shown that our black-box
techniques can have a high chance of outperforming
random ordering, and two of our techniques are close to
white-box techniques. The results have also indicated that
our black-box techniques are close to (and even a little
better than) white-box techniques in the worst orderings
generated for either adequate-coverage test suites or random
test suites. These observations suggest that our techniques
may serve as viable choices when conducting regression
testing for service-oriented programs.

7. Related work

Regression testing is a testing procedure conducted after
modifications of a program (Leung and White, 1989). It has

18

been widely used in the industry (Onoma et al., 1998).
Leung and White (1989) have pointed out that simply
rerunning all existing tests is not an ideal approach. Test
case prioritization aims to reorder test cases to maximize a
testing goal (Rothermel et al., 2001), and is one of the most
important lines in regression testing research.

Many coverage-based prioritization techniques, such as
Elbaum et al. (2002) and Rothermel et al. (2001), have been
proposed. A large number of these techniques prioritize test
cases by means of the code coverage achieved, such as the
number of statements or branches covered by individual
test cases (Rothermel et al., 2001). Furthermore, although
there are header files and preprocessing macros in C
programs, existing code-based prioritization techniques that
use C programs as subjects do not explore such
information. Specific examples of criteria used include
fault-exposing potential of individual test cases (Rothermel
et al., 2001), the series of regression history (Kim and
Porter, 2002), and test costs and fault severities (Elbaum et
al., 2002). In the service-oriented environment, because of
the limited knowledge of potential evolutions of a target
service as well as the classifications of previously identified
faults in fault-based techniques, it is not clear how
history-based or cost-based techniques can be applied
effectively. The effects of compositions and granularity
(Rothermel et al., 2002) of a test suite have been studied
experimentally in conventional testing. To the best of our
knowledge, however, these two aspects have not been
examined in the context of service-oriented testing.

Hou et al. (2008) consider the issue of service invoca-
tion quota in a regression testing technique. Specifically,
they observe that some web services may not be invoked
without limit. They use such quota constraints as the metric
to guide the prioritization of test cases. In our problem
setting, we do not have any quota constraint. We evaluate
how well the number of XML tags is used as a metric to
reorder test cases. Zhai et al. (2010) also study the impact
of service invocation in regression testing techniques.
Rather than setting up a quota to constrain the number of
invocations of a service, they integrate the notion of
service-oriented architecture to their techniques. They
observe that, to bind a service, a set of candidate services
satisfying the required quality-of-service constraint may be
discovered. Nonetheless, a typical service selection process
will discard all but one of such services. In verifying the set
of candidate services, they propose to discard a service
permanently once it is found to be faulty. Consequently,
their technique can reduce the average number of service
invocations and improve the identification rate of faulty
services. Their approach does not optimize the fault
detection rate of individual services. On the other hand, our
work does not use service-oriented architecture as its core,
but focuses on improving the fault detection rate for a given
service under test. It will be interesting to explore the
integration of these two dimensions.

Our work is also related to the area of testing third-party
web services. Brenner et al. (2007) study different general
testing approaches that can be used compatibly to verify
such web services. Zhai et al. (2010) focus on eliminating
third-party web services as early as possible from subse-
quent service selection considerations. Their focus is not on
the testing of such third-party web services. Bartolini et al.
(2009, 2010) propose a framework to collect and report the
coverage statistics achieved by a test on a service. We focus
on using the information captured in messages to guide the
testing process. None of these studies examines this
information.

Next, we review related work in the area of
service-oriented computing. Martin et al. (2007) outline a
framework that generates and executes web service
requests, and collects the corresponding responses from
web services. They propose to examine the robustness
aspect of services by perturbing such request-response
pairs. They have not studied test case prioritization. Tsai et
al. (2005a) recommend using an adaptive group testing
technique to address the challenges in testing
service-oriented applications when a large number of web
services are available. They rank test cases according to a
voting mechanism on input-output pairs. Neither the source
code of the service nor the structure of WSDL is utilized.

