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Abstract

Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element

analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the

discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes.

Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give

a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several

relevant properties of the CVT method with the newly introduced metric. Experiments show that our

algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while

maintaining mesh anisotropy.
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1. Introduction

Anisotropic meshes are used to approximate surfaces or flow fields for rendering and simulation (Cohen-

Steiner et al. [2004], Dey et al. [2007], Valette et al. [2008]). For anisotropic triangle meshes to be used in

finite element methods (FEM), it has been well established (Babuska and Aziz [1976], Bern and Eppstein

[1992a], Shewchuk [2002]) that the accuracy and convergence of the interpolation function in FEM are greatly

influenced by the maximal angle of a triangle element. Triangles with large angles are also found to hamper

the efficiency of some iterative algebraic solvers (Du et al. [2005]). This implies that obtuse triangles should

be avoided as much as possible1. The control of the maximum angle is difficult, however. Existing methods

for anisotropic triangulation always produce meshes that contain a large number of obtuse triangles.
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1In some cases where the mesh anisotropy is dictated by the anisotropy of a PDE to be solved on the mesh, obtuse triangles

with certain orientations are acceptable (Shewchuk [2002]).

Administrator
  HKU CS Tech Report TR-2010-08



There are a number of methods for computing anisotropic triangulations. The algorithms in Leibon and

Letscher [2000], Cheng et al. [2006], Labelle and Shewchuk [2003] compute an anisotropic Voronoi diagram

of some fixed data points, whose dual is an anisotropic triangulation. To allow unconstrained vertices, a

number of methods have been proposed (e.g., Bossen and Heckbert [1996], Shimada [1997], Du et al. [2005],

Wang and Du [2005], Jiao et al. [2006], Boissonnat et al. [2008]). Anisotropic triangulations that minimize

interpolation errors of an underlying function or surface are characterized in Simpson [1994], Rippa [1992].

Based on similar considerations, data-dependent triangulation of fixed data points are studied in Dyn et al.

[1990, 2001]. However, none of these methods consider avoiding obtuse triangles.

While nonobtuse triangulation has been the topic of considerable research, little is known about how to

remove or suppress obtuse triangles in anisotropic triangulations. Existing methods for computing nonobtuse

triangulations (e.g., Baker et al. [1988], Bern and Eppstein [1992b], Li and Zhang [2006], Brandts et al. [2009])

are not applicable to anisotropic meshes as they do not take the anisotropy requirement into consideration.

In this paper, we present an effective method for suppressing obtuse triangles in anisotropic triangle meshes

while maintaining mesh anisotropy. Our contribution is the introduction of a novel hexagonal Minkowski

metric in the formulation of the centroidal Voronoi tessellation (CVT) method, based on which a variational

method is devised for computing anisotropic meshes. In addition, we also prove several properties of the CVT

method with the newly introduced metric. Our method is capable of producing anisotropic triangulations

that have much fewer obtuse triangles than using existing methods.

2. Preliminaries

A commonly used approach to anisotropic triangulation is based on anisotropic centroidal Voronoi tessella-

tion (anisotropic CVT). In this approach, an energy function is first defined for a set of points, called seeds,

in a compact domain Ω. This energy function is then minimized to determine the optimal distribution of

the seeds. Finally, a triangle mesh is obtained by taking the seeds as mesh vertices and using the dual of the

Voronoi diagram of the seeds to determine edge connectivity of the mesh. Two keys to successful application

of such a CVT-based method are: 1) the formulation of an appropriate CVT energy function reflecting the

desired mesh quality criteria (e.g., anisotropy, orientation control, mesh density); and 2) the development

of effective optimization schemes for minimizing this function (e.g., initialization, convergence, avoidance of

poor local minima).

We will briefly introduce the concepts of anisotropic CVT, on which our triangulation algorithm is based. We

first present the basics about isotropic centroidal Voronoi tessellation (isotropic CVT) which are necessary for

a good understanding of anisotropic CVT. We assume a two-dimensional compact domain Ω for the simplicity

of explanation, but the concepts to be introduced apply also to the more general domains, including surfaces.
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Isotropic CVT. Let X = (xi)
n
i=1 be an ordered set of points, called seeds or generators, in Ω. The Voronoi

cell Ωi, also called the CVT cell, of a seed xi is

Ωi = {x ∈ Ω | d(x,xi) ≤ d(x,xj),∀j 6= i, j = 1, 2, . . . , n}

where d(x,y) is the Euclidean distance between the points x and y. The collection of the Voronoi cells Ωi

of all the seeds xi constitutes a Voronoi tessellation (or Voronoi diagram) of Ω. A constrained centroid of

Ωi is the point in Ωi that is closest to the centroid (i.e., the center of mass) of Ωi; note that the constrained

centroid agrees with the centroid when the centroid is inside Ωi. A centroidal Voronoi tessellation, or CVT,

is a special Voronoi tessellation in which each seed xi coincides with the constrained centroid ci of its Voronoi

cell Ωi (Du et al. [1999]).

From a variational standpoint, a CVT is characterized by a critical point (i.e., a gradient-vanishing point)

of the following isotropic CVT energy function (Du et al. [1999])

F (X) =

n∑
i=1

Fi(X) =

n∑
i=1

∫
Ωi

d2(x,xi)dσ (1)

where dσ is the differential area element of Ω. In practice, we seek to compute a CVT corresponding to a

local minimizer of F (X) and such a CVT will be called a stable CVT. Furthermore, a CVT given by a global

minimizer of F (X) will be called an optimal CVT. The most commonly used method for minimizing the

CVT energy function is the Lloyd’s method (Du et al. [1999]), and a more efficient quasi-Newton method is

recently proposed by Liu et al. [2009].

According to the celebrated Gersho’s conjecture (Gersho [1979]), as the number of seeds increases, the

Voronoi cells {Ωi} of an optimal CVT generated by the isotropic CVT energy function F (X) in Eq. (1)

are asymptotically congruent regular hexagons. Gersho’s conjecture has been proved in two dimensions by

Gruber [1999] and supported by strong evidences in three dimensions (Du and Wang [2005]). Consequently,

for an optimal CVT, the energy values Fi(X) of all the CVT cells in Eq. (1) are asymptotically equal.

Taking the dual of such a hexagonal mesh yields an isotropic triangle mesh with nearly equilateral triangle

faces.

Anisotropic CVT. An anisotropic triangulation is computed with the CVT framework using a Riemannian

metric in place of the Euclidean metric in the CVT energy function.
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Figure 1: An anisotropic CVT and its dual triangulation.

