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Abstract — Tasks running on embedded systems are often 

associated with deadlines. While it is important to complete 

tasks before their associated deadlines, performance and 

energy consumption also play important roles in many usages 

of embedded systems. To address these issues, we explore the 

use of Dynamic Voltage and Frequency Scaling (DVFS), a 

standard feature available on many modern processors for 

embedded systems. Previous studies often focus on frequency 

assignment for energy savings and meeting definite task 

deadlines. In this paper, we present a heuristic algorithm based 

on convex optimization techniques to compute energy-efficient 

processor frequencies for soft real-time tasks. Our novel 

approach provides performance improvements by allowing 

definitions of multiple target deadlines for each task. We 

simulate two versions of our algorithm in MATLAB and 

evaluate their performance and efficiency. The experimental 

results show that our strategy leverages performance and 

energy savings, and can be customized to suit practical 

applications. 

Keywords — DVFS; multiple deadlines; power savings; 

energy; convex optimization 

I. INTRODUCTION  

The development of embedded systems with real-time 
constraints should consider not only the traditional aspects 
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such as effective task scheduling and accurate execution time 
prediction, but also the environmental horizon such as 
minimizing energy consumption while providing sufficient 
performance to users. Consider a user operating a wireless 
barcode scanner running on a real-time OS. Such a scenario 
frequently occurs during stocktaking in a supermarket. 
Provided with a legible piece of barcode and an operational 
profile of barcode scanning, a deadline may be defined for 
the task of reading the barcode. If the deadline is missed, the 
scanner is deemed to be unable to recognize the barcode. 
Though undesirable, occasional deadline violations may be 
tolerated; hence, this kind of deadline is called a soft 
deadline. If we attempt to increase the power of the laser 
beam module and the decoding processor to shorten the 
scanning time, more cycles can be completed, which may 
lead to an improvement in operational efficiency. On the 
other hand, if the scanning time is too short, the collaborating 
human action may not be able to move the scanner fast 
enough to feed the barcode, which worsens the effective 
utilization of the application and its battery power. The issue 
of energy consumption does not limit itself to battery-
powered embedded devices, but also to embedded systems 
that remain running for long periods of time on stationary 
power. A scheduling display system in a train station and a 
household intruder alarm system are two examples of such 
embedded systems. 

 

 

Figure 1. CO2 emissions from 100 scanners (according to [13]). 

 
A recent survey shows that the Information and Commu-

nication Technologies (ICT) sector has a carbon footprint 
equal to the aviation industry, accounting for 3–4% of the 
world’s carbon emissions [7]. Take the above stocktaking 
scenario as an example. If there are only 100 such devices 
used on Hong Kong Island and each device can save merely 
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1 Watt, according to the calculation provided by National 
Semiconductor [13] as shown in Figure 1, it helps save 1666 
pounds of CO2 emissions per year. 

To this end, we address the problem in this paper by 
utilizing dynamic voltage and frequency scaling (DVFS) that 
comes with many modern processors such as Intel’s 
Enhanced Intel Speedstep® Technology [9]. The general 
idea is a well-received concept: By lowering the processor 
frequency and voltage dynamically, the workload of an 
application could be spread over a period of time in return 
for energy savings. For CPU-bound tasks such as decoding 
barcode strips into readable characters, we define workload 
as the number of processor cycles required to complete the 
task. 

The relationship between power consumption (P), 
voltage (V), and frequency (f) can be estimated as follows 
[23]: 
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In other words, as frequency is reduced linearly, voltage is 
also reduced linearly in a predetermined, hardware-specific 
fashion. This will result in energy savings in approximately 
cubic order and only gradual performance degradation. 

