
To appear in Software Quality Journal

Contributions of tester experience and a checklist guideline to

the identification of categories and choices for software testing

Pak-Lok Poon · T. H. Tse · Sau-Fun Tang ·
Fei-Ching Kuo

Revised: August 7, 2010

Abstract An early step for most black-box testing methods is to identify a set of categories

and choices (or their equivalents) from the specification. The identification is often

performed in an ad hoc manner, thus the quality of categories and choices is in doubt. Poorly

identified categories and choices will affect the comprehensiveness of test cases. In this

paper, we describe several comparative studies using three commercial specifications and

discuss the major results. The objectives of our studies are: (a) to investigate the differences

in the types and amounts of mistakes made between inexperienced and experienced software

testers in an ad hoc identification approach, and (b) to determine the extent of mistake

reduction after discussing the mistakes with the software testers and providing with them

an identification checklist.

Keywords Black-box testing · Choice relation framework · Classification-tree

methodology · Software testing

c© 2010 Software Quality Journal. This material is presented to ensure timely dissemination of scholarly

and technical work. Personal use of this material is permitted. Copyright and all rights therein are retained by

authors or by other copyright holders. All persons copying this information are expected to adhere to the terms

and constraints invoked by each author’s copyright. In most cases, these works may not be reposted without

the explicit permission of the copyright holder. Permission to reprint/republish this material for advertising

or promotional purposes or for creating new collective works for resale or redistribution to servers or lists,

or to reuse any copyrighted component of this work in other works must be obtained from Software Quality

Journal.

This work is supported in part by the General Research Fund of the Research Grants Council of Hong Kong

(project no. 717308), a Discovery Grant of the Australian Research Council (project no. DP09847600), and

a Departmental General Research Fund of The Hong Kong Polytechnic University (project no. 1-ZV2H).

P.-L. Poon (Corresponding author)

School of Accounting and Finance, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong

Kong

Tel.: +852-2766-7072, Fax: +852-2774-9364

E-mail: afplpoon@inet.polyu.edu.hk

T. H. Tse

Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong

E-mail: thtse@cs.hku.hk

S.-F. Tang · F.-C. Kuo

Faculty of Information and Communication Technologies, Swinburne University of Technology, Hawthorn

3122, Australia

E-mail: s.tang6@pgrad.unimelb.edu.au, dkuo@swin.edu.au

Administrator
 HKU CS Tech Report TR-2010-09

2

1 Introduction

There are many chances to make mistakes in software development, resulting in software

design and programming faults (Boehm and Basili, 2001). Reported cases of faulty

systems and their associated catastrophes are abundant (Grottke and Trivedi, 2007; National

Research Council, 1991; Neumann, 1991; Paulk et al., 1995). Software quality is of utmost

importance to both developers and users of software systems. Testing remains the most

practical means of assuring the quality of software (Bache and Müllerburg, 1990; Yu et al.,

2001).

In general, testing helps reveal failures due to software faults and prevents them from

propagating to the final production system, where the cost of fault removal would be far

greater (Boehm and Basili, 2001; Miller et al., 1992; Shepard et al., 2001). Studies by IBM

and others have shown that to correct a fault after coding is at least ten times as costly

as before it, and to correct a production fault is at least 100 times as costly (Perry, 2006).

Similar observations are reported in other literature — the cost-escalation factors range from

5:1 to 100:1, depending on the types and sizes of the software systems (Boehm and Basili,

2001; Grottke and Trivedi, 2007).

On average, a software developer spends 40–50% of predelivery development costs on

testing in order to achieve reasonable quality levels (Sanders and Curran, 1994; Shepard

et al., 2001). Since testing is expensive and labor intensive, it should be well planned,

organized, and executed. Among the various activities in testing, the generation of test

suites (that is, sets of test cases) is particularly important and receives much attention.

This is because the comprehensiveness of a test suite determines the scope of testing and

in turn the chance of revealing software failures. Not surprisingly, numerous software

practitioners and researchers have spent a lot of effort to develop test suite generation

methodologies, including domain testing (Beizer, 1990), equivalence partitioning (Myers,

2004), in-parameter-order (Lei and Tai, 1998; Tai and Lei, 2002), the category-partition

method (Ostrand and Balcer, 1988), and the classification-tree method (Grochtmann and

Grimm, 1993; Hierons et al., 2003; Singh et al., 1997). Recently, an integrated classification-

tree methodology (Cain et al., 2004; Chen et al., 2000) and a CHOiCe reLATion framEwork

(CHOC’LATE) (Chen et al., 2003; Poon et al., 2010) were also proposed. (The integrated

classification-tree methodology (Cain et al., 2004; Chen et al., 2000) is an extension to

the “original” classification-tree method (Grochtmann and Grimm, 1993; Hierons et al.,

2003; Singh et al., 1997). For ease of presentation, they will be collectively referred to

as the Classification-Tree Methodology (CTM).) All these methods fall under the black-

box approach, where test suites are generated from specifications without knowledge of the

internal structure of the programs under test.

In CHOC’LATE and CTM, we observe that identifying categories and choices (which

form the basis for subsequent test case generation) from an entire informal specification 1

is often done in an ad hoc manner because of the absence of any systematic identification

technique. The ad hoc identification approach will certainly pose a threat to the quality of

the test cases.

Motivated by this problem, we have conducted several comparative studies using three

commercial specifications written primarily in an informal manner. They are follow-up

work of our previous studies in Chen et al. (2004) to be outlined in Section 3. The present

1 In general, there are two types of specifications, namely formal and informal. Formal specifications are

written in a mathematical notation such as Z (Wordsworth, 1992) and Boolean predicates (Lau and Yu, 2005;

Tai, 1996), whereas informal specifications are mainly written in natural or graphical languages. Relatively

speaking, informal specifications are more popular than formal ones in the commercial software industry.

3

comparative studies serve two purposes: (a) to verify how the types and numbers of mistakes

made by the testers in an ad hoc identification approach vary with their working experience

in software development and testing, and (b) to determine, after discussing the mistakes

with the testers and providing them with our checklist as a simple guideline for detecting

problematic categories and choices (Chen et al., 2004), how many mistakes can be avoided

in the next identification exercises.

2 Identification of categories, choices, and their relations

Given a specification (or its functional units, which are smaller units of the specification

whose corresponding subsystems can be tested independently), an early step in CHOC’LATE

(Chen et al., 2003; Poon et al., 2010) and CTM (Cain et al., 2004; Chen et al., 2000;

Grochtmann and Grimm, 1993; Hierons et al., 2003; Singh et al., 1997) is to identify

categories and their associated choices. (Note that identifying categories and choices, or

their equivalents, is also a necessary step in domain testing (Beizer, 1990), equivalence

partitioning (Myers, 2004), and in-parameter-order (Lei and Tai, 1998; Tai and Lei, 2002).

Thus, the findings reported in this paper are also largely applicable to these methods.) A

category is defined as a major property or characteristic of a parameter or an environment

condition of the software system that affects its execution behavior. The possible values

associated with each category are partitioned into disjoint subsets known as choices.

Similarly, an early step in CTM is to identify classifications and their associated classes.

“Classifications” in CTM are equivalent to “categories” in CHOC’LATE, and “classes” in CTM

are equivalent to “choices” in CHOC’LATE. For the ease of presentation, we will refer to them

only as categories and choices, respectively. For further ease of presentation, parameters

and environment conditions are collectively known as factors in this paper. In addition, any

factor is said to be influencing if it affects the execution behavior of a system.

Consider an undergraduate award classification system AWARD, whose main function is

to determine whether a student is eligible for graduation. A possible category for AWARD is

“Cumulative Number of Credits (N)”, with “Cumulative Number of Credits (N)0≤N <120”

and “Cumulative Number of Credits (N)N≥120” as its two associated choices.2 This category

and its associated choices are identified according to the information in the specification

that a student needs to accumulate at least 120 credits for graduation. Thus, “Cumulative

Number of Credits (N)0≤N <120” corresponds to the situation where a student is not eligible

for graduation. On the other hand, “Cumulative Number of Credits (N)N≥120” corresponds

to the situation where a student may or may not be eligible for graduation, depending on

other influencing factors such as their average GPA score. Note that a choice may comprise

a set of possible values. For example, “Cumulative Number of Credits (N)0≤N <120” =
{0,1, . . . ,119}.