A Riemannian metric tensor M is defined by a positive definite quadratic

form Q(p; v) = vtM(p)v : Tp → R in the two-dimensional tangent space

Tp of each point p ∈ Ω, where v ∈ Tp. Since the metric M in FE(X)

has an elliptic form, the iso-distance curves under this metric are ellipses

centered at p. The figure on the right shows the so-called unit ellipse

E : v̄TM(p)v̄ = 1 (in solid line), on the tangent plane of a point p, with

the dashed lines being iso-distance curves which are called the metric ellipses. Equipped with the metric M ,

the domain Ω becomes a two-dimensional Riemannian manifold. Then the anisotropic CVT energy function

is

FE(X) =

n∑
i=1

∫
Ωi

d2
E(x,xi)dσ (2)

where dE(x,y) is the geodesic distance between the points x and y on Ω with respect to the metric M , and

Ωi is the Voronoi cell of the seed xi defined with respect to M . A CVT computed by minimizing FE(X)

is an anisotropic CVT, since its Voronoi cells are elongated along the direction dictated by the metric M .

To distinguish it from another type of anisotropic CVT we are going to introduce, we will call it the elliptic

CVT. Similarly, we may define the stable elliptic CVT and the optimal elliptic CVT, corresponding to the

local and global minimizers of FE(X), respectively. Taking the dual of an elliptic CVT yields an anisotropic

triangulation (see Figure 1).

The shape of the Voronoi cells in an elliptic CVT can be deduced via the correspondence between an elliptic

CVT of a two-dimensional Riemannian manifold Ω and an isotropic CVT of a two-dimensional manifold

Ω̂ in some higher dimensional Euclidean space, which is established by Nash’s embedding theorem (Nash

[1956]). According to this correspondence (see Appendix A for details), within the corresponding tangent

planes of Ω and Ω̂, a Voronoi cell of the elliptic CVT of a seed point p ∈ Ω is locally the image under

an affine mapping of a regular hexagonal Voronoi cell of the isotropic CVT of Ω̂. The linear part of this

affine mapping is given by a matrix G such that GTG = M−1(p), where M(p) is the metric at p. Hence,

each Voronoi cell of an elliptic CVT of a seed p is asymptotically an affinely regular hexagon (i.e., a regular
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hexagon under an affine mapping) inscribed to some metric ellipse E ′ at p. Furthermore, the triangles in

the dual anisotropic triangulation of an elliptic CVT have the same anisotropy defined by E ′ (see Figure 1).

Note that the factorization GTG = M−1(p) above is not unique, since there is also (QG)T (QG) = M−1(p)

for any orthogonal matrix Q. It means that any affinely regular hexagonal regions H of different orientations

inscribed to a metric ellipse at p in Ω corresponds to a regular hexgon (of different orientations) inscribed

to the same metric circle in Ω̂. Since the embedding of Ω as Ω̂ preserves the CVT energy of each Voronoi

cell, all H’s of different orientations thus have the same elliptic CVT energy (Figure 2(a)). The elliptic

CVT energy function FE(X) is therefore oblivious to the orientation of the Voronoi cells in an elliptic CVT

and minimizing FE(X) does not have any control over the orientations of the anisotropic CVT cells that it

generates.

The orientation of a Voronoi cell in an anisotropic CVT, however, can greatly affect the shape of the dual

triangle. Figure 3 shows two sets of hexgonal cells with different orientations inscribed to some metric ellipse

of the same anisotropy. It can be seen that while the cells in Figure 3(a) generate obtuse triangles in the dual

mesh, those in Figure 3(b) yield acute triangles. Consequently, the lack of orientation control in an elliptic

CVT generally leads to the larger number of obtuse triangles in the resulting anisotropic triangulation.

3. Hexagonal Minkowski metric

To enable the control of orientations of CVT cells, we introduce the hexagonal Minkowski metric in the

CVT energy function. This metric is a special case of the Minkowski metric, also known as convex metric

(Valentine [1964]). It can represent the same mesh anisotropy as the Riemannian metric and is sensitive to

CVT cell orientations.

Given an ellipse E in E2 centered at the origin o, let H be an affinely

regular hexagon inscribed in E (see the figure on the right). The hexagon

H defines a vector norm, denoted by ‖v‖H , for vectors v ∈ R2—H is

the “unit disk” in the sense that ‖v̄‖H = 1 for any vector v̄ on H, and

‖kv‖H = |k| · ‖v‖H , ∀k ∈ R and ∀v ∈ E2; hence, H is called a unit

hexagon. The norm ‖v‖H will be called the hexagonal Minkowski metric

or HM metric for short. For any two points x and y in E2, their distance induced by the HM metric is

dH(x,y) = ‖x − y‖H , and is called the HM distance. All the points y having the same HM distance to x

lie on the same metric hexagon that is a uniformly scaled image of H centered at x (the dashed hexagons

in the right figure).
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(a)

(b)

Figure 2: (a) The elliptic CVT energy remains constant for hexagonal cells with different orientations. (b) The HM CVT

energy varies with the orientation of the hexagonal CVT cell. The dashed lines in black and in grey are the unit ellipse and

metric ellipses in (a), and the unit hexagon and metric hexagons in (b), respectively.

The CVT energy function based on the HM metric, called the HM CVT energy, is defined as

FH(X) =

n∑
i=1

FH,i(X) =

n∑
i=1

∫
Ωi

d2
H(x,xi)dσ (3)

The CVT computed by minimizing FH(X) will be called the HM CVT, which is a new kind of anisotropic

CVT. Figure 2(b) shows that, the CVT energy FH,i(X) ≡
∫

Ωi
d2
H(x,xi)dσ of a hexagonal cell Ωi (in red)

has different values when the CVT cell assumes different orientations. The energy reaches its minimum

when the CVT cell has the same orientation as H. This suggests that we may control the orientation of

CVT cells by minimizing the energy function FH(X) defined with an appropriate HM metric.

Let F̄c(s) =
∫
U(s,c)

d2
H(x, c)dσ denote the CVT energy of a seed c with a Voronoi cell U(s, c) which is a

uniformly scaled image of H centered at a point c and has area s. It is shown in Appendix B that F̄c(s) is

indeed the minimum CVT energy among all regions of area s and that F̄c(s) is convex. Therefore, FH(X)

has a lower bound mF̄c( |Ω|m ) when m, the number of seeds, is fixed. Moreover, when m approaches infinity,

the affect due to the boundary of the domain Ω becomes negligible. The following theorem depicts the CVT

pattern induced by the HM metric when the CVT energy FH(X) approaches its lower bound.

