
1

Postprint of article in the 1st International Workshop on Embedded System Software Development and Quality Assurance (WESQA ’10),

Proceedings of the 10th International Conference on Quality Software (QSIC ’10), IEEE Computer Society, pp. 473–480 (2010)

Leveraging Performance and Power Savings for Embedded Systems

Using Multiple Target Deadlines
*

Edward Y.Y. Kan

Department of Computer Science

The University of Hong Kong

Pokfulam, Hong Kong

yyekan@cs.hku.hk

W.K. Chan†

Department of Computer Science

City University of Hong Kong

Tat Chee Avenue, Hong Kong

wkchan@cityu.edu.hk

T.H. Tse

Department of Computer Science

The University of Hong Kong

Pokfulam, Hong Kong

thtse@cs.hku.hk

Abstract — Tasks running on embedded systems are often

associated with deadlines. While it is important to complete

tasks before their associated deadlines, performance and

energy consumption also play important roles in many usages

of embedded systems. To address these issues, we explore the

use of Dynamic Voltage and Frequency Scaling (DVFS), a

standard feature available on many modern processors for

embedded systems. Previous studies often focus on frequency

assignment for energy savings and meeting definite task

deadlines. In this paper, we present a heuristic algorithm based

on convex optimization techniques to compute energy-efficient

processor frequencies for soft real-time tasks. Our novel

approach provides performance improvements by allowing

definitions of multiple target deadlines for each task. We

simulate two versions of our algorithm in MATLAB and

evaluate their performance and efficiency. The experimental

results show that our strategy leverages performance and

energy savings, and can be customized to suit practical

applications.

Keywords — DVFS; multiple deadlines; power savings;

energy; convex optimization

I. INTRODUCTION

The development of embedded systems with real-time
constraints should consider not only the traditional aspects

* © 2010 IEEE. This material is presented to ensure timely dissemination

of scholarly and technical work. Personal use of this material is permitted.

Copyright and all rights therein are retained by authors or by other copy-

right holders. All persons copying this information are expected to

adhere to the terms and constraints invoked by each author’s copyright.

In most cases, these works may not be reposted without the explicit

permission of the copyright holder. Permission to reprint / republish this

material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse

any copyrighted component of this work in other works must be obtained

from the IEEE.
† This work is supported in part by the General Research Fund of the

Research Grants Council of Hong Kong (project numbers 111107,

123207, and 717308) and a Strategic Research Grant of City University

of Hong Kong (project numbers 7008039 and 7002464).
‡ All correspondence should be addressed to Dr. W.K. Chan at Department

of Computer Science, City University of Hong Kong, Tat Chee Avenue,

Hong Kong. Tel: +852 2788 9684. Fax: +852 2788 8614. Email:

wkchan@cityu.edu.hk.

such as effective task scheduling and accurate execution time
prediction, but also the environmental horizon such as
minimizing energy consumption while providing sufficient
performance to users. Consider a user operating a wireless
barcode scanner running on a real-time OS. Such a scenario
frequently occurs during stocktaking in a supermarket.
Provided with a legible piece of barcode and an operational
profile of barcode scanning, a deadline may be defined for
the task of reading the barcode. If the deadline is missed, the
scanner is deemed to be unable to recognize the barcode.
Though undesirable, occasional deadline violations may be
tolerated; hence, this kind of deadline is called a soft
deadline. If we attempt to increase the power of the laser
beam module and the decoding processor to shorten the
scanning time, more cycles can be completed, which may
lead to an improvement in operational efficiency. On the
other hand, if the scanning time is too short, the collaborating
human action may not be able to move the scanner fast
enough to feed the barcode, which worsens the effective
utilization of the application and its battery power. The issue
of energy consumption does not limit itself to battery-
powered embedded devices, but also to embedded systems
that remain running for long periods of time on stationary
power. A scheduling display system in a train station and a
household intruder alarm system are two examples of such
embedded systems.

Figure 1. CO2 emissions from 100 scanners (according to [13]).

A recent survey shows that the Information and Commu-

nication Technologies (ICT) sector has a carbon footprint
equal to the aviation industry, accounting for 3–4% of the
world’s carbon emissions [7]. Take the above stocktaking
scenario as an example. If there are only 100 such devices
used on Hong Kong Island and each device can save merely

Administrator
 HKU CS Tech Report TR-2010-05

2

1 Watt, according to the calculation provided by National
Semiconductor [13] as shown in Figure 1, it helps save 1666
pounds of CO2 emissions per year.

To this end, we address the problem in this paper by
utilizing dynamic voltage and frequency scaling (DVFS) that
comes with many modern processors such as Intel’s
Enhanced Intel Speedstep® Technology [9]. The general
idea is a well-received concept: By lowering the processor
frequency and voltage dynamically, the workload of an
application could be spread over a period of time in return
for energy savings. For CPU-bound tasks such as decoding
barcode strips into readable characters, we define workload
as the number of processor cycles required to complete the
task.