Mei et al. (2008b) use the mathematical definitions of
XPath (W3C, 2007b) as rewriting rules, and propose a data
structure known as an XPath Rewriting Graph (XRG). They
further develop the notion of XRG patterns to capture how
different XRGs are related even though they may refer to
different XML schemas or tags (Mei et al., 2009b). They
have developed test case prioritization techniques (Mei et
al., 2009c) on top of their XRG structure. However, they
have not studied whether WSDL can be used in a
standalone manner for regression testing of services when
the source code is unavailable or too costly to acquire.

In the area of test oracles, Tsai et al. (2005b, 2008)
observe that many web services may produce the same
output for the same input. They propose to use whether the
outputs of such web services agree with one another as a
means to identify web services with desirable outputs by
the use of a variant of the majority vote strategy. Bai et al.
(2007) and Bai and Kenett (2009) further propose a
framework to support this group testing proposal by
enforcing check-in and check-out features of web service
registries, and study how to prioritize risky (also known as
harmful) test cases to be executed earlier. Dai et al. (2007)
and Di Penta et al. (2007) propose to add contracts to
service descriptions to serve as a kind of correctness
criterion (or test oracle) to check test results. Chan et al.
(2005, 2007) use metamorphic relations of applications to
test stateless scientific web services. Our experiment uses
the expected results captured for the regression test cases.
Our work has not considered the strengths of test oracles
used to identify failures.

19

There are recent studies on fault-tolerant web services
(Aghdaie and Tamir, 2009) and (self-)adaptive web
services. They are not considered in our experiment.
Nonetheless, we believe that our techniques can be applied
to validate such web services.

8. Conclusion

In a service composition, a member service may evolve
without any prior agreement from peer services. Other
services that relate to this member service may need to
conduct regression testing to verify whether the functions
of the latter service conform to their established inter-
operability requirements. Even though the former services
want to conduct regression testing, the latter service has
been encapsulated with only an observable interface,
making it difficult for the former services to apply existing
code-based test case prioritization techniques to achieve
certain prioritization goals.

This paper studies whether the use of WSDL informa-
tion may facilitate effective regression testing of services.
To the best of our knowledge, it is among the pioneering
work that formulates black-box regression testing to verify
web services. The paper also proposes a set of roles to
support black-box service-oriented regression testing and
outlines a scenario to illustrate how to collaborate these
roles. We have also discussed how a cloud computing
infrastructure may conceptually be helpful to
service-oriented testing. Specifically, by using a cloud
computing concept, a test does not need not to bear the cost
of monitoring and communicating with those services that
have been excluded from the current test.

With regard to regression testing techniques, this paper
has proposed to compute the WSDL tag coverage from the
input and output messages associated with regression test
suites, and formulated four black-box test case prioritiza-
tion techniques to verify the concepts. We have evaluated
our techniques, compared them with both traditional
techniques and random ordering using a suite of WS-BPEL
applications in a controlled experimental setting. The
empirical results have indicated that, overall, our black-box
testing techniques are only slightly less effective than
white-box techniques, but not to the level of statistical
significance, and that they can significantly outperform ran-
dom ordering in achieving higher rates of fault detection.

Since WSDL is only an interface specification, it may
be blind to certain regression fault types. For future work,
one may enhance the proposed techniques by integrating
with other black-box techniques. Moreover, when testing
can be done in a field environment, it can be considered as
a behavior monitoring approach. This is particularly viable
when testing in a cloud computing infrastructure. Such kind
of infrastructure and dynamic testing environment, as out-
lined in the paper, warrants further research.

References

Aghdaie, N., Tamir, Y., 2009. CoRAL: a transparent fault-tolerant
web service. Journal of Systems and Software 82 (1),
131–143.

Apache Software Foundation, 2006. Web Services Invocation
Framework: DSL Provider Sample Application. Available at
http://ws.apache.org/wsif/wsif_samples/.

Bai, X., Cao, Z., Chen, Y., 2007. Design of a trustworthy service
broker and dependence-based progressive group testing.
International Journal of Simulation and Process Modelling 3
(1/2), 66–79.

Bai, X., Kenett, R.S., 2009. Risk-based adaptive group testing of
semantic web services. In: Proceedings of the 33rd Annual
International Computer Software and Applications
Conference (COMPSAC 2009), vol. 2. IEEE Computer
Society, Los Alamitos, CA, pp. 485–490.