Reducing voltage and frequency does not necessarily 
reduce power consumption owing to the longer time it takes 
to complete a task. In our study, we model the problem as a 
constrained optimization problem in finding the CPU 
frequencies that minimize the overall energy consumption 
for all tasks, with task deadlines as constraints. Once the 
optimal frequencies are computed, the processor is set to run 
at the computed frequency (and the corresponding stable 
voltage) during the execution of each task. The problem is 
challenging in practice because the underlying processors 
only support a discrete number of frequencies, which makes 
the problem NP-hard [21][22]. It is unlikely that there exists 
an efficient algorithm that solves the problem in the 
polynomial time [6]. Consequently, like many other 
researchers, we first assume a continuous spectrum of pro-
cessor speeds being available. After computing the optimal 
frequency fi for a task Ti over a time period ti, we attempt to 
simulate the execution using the lower adjacent frequency fA 
and the higher adjacent frequency fB over time periods tA and 
tB such that 
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where E(fi) denotes the processor energy computation when 
the processor is running at frequency fi. Chen et al. [3] 
showed in their experiment that the above linear combination 
achieves lower energy consumption than running at fB over 
the entire duration ti. 

As pointed out in recent research [2][4][15], it is 
important not to overlook the energy consumptions of other 
system components such as memory, I/O devices, and basic 
circuitry. In our study, we model system-wide energy 
consumption by decomposing power usage and execution 

times into frequency-dependent and frequency-independent 
variables to reflect on-chip (i.e., CPU) and off-chip (i.e., 
other components) computations, respectively. 

 
TABLE 1. EXAMPLE OF BARCODE SCANNER 

Case Probability 
Full-Speed 

Time (ms) 

Deadline 

(ms) 

1 95% 500 800 

2 5% 1500 2000 

 
In this paper, we consider a novel extension to the tradi-

tional definition of deadlines by allowing a finite number of 
possible “deadlines” for each task. To clarify this point, let 
us consider a simplistic version of the above-mentioned 
example of a barcode scanner, as shown in Table 1. 

We suppose that the scanner can read a barcode in 500 
ms for 95% of the time (case 1), and takes 1500 ms in the 
worst case for the remaining 5% (case 2). Moreover, we 
further assume that the entire duration is dominant by the 
CPU component (i.e., the on-chip component), and that each 
barcode scanning should not take more than 2 s (or 2000 
ms). Applying our approach, two “target deadlines” may be 
defined for this scanning task: first at 800 ms and the second 
at 2000 ms. Our frequency assignment algorithm first takes 
the value of 800 ms with respect to the offset of the task as 
the target deadline for the task and computes the optimal 
frequencies. The idea is that since 95% of all executions are 
complete in 500 ms at full speed, energy savings by reducing 
processor frequency is already possible with the 800 ms 
deadline. Performance deterioration can also be controlled to 
within 800 – 500 = 300 ms. If the first target is missed, the 
algorithm then takes 2000 ms as the deadline and computes 
another set of frequencies. In this case, the execution is 
assumed to behave as in the worst-case scenario, and the 
goal of the algorithm now is to fulfill the second deadline 
while still attempting to conserve energy. 

While the worst-case deadline is usually defined accord-
ing to application-specific requirements, definitions of other 
target deadlines do not necessarily involve much additional 
effort because they can be inferred from the operational 
profiles of the tasks by adding a fixed percentage of the 
execution time as slacks. Referring to the example above, we 
add 60% slacks to the usual execution time of 500 ms as the 
corresponding target deadline of 800 ms. The fixed 
percentage can be applied to all operational profiles to infer 
multiple target deadlines provided that the computed 
deadlines do not exceed the worst-case deadline (2000 ms in 
the above example). 

The main contribution of this paper is twofold: First, we 
develop a multi-deadline frequency assignment strategy that 
supports various performance levels for most executions of 
each task and attempts to enforce the task deadline with 
respect to the worst-case execution scenario. Our strategy is 
able to minimize the energy consumption in either case. 
Second, we report a simulation study on our strategy. The 
experiment result shows that, with the presence of 150% 
slack time, the two versions of our algorithms achieve, on 
average, 52% energy savings compared to the absence of any 
power management scheme, and up to 72% savings if all 
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execution times are accurately predicted. 
For the rest of the paper, unless otherwise noted, we 

denote the set of execution times and deadlines for each task 
as prediction cases or test cases, and a selected deadline for a 
task at any instant of the algorithm execution as a deadline. 
A test case is said to hold if it correctly predicts the timing of 
an execution. 