After identifying a set of categories and choices, constraints or relations at the choice

level (in CHOC’LATE) or the category level (in CTM) are defined by software testers. Suppose

“Cumulative Number of Credits (N)0≤N <120”, “Cumulative Number of Credits (N)N≥120”,

“Number of Full Years of Study (Y)0≤Y <3”, “Average GPA Score (S)3.5≤S≤4.0”, and some

other choices are identified for AWARD. Suppose further that it is impossible for a student

with less than three full years of study to accumulate 120 or more credits. In this case, a

constraint (or relation) exists, namely “Cumulative Number of Credits (N)N≥120” cannot be

2 In this paper, we will use the notation Q to denote a category, and Qx to denote a choice x of category Q.

When there is no ambiguity, we will simply refer to Qx as x.

4

combined with “Number of Full Years of Study (Y)0≤Y <3” to form part of any valid choice

combination. Another constraint is that “Cumulative Number of Credits (N)0≤N <120” or

“Cumulative Number of Credits (N)N≥120” may or may not be combined with “Average

GPA Score (S)3.5≤S≤4.0” to form part of any valid choice combination, depending on the

final score of each course that a student has obtained.

The identified choices and constraints will then be processed by predefined algorithms

in CHOC’LATE or CTM for generating complete test frames. In brief, a test frame is a set

of choices. A test frame is said to be complete if, whenever a single value is selected from

each choice, a test case is formed. Otherwise, it is said to be incomplete. In the rest of the

paper, we will use B, Bc, and tc to denote a test frame, a complete test frame, and a test case,

respectively. Details of the algorithms provided by CHOC’LATE and CTM to generate Bcs

are outside the scope of this paper. Readers may refer to the relevant literature (Cain et al.,

2004; Chen et al., 2000, 2003; Grochtmann and Grimm, 1993; Hierons et al., 2003; Poon et

al., 2010; Singh et al., 1997) for details.

Once a set of Bcs is generated, test cases can be formed. Consider, for instance, Bc
1 =

{Cumulative Number of Credits (N)0≤N <120, Number of Full Years of Study (Y)0≤Y <3,

Average GPA Score (S)3.5≤S≤4.0, . . .}. By selecting a single value from each choice in Bc
1,

some tcs can be formed. An example of such a tc is (Cumulative Number of Credits (N)

= 90, Number of Full Years of Study (Y) = 2, Average GPA Score (S) = 3.7, . . .).

If a valid choice x is missing, for instance, then no Bc containing x will be generated.

Consequently, any failure associated with x may not be detected. We note that identifying

categories and choices from an entire informal specification is often done in an ad hoc

manner because of the absence of a systematic identification technique.3 The quality of

the test cases resulting from such an ad hoc approach may be in question.

3 Previous work on category and choice identification

Grochtmann and Grimm (1993) have investigated the feasibility of applying artificial

intelligence techniques to automatically identify categories and choices from informal

specifications. Their work does not result in much success. They argue that identifying

categories and choices is a creative process that probably can never be done automatically

in its entirety (Grochtmann and Grimm, 1993). They have then shifted their attention to the

identification process based on formal specifications. Other researchers such as Amla and

Ammann (1992), Hierons et al. (2003), and Singh et al. (1997) have also conducted work

in this direction. While we concur with the view that the identification of categories and

choices from informal specifications is challenging and cannot be fully automatic, we take

the position that research on identification processes for informal specifications is a must,

because this type of specification is more commonly accepted by the software industry.

3 More specifically, a systematic and effective identification technique does not exist for various test

suite generation methodologies including domain testing (Beizer, 1990), equivalence partitioning (Myers,

2004), in-parameter-order (Lei and Tai, 1998; Tai and Lei, 2002), CTM (Cain et al., 2004; Chen et al., 2000;

Grochtmann and Grimm, 1993; Hierons et al., 2003; Singh et al., 1997), and CHOC’LATE (Chen et al., 2003;

Poon et al., 2010). In this paper, we are interested in an effective technique to identify categories and choices

that are free from problems and omissions, rather than an effective technique to organize or manipulate

the identified categories and choices in order to generate test cases with a high failure detection capability,

which is the target of most test suite generation methodologies. Furthermore, the occurrence of missing and

problematic categories and choices should also affect the failure detection capability, although the study of

such a complex correlation is beyond the scope of the present paper.

5

As a start, we conducted a literature review into the work on identifying categories

and choices from specifications which are not written in a strict formal nature such as

Z (Wordsworth, 1992) and Boolean predicates (Lau and Yu, 2005; Tai, 1996). Very little

relevant work was found. De la Riva et al. (2006) developed a partition-based approach

where categories and choices are identified by systematically examining both the XML

schema and the XML query. Chen et al. (2005) and Hartmann et al. (2005) introduced their

methods to identify categories and choices from UML activity diagrams, which are only

one component in a specification. Thus, our review indicates that a systematic identification

technique for the entire informal specification does not exist.

Thereafter, we have conducted some empirical studies to investigate the common

mistakes made by testers involving the entire informal specifications under an ad hoc

identification approach (Chen et al., 2004). We have formally defined these common

mistakes under various types of problematic categories and choices and missing categories

and choices. A major contribution of our empirical studies in Chen et al. (2004) is to help

reduce the chance of repeating these mistakes by making them known to testers. As an

interim solution, we have developed a checklist to serve as a simple guideline for detecting

missing/problematic categories and choices (Chen et al., 2004).

4 Experimental settings

We conjecture that the types and amounts of mistakes made by testers in an ad hoc

identification approach may vary with their past experience. Thus, we conduct the present

studies to compare with our previous studies in (Chen et al., 2004) to verify the conjecture.

Also, after discussing the mistakes with the subjects and providing them with the checklist,

we will further determine how many mistakes the subjects can avoid in the next identification

exercises. In this section, we describe and contrast the experimental settings of our present

and previous studies.

4.1 The present studies

Our studies use three commercial specifications that are written primarily in an informal

manner. These specifications are briefly described as follows.

The first specification STRADE is related to the credit sales of goods by a wholesaler to

retail customers. The main function of the system is to decide whether credit sales should be

approved for individual retail customers. Such decision considers several issues, including

the credit status and credit limit of the customer and the billing amount of the transactions.

The second specification SPURCHASE is related to the purchase of goods using credit

cards issued by an international bank. Each credit card is associated with several attributes

such as status (diamond, gold, or classic), type (corporate or personal), and credit limit

(different card statuses will have different credit limits). The main functions of the system

are to decide whether a purchase using a credit card should be approved, and to calculate the

number of reward points to be granted for an approved purchase. The number of reward

points further determines the type of benefit (such as free airline tickets and shopping

vouchers) that the customer is entitled to.

The third specification SMOS is related to a meal ordering system (MOS), which is being

used by an international company providing catering service for many different airlines. The

main function of MOS is to help the catering company determine the types (such as normal,

6

child, and vegetarian) and numbers of meals to be prepared and loaded onto each flight

served by the company.

In order to protect the identity of the three companies and to make STRADE, SPURCHASE,

and SMOS suitable for our studies, we have slightly amended the original specifications

before commencing the studies. The majority of the contents of the original specifications,

however, have remained unchanged.

We recruited 16 software practitioners as the subjects of our studies. They will be

referred to as Subjects 1, 2, . . . , 16. In general, their IT qualifications are undergraduate or

postgraduate degrees in information technology, information systems, business computing,

computer science, computing studies, and computer engineering. (Some of these subjects

also have other non-IT academic qualifications such as MBA degrees.) In addition, the

subjects have 8 to 20 years of commercial experience in software development and testing,

with a mean of 11.9 years of experience. Thus, they are classified as experienced testers. On

the other hand, the subjects in our previous studies in Chen et al. (2004) were undergraduates

or postgraduates with little or no working experience in software development or testing.