Bartolini, C., Bertolino, A., Elbaum, S.G., Marchetti, E., 2009.
Whitening SOA testing. In: Proceedings of the 7th Joint
Meeting of the European Software Engineering Conference
and the ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (ESEC 2009/FSE-17). ACM,
New York, NY, pp. 161–170.

Bartolini, C., Bertolino, A., Elbaum, S.G., Marchetti, E., 2010.
Bringing white-box testing to service oriented architectures
through a service oriented approach. Journal of Systems and
Software. doi: 10.1016/j.jss.2010.10.024.

Bartolini, C., Bertolino, A., Marchetti, E., Polini, A., 2008.
Towards automated WSDL-based testing of web services. In:
Service-Oriented Computing (ICSOC 2008), Lecture Notes in
Computer Science, vol. 5364. Springer, Berlin, Germany, pp.
524–529.

Brenner, D., Atkinson, C., Hummel, O., Stoll, D., 2007. Strategies
for the run-time testing of third party web services. In:
Proceedings of the IEEE International Conference on
Service-Oriented Computing and Applications (SOCA 2007).
IEEE Computer Society, Los Alamitos, CA, pp. 114–121.

Canfora, G., Di Penta, M., 2006. SOA: testing and self-checking.
In: Proceedings of the International Workshop on Web
Services: Modeling and Testing (WS-MaTe 2006). Palermo,
Italy, pp. 3–12.

Chan, W.K., Cheung, S.C., Leung, K.R.P.H., 2005. Towards a
metamorphic testing methodology for service-oriented
software applications. In: The 1st International Conference on
Services Engineering (SEIW 2005), Proceedings of the 5th
International Conference on Quality Software (QSIC 2005).
IEEE Computer Society, Los Alamitos, CA, pp. 470–476.

Chan, W.K., Cheung, S.C., Leung, K.R.P.H., 2007. A
metamorphic testing approach for online testing of service-
oriented software applications. International Journal of Web
Services Research 4 (2), 60–80.

Chen, H.Y., Tse, T.H., Chan, F.T., Chen, T.Y., 1998. In black and
white: an integrated approach to class-level testing of
object-oriented programs. ACM Transactions on Software
Engineering and Methodology 7 (3), 250–295.

Dai, G., Bai, X., Wang, Y., Dai, F., 2007. Contract-based testing
for web services. In: Proceedings of the 31st Annual
International Computer Software and Applications

20

Conference (COMPSAC 2007). IEEE Computer Society, Los
Alamitos, CA, pp. 517–526.

DeMillo, R.A., Lipton, R.J., Sayward, F.G., 1978. Hints on test
data selection: help for the practicing programmer. IEEE
Computer 11 (4), 34–41.

Di Penta, M., Bruno, M., Esposito, G., Mazza, V., Canfora, G.,
2007. Web services regression testing. In: Test and Analysis
of Web Services, Springer, Berlin, Germany, pp. 205–234.

Elbaum, S.G., Malishevsky, A.G., Rothermel, G., 2000.
Prioritizing test cases for regression testing. In: Proceedings of
the 2000 ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2000). ACM, New
York, NY, pp. 102–112.

Elbaum, S.G., Malishevsky, A.G., Rothermel, G., 2002. Test case
prioritization: a family of empirical studies. IEEE
Transactions on Software Engineering 28 (2), 159–182.

Harrold, M.J., Gupta, R., Soffa, M.L., 1993. A methodology for
controlling the size of a test suite. ACM Transactions on
Software Engineering and Methodology 2 (3), 270–285.

Hou, S.-S., Zhang, L., Xie, T., Sun, J.-S., 2008. Quota-constrained
test-case prioritization for regression testing of service-centric
systems. In: Proceedings of the IEEE International Conference
on Software Maintenance (ICSM 2008). IEEE Computer
Society, Los Alamitos, CA, pp. 257–266.

Hutchins, M., Foster, H., Goradia, T., Ostrand, T., 1994.
Experiments on the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In: Proceedings of
the 16th International Conference on Software Engineering
(ICSE 1994). IEEE Computer Society, Los Alamitos, CA, pp.
191–200.