The rest of the paper is organized as follows: Section II 
summarizes related research. Section III formulates our 
optimization problem. Section IV describes our algorithm 
and its variations. Section V presents the empirical results 
and our evaluation. Section VI concludes the paper. 

II. RELATED WORK 

A. Power-Aware Frequency Assignments 

A number of earlier studies focus on processor power 
savings without considering the energy consumed by other 
off-chip system components [8][19]. Existing approaches 
can be classified into three categories: interval, inter-task, 
and intra-task. 

Weiser et al. [19] adopted an interval approach by 
monitoring CPU utilization at regular intervals. Based on the 
statistics gathered, the clock frequency and voltage are 
reduced whenever the utilization drops below a predefined 
threshold. On the other hand, the CPU is accelerated again if 
the utilization percentage exceeds a certain threshold. The 
idea is to minimize energy consumption by reducing the 
amount of idle time in serving the same number of requests. 
Because the algorithm only utilizes data from the preceding 
round of task execution, its prediction of future CPU utiliza-
tion can be inaccurate, resulting in suboptimal frequency 
assignments. 

The inter-task approach works at a finer granularity by 
assigning different frequencies per task rather than per 
interval. Shin and Choi [17] considered a modified scheduler 
for fixed priority scheduling in hard real-time systems. Their 
approach aims at lowering the frequency during the intervals 
between executions of different tasks when the CPU is idle. 
CPU frequency and voltage of the active task are reduced 
whenever there is no task pending for immediate execution 
(i.e., in the run queue). If the CPU is predicted to be idle for 
sufficiently long time, the system enters power-down mode. 
Shin and Choi incorporated the rate of change of processor 
speed into their calculation of the optimal frequency. How-
ever, owing to the expensive computation involved, they 
resorted to a heuristic solution that disregarded this factor in 
return for less overhead in the scheduling algorithm. The 
algorithm works well experimentally across several subject 
applications, and achieves better energy savings than the 
selected interval techniques even though its accuracy is 
subject to the duration between speed changes. If the 
processor speed changes frequently, the simplified heuristics 
in the algorithm may not harvest all potential power savings. 
Our approach can be classified as inter-task as we compute a 
distinct frequency per task. Our approach is, however, 
different from [17] in that we utilize the operational profiles 
of the tasks to compute CPU frequencies instead of referring 
to the current workload. In our approach, unlike [17], the rate 

of change of processor speed does not depend on whether the 
run queue is empty. 

Intra-task energy optimization allows a task to be run at 
different frequencies throughout its execution period. Unlike 
inter-task strategies, the intra-task approach may require 
additional information of each task at design time or at run-
time (such as the function/method of a high-level application 
being executed on a virtual machine) to determine its optimal 
frequency at any point in time. An example of this approach 
is presented by Rauch et al. [14], where the Java Virtual 
Machine (JVM) is used to profile the CPU, memory, and I/O 
access of an application. The statistics collected in the 
execution context are checked by a separate thread at regular 
intervals and the processor frequency is changed if the 
application exhibits a high degree of off-chip activities in the 
past interval. Their approach can, therefore, be classified as a 
hybrid intra-task / interval approach where the statistics of a 
task is collected alongside its execution in the JVM, and the 
CPU frequency is adjusted at regular intervals. Implementing 
energy saving algorithms at the JVM level is beneficial in the 
sense that more programming constructs are available for 
consideration by a frequency assignment algorithm, com-
pared to relying solely on an operating system. The proposed 
algorithm is implemented as a standard Java interface, which 
targets it to be platform-independent. Conversely, the imple-
mentation is limited to applications where runtime instru-
mentation is possible (such as those written in Java), and 
imposes 2–6% instrumentation overhead by inserting profil-
ing codes within the execution context of the applications 
monitored. Our approach can also be classified as intra-task 
in the case if an initial test case fails to predict the comple-
tion of a task (after 800 ms in our previous example in 
Section I). Our algorithm computes the frequency assign-
ment for the remaining execution of this task and assumes 
that the next test case holds under the newly computed fre-
quency assignment. 