Hence, they are classified as inexperienced testers.

Before commencing our present studies, we prepared all the subjects by giving them

a one-hour introduction of CHOC’LATE and CTM, supported by related literature, including

Chen et al. (1998), Grochtmann and Grimm (1993), and Singh et al. (1997). The introduction

was followed by a one-hour discussion in which some examples of CHOC’LATE and

CTM (such as a program counting the number of times that an element occurs in a list

(Grochtmann and Grimm, 1993)) were used to reinforce the subjects’ understanding of these

techniques.

4.2 Our previous studies

Prior to our present studies, we conducted similar studies (Chen et al., 2004) with subjects

having less experience in software development and testing. Our previous studies involved

48 final-year undergraduates in the computer science and software engineering programs

at The University of Melbourne, and a mix of 44 undergraduates and postgraduates

in the computer science, software engineering, and information technology programs in

Swinburne University of Technology. All the students had little or no working experience in

software development and testing. Thus, when compared with the subjects in the present

studies who have, on average, 11.9 years of relevant experience, the students can be

considered as inexperienced testers.

The students were introduced to the concepts of the testing methods (such as CTM) in a

one-hour lecture using the same set of literature. This was followed by a one-hour tutorial

discussion using the same examples as in the present studies. Even the testing methods were

taught by the same instructor in both our previous and present studies. They were then given

the same set of specifications (STRADE, SPURCHASE, and SMOS) as in the present studies.

Thus, the preparation exercise in our previous studies was essentially the same as in

the present studies, in terms of the instructor, teaching method, and teaching material.

Furthermore, in both series of studies, the subjects were asked to identify categories and

choices from the same set of specifications using a similar (ad hoc) identification approach

(see Section 6.1 for more details). This arrangement allows us to compare the results

between our previous and present studies in a meaningful way.

7

5 Terminology and definitions

As introduced in Section 1, categories are the major properties or characteristics of

influencing factors of a software system. For every category Q proposed by the subjects, it

may either be identified according to the definition, or incorrectly identified with something

else in mind. In view of this situation, we will refer to any Q identified by the subjects as a

potential category. Similarly, any Qx identified by the subjects is called a potential choice.

Although readers are advised to refer to our previous paper (Chen et al., 2004) for the

details of the different types of mistakes that may occur in an ad hoc identification approach,

a basic understanding of such mistakes is needed for further discussions. We will therefore

provide an overview of the mistakes below, without going into the detailed formal definitions

in Chen et al. (2004).

Any potential category Q is said to be relevant if it is defined with respect to a factor

that influences the observable results of a software system. Otherwise, it is said to be

irrelevant. Only relevant categories are useful for test case generation. In the rest of the

paper, relevant categories are simply referred to as categories unless otherwise stated. Given

a set (denoted by PC) of potential categories and their associated potential choices, if there

exists a (relevant) category Q such that Q 6∈ PC, then Q is a missing category with respect to

PC.

Given a category Q, any potential choice Qx is said to be valid if there exists some

complete test frame Bc such that Bc contains Qx. Otherwise, Qx is said to be invalid.

Obviously, only valid choices are useful for test case generation. In the rest of the paper,

valid choices are simply referred to as choices unless otherwise stated. If a (valid) choice

x is omitted in PC, then it is a missing choice with respect to PC. Any choice which is not

properly identified can be classified into one or more of the following types:

One of the overlapping choices: Given a category Q, two distinct choices Qx and Qy are

said to be overlapping if there exists a common element in both Qx and Qy (that is, the

two sets of possible values are not disjoint).

One of the combinable choices: Given a category Q, two distinct choices Qx and Qy are

said to be combinable if, for any complete test frames Bc
1 and Bc

2 containing Qx and Qy,

respectively, such that Bc
1 \{Qx}= Bc

2 \{Qy}, they are associated with the same function

rule in the specification. (The mapping between a given set of system inputs and the

corresponding set of system outputs is expressed by means of a function rule. This rule

states precisely the preconditions for the function to execute and how the outputs are

related to the inputs (Chen et al., 2004).) In this case, we should replace the individual

Qx and Qy by a combined Qz = Qx ∪Qy so as to reduce the number of complete test

frames and, hence, save testing effort.

A composite choice: Given a category Q, any choice Qz is said to be composite if

there exist valid, nonoverlapping, and noncombinable choices Qx and Qy such that

Qx ∪ Qy ⊆ Qz. (Thus, we should replace Qz by Qx and Qy in order to increase the

comprehensiveness of the resulting set of complete test frames.)

A potential choice x is said to be problematic if at least one of the following criteria is

satisfied:

– It is an invalid choice.

– It is one of the overlapping choices.

– It is one of the combinable choices.

– It is a composite choice.

8

Similarly, a potential category Q is said to be problematic if at least one of the following

criteria is satisfied:

– It is an irrelevant category.

– It is a category with missing choices.

– It is a category with problematic choices.

Obviously, the occurrence of missing and problematic categories will affect the compre-

hensiveness of the test suite. To be more specific, non-problematic categories and their

associated choices can be directly used for generating test cases, but problematic categories

need to be refined or corrected in order that their non-problematic choices can be used in

test case generation.

6 Study 1: Effect of tester experience

6.1 Objective and steps

The main objective of the first study is to investigate how the types and amounts of mistakes

made in an ad hoc identification approach vary between inexperienced and experienced

testers. The manual checking of missing and problematic categories is carried out by one

of the authors of this paper, who has substantial experience in CHOC’LATE and CTM. This

is also the case for study 2 to be described later. Since MOS contains numerous modules

and is fairly complex in logic, we first decompose SMOS into several functional units. For

instance, there is a functional unit UMEAL directly related to the generation of daily meal

schedules and other units related to the maintenance of the airline codes and city codes.

Such decomposition does not apply to STRADE and SPURCHASE because their corresponding

systems are less complex and, hence, can be tested in their entirety. Thus, we treat STRADE

and SPURCHASE as functional units denoted by UTRADE and UPURCHASE, respectively. After

the subjects have learned CHOC’LATE and CTM, we ask each of them to do the first round

of identification exercises according to the following scheme:

(a) Subjects 1 to 8: For each of UTRADE and UPURCHASE, identify from it a set of potential

categories and their associated potential choices in an ad hoc manner. Furthermore, for

each identified potential category and potential choice, the reason of its identification has

to be stated. We have asked the eight subjects to work on UTRADE before UPURCHASE.

(b) Subjects 9 to 16: Repeat (a) above for UMEAL instead of UTRADE and UPURCHASE. The

primary reason for choosing UMEAL for the study (rather than other functional units of

SMOS) is because generating daily meal schedules is the most important core function

of MOS.

Because of the above scheme, there were eight experienced subjects involved in each

functional unit. The rationale of breaking the subjects into two groups was to reduce biases in

the later investigation on how they performed in study 2. While the subjects were randomly

assigned in groups, we have kept the average years of commercial experience in software

development and testing of each group of subjects as similar as possible. Note that each

subject was asked to identify one PC for each assigned functional unit. Thus, the number of

PCs for each functional unit was equal to the number of subjects. This was also the case for

our previous studies in Chen et al. (2004). (In the previous studies, the number of subjects

for UTRADE, UPURCHASE, and UMEAL were 48, 48, and 44, respectively.)

9

6.2 Findings and discussion

6.2.1 Potential categories and choices

Consider Table 1, which shows the statistics on potential categories and choices identified

for each functional unit. Two sets of results are separated by slashes (“/”). The first set

corresponds to our previous studies in Chen et al. (2004) involving inexperienced testers,

while the second set corresponds to our present studies involving experienced testers.