IBM, 2006. BPEL Repository. Available at http://www.
alphaworks.ibm.com/tech/bpelrepository.

Jia, Y., Harman, M., 2009. Higher order mutation testing.
Information and Software Technology 51 (10), 1379–1393.

Jiang, B., Zhang, Z., Chan, W.K., Tse, T.H., 2009. Adaptive
random test case prioritization. In: Proceedings of the 24th
IEEE/ACM International Conference on Automated Software
Engineering (ASE 2009). IEEE Computer Society, Los
Alamitos, CA, pp. 233–244.

Kim, J.-M., Porter, A., 2002. A history-based test prioritization
technique for regression testing in resource constrained
environments. In: Proceedings of the 24th International
Conference on Software Engineering (ICSE 2002). ACM,
New York, NY, pp. 119–129.

Leung, H.K.N., White, L.J., 1989. Insights into regression testing.
In: Proceedings of the IEEE International Conference on
Software Maintenance (ICSM 1989). IEEE Computer Society,
Los Alamitos, CA, pp. 60–69.

Li, Z., Harman, M., Hierons, R.M., 2007. Search algorithms for
regression test case prioritization. IEEE Transactions on
Software Engineering 33 (4), 225–237.

Martin, E., Basu, S., Xie, T., 2007. Automated testing and
response analysis of web services. In: Proceedings of the
IEEE International Conference on Web Services (ICWS
2007). IEEE Computer Society, Los Alamitos, CA, pp.
647–654.

Mei, L., 2009a. A context-aware orchestrating and choreographic
test framework for service-oriented applications. In: Doctoral

Symposium, Proceedings of the 31st International Conference
on Software Engineering (ICSE 2009). IEEE Computer
Society, Los Alamitos, CA, pp. 371–374.

Mei, L., Chan, W.K., Tse, T.H., 2008a. An adaptive service
selection approach to service composition. In: Proceedings of
the IEEE International Conference on Web Services (ICWS
2008). IEEE Computer Society, Los Alamitos, CA, pp. 70–77.

Mei, L., Chan, W.K., Tse, T.H., 2008b. Data flow testing of
service-oriented workflow applications. In: Proceedings of the
30th International Conference on Software Engineering (ICSE
2008). ACM, New York, NY, pp. 371–380.

Mei, L., Chan, W.K., Tse, T.H., 2008c. A tale of clouds: paradigm
comparisons and some thoughts on research issues. In:
Proceedings of the 2008 IEEE Asia-Pacific Services
Computing Conference (APSCC 2008). IEEE Computer
Society, Los Alamitos, CA, pp. 464–469.

Mei, L., Chan, W.K., Tse, T.H., 2009b. Data flow testing of
service choreography. In: Proceedings of the 7th Joint
Meeting of the European Software Engineering Conference
and the ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (ESEC 2009/FSE-17). ACM,
New York, NY, pp. 151–160.

Mei, L., Chan, W.K., Tse, T.H., Merkel, R.G., 2009c. Tag-based
techniques for black-box test case prioritization for service
testing. In: Proceedings of the 9th International Conference on
Quality Software (QSIC 2009). IEEE Computer Society, Los
Alamitos, CA, pp. 21–30.

Mei, L., Zhang, Z., Chan, W.K., Tse, T.H., 2009d. Test case
prioritization for regression testing of service-oriented
business applications. In: Proceedings of the 18th Interna-
tional Conference on World Wide Web (WWW 2009). ACM,
New York, NY, pp. 901–910.

OASIS, 2007. Web Services Business Process Execution
Language Version 2.0: OASIS Standard. Available at
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.

Offutt, A.J., 1992. Investigations of the software testing coupling
effect. ACM Transactions on Software Engineering and
Methodology 1 (1), 5–20.

Onoma, A.K., Tsai, W.-T., Poonawala, M., Suganuma, H., 1998.
Regression testing in an industrial environment.
Communications of the ACM 41 (5), 81–86.

Oracle Technology Network. Oracle BPEL Process Manager.
Available at http://www.oracle.com/technology/products/ias/
bpel/. (Last access on June 29, 2009.)