Theorem 1. Let Ω be a convex compact region in E2 and
(
Xm

)
be a finite set of points in E2 with |Xm| = m,

for m = 1, 2, . . . , such that

FH(Xm) ∼ mF̄c(
|Ω|
m

) as m→∞,
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(a) (b)

Figure 3: (a) The CVT and its dual triangulation generated by the unit hexagon H1. (b) The CVT and its dual triangulation

generated by the unit hexagon H2. It can be seen that the resulting triangle mesh contains obtuse triangles in (a) and contains

acute triangles in (b).

where H is a regular hexagonal Minkowski metric. Then Xm is asymptotically a regular hexagonal pattern

of edge length ( 2|Ω|
3
√

3m
)
1/2

, in which the hexagons are with the same orientation as H.

The proof is given in Appendix B.

We now consider choosing a unit hexagon to avoid obtuse triangles. Suppose that a part of a planar domain

is endowed uniformly with HM metrics specified by the two unit hexagons H1 and H2 of different orientations

as shown in Figure 3, respectively. As H1 and H2 are inscribed to the same metric ellipse, they define the

same mesh anisotropy. It can be seen that the triangulation corresponding to H1 consists of obtuse triangles

(Figure 3(a)), while the triangulation corresponding to H2 consists of acute triangles only (Figure 3(b)).

Therefore in order to suppress obtuse triangles, we opt to use the unit hexagon H2 in Figure 3(b), which is

characterized by having one of its diagonals aligned with the major axis of the metric ellipse.

4. Algorithm

We assume the input is a domain Ω endowed with an HM metric tensor H, with proper orientations as

shown in Figure 3(b) to suppress obtuse triangles. Our algorithm comprises the following steps:
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Main Algorithm

Step 1: Initialization—Randomly distribute a set of n initial seeds X = {xi} on Ω.

Step 2: Perform an HM CVT optimization.

Step 3: Perform k passes of the following refinement step (or until a specific target

reduction in the number of obtuse triangles is met):

3.1) Carry out an elliptic CVT optimization to cluster obtuse triangles.

3.2) Randomly perturb the seeds which are incident to obtuse triangles.

3.3) Carry out an HM CVT optimization to suppress obtuse triangles.

Step 4: Return the dual triangle mesh of the final optimized Voronoi tessellation as

the resulting mesh.

Step 3 of the main algorithm serves to help the optimization to escape from a poor local minimum through

perturbation, and hence to further reduce the number of obtuse triangles. This refinement step will be

explained in detail in subsequent subsections.

Both the HM CVT and the elliptic CVT optimizations in the main algorithm are computed using the same

framework as follows:

CVT optimization framework

Perform m iterations of the following optimization steps:

Step 1: Compute the Voronoi cells of X, and the energy terms Fi(X) and the gradient

∇Fi(X) of each seed xi.

Step 2: Use the L-BFGS method to obtain a new set of seeds X′. Project X′ to Ω.

Replace X by X′.

In the above CVT framework, the difference between computing an elliptic CVT and computing an HM

CVT is that they use different ways of computing the Voronoi cells, the energy terms and the gradient

terms, according to their respective metrics. This framework differs from the conventional CVT optimization

framework in that instead of looping through until convergence of Fi(X), we perform only a specific number of

iterations (m) for the optimization steps out of efficiency consideration. The termination of the optimization

is determined by the number of refinement steps taken in the main algorithm. Our implementation uses

m = 50 iterations for all CVT optimizations which has demonstrated a satisfactory performance in our

framework.

8



In the following we will present some implementation details of our method.

Computing Voronoi diagram. The existence of Delaunay triangulations on Riemannian manifolds has

been established in Leibon and Letscher [2000], assuming sufficiently dense seeds. An anisotropic Voronoi

diagram on a Riemannian manifold is so defined that the distance between points is given by the length

of the shortest geodesics with respect to a Riemannian metric. To facilitate computation, this distance

is usually approximated so that the bisectors between two seeds can be simplified as conic sections or

quadric surfaces (Jiao et al. [2006]). Different methods for computing anisotropic Voronoi diagrams have

been presented in Cheng et al. [2006], Labelle and Shewchuk [2003], Boissonnat et al. [2008]. However, no

practical implementation of these methods are known that work for mesh surfaces.

Our method computes a discrete approximation of anisotropic Voronoi diagrams on a triangulation of the

input domain Ω. The number of triangle elements of the input mesh needs to be high enough, as compared

with the size of the output mesh, to ensure sufficient accuracy. A ratio of about 10 : 1 is generally recom-

mended. We also adopt the convention in Du and Wang [2005] in which the metric tensor is defined at the

input mesh vertices.

To determine the Voronoi tessellation given seeds X on Ω, we compute an approximation to the Voronoi cell

boundaries, each of which is the bisector of two seeds x1, x2 ∈ X. A point x ∈ Ω on the bisector has equal

distances to x1 and x2, that is, dH(x,x1) = dH(x,x2). Vertex-flooding as in Cohen-Steiner et al. [2004] is

first used to label each vertex in Ω with its nearest seed point with respect to H. Our idea is to process

each triangle T to locate any bisector that it may intersect.

For each triangle T , we locate the bisection points zi on the sides of T whose endpoints have different labels

using the bisection method (Figure 4). If the vertices of T are of three different labels, we first determine a

bisecting line l equidistant to two seeds x1 and x2, and attempt to locate a Voronoi vertex w in T equidistant

to all three seeds on l. If w is not in T , we shall seek its location in a neighbouring triangle T ′ (Figure 4(d)–

(f)). Out of computational efficiency consideration, these treatments are not exhaustive and only serve to

approximate the Voronoi boundaries.

Iterative solver. We use the limited memory BFGS method, also called the L-BFGS method (Liu et al.

[2009]), to minimize the CVT energy function FH(X). The L-BFGS method is a variant of the classical

BFGS, which is an iterative quasi-Newton method. The L-BFGS method takes as the input a set of seeds

X, the CVT energy FH(X) and its gradient ∇FH(X), and returns the new positions for X. To compute the

CVT energy FH,i(X) of each Voronoi cell Ωi, we use a triangulation Ti of Ωi from the preceding computation

9



LT = 1

(a)

LT = 2

(b)

LT = 3 & w ∈ T

(c)

LT = 3 & w /∈ T

LT ′ = 2 & w ∈ T ′

(d)

LT = 3 & w /∈ T

LT ′ = 2 & w /∈ T ′

(e)

LT = LT ′ = 3

(f)