The data outside the brackets correspond to potential categories, while those in brackets

correspond to potential choices. We have the following observations from the table:

Table 1 Statistics on potential categories and choices identified by inexperienced and experienced testers

By inexperienced testers / experienced testers:

Functional Numbers Numbers of potential categories (choices)

unit of PCs a Totals Means b Ranges Standard deviations

UTRADE 48 / 8 265 (579) / 54 (124) 5.5 (12.1) / 6.8 (15.5) 5 (10) / 2 (8) 0.9 (1.5) / 0.7 (2.5)

UPURCHASE 48 / 8 475 (1 138) / 101 (278) 9.9 (23.7) / 12.6 (34.8) 8 (20) / 4 (11) 2.0 (4.4) / 1.3 (3.1)

UMEAL 44 / 8 615 (1 488) / 134 (299) 14.0 (33.8) / 16.8 (37.4) 36 (73) / 3 (10) 7.8 (16.7) / 1.5 (3.7)

Averages 9.8 (23.2) / 12.0 (29.2) 16.3 (34.3) / 3.0 (9.7) 3.6 (7.5) / 1.2 (3.1)

a PC = set of potential categories and choices
b For each subject

Observation 1: Complexity of the functional units and the mean numbers of potential

categories and choices. The mean numbers of potential categories and choices identi-

fied by both inexperienced and experienced testers increase with the complexity of the

functional units, with the minimum numbers attached to the least complex UTRADE and

the maximum numbers attached to the most complex UMEAL.

Interpretation: A natural reason for this phenomenon is that software systems asso-

ciated with complex specifications often contain many aspects for testing, thus con-

tributing to more potential categories and choices to be identified.

Observation 2: Variations in the numbers of potential categories and choices. The

numbers of potential categories and choices vary substantially among the subjects, as

evidenced by the large ranges and standard deviations. This, in turn, indicates that the

quality of PCs, as identified by the subjects in an ad hoc manner, also varies significantly.

Interpretation: Suppose, among all the PCs identified by the subjects, one of them

(denoted by PC0) is a “good” set, in the sense that PC0 contains all the relevant

categories and has no missing or problematic categories. Now, given any set PC1 with

more potential categories and choices than PC0, PC1 may contain irrelevant categories,

categories with invalid choices, or categories with combinable choices. On the other

hand, given any set PC2 with fewer potential categories and choices than PC0, PC2 may

have missing categories or may contain categories with missing or composite choices.

Thus, neither PC1 nor PC2 is of good quality.

10

In this case, the large ranges and standard deviations indicate that the quality of PCs

(identified by the subjects in an ad hoc manner) varies significantly. Thus, the failure

identification capability of the Bcs constructed from such PC is in doubt. Systematic

identification techniques for identifying categories and choices from informal specifica-

tions are certainly needed, with a view to improving the quality of the PC.

Observation 3: Experience of the subjects and the mean numbers of potential cate-

gories and choices. The mean numbers of potential categories and choices identified by

experienced testers are about 22% and 26% larger than those by inexperienced testers,

respectively.

Interpretation: This observation should be interpreted with caution because, by itself,

it does not necessarily indicate that the PCs identified by experienced testers are more

comprehensive than those by inexperienced testers. The comprehensiveness of a PC

depends on the number of non-problematic categories it contains. Even when a large

number of potential categories are identified, some of them may be problematic and,

hence, not useful for test case generation.

Observation 4: Experience of the subjects and the variations in the numbers of poten-

tial categories and choices. Among the three functional units, the ranges and standard

deviations are generally much larger for inexperienced testers than for experienced

testers. Thus, this observation suggests that the variation in the sizes of PCs is much

larger for inexperienced testers than for experienced testers.

Interpretation: A plausible reason for the observation is that, by virtue of their

experience, the experienced subjects are able to identify PCs with more consistent

qualities. The observation shows that experience in software development and testing

is vital to the identification process.

However, we remind readers to interpret this observation carefully. Our argument that

experienced testers are able to identify PCs with more consistent qualities is put forward

in a relative sense, when compared to inexperienced testers. It does not mean that the

PCs identified by experienced testers are necessarily of good quality, as indicated by

our later observations that even experienced testers have made numerous mistakes in

the identification process. These later observations also suggest that, although practice

and experience in software development and testing do contribute to the identification

of categories and choices, such practice and experience cannot eliminate the need for

systematic techniques.

In summary, the above observations show that:

• When the complexity of the functional units increases, the numbers of potential

categories and choices identified by both groups of subjects also increase.

• There are large variations in the numbers of potential categories and choices identified

by the subjects, and the variations are generally much larger for inexperienced testers

than for experienced testers.

• Compared with inexperienced testers, experienced testers are able to identify more

potential categories and choices.

6.2.2 Missing categories

We turn our attention to Table 2, which shows the data on missing categories for each

functional unit. We observe the following from Table 2:

11

Table 2 Total numbers, mean numbers, and mean percentages of missing categories by inexperienced and

experienced testers

By inexperienced testers / experienced testers:

% of mean numbers of

Mean numbers of missing categories in each PC a

Functional Total numbers of missing categories in relation to mean numbers of

unit missing categories in each PC a potential categories in each PC a

UTRADE 1 / 5 0.02 / 0.63 0.38% / 9.26%

UPURCHASE 33 / 5 0.69 / 0.63 6.95% / 4.95%

UMEAL 158 / 11 3.59 / 1.38 25.69% / 8.21%

Averages 1.43 / 0.88 11.01% / 7.47%

a PC = set of potential categories and choices

Observation 5: Complexity of the functional units and the mean numbers of missing

categories. Similarly to observation 1, the mean numbers of missing categories in each

PC generally increase with the complexity of the functional units for both groups of

subjects.

Interpretation: A plausible reason for this phenomenon is that, in an ad hoc identi-

fication approach, the chance of omitting relevant categories is higher for more complex

functional units.

Observation 6: Experience of the subjects and the mean numbers of missing cate-

gories. In addition, Table 2 shows that, when considering all three functional units

together, the mean number of missing categories in each PC is significantly larger (about

63%) for inexperienced testers than for experienced testers.

Interpretation: The observation suggests that experience in software development and

testing does help testers a great deal in avoiding the omission of relevant categories in

the absence of a systematic identification technique.

In summary, the numbers of missing categories increase with the complexity of the

functional units for both groups of subjects. In addition, by virtue of their experience,

experienced testers have overlooked less relevant categories than inexperienced testers in

the ad hoc identification approach.

6.2.3 Problematic and non-problematic categories

After examining the missing categories, we then analyze the problematic categories and

choices identified by experienced testers for the three functional units. It turns out that all

these categories and choices can be classified into the problematic types as defined in Chen

et al. (2004). In other words, no new type of problematic category and choice is found. This

suggests that the list of problematic categories and choices in Chen et al. (2004) is fairly

comprehensive.

Table 3 shows the data on problematic and non-problematic categories for each

functional unit. Let us first focus on problematic categories.

Observation 7: Complexity of the functional units and the mean numbers/percentages

of problematic categories. Similarly to observations 1 and 5, the mean numbers of

problematic categories in each PC and the mean percentages of problematic categories

12

Table 3 Total numbers, mean numbers, and mean percentages of problematic and non-problematic categories

identified by inexperienced and experienced testers

By inexperienced testers / experienced testers:

Problematic categories Non-problematic categories

Functional

unit

Total

num-

bers

Mean

numbers in

each PC a

Mean % among

all potential

categories

Total

num-

bers

Mean

numbers in

each PC a

Mean % among

all potential

categories

UTRADE 43 / 5 0.90 / 0.63 16.23% / 9.26% 222 / 49 4.63 / 6.13 83.77% / 90.74%

UPURCHASE 79 / 12 1.65 / 1.50 16.63% / 11.88% 396 / 89 8.25 / 11.13 83.37% / 88.12%

UMEAL 158 / 28 3.59 / 3.50 25.69% / 20.90% 457 / 106 10.39 / 13.25 74.31% / 79.10%

Averages 2.04 / 1.88 19.52% / 14.01% 7.75 / 10.17 80.48% / 85.99%

a PC = set of potential categories and choices

among all potential categories increase with the complexity of the functional units for

both groups of subjects.