The relationship between power consumption (P),
voltage (V), and frequency (f) can be estimated as follows
[23]:

)2(

)1(2

fV

fVP

In other words, as frequency is reduced linearly, voltage is
also reduced linearly in a predetermined, hardware-specific
fashion. This will result in energy savings in approximately
cubic order and only gradual performance degradation.

Reducing voltage and frequency does not necessarily
reduce power consumption owing to the longer time it takes
to complete a task. In our study, we model the problem as a
constrained optimization problem in finding the CPU
frequencies that minimize the overall energy consumption
for all tasks, with task deadlines as constraints. Once the
optimal frequencies are computed, the processor is set to run
at the computed frequency (and the corresponding stable
voltage) during the execution of each task. The problem is
challenging in practice because the underlying processors
only support a discrete number of frequencies, which makes
the problem NP-hard [21][22]. It is unlikely that there exists
an efficient algorithm that solves the problem in the
polynomial time [6]. Consequently, like many other
researchers, we first assume a continuous spectrum of pro-
cessor speeds being available. After computing the optimal
frequency fi for a task Ti over a time period ti, we attempt to
simulate the execution using the lower adjacent frequency fA
and the higher adjacent frequency fB over time periods tA and
tB such that

)()()(iBA

iBA

BBAAii

fEfEfE

ttt

tftftf

where E(fi) denotes the processor energy computation when
the processor is running at frequency fi. Chen et al. [3]
showed in their experiment that the above linear combination
achieves lower energy consumption than running at fB over
the entire duration ti.

As pointed out in recent research [2][4][15], it is
important not to overlook the energy consumptions of other
system components such as memory, I/O devices, and basic
circuitry. In our study, we model system-wide energy
consumption by decomposing power usage and execution

times into frequency-dependent and frequency-independent
variables to reflect on-chip (i.e., CPU) and off-chip (i.e.,
other components) computations, respectively.

TABLE 1. EXAMPLE OF BARCODE SCANNER

Case Probability
Full-Speed

Time (ms)

Deadline

(ms)

1 95% 500 800

2 5% 1500 2000

In this paper, we consider a novel extension to the tradi-

tional definition of deadlines by allowing a finite number of
possible “deadlines” for each task. To clarify this point, let
us consider a simplistic version of the above-mentioned
example of a barcode scanner, as shown in Table 1.

We suppose that the scanner can read a barcode in 500
ms for 95% of the time (case 1), and takes 1500 ms in the
worst case for the remaining 5% (case 2). Moreover, we
further assume that the entire duration is dominant by the
CPU component (i.e., the on-chip component), and that each
barcode scanning should not take more than 2 s (or 2000
ms). Applying our approach, two “target deadlines” may be
defined for this scanning task: first at 800 ms and the second
at 2000 ms. Our frequency assignment algorithm first takes
the value of 800 ms with respect to the offset of the task as
the target deadline for the task and computes the optimal
frequencies. The idea is that since 95% of all executions are
complete in 500 ms at full speed, energy savings by reducing
processor frequency is already possible with the 800 ms
deadline. Performance deterioration can also be controlled to
within 800 – 500 = 300 ms. If the first target is missed, the
algorithm then takes 2000 ms as the deadline and computes
another set of frequencies. In this case, the execution is
assumed to behave as in the worst-case scenario, and the
goal of the algorithm now is to fulfill the second deadline
while still attempting to conserve energy.

While the worst-case deadline is usually defined accord-
ing to application-specific requirements, definitions of other
target deadlines do not necessarily involve much additional
effort because they can be inferred from the operational
profiles of the tasks by adding a fixed percentage of the
execution time as slacks. Referring to the example above, we
add 60% slacks to the usual execution time of 500 ms as the
corresponding target deadline of 800 ms. The fixed
percentage can be applied to all operational profiles to infer
multiple target deadlines provided that the computed
deadlines do not exceed the worst-case deadline (2000 ms in
the above example).

The main contribution of this paper is twofold: First, we
develop a multi-deadline frequency assignment strategy that
supports various performance levels for most executions of
each task and attempts to enforce the task deadline with
respect to the worst-case execution scenario. Our strategy is
able to minimize the energy consumption in either case.
Second, we report a simulation study on our strategy. The
experiment result shows that, with the presence of 150%
slack time, the two versions of our algorithms achieve, on
average, 52% energy savings compared to the absence of any
power management scheme, and up to 72% savings if all

3

execution times are accurately predicted.
For the rest of the paper, unless otherwise noted, we

denote the set of execution times and deadlines for each task
as prediction cases or test cases, and a selected deadline for a
task at any instant of the algorithm execution as a deadline.
A test case is said to hold if it correctly predicts the timing of
an execution.

The rest of the paper is organized as follows: Section II
summarizes related research. Section III formulates our
optimization problem. Section IV describes our algorithm
and its variations. Section V presents the empirical results
and our evaluation. Section VI concludes the paper.

II. RELATED WORK

A. Power-Aware Frequency Assignments

A number of earlier studies focus on processor power
savings without considering the energy consumed by other
off-chip system components [8][19]. Existing approaches
can be classified into three categories: interval, inter-task,
and intra-task.