Figure 4: Computing the Voronoi cell boundaries in an input mesh triangle T . Each triangle vertex is labeled with its closest

seed and LT is the number of different labels at the vertices of T . (a) LT = 1 and no boundary should lie in T . (b) LT = 2

and the Voronoi cell boundary is a line connecting the bisection points on the edges of T . (c) LT = 3 and a Voronoi cell vertex

w is found in T . (d) If w /∈ T , we locate w on a neighbouring triangle T ′ with LT ′ = 2. (e) Further if w /∈ T ′, the tracking

stops and w is snapped to an edge of T ′. (f) The tracking also stops if LT ′ = 3.

of the Voronoi diagram. Let 4j be a triangle in Ti. The energy term FH,i(X) is approximated as:

FH,i(X) =
∑
4j∈Ti

∫
4j

d2
H(x,xi)dσ ≈

∑
4j∈Ti

f(4j)

where f(4j) is the approximate CVT energy contributed by the triangle 4j , given by the quadrature

(Hillion [1977])

f(4j) =
Aj
3

(
d2
H(m1,xi) + d2

H(m2,xi) + d2
H(m3,xi)

)
(4)

where Aj is the area of 4j and mi, i = 1, 2, 3, are the mid-points on the sides of 4j . The gradient ∇FH(X)

is then computed approximately based on the expression of f(4j) in Eq. (4).

Escaping from a poor local minimum. The optimization of the CVT energy function with the HM

metric may be trapped at a poor local minimum which results in an undesirable CVT, as shown by the

following theorem:

Definition 1 (Centrosymmetric Seed). A seed s is called a Centrosymmetric Seed

(CS) if its neighbouring seeds (i.e., those seeds sharing at least one Voronoi edge

with s) in the Voronoi diagram is centrosymmetric with respect to s. The right

figure illustrates a CS s and its six neighbouring seeds in the dual triangulation.

Theorem 2. Given a set of seeds Y, if Y consists of only centrosymmetric seeds, the partial derivative of

FH(Y) with respect to each seed in Y is zero.

The proof of the theorem is given in Appendix C.

Theorem 2 means that when a region R consists solely of CS, the gradient-based optimization of FH(X)

cannot improve further locally in R due to the zero gradient. However, the CS seeds may be arranged in

such a way that the dual triangulation of the CVT contains solely of obtuse triangles (as is shown in the
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triangulation in Fig. 3(a)). We also observe that obtuse triangles often scatter over the domain after an

HM CVT optimization, which renders it hard to further decrease the number of obtuse triangles due to the

difficulty in fixing an isolated obtuse triangle in an optimization manner. Therefore, we devise a refinement

step (Step 3 of the main algorithm) in order to keep the optimization from being trapped at such poor local

minima. We note that the isotropic CVT energy function in a convex two-dimensional domain with C2

density is proved to be C2 smooth in Liu et al. [2009]. Elliptic CVT energy function with a unique elliptic

metric inherits the C2 smoothness and in this case the L-BGFS method converges faster. Also, elliptic CVT

is shown to have the ability to cluster nearby obtuse triangles together by our experiments. Therefore, we use

the elliptic CVT in an interleaved manner to cluster scattered obtuse triangles together to form connected

regions of them. The positions of those seeds incident to an obtuse triangle are then randomly perturbed by

at most 0.3 times the average length of their incident edges. Next, an HM CVT optimization is run again

to obtain an enhanced result. Multiple passes of this refinement step can be performed if necessary. In this

regard, our framework, apart from using a randomly distributed set of points on Ω as the initial seeds, may

also accept a partial or complete remeshing result, such as that of an elliptic CVT of Ω as the input.

5. Validation

We first use an example to demonstrate the effectiveness of the HM metric in suppressing obtuse triangles.

Figure 5(a) shows the triangulation of 1,000 seeds in a square computed with elliptic CVT, that is, by

minimizing FE(X) in Eq. (2). The mesh has a uniform anisotropy of aspect ratio of 1 : 2, and 40.6% of the

triangles are obtuse (marked in blue). In comparison, the triangulation computed with the new HM CVT

method (i.e., by minimizing FH(X) in Eq. (3)) has only 4.6% of its triangles being obtuse. Note that, due

to boundary effects and difficulty in reaching a global minimum, the obtuse triangles in general cannot be

removed completely.

Next, we present two examples for computing anisotropic triangulations using our algorithm as presented

in Section 4. In the first example, we produce a triangulation of a two-dimensional domain with a vector

field indicating the desired triangle alignments and elongations (Figure 6(a)). The input domain is of 56,644

triangles. An anisotropic metric tensor is defined based on the vector field shown in Figure 6(b). The elliptic

CVT produces a mesh with 55.3% obtuse triangles (Figure 6(c)), which is greatly reduced to 17.1% by our

method (Figure 6(d)). We use k = 10 passes of the refinement step in this example, and our method takes

426s for generating the triangulation.

Figure 7 shows a bone-like freeform surface for which the anisotropy metric M is defined to depend on the

principal curvature directions and the principal curvature magnitudes. The ratio of the two eigenvalues of

the metric M is the largest (about 5 : 1) in the middle part of the bone. The input mesh is of 47,936
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* Obtuse triangles are marked in blue.

By Elliptic CVT

(a)

By HM CVT

(b)

Figure 5: Triangulation computed by (a) the elliptic CVT method; (b) the HM CVT method, of 1,000 vertices in a square

with uniform anisotropy 1 : 2.

(a)

(b)

By Elliptic CVT

(c)

By Our Method

(d)

Figure 6: Triangulations of 2,000 points on a two-dimensional domain with varying anisotropy. (a) The input vector field. (b)

An elliptic metric tensor is defined based on the vector field. (c) The elliptic CVT generates an anisotropic mesh with 55.3%

obtuse triangles. (d) Our method generates an anisotropic mesh of the same anisotropy with 17.1% obtuse triangles. The

meshes in (c) and (d) follow the same anisotropy defined in (b).
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By Elliptic CVT

(a)

By Our Method

(b)

Figure 7: Anisotropic meshes of 3,000 vertices on a bone model. (a) The elliptic CVT generates a mesh with 14.1% obtuse

triangles. (b) Our method generates a mesh with 2.9% obtuse triangles, using the result in (a) as the initial input.

triangles and a total of 3,000 seeds is used. The elliptic CVT results in 14.1% obtuse triangles which are

mainly found on the bone shaft (Figure 7(a)). Our method based on the HM CVT produces a triangle mesh

with 2.9% obtuse triangles (Figure 7(b)). The total time taken by our method is 412s, using k = 11 passes

of the refinement steps.

6. Conclusions

Our method can greatly reduce the number of obtuse triangles in anisotropic meshes, as compared with the

conventional CVT-based method. However, because our method is an optimization method, it does not have

the ability to reduce the maximal angle. Besides that, it still cannot remove obtuse triangles completely.