Interpretation: Recall that observation 1 states that the mean numbers of potential

categories identified by each subject (that is, the mean numbers of potential categories in

each PC) increase with the complexity of the functional units. In general, more potential

categories to be identified would increase the chance of the occurrence of problematic

categories.

Observation 8: Experience of the subjects and the mean numbers/percentages of

problematic categories. Across the three functional units, the mean numbers of

problematic categories in each PC and the mean percentages of problematic categories

among all the potential categories identified by inexperienced testers are consistently

larger (by an average of about 9% and 39%, respectively) than those by experienced

testers.

Interpretation: Experience in software development and testing helps testers reduce

the chances of identifying problematic categories.

Observation 9: Experience of the subjects and the reduction in the mean numbers of

problematic categories. Consider the reduction in the mean numbers of problematic

categories in each PC for a given functional unit from inexperienced to experienced

testers. These reductions are 0.27, 0.15, and 0.09 for UTRADE, UPURCHASE, and UMEAL,

respectively. We note that the reductions decrease with the complexity of the functional

unit.

Interpretation: Although observation 8 finds that testing experience helps reduce the

number of problematic categories, this advantage diminishes as the functional units

become more complex. In other words, the need for a systematic identification technique

for categories and choices is higher for more complex functional units.

We turn now to non-problematic categories.

Observation 10: Complexity of the functional units and the mean numbers/percentages

of non-problematic categories. Table 3 shows that, for both inexperienced and

experienced testers, the mean numbers of non-problematic categories increase with

the complexity of the functional units (observation 10(a)). However, the table also

13

shows that the mean percentages of non-problematic categories among all the potential

categories identified by both groups of subjects decrease with the complexity of the

functional units (observation 10(b)).

Interpretation: Observation 10(a) is consistent with the trend in observation 1 for

potential categories. A more complex functional unit has more aspects for testing and,

hence, results in the identification of more non-problematic categories. On the other

hand, observation 10(b) indicates that, given a potential category Q identified by either

inexperienced or experienced testers, the chance of Q being a problematic category is

higher for a more complex functional unit.

Observation 11: Experience of the subjects and the mean numbers/percentages of

non-problematic categories. In Table 3, the mean number of non-problematic cate-

gories in each PC and the mean percentage of non-problematic categories among all

the potential categories identified by experienced testers are consistently larger (by an

average of about 31% and 7%, respectively) than those identified by inexperienced

testers across the three functional units.

Interpretation: Once again, experience in software development and testing has a

positive effect on the identification of non-problematic categories. In addition, this

observation indicates that, given a potential category Q identified by experienced testers,

the chance of Q being non-problematic (and, hence, useful for testing) should be higher

than by inexperienced testers.

Following up on the above observations, Table 4 is produced to explore in greater detail the

interrelationships among the complexity of the functional units, the level of experience of

the subjects, and the performance of the subjects in the ad hoc identification exercises. This

table shows the percentage increase/decrease in the mean numbers/percentages of potential,

missing, problematic, and non-problematic categories identified by both groups of subjects

when they work on the next (more complex) functional unit. (Readers may recall that UTRADE

is the least complex and UMEAL is the most complex.) We have the following observations

from Table 4:

Table 4 Percentage increase/decrease in mean numbers/percentages of potential, missing, problematic, and

non-problematic categories identified by inexperienced and experienced testers

By inexperienced testers / experienced testers:

% increase % increase % increase % increase in % increase % decrease in

in mean in mean in mean mean percentages in mean mean percentages

numbers of numbers of numbers of of problematic numbers of of non-problematic

potential missing problematic categories non-problematic categories

Functional categories categories categories among all potential categories among all potential

unit in each PC a in each PC a in each PC a categories in each PC a categories

From UTRADE 80% / 85% 3 350% / 0% 83% / 138% 2% / 28% 78% / 82% 0.5% / 2.9%

to UPURCHASE

From UPURCHASE 41% / 33% 420% / 119% 118% / 133% 54% / 76% 26% / 19% 10.9% / 10.2%

to UMEAL

a PC = set of potential categories and choices

14

Observation 12: Experience of the subjects and the increase in the mean numbers of

missing categories when the complexity of the functional unit increases. When a

functional unit becomes more complex, the increase in the mean numbers of missing

categories in each PC (the third column in Table 4) is much more significant for

inexperienced testers than experienced testers.

Interpretation: This observation allows us to draw a conclusion similar to that in

observation 6, that is, experience in software development and testing, to some extent,

helps testers reduce the occurrence of missing categories in an ad hoc identification

approach.

Observation 13: Experience of the subjects and the percentage increase in the mean

numbers of potential and missing categories when the complexity of the functional

unit increases. Let us compare the second and the third columns in Table 4 about the

percentage increase in the mean numbers of potential and missing categories in each

PC. Consider the data for inexperienced testers in both columns first. As the functional

units become more complex, the percentage increase in the mean numbers of missing

categories in each PC (3 350% from UTRADE to UPURCHASE and 420% from UPURCHASE to

UMEAL) are much larger than the percentage increase in the mean numbers of potential

categories in each PC (80% from UTRADE to UPURCHASE and 41% from UPURCHASE to UMEAL).

The phenomenon of consistent percentage increase for missing categories, however, is

not applicable to experienced testers when the functional units become more complex.

Likewise, in the rightmost column of Table 2, the percentages of the mean numbers of

missing categories in each PC (in relation to the mean numbers of potential categories in

each PC) increase with the complexity of the functional units for inexperienced testers

but not experienced ones.

Interpretation: When the functional unit becomes more complex, inexperienced testers

are able to identify more potential categories, but at the same time they also make more

mistakes in terms of the number of missing categories.

Observation 14: Experience of the subjects and the percentage increase in the mean

numbers/percentages of problematic categories when the complexity of the func-

tional unit increases. Observation 12 shows that the increase in the mean numbers

of missing categories in each PC is much more significant for inexperienced testers

than experienced testers when the functional units become more complex. In contrast to

observation 12, the fourth and the fifth columns in Table 4 show that the percentage

increase in the mean numbers of problematic categories in each PC and the mean

percentages of problematic categories among all potential categories are larger for

experienced testers than inexperienced testers when the functional units become more

complex.

Interpretation: This observation provides further support to our argument in obser-

vation 9 that the contribution of testing experience to the reduction of problematic

categories becomes less for more complex functional units.

Observation 15: Difference between the percentage increase in the mean numbers of

problematic categories and that of non-problematic categories when the complexity

of the functional unit increases. Let us compare the fourth and the sixth columns in

Table 4 about the percentage increase in the mean numbers of problematic and non-

problematic categories in each PC. For both groups of subjects, as the functional units

become more complex, the percentage increase in the mean numbers of problematic

15

categories in each PC (such as 83% from UTRADE to UPURCHASE for inexperienced testers) are

larger than the percentage increase in the mean numbers of non-problematic categories

in each PC (such as 78% from UTRADE to UPURCHASE for inexperienced testers).

Interpretation: It appears, therefore, that although both inexperienced and experienced

testers can identify more non-problematic categories when the functional units become

more complex (see observation 10(a)), this advantage is not sufficient to offset the

increase in problematic categories at the same time. This phenomenon provides an

explanation to observation 10(b) discussed earlier.

We can draw further conclusions by considering related observations together:

Complexity of the functional units. Consider observations 1, 5, 7, 10, 13, and 15. When

the complexity of a functional unit increases, there are more aspects to be tested. On

one hand, more testing aspects normally leads to more categories and choices (in terms

of the number of potential categories and choices (observation 1) and the number of

non-problematic categories (observation 10)) to be identified. On the other hand, more

testing aspects would also increase the chances of mistakes (in terms of the number of

missing categories (observations 5 and 13) and the number of problematic categories

(observations 7 and 15)).