Weiser et al. [19] adopted an interval approach by
monitoring CPU utilization at regular intervals. Based on the
statistics gathered, the clock frequency and voltage are
reduced whenever the utilization drops below a predefined
threshold. On the other hand, the CPU is accelerated again if
the utilization percentage exceeds a certain threshold. The
idea is to minimize energy consumption by reducing the
amount of idle time in serving the same number of requests.
Because the algorithm only utilizes data from the preceding
round of task execution, its prediction of future CPU utiliza-
tion can be inaccurate, resulting in suboptimal frequency
assignments.

The inter-task approach works at a finer granularity by
assigning different frequencies per task rather than per
interval. Shin and Choi [17] considered a modified scheduler
for fixed priority scheduling in hard real-time systems. Their
approach aims at lowering the frequency during the intervals
between executions of different tasks when the CPU is idle.
CPU frequency and voltage of the active task are reduced
whenever there is no task pending for immediate execution
(i.e., in the run queue). If the CPU is predicted to be idle for
sufficiently long time, the system enters power-down mode.
Shin and Choi incorporated the rate of change of processor
speed into their calculation of the optimal frequency. How-
ever, owing to the expensive computation involved, they
resorted to a heuristic solution that disregarded this factor in
return for less overhead in the scheduling algorithm. The
algorithm works well experimentally across several subject
applications, and achieves better energy savings than the
selected interval techniques even though its accuracy is
subject to the duration between speed changes. If the
processor speed changes frequently, the simplified heuristics
in the algorithm may not harvest all potential power savings.
Our approach can be classified as inter-task as we compute a
distinct frequency per task. Our approach is, however,
different from [17] in that we utilize the operational profiles
of the tasks to compute CPU frequencies instead of referring
to the current workload. In our approach, unlike [17], the rate

of change of processor speed does not depend on whether the
run queue is empty.

Intra-task energy optimization allows a task to be run at
different frequencies throughout its execution period. Unlike
inter-task strategies, the intra-task approach may require
additional information of each task at design time or at run-
time (such as the function/method of a high-level application
being executed on a virtual machine) to determine its optimal
frequency at any point in time. An example of this approach
is presented by Rauch et al. [14], where the Java Virtual
Machine (JVM) is used to profile the CPU, memory, and I/O
access of an application. The statistics collected in the
execution context are checked by a separate thread at regular
intervals and the processor frequency is changed if the
application exhibits a high degree of off-chip activities in the
past interval. Their approach can, therefore, be classified as a
hybrid intra-task / interval approach where the statistics of a
task is collected alongside its execution in the JVM, and the
CPU frequency is adjusted at regular intervals. Implementing
energy saving algorithms at the JVM level is beneficial in the
sense that more programming constructs are available for
consideration by a frequency assignment algorithm, com-
pared to relying solely on an operating system. The proposed
algorithm is implemented as a standard Java interface, which
targets it to be platform-independent. Conversely, the imple-
mentation is limited to applications where runtime instru-
mentation is possible (such as those written in Java), and
imposes 2–6% instrumentation overhead by inserting profil-
ing codes within the execution context of the applications
monitored. Our approach can also be classified as intra-task
in the case if an initial test case fails to predict the comple-
tion of a task (after 800 ms in our previous example in
Section I). Our algorithm computes the frequency assign-
ment for the remaining execution of this task and assumes
that the next test case holds under the newly computed fre-
quency assignment.

Variable deadlines were proposed and studied by Shih
and Liu [16]. They considered the case when deadlines of
tasks can be constantly changing during executions. Their
approach models the deadline as a random process, and
utilizes historical data sampling and simulations to construct
probability distribution functions for different elapsed times
since the first arrival of a task. A requirement engine is
introduced to track changes in timing requirements for the
underlying scheduling algorithm. Although our approach is
similar in that each task may be associated with different
deadlines at different times, we focus on finding optimal
frequency assignments with predefined deadlines, while Shih
and Liu focus on how to gather updated deadlines without
providing a concrete implementation of frequency assign-
ment.

B. Virtual Machine Instrumentation and Profiling

It is important to mention virtual machine instrumenta-
tion because it can help automate the test case generation
process. Similar to [10][14] and many other studies, our
approach relies on execution timing and deadlines (defined
as test cases in Section I) that can be programmatically
collected by means of instrumentation without major change

4

of the application source code. For instance, functions and
methods of a program written in a high-level programming
language can be instrumented for timing prediction of
normal and worst-case executions. Deadlines for normal test
cases can also be deduced manually or automatically from
such data. Wilhelm et al. [20] presented an overview of the
methodology and tools available to determine worst-case
execution times for real-time tasks. Although we assume in
this paper that we are given the test cases, the analysis and
automation tools described above show that gathering the
execution times required in our approach is technically
feasible.

III. OUR MODEL

We formally formulate our model in this section.