There are at least two reasons for this. The first is the boundary effect, that is, obtuse triangles tend to

persist along domain boundaries, as shown in the examples in Figures 5 and 6. The second reason is the

difficulty in reaching the global minimizer of the HM CVT energy function, despite our careful optimization

strategy that has kept us from getting trapped in poor local minima. Hence, further research is needed to

improve the result of the optimization.

Another issue is efficiency. Our current implementation needs several minutes to compute a mesh of moderate

size (several thousand vertices). While slow convergence in CVT computation is certainly a factor, we note

that in each iteration, most of the time is spent on computing the anisotropic Voronoi diagram on a mesh.
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It is envisioned that considerable speedup might be achieved by using surface parameterization with multi-

charts and GPU acceleration for computing anisotropic Voronoi diagrams.
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Appendix A. Correspondence between an ACVT of a two-dimensional manifold and a CVT

of a higher dimensional Euclidean space

Here we will discuss how the shape of a Voronoi cell of an optimal anisotropic CVT (or ACVT) is de-

termined by a Riemannian metric M . First we will establish the correspondence between an ACVT on a

two-dimensional Riemannian manifold Ω and an isotropic CVT in a higher dimensional Euclidean space.

According to Nash’s embedding theorem (Nash [1956]), the surface Ω, as a two-dimensional Riemannian

manifold, can be embedded isometrically as a two-dimensional manifold Ω̂ in a Euclidean space Ek, which is

not necessarily three-dimensional—that is, Ω̂ ⊂ Ek is equipped with Euclidean metric. Denote this mapping

(or embedding) by R(x) = x̂: Ω → Ω̂. Clearly, R maps the original anisotropic CVT function F (X) in

Eq. (2) to

F̂ (X̂) =

n∑
i=1

∫
Ω̂i

d2
E(x̂, x̂i)dσ,

which is the conventional CVT function on Ω̂ with Euclidean metric. It follows that F̂i(X̂) ≡ Fi(X) for all

i and F̂ (X̂) ≡ F (X). Hence, the minimization of F (X) is equivalent to that of F̂ (X̂) under R.

As proved in Gruber [2001], the Voronoi cell Ω̂i of the CVT on the two-dimensional manifold Ω̂ with

Euclidean metric is asymptotically a regular hexagon Ĥ. Let H and Ĥ be corresponding optimal CVTs on
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Ω and Ω̂. Consider the corresponding seeds xi of H and x̂i of Ĥ. Between the tangent spaces Ti of Ω at

xi and T̂i of Ω̂ at x̂i, the metric M(xi) = (G−1)TG−1 at xi induces a linear mapping v = Gv̂ : T̂i → Ti,

which is the linearization of the stretching of the embedding R(x) of Ω as Ω̂. The linear mapping G−1 maps

the regular hexagonal Voronoi cell Ĥ of the CVT at x̂i to an affinely scaled (anisotropic) hexagonal cell H

of the ACVT at xi, which is inscribed in the ellipse vtMv = c in the tangent plane Ti, for some constant

c > 0. Thus, we have determined asymptotically the shape the Voronoi cells of a CVT produced by the

anisotropic CVT energy function F (X) in Eq. (2). Furthermore, because F̂i(X̂) ≡ Fi(X) for all i, it follows

from the isotropic case that the anisotropic CVT energy terms Fi(X) are equal for all i asymptotically in

an optimal anisotropic CVT.

Appendix B. Proof of Theorem 1

Appendix B.1. The Result

Let us define the following notations that will be used in the proof:

• H: a regular hexagonal Minkowski metric. It also takes the meaning of the unit disk, that is, the unit

hexagon, in the metric H, when the context is clear.

• U(s, c): a region which is a uniformly scaled image of H centered at a point c and has area s.

• Fc(R) =
∫
R
d2
H(x, c)dσ: the HM CVT energy of a seed c with R as its Voronoi cell.

• F̄c(s) =
∫
U(s,c)

d2
H(x, c)dσ: the HM CVT energy of a seed c with a Voronoi cell U(s, c).

• Fmin(s, i): the minimal HM CVT energy of all possible Voronoi cells of area s having i neighbours.

Theorem 1. Let Ω be a convex compact region in E2 and
(
Xm

)
be a finite set of points in E2 with |Xm| = m,

for m = 1, 2, . . . , such that

FH(Xm) ∼ mF̄c(
|Ω|
m

) as m→∞,

where H is a regular hexagonal Minkowski metric, then Xm is asymptotically a regular hexagonal pattern of

edge length ( 2|Ω|
3
√

3m
)
1/2

, in which the hexagons are with the same orientation as H.

The statement of Theorem 1 is similar to the statement of the celebrated two-dimensional Gersho’s conjecture

(Gersho [1979]) which is proved in Gruber [1999].

The outline of the proof of Theorem 1, which is inspired by Gruber [2001], is given here. We emphasize

that all Voronoi cells mentioned in Appendix B is induced by the regular hexagonal Minkowski metric H

in Theorem 1. First, we show that most Voronoi cells are completely inside Ω by Lemma 8. Then, we

have Lemma 12 showing that most Voronoi cells have six neighbours. Also, Lemma 13 shows that most
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Voronoi cells have the same area, with an o( |Ω|m ) error. Finally, by Lemma 14 we show that most Voronoi

cells assume a regular hexagonal shape with the same orientation as H; that is, the area of the boolean

difference of the Voronoi cell Ωi of a seed xi and U(|Ωi|,xi) is o(|Ωi|). By employing the nice property that

under the regular hexagonal Minkowski metric, the Voronoi cell realizing the smallest energy for a given

seed is a regular hexagon, not a disk, we give a new result in Lemma 11. This result is the key in the proofs

of Lemma 12, 13 and 14; the three proofs are fundamentally different from the proofs in Gruber [2001].

If a Voronoi cell has an intersection with the boundary of Ω, its number of neighbours is added by 1, that

is, we also count Ω̄, the complement of Ω, as a neighbour. The number of Voronoi cells with i neighbours

is denoted as mi, i = 3, 4, . . . , k, where k is the maximal i with mi > 0. All Voronoi cells with i neighbours

are labelled as Dij , i = 3, 4, . . . , k and j = 1, 2, . . . ,mi. The area of Dij is denoted by |Dij |. Without loss

of generality, we suppose that |Ω| = 1. It is easy to see that

|D31|+ |D32|+ . . .+ |D3m3 |+ . . .+ |Dkmk
| = 1. (B.1)

Appendix B.2. The Proof

Lemma 2. Consider the HM CVT energy term Fc(R) =
∫
R
d2
H(x, c)dσ of a compact region R in E2, where

c is a fixed point. Among all the compact regions of some fixed area s0, Fc(R) has a unique minimizer

U(s0, c) which is a uniformly scaled image of H centered at c.