Experience of the subjects. Consider observations 6, 8, 9, 11, 12, and 14. When

compared with inexperienced testers, experienced testers have fewer missing categories

(observations 6 and 12) and problematic categories (observation 8), but more non-

problematic categories (observation 11). Hence, experience in software development

and testing does help in the ad hoc identification exercises. It should be noted, however,

that the contribution of experience to the performance of an ad hoc identification

approach decreases with the complexity of the functional unit (observations 9 and 14).

Thus, not only are systematic and more effective identification techniques generally

needed, but such a demand will grow with the complexity of the specifications.

6.2.4 Types of problematic categories

Let us take a closer examination of the data on the different types of problematic categories,

as summarized in Table 5. For each type of problematic category listed in columns 2 to 7,

the data outside brackets show the total numbers of that type identified by inexperienced

and experienced testers, respectively.4 The data in brackets show the mean numbers of that

type in each PC. Similarly, for each type of problematic category listed in columns 2 to 7

of Table 6, the data outside brackets show the percentages of that type among potential

categories. The data in brackets show the percentages of that type among problematic

categories.

Observation 16: Experience of the subjects and the mean numbers of different types

of problematic categories. The data in brackets in Table 5 show that, with respect to

the mean numbers of different types of problematic categories in each PC, experienced

testers have identified fewer irrelevant categories, categories with missing choices, and

categories with overlapping choices than their inexperienced counterparts, but more

4 Readers may notice that, for a functional unit shown in any row of Table 5, the sum of the total numbers

of different types of problematic categories may be greater than or equal to the corresponding total number of

problematic categories shown in Table 3. This is because a category that is erroneously identified may belong

to one or more types of problematic categories.

16

Table 5 Total numbers and mean numbers of different types of problematic categories identified by

inexperienced and experienced testers

By inexperienced testers / experienced testers:

Total numbers of different types of problematic categories

(Mean numbers of different types of problematic categories in each PC a)

With With With With With

Functional Irrelevant missing invalid overlapping combinable composite

unit categories choices choices choices choices choices

UTRADE 0 / 0 3 / 0 0 / 0 6 / 0 0 / 0 34 / 5

(0.00 / 0.00) (0.06 / 0.00) (0.00 / 0.00) (0.13 / 0.00) (0.00 / 0.00) (0.71 / 0.63)

UPURCHASE 0 / 1 9 / 1 2 / 1 26 / 2 0 / 1 42 / 8

(0.00 / 0.13) (0.19 / 0.13) (0.04 / 0.13) (0.54 / 0.25) (0.00 / 0.13) (0.88 / 1.00)

UMEAL 123 / 14 12 / 2 14 / 4 4 / 1 5 / 2 4 / 7

(2.80 / 1.75) (0.27 / 0.25) (0.32 / 0.50) (0.09 / 0.13) (0.11 / 0.25) (0.09 / 0.88)

Averages (0.93 / 0.63) (0.17 / 0.13) (0.12 / 0.21) (0.25 / 0.13) (0.04 / 0.13) (0.56 / 0.83)

a PC = set of potential categories and choices

Table 6 Percentages of different types of problematic categories identified by inexperienced and experienced

testers

By inexperienced testers / experienced testers:

% of different types of problematic categories among all potential (problematic) categories

With With With With With

Functional Irrelevant missing invalid overlapping combinable composite

unit categories choices choices choices choices choices

UTRADE 0.0% / 0.0% 1.1% / 0.0% 0.0% / 0.0% 2.3% / 0.0% 0.0% / 0.0% 12.8% / 9.3%

(0.0% / 0.0%) (7.0% / 0.0%) (0.0% / 0.0%) (14.0% / 0.0%) (0.0% / 0.0%) (79.1% / 100.0%)

UPURCHASE 0.0% / 1.0% 1.9% / 1.0% 0.4% / 1.0% 5.5% / 2.0% 0.0% / 1.0% 8.8% / 7.9%

(0.0% / 9.1%) (11.4% / 9.1%) (2.5% / 9.1%) (32.9% / 18.2%) (0.0% / 9.1%) (53.2% / 66.7%)

UMEAL 20.0% / 10.4% 2.0% / 1.5% 2.3% / 3.0% 0.7% / 0.7% 0.8% / 1.5% 0.7% / 5.2%

(77.8% / 50.0%) (7.6% / 7.1%) (8.9% / 14.3%) (2.5% / 3.8%) (3.2% / 7.1%) (2.5% / 25.0%)

Averages 6.7% / 3.8% 1.7% / 0.8% 0.9% / 1.3% 2.8% / 0.9% 0.3% / 0.8% 7.4% / 7.5%

(25.9% / 19.7%) (8.7% / 5.4%) (3.8% / 7.8%) (16.5% / 7.3%) (1.1% / 5.4%) (44.9% / 63.9%)

categories with invalid choices, categories with combinable choices, and categories with

composite choices.

Observation 17: Experience of the subjects and the percentages of different types of

problematic categories. In Table 6, we observe a tendency similar to observation 16.

With respect to the percentages of different types of problematic categories in all PCs,

experienced testers have identified fewer irrelevant categories, categories with missing

choices, and categories with overlapping choices than their inexperienced counterparts,

but more categories with invalid choices, categories with combinable choices, and

categories with composite choices.

17

Interpretation of observations 16 and 17 together: Both observations indicate that

experienced testers are not necessarily better than inexperienced ones in every aspect.

Observation 18: The most and the least frequently occurring types of problematic

categories. Given a problematic category Q identified by inexperienced or experienced

testers, the chance that Q is a category with composite choices is the highest. On the

other hand, the chance that it is a category with combinable choices is the smallest.

Interpretation: First, let us refer to Table 1 again. The mean numbers of choices in each

category are 2.37 (= 23.2
9.8) and 2.43 (= 29.2

12.0) for inexperienced and experienced testers,

respectively. The small number of choices per category suggests that all the subjects

were inclined to reduce the total number of choices and, in turn, reduce the total number

of complete test frames 5 with a view to saving testing effort. Obviously, fewer choices

per category would also mean that the chance of having combinable choices is smaller.

Second, without the support of a systematic identification technique, it is difficult for

the subjects to partition a given category into choices such that all the values in each

choice are similar in their effects on the system’s behavior or in the type of output they

produce. This difficulty results in categories with composite choices.

Here, we summarize the above observations related to the different types of problematic

categories:

• Experienced testers are not necessarily better than inexperienced ones in every aspect.

Experienced testers have identified fewer irrelevant categories, categories with missing

choices, and categories with overlapping choices than inexperienced testers, but more

categories with invalid choices, categories with combinable choices, and categories with

composite choices.

• Among the different types of problematic categories, categories with composite choices

occur the most, while categories with combinable choices occur the least.

7 Study 2: Effectiveness of checklist guideline

7.1 Objective and steps

In one of our previous papers (Chen et al., 2004), we provided a checklist as a simple

guideline for detecting missing/problematic categories and choices despite an ad hoc iden-

tification approach. The objective of the second study here is to evaluate the effectiveness

of our checklist, in terms of its ability to help testers reduce the occurrence of missing and

problematic categories in PCs.

When commencing study 2, we first discussed with the 16 subjects the missing and

problematic categories involved in their first study, and how the checklist could be used to

help detect and remove these mistakes. We then asked each subject to perform a second

round of identification exercises according to the following scheme:

(a) Subjects 1 to 8: Identify from UMEAL a set PC of potential categories and their

associated potential choices in an ad hoc manner. Then use the checklist as a simple

guideline for detecting and removing any mistake from the PC, and to refine any

5 Recall that a complete test frame is a set of choices such that a test case will be formed whenever a single

value is selected from each choice.

18

potential categories and potential choices in the PC if necessary. Finally, for every

potential category or potential choice that remains in the PC, state the reason why it

should be identified.

(b) Subjects 9 to 16: Repeat (a) above for UTRADE followed by UPURCHASE, instead of

UMEAL.