Variable deadlines were proposed and studied by Shih 
and Liu [16]. They considered the case when deadlines of 
tasks can be constantly changing during executions. Their 
approach models the deadline as a random process, and 
utilizes historical data sampling and simulations to construct 
probability distribution functions for different elapsed times 
since the first arrival of a task. A requirement engine is 
introduced to track changes in timing requirements for the 
underlying scheduling algorithm. Although our approach is 
similar in that each task may be associated with different 
deadlines at different times, we focus on finding optimal 
frequency assignments with predefined deadlines, while Shih 
and Liu focus on how to gather updated deadlines without 
providing a concrete implementation of frequency assign-
ment. 

B. Virtual Machine Instrumentation and Profiling 

It is important to mention virtual machine instrumenta-
tion because it can help automate the test case generation 
process. Similar to [10][14] and many other studies, our 
approach relies on execution timing and deadlines (defined 
as test cases in Section I) that can be programmatically 
collected by means of instrumentation without major change 
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of the application source code. For instance, functions and 
methods of a program written in a high-level programming 
language can be instrumented for timing prediction of 
normal and worst-case executions. Deadlines for normal test 
cases can also be deduced manually or automatically from 
such data. Wilhelm et al. [20] presented an overview of the 
methodology and tools available to determine worst-case 
execution times for real-time tasks. Although we assume in 
this paper that we are given the test cases, the analysis and 
automation tools described above show that gathering the 
execution times required in our approach is technically 
feasible. 

III. OUR MODEL 

We formally formulate our model in this section. 

A. Worst-Case Execution Time 

Consider a set of independent tasks {T1, …, Tn}. To 
compute the energy consumption of a task Ti, we need to 
examine the effect of processor frequency on the execution 
time. Following previous work [4], we define worst-case 
execution time (WCET) as the longest time to complete a 
task at full processor speed. In the presence of off-chip com-
putations, similar to [4], we further decompose the WCET of 
each task execution into an on-chip component and an off-
chip component. Assuming a single processor system, the 
WCET wi of task Ti is: 

off

i

on

ii www  

where on

iw is the execution time on-chip, which is dependent 

on CPU frequency; and off

iw  is the execution time off-chip, 

which is independent of CPU frequency. To reflect the 
change in CPU frequency on the overall execution time, we 
assume that, at a lower frequency, the on-chip component 

takes proportionally longer period (i.e.,
f

won

i ) to do the same 

amount of work in terms of the number of CPU cycles. The 
execution time ti (f ) of task Ti is 
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where f is frequency normalized to 1 when the CPU is at its 
maximum speed. 

B. Test Cases and Deadlines 

We define test cases τij for task Ti as triples sorted in 
ascending order of target deadlines, thus: 

 τij =  on

jit  off

jit Dij,  1  i  n, 1  j  |τi| 
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off

i
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where on

jit  and off

jit  are the on-chip and off-chip execution 

times, respectively, and Dij is the deadline of each test case; 

|τi| is the number of test cases for the task; and
*

i is the test 

case selected by the algorithm for Ti. Note that if there is any 
task that cannot meet its deadline even when the processor is 
running at full speed, we will refer to the default rule of 
arbitration (i.e., reject the task or simply run at full speed). 