Proof. Without loss of generality, suppose that c is at the origin o. Suppose that R0 is the minimizer of

Fc(R) among all the compact regions of area s0. Then there is a scaled image R1 = k1R0 of R0, for some

k1 > 0, that has the same area of the unit hexagon H, which is k2
1s0. It follows that R1 is the minimizer of

Fc(R) among all compact regions of area k2
1s0, since Fc(k1R) = k4

1Fc(R) for any R.

Now we are going to prove by contradiction that R1 = H.

Assume R1 6= H. Since R1 and H have equal area, R1\H 6= ∅

and H\R1 6= ∅. Therefore, we can remove a region D1 of

sufficiently small area from R1\H and add a region D2 of the

same area of D1 from H\R1 to form R2 = (R1\D1)
⋃
D2 (See

the right figure). Clearly, R2 and R1 have equal area k2
1s0.

Since D2 is inside H and D1 is outside H, dH(x,o) < 1 <

dH(y,o), ∀x ∈ D2 and ∀y ∈ D1. It follows that

Fc(R2) = Fc(R1)− Fc(D1) + Fc(D2) < Fc(R1).
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This contradicts that R1 is the minimizer of Fc(R) among all the compact regions of area k2
1s0. Therefore,

R1 = H. Hence, R0 = k−1
1 R1 = k−1

1 H, that is, R0 is a uniformly scaled image of H. This completes the

proof.

Corollary 3. The HM CVT energy F̄c(s) =
∫
U(s,c)

d2
H(x, c)dσ of a seed c with a Voronoi cell which is a

uniformly scaled image of H centered at c of area s gives the minimum energy among all Voronoi cells of

area s.

Lemma 4. F̄c(s) is strictly convex, that is,

λF̄c(s1) + (1− λ)F̄c(s2) > F̄c(λs1 + (1− λ)s2)

for any distinct s1, s2 > 0 and λ ∈ (0, 1).

Proof. F̄c(s) =
√

3
12 s

2, which can be easily derived with integration by substitution. Therefore, F̄c(s) is

strictly convex.

Lemma 5. For each σ with 0 < σ < 1, there exists τ > 1 such that for each s > 0 and for all positive m,

σmF̄c(
s

σm
) ≥ τmF̄c(

s

m
)

holds.

Proof. Since F̄c(s) =
√

3
12 s

2, we have F̄c(ks) = k2F̄c(s). Therefore, σmF̄c( s
σm ) = σm

σ2 F̄c( sm ) = m
σ F̄c( sm ). By

choosing τ ∈ (1, 1
σ ], we then have σmF̄c( s

σm ) ≥ τmF̄c( sm ).

Lemma 6. Let Ω be a convex compact region in E2 and
(
Xm

)
be a sequence of finite sets in E2 with

|Xm| = m, for m = 1, 2, . . ., such that

FH(Xm) ∼ mF̄c(
|Ω|
m

) as m→∞.

Then we have maxp∈Xm
{diam

(
V C(p)

⋂
int(Ω)

)
} ∼ 0 as m → ∞, where diam(R) and int(R) denote the

diameter and the interior of a region R, respectively, and V C(p) denotes the Voronoi cell of a seed p.

Proof. To prove the lemma, we need only to show that given any ε > 0, for all sufficiently large m, ∀p ∈ Xm

and x ∈ V C(p)
⋂
int(Ω), the distance between x and p is less than 2ε. Now, the compactness of the closure

of int(Ω) implies that there are finitely many points in int(Ω) whose ε-neighbourhoods cover int(Ω). When

m is sufficiently large, each of these ε-neighbourhoods contains at least one point of Xm. Otherwise, there is

a contradiction that the integral FH(Xm) does not converge to 0. To show this, assume there exists a point

q whose ε-neighbourhood does not contain any point of Xm. We then compute the integral FH(Xm) over

the domain D, where D is a disk centered at q with radius ε
2 . It is easy to see that the distance between

any point in D and its nearest point in Xm is no less than a constant c1 = ε
2 and the area of D is also a
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constant c2 = πε2

4 . The integral FH(Xm) over the domain D is then a constant and therefore the integral

FH(Xm) does not converge to 0. However, mF̄c( |Ω|m ) = 1
m F̄c(|Ω|), which converges to 0. Therefore, for

each x ∈ int(Ω), the nearest point in Xm to x has a distance less than 2ε from x. Furthermore, for each

x ∈ V C(p)
⋂
int(Ω), the point p is (one of) the nearest point(s) in Xm to x, we thus have the distance

between x and p is less than 2ε. This concludes the proof.

Lemma 7 and Lemma 8 show that most Voronoi cells are in the interior of Ω.

Lemma 7.

(m+ o(m))F̄c(
1

m
)

≥ Fmin(|D31|, 3) + Fmin(|D32|, 3) + . . .+ Fmin(|D3m3
|, 3) + . . .+ Fmin(|Dkmk

|, k),

where o(m) is a quantity dominated by m.

Proof. Under the assumption in Theorem 1,

(m+ o(m))F̄c(
1

m
) ≥ FH(Xm)

=

k∑
i=3

mi∑
j=1

FDij
(Xm)

= FD31(Xm) + FD32(Xm) + . . .+ FD3m3
(Xm) + . . .+ FDkmk

(Xm)

≥ Fmin(|D31|, 3) + Fmin(|D32|, 3) + . . .+ Fmin(|D3m3
|, 3)

+ . . .+ Fmin(|Dkmk
|, k).

Lemma 8.

mint = |{Dij | Dij ⊆ int(Ω)}|

= m− o(m), as m→∞.

Proof. If this is not the case, then we have mint ≤ σ2m for infinitely many m which constitute a sequence,

where 0 < σ < 1. Let τ = χ2 > 1 be the same τ as stated in Lemma 5. Also, we choose a suitable χ such

that χ ≤ 1
σ . Since (m + o(m))F̄c( 1

m ) → 0 as m → ∞, by Lemma 6, we have maxi,j{diam(Dij)} → 0 as

m → ∞. Choose K ⊂ int(Ω) which is homothetic to Ω with |K| = |Ω|/χ = 1/χ. Then for all sufficiently

large m, there are mK ≤ mint Voronoi cells which have nonempty intersection with K. Thus we have the
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following contradiction:(
m+ o(m)

)
F̄c(

1

m
)

≥ Fmin(|D31|, 3) + Fmin(|D32|, 3) + . . .+ Fmin(|D3m3 |, 3) + . . .+ Fmin(|Dkmk
|, k)

≥ Fmin(|D31 ∩K|, 3) + Fmin(|D32 ∩K|, 3) + . . .+ Fmin(|D3m3
∩K|, 3)

+ . . .+ Fmin(|Dkmk
∩K|, k)

≥ F̄c(|D31 ∩K|) + F̄c(|D32 ∩K|) + . . .+ F̄c(|D3m3
∩K|)

+ . . .+ F̄c(|Dkmk
∩K|)

≥ mK F̄c(
|K|
mK

)

≥ mintF̄c(
|K|
mint

)

=
1

χ
χmintF̄c(

1

χmint
) ≥ 1

χ
χσ2mF̄c(

1

χσ2m
) ≥ 1

χ
σmF̄c(

1

σm
) ≥ τ

χ
mF̄c(

1

m
) = χmF̄c(

1

m
).