Note that, in study 1 in which our checklist was not used, Subjects 1 to 8 performed

the identification exercises for UTRADE and UPURCHASE only (but not UMEAL), whereas

Subjects 9 to 16 performed the exercise for UMEAL only (but not UTRADE and UPURCHASE).

This arrangement prevents the experienced subjects from building up their knowledge of the

same functional unit from study 1 and, hence, allows us to measure the effectiveness of our

checklist in an objective manner.

7.2 Findings and discussions

We first consider missing categories:

Observation 19: Reducing the numbers of missing categories. Table 7 shows the total

numbers of missing categories we have detected from the PCs identified by experienced

testers before and after using the checklist. From there, we see that the checklist helps

reduce the numbers of missing categories for all three functional units. Considering all

the functional units together, the total number of missing categories is reduced by 67%,

which is significant.

Table 7 Total numbers of missing categories with and without checklist

Without checklist / with checklist:

Functional unit Total numbers of missing categories

UTRADE 5 / 1

UPURCHASE 5 / 2

UMEAL 11 / 4

Totals 21 / 7

The following reports our observations related to problematic categories:

Observation 20: Reducing the occurrence of different types of problematic categories.

Table 8 shows the total numbers of different types of problematic categories identified

by experienced testers with and without the use of the checklist. Except for the irrelevant

categories identified from UTRADE, the total numbers for each type of problematic

category across the three functional units using the checklist do not exceed those totals

when the checklist was not used. Considering all three functional units together, the

checklist is able to reduce the numbers of irrelevant categories, categories with missing

choices, categories with invalid choices, categories with overlapping choices, categories

with combinable choices, and categories with composite choices by about 27%, 100%,

60%, 100%, 100%, and 60%, respectively. Thus, the checklist is most effective in

preventing the occurrence of categories with missing/overlapping/combinable choices.

19

Interpretation of observations 19 and 20 together: Both observations serve as strong

evidence that the checklist is fairly effective in reducing missing and problematic

categories. These two observations, however, also reconfirm the need for a systematic

identification technique because missing and problematic categories still exist even with

the use of the checklist.

Table 8 Total numbers of different types of problematic categories with and without checklist

Without checklist / with checklist:

Total numbers of different types of problematic categories

With With With With With

Functional Irrelevant missing invalid overlapping combinable composite

unit categories choices choices choices choices choices

UTRADE 0 / 1 0 / 0 0 / 0 0 / 0 0 / 0 5 / 2

UPURCHASE 1 / 1 1 / 0 1 / 1 2 / 0 1 / 0 8 / 3

UMEAL 14 / 9 2 / 0 4 / 1 1 / 0 2 / 0 7 / 3

Totals 15 / 11 3 / 0 5 / 2 3 / 0 3 / 0 20 / 8

Observation 21: Reducing the occurrence of irrelevant categories. Table 8 also shows

that, among different types of problematic categories, the checklist is least effective in

reducing the occurrence of irrelevant categories.

Interpretation: A plausible reason is that, to avoid the identification of irrelevant

categories, testers must determine the influencing factors of the software system under

test. This determination task is non-trivial and may sometimes be intangible at the

specification stage.

To summarize, among the various types of problematic categories, the checklist is most

effective in preventing the occurrence of categories with missing/overlapping/combinable

choices, and least effective in reducing the occurrence of irrelevant categories.

8 Threats to validity

There are four threats to validity in our present empirical studies owing to various settings.

First, the present studies involve only 16 experienced subjects, compared with 44 to 48

undergraduates and postgraduates in our previous studies (Chen et al., 2004). It would

certainly be better if more experienced subjects participated. However, it was not easy

to find a large group of experienced software testers who were willing to participate in

empirical studies (with or without remuneration). Second, only three specifications were

used in the studies. Nevertheless, we believe that even with 16 experienced subjects and

three specifications, our findings still provide an inspiring insight into the effect of tester

experience on category and choice identification. This is because our empirical studies are

largely exploratory in nature (“to find out what is happening”, “to seek new insights”, and

“to generate ideas and hypotheses for future research” (Robson, 2002)) rather than attempts

to identify causal relationships among various factors through statistical hypothesis testing.

20

Third, as stated in Section 6.1, the checking of missing and problematic categories was

carried out by one of the authors. Although the author is knowledgeable in CHOC’LATE

and CTM, he has a stake in the outcome of the studies as well as prior knowledge of the

hypotheses. This may be a potential source of bias.

Fourth, one may argue that the subjects may gain in experience after doing one case

(such as UTRADE). We believe that this effect should be minimal in study 1 because, in this

study, Subjects 1 to 8 were advised of their errors only after they have completed all the

identification tasks for their assigned functional unit(s). Furthermore, Subjects 9 to 16 were

only involved with the functional unit UMEAL. The experience effect, however, might exist

in study 2 because the same groups of subjects were asked to perform the identification

exercises for the purpose of applying CHOC’LATE and/or CTM without the checklist (in

study 1) and then with the checklist (in study 2). Their performance in the identification

exercises was found to improve, which might indicate that the subjects had benefited from

the first study. This was indeed plausible. Although the subjects were experienced, they were

not necessarily experienced in CHOC’LATE and/or CTM and had received only one hour of

training in the methods. In addition, after the first study, the subjects were given feedback

regarding the mistakes they had made, and might have therefore learned from this.

9 Summary and conclusion

We have described our comparative studies using three commercial specifications and

involving inexperienced and experienced software testers. In general, experienced testers

identified more potential categories and choices. They also had fewer missing categories and

problematic categories. At the same time, they identified more non-problematic categories.

These observations thus provide evidence that experience in software development and

testing does help improve the quality of the identified PC despite an ad hoc identification

approach. We must, however, point out that the contribution of experience to the reduction

of mistakes decreases with the complexity of the functional units. We find from the empirical

results that, although experienced testers can identify more non-problematic categories

when the functional units become more complex, this advantage is not sufficient to offset

the increase in problematic categories at the same time. (This phenomenon also occurs for

inexperienced testers.) Thus, software development experience cannot replace the demand

for a systematic identification methodology.

Regarding the types of mistakes committed, experienced testers are not necessarily

better than inexperienced ones in every aspect. First, on one hand, the increase in missing

categories in each PC is larger for inexperienced testers than experienced testers when the

functional units become more complex; on the other hand, the increase in problematic

categories in each PC is smaller for inexperienced testers than experienced testers as the

functional units become more complex. Second, with respect to all potential/problematic

categories, experienced testers have identified fewer irrelevant categories and categories

with missing/overlapping choices, but more categories with invalid/combinable/composite

choices. Because neither the experienced nor the inexperienced testers performed better in

all aspects in the identification exercises, it makes sense to involve both groups of testers in

the identification process in the real industrial settings.

Moreover, we observe that the use of the checklist helps software testers reduce the

occurrence of missing categories and problematic categories of all types. (There may be

a threat to validity due to the gain in experience by the subjects after doing the exercises

in study 1. Readers may refer to Section 8.) Among the different types of problematic

21

categories, the checklist is more effective for reducing the occurrence of categories with

missing/overlapping/combinable choices, but least effective in reducing the occurrence of

irrelevant categories. Our studies also show that, with the use of the checklist, even software

practitioners with substantial years of commercial experience in software development and

testing still make a number of mistakes.

We end this paper with two final reminders. First, our study results are not restricted to

CHOC’LATE and CTM only. As mentioned in Section 1, the identification of categories and

choices (or their equivalents) is also needed in domain testing (Beizer, 1990), equivalence

partitioning (Myers, 2004), and in-parameter-order (Lei and Tai, 1998; Tai and Lei, 2002).

Second, in line with the thoughts of the software community (Briand, 2007; Carver et al.,

2008; Porter and Johnson, 1997; Tichy, 1998), observation of human performance is an

essential element of software engineering. In this regard, our results should play a part in

the contributions to software engineering research.

Acknowledgements We are grateful to the 16 anonymous software practitioners for their invaluable time

and effort in participating in the studies. We are also grateful to the associate editor and the two reviewers for

their constructive comments of the paper.