A. Worst-Case Execution Time

Consider a set of independent tasks {T1, …, Tn}. To
compute the energy consumption of a task Ti, we need to
examine the effect of processor frequency on the execution
time. Following previous work [4], we define worst-case
execution time (WCET) as the longest time to complete a
task at full processor speed. In the presence of off-chip com-
putations, similar to [4], we further decompose the WCET of
each task execution into an on-chip component and an off-
chip component. Assuming a single processor system, the
WCET wi of task Ti is:

off

i

on

ii www

where on

iw is the execution time on-chip, which is dependent

on CPU frequency; and off

iw is the execution time off-chip,

which is independent of CPU frequency. To reflect the
change in CPU frequency on the overall execution time, we
assume that, at a lower frequency, the on-chip component

takes proportionally longer period (i.e.,
f

won

i) to do the same

amount of work in terms of the number of CPU cycles. The
execution time ti (f) of task Ti is

]1,0()(

,
 fw

f

w
ft off

i

on

i
i

 (3)

where f is frequency normalized to 1 when the CPU is at its
maximum speed.

B. Test Cases and Deadlines

We define test cases τij for task Ti as triples sorted in
ascending order of target deadlines, thus:

 τij = on

jit off

jit Dij, 1 i n, 1 j |τi|

*

i =),,(***

i

off

i

on

i Dtt , 1 i n

 Di j Di k , if 1 j < k|τi| (4)

where on

jit and off

jit are the on-chip and off-chip execution

times, respectively, and Dij is the deadline of each test case;

|τi| is the number of test cases for the task; and
*

i is the test

case selected by the algorithm for Ti. Note that if there is any
task that cannot meet its deadline even when the processor is
running at full speed, we will refer to the default rule of
arbitration (i.e., reject the task or simply run at full speed).

We recall that the purpose of allowing multiple test cases
for a task is to sustain the performance for execution scena-
rios that are more likely to occur than the worst-case
scenario. It follows that, for each task Ti,

 P(τij) ≥ P(τik), if 1 j < k ci (5)

 1)(
1

 ij

c

j

i

P for all i

where P(τij) is the probability that τij holds for task Ti.

C. Energy Model

We adopt the system-wide energy model presented in
[22] and [23], which also takes into account the off-chip and
on-chip power consumptions. For any amount of time tA
spent performing task Ti, power is consumed by the follow-
ing active components during the execution of Ti: frequency-
sensitive components (denoted by)(fPon

i
), frequency-

insensitive components that can be put into sleep modes
when not running Ti (denoted by off

iP), and other components

that consume static power during the execution of Ti
(denoted by PS). Sensitivity to frequency is defined as
whether a component consumes different amounts of energy
when the corresponding CPU frequency is changed. Follow-
ing equations (1) and (2), we model energy utilization as:

)())(

)())(()(

3 ftfCPtP

ftfPPtPfE

ii

off

iAs

i

on

i

off

iAsi

 (6)

where tA is the time period allocated to Ti; and Ci is the task-
specific effective capacitance being switched per clock cycle.
Note that we refer to equation (3) in the context of WCET

and expand ti(f) to on

iw and off

iw in equations (7) and (8)

below. These terms can be replaced with on

it
* and off

it
* in the

context of test cases. Taking the first derivative, we have

22 23)(fwPfwCfwCfE on

i

off

i

on

ii

off

iii (7)

We further take the second derivative to obtain

3226)(fwPwCfwCfE on

i

off

i

on

ii

off

iii (8)

For ,0,0, off

ii Pwf we have Ei''(f) > 0, which indicates

that equation (6) is convex.
We can set Ei'(f) to 0 and solve the quartic equation for f

analytically. It has been shown that solving v quartic
equations can be achieved in O(v3) time [12]. For the special
case where there is no off-chip time, reference [22] presents
a closed formula for solving the optimal frequency f*. We
define *

if as the maximum of f* considering only task Ti,

and define fmin as the lowest frequency supported by the
processor normalized to 1. In general, since dom(Ei) is the
set of all positive real numbers that is also convex, our

5

problem can be formulated into a convex optimization prob-
lem with constraints.

D. Convex Optimization Problem

Given the above model, we formulate our optimization
problem as follows:

(10) 1 0 ,1

(9)n 1,...,ifor ,) (s.t.

)(min

*
i

*

**
*

i

i

fff

Dt
f

t

fE

ii

i
off

i
i

on
i

ii

Constraint (9) ensures that each task is completed before its
selected deadline. Since the objective function is a summa-
tion of convex functions of fi as discussed in the previous
subsection, the optimization problem is also convex.