Lemma 9.

3m3 + 4m4 + . . .+ kmk = 6(m3 +m4 + . . .+mk)− o(m) = 6m− o(m).

Proof. We consider the Voronoi tessellation of Xm in Ω induced by the HM metric H as a graph G. We

denote v, e, n as the number of vertices, edges, and faces of G, respectively. It is trivial that G is planar since

it corresponds to a planar tiling of a convex region Ω. Hence, we have 3v = 3m3 + 4m4 + . . .+ kmk + vbd,

where vbd is the number of points in Xm whose Voronoi cells have an intersection with the boundary of Ω.

We also have 2e = 3m3 + 4m4 + . . . + kmk + ebd, where ebd is the number of Voronoi edges which have

intersections with the boundary of Ω.

By Euler’s formula on planar graph, we have 6 = 6v−6e+6n = −(3m3 +4m4 + ...+kmk)+6n+2vbd−3ebd.

Since we assume all points in Xm are in Ω, we have n = m; and 2vbd − 3ebd − 6 = o(m) from Lemma 8.

This completes the proof.

Lemma 10. Given a seed c and its Voronoi region R with area s, if the area of R \U(s, c) (i.e.,the boolean

difference of R and U(s, c)) is αs, where α is a positive constant, then we have Fc(R) ≥ θF̄c(s), where θ > 1

is a constant.

Proof. We partition the region R into two parts Rin and Rout, where Rin = R∩U(s, c) and Rout = R−Rin.
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Then,

Fc(R) = Fc(Rin) + Fc(Rout)

= Fc(Rin) + Fc(Rout ∪ U(s, c))− Fc(U(s, c))

≥ F̄c((1− α)s) + F̄c((1 + α)s)− F̄c(s)

= (1− α)2F̄c(s) + (1 + α)2F̄c(s)− F̄c(s)

= (1 + 2α2)F̄c(s).

We have θ = 1 + 2α2 to finish the proof.

Lemma 11. There exists a constant θ > 1 satisfying Fmin(s, i) ≥ θF̄c(s), where 3 ≤ i ≤ 5.

Proof. Let us start with the case i = 5. We need to prove that there exists θ5 > 1, such that Fmin(s, 5) ≥

θ5F̄c(s). Let V5(s, c) be a Voronoi cell of c with five neighbours and with area s realizing the minimum HM

CVT energy Fmin(s, 5). By Lemma 10, we need only to show that |V5(s, c) \ U(s, c)| (i.e., the area of the

boolean difference of V5(s, c) and U(s, c)) is αs, where α is a positive constant.

We shall prove by contradiction. Assume that @α > 0 such that |V5(s, c) \ U(s, c)| ≥ αs.

Figure B.8: Two types of bisectors (in red) of neighbouring seeds.

We first note that the boundary of V5(s, c) comprises five Voronoi edges, each being a bisector of c and one

of its five neighbouring seeds. A bisector between two seeds is either a line segment or a polyline composing

of at most five line segments, as illustrated in the left and right images in Figure B.8, respectively, with the

obtuse angle between two adjacent line segments being 5π
6 . A bisector partitions the two-dimensional planar

domain into two regions, one of which contains the seed c. The intersection of five such regions defines

V5(s, c).

Given any point p on the boundary of U(s, c), if the distance from p to the boundary of V5(s, c) is ε, where

ε is a positive constant, then we may construct a disk of radius ε centered at p. The disk is partitioned

by the boundary of U(s, c) into two regions, one of which is contained either in V5(s, c) \ U(s, c) or in
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U(s, c) \ V5(s, c), and is with area no less than πε2

3 . Since |V5(s, c) \ U(s, c)| = |U(s, c) \ V5(s, c)|, we have

|V5(s, c) \ U(s, c)| ≥ αs, where α = πε2

3s . Due to the assumption that @α > 0, |V5(s, c) \ U(s, c)| ≥ αs, we

conclude that the distance from any point p on the boundary of U(s, c) to the boundary of V5(s, c) is less

than ε for any ε > 0, and hence p must lie on the boundary of V5(s, c). In other words, the boundary of

V5(s, c) contains the boundary of U(s, c).

Now, the boundary of U(s, c) is a polyline of six line segments in which the angle between any two adjacent

segments is 2π
3 . However, there is at most five angles which are equal to 2π

3 on the boundary of V5(s, c).

This yields a contradiction.

Following similar arguments, we may find θ4 > 1 and θ3 > 1, for the cases i = 4 and i = 3, respectively.

Finally, we choose θ = min{θ3, θ4, θ5}, and this completes the proof.

Lemma 12.

m−m6 = o(m), as m→∞.

Proof. Lemma 9 shows that the average number of neighbours of all Voronoi cells is 6. So we need only to

show that the number of Voronoi cells with less than six neighbours is o(m). We will show it by contradiction.

Assume m3 +m4 +m5 = αm, where α is a positive constant. Then, we have

FH(Xm) =

k∑
i=3

mi∑
j=1

FDij (Xm)

≥
5∑
i=3

mi∑
j=1

θF̄c(|Dij |) +

k∑
i=6

mi∑
j=1

F̄c(|Dij |),

where θ is the same quantity as in Lemma 11. Now, we have two cases:

Case 1:∑5
i=3

∑mi
j=1 |Dij |

m3+m4+m5
= o( 1

m ). The average area of all Voronoi cells with 3, 4 and 5 neighbours is o( 1
m ).

Hence,
∑5
i=3

∑mi

j=1 |Dij | = o(α) = o(1).