References

Amla, N., Ammann, P. (1992). Using Z specifications in category partition testing. In

Systems Integrity, Software Safety, and Process Security: Building the Right System Right:

Proceedings of the 7th Annual IEEE Conference on Computer Assurance (COMPASS

1992), (pp. 3–10). Los Alamitos, CA: IEEE Computer Society Press.

Bache, R., & Müllerburg, M. (1990). Measures of testability as a basis for quality assurance.

Software Engineering Journal, 5(2), 86–92.

Beizer, B. (1990). Software Testing Techniques. New York, NY: Van Nostrand Reinhold.

Boehm, B. W., & Basili, V. R. (2001). Software defect reduction top 10 list. IEEE Computer,

34(1), 135–137.

Briand, L. C. (2007). A critical analysis of empirical research in software testing. In

Proceedings of the 1st International Symposium on Empirical Software Engineering and

Measurement (ESEM 2007), (pp. 1–8). Los Alamitos, CA: IEEE Computer Society Press.

Briand, L. C., Labiche, Y., Bawar, Z., & Spido, N. T. (2009). Using machine learning to

refine category-partition test specifications and test suites. Information and Software

Technology, 51(11), 1551–1564.

Cain, A., Chen, T. Y., Grant, D. D., Poon, P.-L., Tang, S.-F., & Tse, T. H. (2004). An auto-

matic test data generation system based on the integrated classification-tree methodology.

In C. V. Ramamoorthy, R. Y. Lee, & K. W. Lee (Eds.), Software Engineering Research

and Applications, Lecture Notes in Computer Science, (vol. 3026, pp. 225–238). Berlin,

Germany: Springer.

Carver, J. C., Nagappan, N., & Page, A. (2008). The impact of educational background on

the effectiveness of requirements inspections: an empirical study. IEEE Transactions on

Software Engineering, 34(6), 800–812.

Chen, T. Y., Poon, P.-L., & Tang, S.-F. (1998). A systematic method for auditing user

acceptance tests. IS Audit and Control Journal, 5, 31–36.

Chen, T. Y., Poon, P.-L., Tang, S.-F., & Tse, T. H. (2004). On the identification of categories

and choices for specification-based test case generation. Information and Software

Technology, 46(13), 887–898.

22

Chen, T. Y., Poon, P.-L., Tang, S.-F., & Tse, T. H. (2005). Identification of categories and

choices in activity diagrams. In Proceedings of the 5th International Conference on

Quality Software (QSIC 2005), (pp. 55–63). Los Alamitos, CA: IEEE Computer Society

Press.

Chen, T. Y., Poon, P.-L., & Tse, T. H. (2000). An integrated classification-tree methodology

for test case generation. International Journal of Software Engineering and Knowledge

Engineering, 10(6), 647–679.

Chen, T. Y., Poon, P.-L., & Tse, T. H. (2003). A choice relation framework for supporting

category-partition test case generation. IEEE Transactions on Software Engineering,

29(7), 577–593.

de la Riva, C., Garcia-Fanjul, J., & Tuya, J. (2006). A partition-based approach for

XPath testing. In Proceedings of the International Conference on Software Engineering

Advances (ICSEA 2006). Los Alamitos, CA: IEEE Computer Society Press.

Grochtmann, M., & Grimm, K. (1993). Classification trees for partition testing. Software

Testing, Verification and Reliability, 3(2), 63–82.

Grottke, M., & Trivedi, K. S. (2007). Fighting bugs: remove, retry, replicate, and rejuvenate.

IEEE Computer, 40(2), 107–109.

Hartmann, J., Vieira, M., Foster, H., & Ruder, A. (2005). A UML-based approach to system

testing. Innovations in Systems and Software Engineering, 1(1), 12–24.

Hierons, R. M., Harman, M., & Singh, H. (2003). Automatically generating information

from a Z specification to support the classification tree method. In Proceedings of the 3rd

International Conference of B and Z Users, Lecture Notes in Computer Science, (vol.

2651, pp. 388–407). Berlin, Germany: Springer.

Lau, M. F., & Yu, Y. T. (2005). An extended fault class hierarchy for specification-based

testing. ACM Transactions on Software Engineering and Methodology, 14(3), 247–276.

Lei, Y., & Tai, K.-C. (1998). In-parameter-order: a test generation strategy for pairwise test-

ing. In Proceedings of the 3rd IEEE International High-Assurance Systems Engineering

Symposium (HASE 1998), (pp. 254–261). Los Alamitos, CA: IEEE Computer Society

Press.

Miller, K. W., Morell, L. J., Noonan, R. E., Park, S. K., Nicol, D. M., Murrill, B. W., & Voas,

J. M. (1992). Estimating the probability of failure when testing reveals no failures. IEEE

Transactions on Software Engineering, 18(1), 33–43.

Myers, G. J. (2004). The Art of Software Testing. Hoboken, NJ: Wiley.

National Research Council (1991). Computers at Risk: Safe Computing in the Information

Age. Washington, DC: National Academies Press.

Neumann, P. G. (1991). The computer-related risk of the year: weak links and correlated

events. In Systems Integrity, Software Safety, and Process Security: Proceedings of the 6th

Annual Conference on Computer Assurance (COMPASS 1991), (pp. 5–8). Los Alamitos,

CA: IEEE Computer Society Press.

Ostrand, T. J., & Balcer, M. J. (1988). The category-partition method for specifying and

generating functional tests. Communications of the ACM, 31(6), 676–686.

Paulk, M. C., Weber, C. V., Curtis, B., & Chrissis, M. B. (Eds.) (1995). The Capability

Maturity Model: Guidelines for Improving the Software Process. Reading, MA: Addison-

Wesley.

Perry, W. E. (2006). Effective Methods for Software Testing. Indianapolis, IN: Wiley.

Poon, P.-L., Tang, S.-F., Tse, T. H., & Chen, T. Y. (2010). CHOC’LATE: a framework for

specification-based testing. Communications of the ACM, 53(4), 113–118.

Porter, A. A., & Johnson, P. M. (1997). Assessing software review meetings: results of

a comparative analysis of two experimental studies. IEEE Transactions on Software

23

Engineering, 23(3), 129–145.

Ramesh, V., Glass, R. L., & Vessey, I. (2004). Research in computer science: an empirical

study. Journal of Systems and Software, 70(1–2), 165–176.

Robson, C. (2002). Real World Research: a Resource for Social Scientists and Practitioner-

Researchers. Oxford, UK: Blackwell.

Sanders, J. W., & Curran, E. (1994). Software Quality: a Framework for Success in Software

Development and Support. Wokingham, UK: Addison-Wesley.

Shepard, T., Lamb, M., & Kelly, D. (2001). More testing should be taught. Communications

of the ACM, 44(6), 103–108.

Singh, H., Conrad, M., & Sadeghipour, S. (1997). Test case design based on Z and the

classification-tree method. In Proceedings of the 1st IEEE International Conference on

Formal Engineering Methods (ICFEM 1997), (pp. 81–90). Los Alamitos, CA: IEEE

Computer Society Press.

Tai, K.-C. (1996). Theory of fault-based predicate testing for computer programs. IEEE

Transactions on Software Engineering, 22(8), 552–562.

Tai, K.-C., & Lei, Y. (2002). A test generation strategy for pairwise testing. IEEE

Transactions on Software Engineering, 28(1), 109–111.

Tichy, W. F. (1998). Should computer scientists experiment more? IEEE Computer, 31(5),

32–40.

Wordsworth, J. B. (1992). Software Development with Z: a Practical Approach to Formal

Methods in Software Engineering. International Computer Science Series. Wokingham,

UK: Addison-Wesley.

Yu, Y. T., Tang, S.-F., Poon, P.-L., & Chen, T. Y. (2001). A study on a path-based strategy for

selecting black-box generated test cases. International Journal of Software Engineering

and Knowledge Engineering, 11(2), 113–138.