IV. ALGORITHMS

A. Preprocessing of Test Cases

Constraints (4) and (5) specify the rules when defining
test cases. It is worth noting that real-life executions of tasks
may not follow these constraints. We illustrate our algorithm
using the hypothetical execution times of an arbitrary task Ti
as shown in Table 2. First of all, notice that τi2 and τi3 are
nearly identical. We can combine them into τi23 = (10, 0, 20)
with a probability of 0.2 in order to reduce the incurred
computation overhead. To satisfy constraint (4), we first sort
the test cases by deadlines in ascending order, giving {τi23,
τi5, τi4, τi1}. However, this sequence violates constraint (5)
because P(τi23) < P(τi5). In this case, we remove τi23 from the
test suite. If further reduction of the test suite size is required
owing to practical limitations, test cases may be combined
further to achieve this goal. For instance, if only 2 test cases
are allowed per task, one may combine τi2, τi3, τi4, and τi5 into
a new test case with the weighted average of the execution
times. For the rest of the discussion, we assume that the
given test cases are preprocessed and follow these
constraints. It will be interesting to investigate as a separate
study whether automatic preprocessing can be done
effectively.

TABLE 2. EXAMPLE OF TEST CASE PREPROCESSING

Case P(τi j)
on

jit
off

jit Di j

τi1 0.1 40 0 100

τi2 0.1 10.001 0 20

τi3 0.1 10 0 20

τi4 0.3 30 0 60

τi5 0.4 20 0 40

Preprocessing test sets may reduce the number of test
cases per task but we can never be definite which test case
will most accurately describe the on-chip and off-chip
execution times of a task. To ensure that deadlines are met in
all cases, a simple solution is to consider all test cases in
constraint (9). However this prevents maximum energy
savings since additional constraints that do not accurately

predict task executions are included in the computation. We
present our heuristic Test-Guided Power Management
(TGPM) algorithms to tackle this problem.

B. TGPM-ALL Algorithm

The following is the baseline version of our algorithm:

Algorithm 1. TGPM-ALL

1: Q insert new test cases into queue sorted according to constraint

(4);

2: T_guess get earliest test case for each task from Q;

3: compute f* for each task in T_guess;

4: f call barrier(T_guess, f *) to find optimal frequencies;

5: update f for each task;

6: T Task for T_guess(1);

7: run checker(T) at the expected or actual completion of T;

8: procedure checker(T)

9: if T_guess(1) is for task T then remove it from T_guess;

10: if T is actually completed then remove all test cases of T from Q;

11: else

12: remove T_guess(1) and unfeasible test cases of T from Q;

13: if no more test case of T exists in Q then

14: run at full speed and run checker(T) on completion of T;

15: return;

16: end if;

17: T_guess insert earliest test case for T from Q;

18: repeat 4–5;

19: end if;

20: repeat 6–7;

21: end procedure

In lines 1−2, we assume Earliest Deadline First (EDF)
scheduling [18], sort all test cases for all tasks, and put them

in Q. For each task Ti, we pick the first test case as *

i and

store it in T_guess. In lines 3−4, the chosen test cases and
constraints are passed into the Interior Point algorithm to
compute an optimal set of frequencies. The algorithm is
described in details in the next subsection. In line 5, the
computed frequencies are enforced. In line 6−7, the expected
completion time of the first task is computed and checker is
scheduled to run at that time or when the task actually
completes.

In lines 9−10, if the task is actually completed, all its test
cases are removed. Otherwise, line 11 corresponds to the
case when the task is not completed as expected. Lines
12−13 remove all unfeasible test cases from Q and checks
whether there is another feasible test case for the same task.
A test case is feasible if the actual elapsed on-chip and off-
chip times are smaller than or equal to those of the test case.
If no such test case exists, line 14 runs the arbitration rule for
missing deadlines. Otherwise, lines 17−20 put the next test
case into T_guess, and the algorithm retrieves the task with
the earliest deadline from T_guess and repeats itself.

C. Interior Point and Infeasible-Start Newton Methods

To solve the constrained optimization problem described
by equation (9), we employ the Interior Point Method with

indicator function (f) and the infeasible start Newton’s
method [1]. These algorithms run in polynomial time and are
well studied in the field of convex optimization. Following

6

the literature [1], (f) can be approximated using a
logarithmic barrier function

)*1log(
1

)log(
1

) log(
1

)(*

i

i

ii

off

i

i

on

i
i

f
t

ff
t

w
f

w
D

t
f

, t∞

We let 1* denote a real number slightly larger than 1. (We
use 1.000001 in our experiment.) This is to overcome the
non-zero input domain of the log function. The gradient and
Hessian terms for the problem described by (9) are as
follows:

(11)
1

*1

1

)(*2

iiiii

on
i

i fffwDf

w

f

ji

fff

ji
wDf

wwDfw

ji
fwDf

wfw

ff

iii

ii

on
iii

on
i

jii

on
ji

on
i

ji

, 0

)(

1

)*1(

1

(12) ,
)(

))(2(

,
)(

2*2

24

224

2

2
2

i

j

off
j

j

on
j

w
f

w
w

1

(13)

We implement the infeasible start Newton’s algorithm by
making use of equations (11) to (13). The optimization algo-
rithm is outlined below. Initializations of parameters in lines
1−2 are typical values suggested from empirical studies. We
start the algorithm with a feasible input of normalized
frequencies of 1 (i.e., full CPU speed). Lines 2−4 narrow
down the range of the optimal values for the input vector f.
Lines 4−10 are the implementation of Newton’s method.
Specifically, lines 7–8 performs backtracking line search by
checking whether the Euclidean norm of the gradient in
equation (11) is sufficiently small before updating the vector
f. Note that the feasibility check in line 7 ensures that all
values in the vector f# satisfy constraint (10).