22



Then, we have
∑k
i=6

∑mi

j=1 |Dij | ∼ 1, and
∑k

i=6

∑mi
j=1 |Dij |

m6+...+mk
∼ 1

m6+...+mk
= 1

(1−α)m . Therefore,

5∑
i=3

mi∑
j=1

θF̄c(|Dij |) +

k∑
i=6

mi∑
j=1

F̄c(|Dij |)

≥
5∑
i=3

mi∑
j=1

θF̄c(|Dij |) + (m6 + . . .+mk)F̄c(
1

(1− α)m
)

=

5∑
i=3

mi∑
j=1

θF̄c(|Dij |) + (1− α)mF̄c(
1

(1− α)m
)

=

5∑
i=3

mi∑
j=1

θF̄c(|Dij |) +
1

1− α
mF̄c(

1

m
)

>

5∑
i=3

mi∑
j=1

θF̄c(|Dij |) +mF̄c(
1

m
)

and hence a contradiction.

Case 2:
∑5

i=3

∑mi
j=1 |Dij |

m3+m4+m5
= β

m , for some non-zero constant β. The average area of all Voronoi cells with 3, 4

and 5 neighbours is β
m . Therefore,

5∑
i=3

mi∑
j=1

θF̄c(|Dij |) +

k∑
i=6

mi∑
j=1

F̄c(|Dij |)

=

5∑
i=3

mi∑
j=1

(θ − 1)F̄c(|Dij |) +

5∑
i=3

mi∑
j=1

F̄c(|Dij |) +

k∑
i=6

mi∑
j=1

F̄c(|Dij |)

≥ (θ − 1)αmF̄c(
β

m
) +mF̄c(

1

m
)

= (θ − 1)αβ2mF̄c(
1

m
) +mF̄c(

1

m
)

and hence a contradiction.

Each case yields a contradiction under the assumption given in Theorem 1.

Remark 1. The idea in the proof is not applicable if the Euclidean metric is used in place of the HM metric.

The difference between the HM metric and the Euclidean metric is that under the HM metric, a Voronoi

cell whose area is s and whose number of neighbours is not six has larger energy than F̄c(s). However, it is

not true under the Euclidean metric in which given fixed area s, a Voronoi cell with 7 neighbours may have

smaller energy than a regular hexagonal Voronoi cell.

Lemma 13. Let m6r denote the number of Voronoi cells with six neighbours whose area differs from |Ω|
m by

o( |Ω|m ), then

m−m6r = o(m), as m→∞.
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Proof. We shall prove by contradiction. We call a Voronoi cell bad if the difference between its area and |Ω|m

is not o( |Ω|m ); we have mbad bad Voronoi cells and mbad = m −m6r ≥ βm, where β is a positive constant.

Recall that D6j , j = 1, . . . ,m6, are all the Voronoi cells with 6 neighbours. Without loss of generality, we

assume that D6k, k = 1, . . . ,mbad, are the bad Voronoi cells and the difference between the area of each of

these cells and |Ω|m is at least α |Ω|m , where α is a positive constant.

Since m−m6 = o(m), and maxp∈Xm{diam
(
V C(p)

⋂
int(Ω)

)
} ∼ 0 as m→∞, we conclude that∑m6

j=1 |D6j |
m6

∼ |Ω|
m
.

From ∑m6

j=mbad+1 |D6j |
m6 −mbad

∼ |Ω|
m
,

we have ∑mbad

j=1 |D6j |
mbad

∼ |Ω|
m
.

Then, we have

FH(Xm) =

k∑
i=3

mi∑
j=1

FDij (Xm)

≥
∑
i 6=6

mi∑
j=1

F̄c(|Dij |) +

m6∑
j=1

F̄c(|D6j |)

=
∑
i 6=6

mi∑
j=1

F̄c(|Dij |) +

mbad∑
j=1

F̄c(|D6j |) +

m6∑
j=mbad+1

F̄c(|D6j |)

≥
∑
i 6=6

miF̄c(

∑
i6=6

∑mi

j=1 |Dij |∑
i 6=6mi

)

+ (1 + α2)mbadF̄c(

∑mbad

j=1 |D6j |
mbad

)

+ (m6 −mbad)F̄c(

∑m6

j=mbad+1 |D6j |
m6 −mbad

)

≥ mF̄c(
|Ω|
m

) + α2βmF̄c(
|Ω|
m

)

which contradicts to the assumption given in Theorem 1.

Lemma 14. Let Ω̃6rg be the set of all Voronoi cells have 6 neighbours; further, for any Voronoi cell

Ωi ∈ Ω̃6rg, we have the area of the boolean difference of Ωi and U(|Ωi|,xi) be o( |Ω|m ). Let m6rg = |Ω̃6rg|.

Then,

m−m6rg = o(m), as m→∞.
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Proof. We shall prove by contradiction. We call a Voronoi cell Ωi bad if the area of the boolean difference of

Ωi and U(|Ωi|,xi) is not o( |Ω|m ). Let there be mbad Voronoi cells and we have mbad = m−m6rg ≥ βm, where β

is a positive constant. Since the area of the boolean difference of a bad Voronoi cell Ωi of xi and U(|Ωi|,xi) is

at least α(|Ωi|), where α is a positive constant, we can find a constant γ > 1, such that Fxi
(Ωi) ≥ γF̄c(|Ωi|).

Therefore, we have FH(Xm) ≥ mF̄c( |Ω|m ) + (γ − 1)βmF̄c( |Ω|m ), yielding the contradiction.

Proof of Theorem 1: From Lemma 14, we can see that Xm is asymptotically a regular hexagonal

pattern, in which the hexagons are with the same orientation as H. A simple calculation also shows that

the edge length of the regular hexagon is ( 2|Ω|
3
√

3m
)
1/2

. Theorem 1 is thus proved. �

Appendix C. Proof of Theorem 2

We assume the Riemannian metric defined on the domain Ω is the same everywhere.

Definition 1 (Centrosymmetric Seed). A seed s is called a Centrosymmetric Seed (CS) if its neighbouring

seeds (i.e., those seeds sharing at least one Voronoi edge with s) in the Voronoi diagram is centrosymmetric

with respect to s.

Definition 2 (Centrosymmetric Voronoi Cell). A Voronoi cell is called a Centrosymmetric Voronoi Cell

(CVC) if it is centrosymmetric with respect to the seed of the cell.

Definition 3 (Centrosymmetric Pattern). Given a set of seeds Y, if each Voronoi cell of Y is a CVC, then

Y form a Centrosymmetric Pattern (CP).

Lemma 15. If a seed is a CS, its Voronoi cell is a CVC.

Proof: The proof is straightforward and is omitted here. �

Theorem 2. Given a set of seeds Y, if Y consists of only centrosymmetric seeds, the partial derivative of

FH(Y) with respect to each seed in Y is zero.

Proof: Since each seed in Y is a CS, its Voronoi cell is a CVC. A simple calculation shows that the partial

derivative with respect to such a seed is zero. �
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