Rothermel, G., Elbaum, S.G., Malishevsky, A., Kallakuri, P.,
Davia, B., 2002. The impact of test suite granularity on the
cost-effectiveness of regression testing. In: Proceedings of the
24th International Conference on Software Engineering (ICSE
2002). ACM, New York, NY, pp. 130–140.

Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J., 2001.
Prioritizing test cases for regression testing. IEEE Transac-
tions on Software Engineering 27 (10), 929–948.

Tsai, W.-T., Chen, Y., Paul, R., Huang, H., Zhou, X., Wei, X.,
2005a. Adaptive testing, oracle generation, and test case
ranking for web services. In: Proceedings of the 29th Annual
International Computer Software and Applications
Conference (COMPSAC 2005), vol. 1. IEEE Computer
Society, Los Alamitos, CA, pp. 101–106.

21

Tsai, W.-T., Chen, Y., Zhou, X., Bai, X., 2005b. Web service
group testing with windowing mechanisms. In: Proceedings of
the IEEE International Symposium on Service-Oriented Sys-
tem Engineering (SOSE 2005). IEEE Computer Society, Los
Alamitos, CA, pp. 221–226.

Tsai, W.-T., Zhou, X., Chen, Y., Bai, X., 2008. On testing and
evaluating service-oriented software. IEEE Computer 41 (8),
40–46.

W3C, 2007a. Web Services Description Language (WSDL) 2.0.
Available at http://www.w3.org/TR/wsdl20.

W3C, 2007b. XML Path Language (XPath) 2.0 W3C Recommen-
dation. Available at http://www.w3.org/TR/xpath20/.

Xu, W., Offutt, J., Luo, J., 2005. Testing web services by XML
perturbation. In: Proceedings of the 16th International
Symposium on Software Reliability Engineering (ISSRE
2005). IEEE Computer Society, Los Alamitos, CA, pp.
257–266.

Ye, C., Cheung, S.C., Chan, W.K., Xu, C., 2009. Atomicity
analysis of service composition across organizations. IEEE
Transactions on Software Engineering 35 (1), 2–28.

Zhai, K., Jiang, B., Chan, W.K., Tse, T.H., 2010. Taking
advantage of service selection: a study on the testing of
location-based web services through test case prioritization.
In: Proceedings of the IEEE International Conference on Web
Services (ICWS 2010). IEEE Computer Society, Los
Alamitos, CA, pp. 211–218.

Lijun Mei obtained his PhD degree in computer science from The
University of Hong Kong. He also received his BEng and MSc
degrees in computer science from Tsinghua University, Beijing,
China. His research interests include testing and analyzing of
software engineering issues, particularly service-oriented applica-
tions. He has published in various journals and conferences,
including ICSE 2008, WWW 2009 and FSE 2009. He has been
selected for an IBM PhD fellowship and an HKSAR Government
Scholarship. He is currently a staff researcher at IBM China
Research Laboratory.

W.K. Chan is an assistant professor at City University of Hong
Kong. He received his PhD degree from The University of Hong
Kong. His main research interest is in software engineering issues
in program testing and analysis, and service composition. He is on
the editorial board of Journal of Systems and Software

T.H. Tse is a professor in computer science at The University of
Hong Kong. He received his PhD from the London School of
Economics and was twice a visiting fellow at the University of
Oxford. His current research interest is in program testing,
debugging, and analysis. He is the steering committee chair of
QSIC and an editorial board member of the Journal of Systems
and Software; Software Testing, Verification and Reliability;
Software: Practice and Experience; and Journal of Universal
Computer Science. He is a fellow of the British Computer
Society, a fellow of the Institute for the Management of
Information Systems, a fellow of the Institute of Mathematics and
its Applications, and a fellow of the Hong Kong Institution of
Engineers. He was decorated with an MBE by The Queen of the
United Kingdom.

Robert G. Merkel is a Lecturer in software engineering at
Monash University, Melbourne, Australia. He received his PhD
from Swinburne University of Technology. His research interests
include random testing, the theory of software testing, and the
testing of embedded systems.