Algorithm 2. Interior Point Method (barrier)

1: initialize: Ɛ = 0.000001, t = 1, α = 1/3, β = 5/6, μ = 2, and strictly

feasible f = 1 and f# = 1;

2: while 3|T|/t ≥ Ɛ do

3: norm_r Compute according to equation 11;

4: while norm_r > Ɛ and f <> f# do

5: t 1;

6: f Compute according to equation 12 and 13;

7: while norm() > (1-α*t)*norm_r or f# not feasible

8: t β*t, f # f+t*f, compute according to equation 11;

9: f f#, norm_r norm();

10: end do;

11: end do

D. Asymptotic Complexity

The overall complexity of TGPM-ALL depends on a

number of parameters, namely n and

n

i ic
1
 , the total

number of test cases. Lines 1, 2, and 17 of Algorithm 1 have
complexity O(log(c)). Line 3 involves solving n quartic
equations, which can be achieved in O(n3) as described
previously. Line 4 converges in exactly

b =

6

*

log

)/||3log(

 EET NPM

iterations [1], where ENPM is the energy consumed when
there is no power management (i.e., processor at full speed);

E* is the optimal energy consumption; and is the upper

bound on the component values of f between two
successive Newton iterations (line 4 of Algorithm 2). In the
worst case, the barrier method is called c times. The overall
complexity of TGPM-ALL is, therefore, O(n3 + log(c) + cb),
or O(n2 + (log(c) + cb) / n) for each task.

E. TGPM-N Algorithm

The number of calls to the barrier method may become
overwhelming when the total number of test cases is
reasonably large. To address this problem, we present an
enhanced version TGPM-N based on TGPM-ALL:

Algorithm 3. TGPM-N

1–7: (same as TGPM-ALL)

8: k(Ti) for all tasks Ti;

 procedure checker(T)

9: if T_guess(1) is for task T then remove it from T_guess;

10: if T is actually expected then remove all test cases of T from Q;

11: else

12: k(T) k(T)+1;

13: remove T_guess(1) and unfeasible test cases of T from Q;

14: if no more test case of T exists in Q or k(T)=N then

15: remove all test cases of T from Q;

16: run at full speed and run checker(T) on completion of T;

17: return;

18: end if;

19: repeat 6–7;

20: end procedure

Line 8 initializes k to 0 for all tasks. Line 12 keeps track
of the number of failed test-case attempts for task T. If it
meets the predefined value N, lines 15–16 discard the
remaining test cases for the task and execute the task at full
speed until completion. The overall complexity is then
reduced to O(n2 + log(c)/n + Nb) for each task.

V. EVALUATION

We implemented TGPM-ALL and TGPM-1 in
MATLAB and compared their performance in terms of
energy savings. Owing to the potentially large number of
tasks and test cases, the algorithm must also run efficiently
and should not incur too much overhead on the system.
Hence, we also instrumented the two versions to report the
number of Newton iterations executed in line 4 of Algorithm
2. In our evaluation, we selected the BEST algorithm as the
one that always correctly identified the test case that best

7

described each task. Although it is not a plausible algorithm
unless we have knowledge into the future as to how all tasks
will execute, it nevertheless serves as a theoretical bound of
our strategy and a reference for comparison.

A. Experimental Setup

Without loss of generality, we let Ps tA in equation (6) be
0, as this factor does not depend on the variables (time or
frequency) manipulated by our algorithm.

For the number of tasks n, we experimented with 10, 20,
and 50 simultaneous tasks for the optimization problem and
find that, for the evaluation criteria stated above, their
statistical patterns agree with one another. In the following
discussions, therefore, we only present the results with 20
simultaneous tasks. Note that each data point in our figures
represents average values of 50 trial runs.

We evaluate the effectiveness of our approach using the
baseline energy consumption ENPM when all tasks are
running at full speed. The reported energy consumptions are
normalized to ENPM. First, we study the effects of energy

savings with respect to test suite sizes by setting
)(fP

P
on

off =

0.05, C = 1, off

it
* = 0, and fmin = 0.2. (We note that the effects

of these parameters have also been studied by Zhu and
Aydin [22].) We summarize the findings in Section V-B.

In our simulation, we randomly generate on

it
* from 0.1 to

1.0 based on uniform distribution. To guarantee achievable
deadlines, we define S > 0 as the amount of slack time
between task completion at full speed and the deadline. S is
expressed as a multiple of the full speed execution time. We
let S = 1.5 to ensure sufficient slack time while we study the
effects of test suite sizes. After generating all test cases, we
randomly pick one test case for each task as the true runtime
characteristic of the task.