We recall that the purpose of allowing multiple test cases 
for a task is to sustain the performance for execution scena-
rios that are more likely to occur than the worst-case 
scenario. It follows that, for each task Ti, 

 P(τij) ≥ P(τik),  if 1  j < k  ci (5) 

 1)(
1

  ij

c

j

i

P    for all i  

where P(τij) is the probability that τij holds for task Ti. 

C. Energy Model 

We adopt the system-wide energy model presented in 
[22] and [23], which also takes into account the off-chip and 
on-chip power consumptions. For any amount of time tA 
spent performing task Ti, power is consumed by the follow-
ing active components during the execution of Ti: frequency-
sensitive components (denoted by )( fPon

i
), frequency-

insensitive components that can be put into sleep modes 
when not running Ti (denoted by off

iP ), and other components 

that consume static power during the execution of Ti 
(denoted by PS). Sensitivity to frequency is defined as 
whether a component consumes different amounts of energy 
when the corresponding CPU frequency is changed. Follow-
ing equations (1) and (2), we model energy utilization as: 
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where tA is the time period allocated to Ti; and Ci is the task-
specific effective capacitance being switched per clock cycle. 
Note that we refer to equation (3) in the context of WCET 

and expand ti(f) to on

iw  and off

iw  in equations (7) and (8) 

below. These terms can be replaced with on

it
*  and off

it
*  in the 

context of test cases. Taking the first derivative, we have 
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We further take the second derivative to obtain 
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For ,0,0,  off

ii Pwf  we have Ei''( f ) > 0, which indicates 

that equation (6) is convex. 
We can set Ei'( f ) to 0 and solve the quartic equation for f 

analytically. It has been shown that solving v quartic 
equations can be achieved in O(v3) time [12]. For the special 
case where there is no off-chip time, reference [22] presents 
a closed formula for solving the optimal frequency f*. We 
define *

if  as the maximum of f* considering only task Ti, 

and define fmin as the lowest frequency supported by the 
processor normalized to 1. In general, since dom(Ei) is the 
set of all positive real numbers that is also convex, our 
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problem can be formulated into a convex optimization prob-
lem with constraints. 

D. Convex Optimization Problem 

Given the above model, we formulate our optimization 
problem as follows: 

(10)                            1 0  ,1       
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Constraint (9) ensures that each task is completed before its 
selected deadline. Since the objective function is a summa-
tion of convex functions of fi as discussed in the previous 
subsection, the optimization problem is also convex. 

IV. ALGORITHMS 

A. Preprocessing of Test Cases 

Constraints (4) and (5) specify the rules when defining 
test cases. It is worth noting that real-life executions of tasks 
may not follow these constraints. We illustrate our algorithm 
using the hypothetical execution times of an arbitrary task Ti 
as shown in Table 2. First of all, notice that τi2 and τi3 are 
nearly identical. We can combine them into τi23 = (10, 0, 20) 
with a probability of 0.2 in order to reduce the incurred 
computation overhead. To satisfy constraint (4), we first sort 
the test cases by deadlines in ascending order, giving {τi23, 
τi5, τi4, τi1}. However, this sequence violates constraint (5) 
because P(τi23) < P(τi5). In this case, we remove τi23 from the 
test suite. If further reduction of the test suite size is required 
owing to practical limitations, test cases may be combined 
further to achieve this goal. For instance, if only 2 test cases 
are allowed per task, one may combine τi2, τi3, τi4, and τi5 into 
a new test case with the weighted average of the execution 
times. For the rest of the discussion, we assume that the 
given test cases are preprocessed and follow these 
constraints. It will be interesting to investigate as a separate 
study whether automatic preprocessing can be done 
effectively. 