B. Effects of Poff, C, and off

it
*

It has been shown [22] that the effects of these parame-
ters are similar on all DVFS-based power management

schemes. As
)(fP

P
on

off increases, off-chip components consume

relatively more energy. Intuitively, this has an adverse effect
on all processor-based power management schemes, as rela-
tively less power can be saved on-chip by frequency and
voltage manipulation. Conversely, increased switching capa-
citance (C) and off-chip workload reduce energy-efficient
frequencies, and will therefore benefit all DVFS power
schemes.

C. Effects of Test Case Size on Energy Consumption

Figure 2 shows the effects of test suite size on energy
savings. As expected, TGPM-ALL performs better than
TGPM-1 (denoted by ONCE) in the simulation. TGPM-ALL
behaves much closer to the hypothetical BEST algorithm.
From Figure 2 with as many as 20 simultaneous tasks and 10
test cases per task, it can still save up to 60% of CPU power
compared with the case when no power management scheme
is active, although it slowly deteriorates as the numbers of
test cases and failed test cases increase. Note that the perfor-

mance of BEST is unaffected by test suite size, since we
assume that it always picks the correct test case regardless of
test suite size.

Figure 2. Effects of test suite size on energy consumption.

Figure 3. Effects of slacks on energy consumption.

D. Effects of Slacks on Energy Consumption

Another important factor that affects energy savings is
the amount of available slacks. Figure 3 shows that all three
algorithms achieve more energy savings as the available
slacks increase. Note that TGPM-ALL and BEST have very
similar sensitivity to available slacks. As S increases from

0.1 to 1.5 the full speed execution time, both can achieve
additional energy savings of about 54% (from 17% to 71%).
On the other hands, TGPM-1’s energy savings only increases
by 29% (from 14% to 43%) for the same increase of
available slacks. This can be explained by the fact that
TGPM-1 only benefits from the additional slacks of the first
test case, and then switches to full speed immediately if the
case fails.

To put the energy savings in the context of CO2 emis-
sions, let us consider the amount of CO2 emissions generated
by the ICT sector, which was 3.5% [7] of total global emis-
sions as of 2006 [11]. Suppose 1% of the emissions are
related to embedded systems with devices capable of imple-
menting our proposed algorithm TGPM-1 with an average of
10% slack time in deadlines. The reduction of CO2 emissions
will be roughly equivalent to the emission of 255,437

8

average cars commuting for one year [5].

E. Effects of Test Case Size on Efficiency

In the previous criteria, TGPM-ALL is shown to be effective
in energy savings. Figure 3 shows that TGPM-1 is more
efficient and is comparable to the BEST algorithm. The
runtime of the algorithm increases linearly for TGPM-ALL,
whereas the other two algorithms are unaffected by test suite
size. It is also interesting to note that the position of the best
test case for each task also plays a role in the efficiency of
TGPM-ALL. In Figure 4, we include two scenarios: ALL
(worst) and ALL (random). ALL (worst) always assigns the
test case with the latest deadline as the correct test case for
each task. ALL (random), on the other hand, randomly
assigns the correct test case for each task in the simulation.
We see that the increase of execution time in the scenario of
ALL (worst) is noticeably faster than in the scenario of ALL
(random). This reflects the performance / energy tradeoff for
both the tasks and the frequency assignment algorithm itself.
TGPM-1 ensures shorter completion of tasks and efficient
frequency assignment by switching to full speed after the
most probable test case fails to hold.

Figure 4. Effects of test suite size on efficiency.

There are a couple of threats to validity about the experi-

ment. First, owing to the use of synthetic test cases, our
simulation model cannot accurately model the fact that the
first test case for each task always has the highest probability
of predicting the actual execution times than remaining
cases. It may be to the advantage of TGPM-1 if we consider
overall energy consumption in the long run with probabili-
ties. Second, we only compare one instance of TGPM-N in
this paper. The results of other instances are uncertain. How-
ever, we believe that they tend to lie between TGPM-ALL
and TGPM-1.

VI. CONCLUSION

Energy efficiency of embedded systems is becoming
more important owing to environmental issues. Most
processors today support DVFS, which allows the scaling
down of CPU voltage and frequency to save energy. Many
proposed frequency assignment strategies only consider
minimizing power consumption and meeting real-time task

deadlines. We have presented a heuristic algorithm to handle
the frequency assignment problem for embedded systems
with multiple soft deadlines. We have modeled the problem
as a convex optimization problem and utilized the Interior
Point method in our algorithm to solve for optimal
frequencies. To allow flexibility in maintaining performance,
our approach accepts multiple target deadlines for each task.
We have developed the TGPM algorithms to try all or part of
the supplied test cases. We have also reported an experiment
on the performance and efficiency aspect of our MATLAB
implementation. The empirical results show that the TGPM
algorithms can be effective in leveraging performance and
energy savings.

There are various future directions to explore. First, it
will be interesting to study the effects of multiple deadlines
with a real execution on an embedded system, possibly with
multi-core processors. Careful selection and filtering of test
cases can significantly improve the performance of TGPM.
Automation of this process will simplify and contribute to
better energy savings. Another direction is to explore more
efficient algorithms to solve the optimization problem.