 
TABLE 2. EXAMPLE OF TEST CASE PREPROCESSING 

Case P(τi j) 
on

jit  
off

jit  Di j 

τi1 0.1 40 0 100 

τi2 0.1 10.001 0 20 

τi3 0.1 10 0 20 

τi4 0.3 30 0 60 

τi5 0.4 20 0 40 

Preprocessing test sets may reduce the number of test 
cases per task but we can never be definite which test case 
will most accurately describe the on-chip and off-chip 
execution times of a task. To ensure that deadlines are met in 
all cases, a simple solution is to consider all test cases in 
constraint (9). However this prevents maximum energy 
savings since additional constraints that do not accurately 

predict task executions are included in the computation. We 
present our heuristic Test-Guided Power Management 
(TGPM) algorithms to tackle this problem. 

B. TGPM-ALL Algorithm 

The following is the baseline version of our algorithm: 
 

Algorithm 1. TGPM-ALL 

1: Q  insert new test cases into queue sorted according to constraint 

(4); 

2: T_guess  get earliest test case for each task from Q; 

3: compute f* for each task in T_guess; 

4: f  call barrier(T_guess, f *) to find optimal frequencies; 

5: update f for each task; 

6: T  Task for T_guess(1); 

7: run checker(T) at the expected or actual completion of T; 

  

8: procedure checker(T) 

9:    if T_guess(1) is for task T then remove it from T_guess; 

10:    if T is actually completed then remove all test cases of T from Q; 

11:    else 

12:       remove T_guess(1) and unfeasible test cases of T from Q; 

13:       if no more test case of T exists in Q then 

14:          run at full speed and run checker(T) on completion of T; 

15:          return; 

16:       end if; 

17:       T_guess  insert earliest test case for T from Q; 

18:       repeat 4–5; 

19:    end if; 

20:    repeat 6–7; 

21: end procedure 

In lines 1−2, we assume Earliest Deadline First (EDF) 
scheduling [18], sort all test cases for all tasks, and put them 

in Q. For each task Ti, we pick the first test case as *

i  and 

store it in T_guess. In lines 3−4, the chosen test cases and 
constraints are passed into the Interior Point algorithm to 
compute an optimal set of frequencies. The algorithm is 
described in details in the next subsection. In line 5, the 
computed frequencies are enforced. In line 6−7, the expected 
completion time of the first task is computed and checker is 
scheduled to run at that time or when the task actually 
completes. 

In lines 9−10, if the task is actually completed, all its test 
cases are removed. Otherwise, line 11 corresponds to the 
case when the task is not completed as expected. Lines 
12−13 remove all unfeasible test cases from Q and checks 
whether there is another feasible test case for the same task. 
A test case is feasible if the actual elapsed on-chip and off-
chip times are smaller than or equal to those of the test case. 
If no such test case exists, line 14 runs the arbitration rule for 
missing deadlines. Otherwise, lines 17−20 put the next test 
case into T_guess, and the algorithm retrieves the task with 
the earliest deadline from T_guess and repeats itself. 

C. Interior Point and Infeasible-Start Newton Methods 

To solve the constrained optimization problem described 
by equation (9), we employ the Interior Point Method with 

indicator function ( f ) and the infeasible start Newton’s 
method [1]. These algorithms run in polynomial time and are 
well studied in the field of convex optimization. Following 
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the literature [1], (f) can be approximated using a 
logarithmic barrier function 
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We let 1* denote a real number slightly larger than 1. (We 
use 1.000001 in our experiment.) This is to overcome the 
non-zero input domain of the log function. The gradient and 
Hessian terms for the problem described by (9) are as 
follows: 
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We implement the infeasible start Newton’s algorithm by 
making use of equations (11) to (13). The optimization algo-
rithm is outlined below. Initializations of parameters in lines 
1−2 are typical values suggested from empirical studies. We 
start the algorithm with a feasible input of normalized 
frequencies of 1 (i.e., full CPU speed). Lines 2−4 narrow 
down the range of the optimal values for the input vector f. 
Lines 4−10 are the implementation of Newton’s method. 
Specifically, lines 7–8 performs backtracking line search by 
checking whether the Euclidean norm of the gradient in 
equation (11) is sufficiently small before updating the vector 
f. Note that the feasibility check in line 7 ensures that all 
values in the vector f# satisfy constraint (10). 

 
Algorithm 2. Interior Point Method (barrier) 

1: initialize: Ɛ = 0.000001, t = 1, α = 1/3, β = 5/6, μ = 2, and strictly 

feasible f = 1 and f# = 1; 

2: while 3|T|/t ≥ Ɛ do 

3:    norm_r  Compute according to equation 11; 

4:    while norm_r > Ɛ and f <> f# do 

5:       t  1; 

6:       f  Compute according to equation 12 and 13; 

7:       while norm() > (1-α*t)*norm_r or f# not feasible 

8:          t  β*t, f #  f+t*f, compute according to equation 11; 

9:       f  f#, norm_r  norm(); 

10:    end do; 

11: end do 

D. Asymptotic Complexity 

The overall complexity of TGPM-ALL depends on a 

number of parameters, namely n and  


n

i ic
1
 , the total 

number of test cases. Lines 1, 2, and 17 of Algorithm 1 have 
complexity O(log(c)). Line 3 involves solving n quartic 
equations, which can be achieved in O(n3) as described 
previously. Line 4 converges in exactly 

b = 
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iterations [1], where ENPM is the energy consumed when 
there is no power management (i.e., processor at full speed); 

E* is the optimal energy consumption; and  is the upper 

bound on the component values of f between two 
successive Newton iterations (line 4 of Algorithm 2). In the 
worst case, the barrier method is called c times. The overall 
complexity of TGPM-ALL is, therefore, O(n3 + log(c) + cb), 
or O(n2 + (log(c) + cb) / n) for each task. 

E. TGPM-N Algorithm 

The number of calls to the barrier method may become 
overwhelming when the total number of test cases is 
reasonably large. To address this problem, we present an 
enhanced version TGPM-N based on TGPM-ALL: 

 
Algorithm 3. TGPM-N 

1–7: (same as TGPM-ALL) 

8: k(Ti) for all tasks Ti; 

 procedure checker(T) 

9:    if T_guess(1) is for task T then remove it from T_guess; 

10:    if T is actually expected then remove all test cases of T from Q; 

11:    else 

12:       k(T) k(T)+1; 

13:       remove T_guess(1) and unfeasible test cases of T from Q; 

14:       if no more test case of T exists in Q or k(T)=N then 

15:          remove all test cases of T from Q; 

16:          run at full speed and run checker(T) on completion of T; 

17:          return; 

18:       end if; 

19:    repeat 6–7; 

20: end procedure 

Line 8 initializes k to 0 for all tasks. Line 12 keeps track 
of the number of failed test-case attempts for task T. If it 
meets the predefined value N, lines 15–16 discard the 
remaining test cases for the task and execute the task at full 
speed until completion. The overall complexity is then 
reduced to O(n2 + log(c)/n + Nb) for each task. 

V. EVALUATION 

We implemented TGPM-ALL and TGPM-1 in 
MATLAB and compared their performance in terms of 
energy savings. Owing to the potentially large number of 
tasks and test cases, the algorithm must also run efficiently 
and should not incur too much overhead on the system. 
Hence, we also instrumented the two versions to report the 
number of Newton iterations executed in line 4 of Algorithm 
2. In our evaluation, we selected the BEST algorithm as the 
one that always correctly identified the test case that best 
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described each task. Although it is not a plausible algorithm 
unless we have knowledge into the future as to how all tasks 
will execute, it nevertheless serves as a theoretical bound of 
our strategy and a reference for comparison. 

A. Experimental Setup 

Without loss of generality, we let Ps tA in equation (6) be 
0, as this factor does not depend on the variables (time or 
frequency) manipulated by our algorithm. 

For the number of tasks n, we experimented with 10, 20, 
and 50 simultaneous tasks for the optimization problem and 
find that, for the evaluation criteria stated above, their 
statistical patterns agree with one another. In the following 
discussions, therefore, we only present the results with 20 
simultaneous tasks. Note that each data point in our figures 
represents average values of 50 trial runs. 