REFERENCES

[1] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, Cambridge, 2004.

[2] D.J. Brown and C. Reams. Toward energy-efficient computing.
ACM Queue, 8 (2): 30–43, 2010.

[3] B. Chen, W.P.T. Ma, Y. Tan, A. Fedorova, and G. Mori.
GreenRT: a framework for the design of power-aware soft real-
time applications. In Proceedings of the Workshop on the
Interaction between Operating Systems and Computer Architec-
ture (in conjunction with the 35th International Symposium on
Computer Architecture (ISCA-35)). Beijing, China, 2008.

[4] K. Choi, W. Lee, R. Soma, and M. Pedram. Dynamic voltage and
frequency scaling under a precise energy model considering
variable and fixed components of the system power dissipation.
In Proceedings of the 2004 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD ’04), pages 29–34. IEEE
Computer Society, Los Alamitos, CA, 2004.

[5] Drive Smart Calculator. Available at http://www.
drivesmartsavegreen.com/calculator.html. Last access March
2010.

[6] M.R. Garey and D.S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W.H. Freeman, New
York, NY, 1990.

[7] Global Action Plan. Inefficient ICT Sector’s Carbon Emissions
Set to Surpass Aviation Industry: December 2007. Available at
http://globalactionplan.org.uk/first-national-survey-reveals-60-
businesses-are-lacking-support-sustainable-ict-strategies-
december-.

[8] I. Hong, G. Qu, M. Potkonjak, and M.B. Srivastava. Synthesis
techniques for low-power hard real-time systems on variable
voltage processors. In Proceedings of the IEEE Real-Time
Systems Symposium (RTSS ’98), pages 178–187. IEEE Computer
Society, Los Alamitos, CA, 1998.

[9] Intel Corporation. Processors: Frequently asked questions for
Intel Speedstep Technology. Available at http://www.intel.com/
support/processors/sb/CS-028855.htm. Last access March 2010.

[10] S. Liu, Q. Wu, and Q. Qiu. An adaptive scheduling and voltage /
frequency selection algorithm for real-time energy harvesting
systems. In Proceedings of the 46th Annual Design Automation
Conference (DAC ’09), pages 782–787. ACM, New York, NY,
2009.

9

[11] Millennium Development Goals Indicators. Carbon Dioxide
Emissions (CO2), Thousand Metric Tons of CO2 (CDIAC). 2009.
Available at http://mdgs.un.org/unsd/mdg/SeriesDetail.aspx?srid
=749&crid=.

[12] C. Moler. Cleve's corner: roots — of polynomials, that is. The
MathWorks Newsletter, 5 (1): 8–9, 1991.

[13] National Semicondutor. CO2 Calculator. Available at http://
www.national.com/analog/powerwise/co2_calculator. Last access
March 2010.

[14] M. Rauch, A. Gal, and M. Franz. Dynamic adaptive power
management for — and by — a Java virtual machine. Technical
Report No. 06-19. Donald Bren School of Information and
Computer Science, University of California, Irvine, Irvine, CA,
2006.

[15] K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg. FAST:
frequency-aware static timing analysis. ACM Transactions on
Embedded Computing Systems, 5 (1): 200–224, 2006.

[16] C.-S. Shih and J.W.S. Liu. Acquiring and incorporating state-
dependent timing requirements. Requirements Engineering, 9 (2):
121–131, 2004.

[17] Y. Shin and K. Choi. Power conscious fixed priority scheduling
for hard real-time systems. In Proceedings of the 36th annual
ACM/IEEE Design Automation Conference (DAC ’99), pages
134–139. ACM, New York, NY, 1999.

[18] J.A. Stankovic, K. Ramamritham, and M. Spuri. Deadline
Scheduling for Real-Time Systems: Edf and Related Algorithms.
Kluwer Academic Publishers, Norwell, MA, 1998.

[19] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for
reduced CPU energy. In Proceedings of the 1st USENIX
conference on Operating Systems Design and Implementation
(OSDI ’94), page Article No. 2. USENIX Association, Berkeley,
CA, 1994.

[20] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D.
Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F.
Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenstrom.
The worst-case execution-time problem: overview of methods
and survey of tools. ACM Transactions on Embedded Computing
Systems, 7 (3): Article No. 36, 2008.

[21] X. Zhong and C.-Z. Xu. System-wide energy minimization for
real-time tasks: lower bound and approximation. In Proceedings
of the 2006 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD ’06), pages 516–521. ACM, New York,
NY, 2006.

[22] D. Zhu and H. Aydin. Energy management for real-time
embedded systems with reliability requirements. In Proceedings
of the 2006 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD ’06), pages 528–534. ACM, New York,
NY, 2006.

[23] D. Zhu, R. Melhem, and D. Mosse. The effects of energy
management on reliability in real-time embedded systems. In
Proceedings of the 2004 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD ’04), pages 35–40. IEEE
Computer Society, Los Alamitos, CA, 2004.