We evaluate the effectiveness of our approach using the 
baseline energy consumption ENPM when all tasks are 
running at full speed. The reported energy consumptions are 
normalized to ENPM. First, we study the effects of energy 

savings with respect to test suite sizes by setting 
)( fP

P
on

off = 

0.05, C = 1, off

it
* = 0, and fmin = 0.2. (We note that the effects 

of these parameters have also been studied by Zhu and 
Aydin [22].) We summarize the findings in Section V-B. 

In our simulation, we randomly generate on

it
*  from 0.1 to 

1.0 based on uniform distribution. To guarantee achievable 
deadlines, we define S > 0 as the amount of slack time 
between task completion at full speed and the deadline. S is 
expressed as a multiple of the full speed execution time. We 
let S = 1.5 to ensure sufficient slack time while we study the 
effects of test suite sizes. After generating all test cases, we 
randomly pick one test case for each task as the true runtime 
characteristic of the task. 

B. Effects of Poff, C, and off

it
*  

It has been shown [22] that the effects of these parame-
ters are similar on all DVFS-based power management 

schemes. As
)( fP

P
on

off increases, off-chip components consume 

relatively more energy. Intuitively, this has an adverse effect 
on all processor-based power management schemes, as rela-
tively less power can be saved on-chip by frequency and 
voltage manipulation. Conversely, increased switching capa-
citance (C) and off-chip workload reduce energy-efficient 
frequencies, and will therefore benefit all DVFS power 
schemes. 

C. Effects of Test Case Size on Energy Consumption 

Figure 2 shows the effects of test suite size on energy 
savings. As expected, TGPM-ALL performs better than 
TGPM-1 (denoted by ONCE) in the simulation. TGPM-ALL 
behaves much closer to the hypothetical BEST algorithm. 
From Figure 2 with as many as 20 simultaneous tasks and 10 
test cases per task, it can still save up to 60% of CPU power 
compared with the case when no power management scheme 
is active, although it slowly deteriorates as the numbers of 
test cases and failed test cases increase. Note that the perfor-

mance of BEST is unaffected by test suite size, since we 
assume that it always picks the correct test case regardless of 
test suite size. 
 

 

Figure 2. Effects of test suite size on energy consumption. 

 

 
Figure 3. Effects of slacks on energy consumption. 

 

D. Effects of Slacks on Energy Consumption 

Another important factor that affects energy savings is 
the amount of available slacks. Figure 3 shows that all three 
algorithms achieve more energy savings as the available 
slacks increase. Note that TGPM-ALL and BEST have very 
similar sensitivity to available slacks. As S increases from 

0.1 to 1.5  the full speed execution time, both can achieve 
additional energy savings of about 54% (from 17% to 71%). 
On the other hands, TGPM-1’s energy savings only increases 
by 29% (from 14% to 43%) for the same increase of 
available slacks. This can be explained by the fact that 
TGPM-1 only benefits from the additional slacks of the first 
test case, and then switches to full speed immediately if the 
case fails. 

To put the energy savings in the context of CO2 emis-
sions, let us consider the amount of CO2 emissions generated 
by the ICT sector, which was 3.5% [7] of total global emis-
sions as of 2006 [11]. Suppose 1% of the emissions are 
related to embedded systems with devices capable of imple-
menting our proposed algorithm TGPM-1 with an average of 
10% slack time in deadlines. The reduction of CO2 emissions 
will be roughly equivalent to the emission of 255,437 
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average cars commuting for one year [5]. 

E. Effects of Test Case Size on Efficiency 

In the previous criteria, TGPM-ALL is shown to be effective 
in energy savings. Figure 3 shows that TGPM-1 is more 
efficient and is comparable to the BEST algorithm. The 
runtime of the algorithm increases linearly for TGPM-ALL, 
whereas the other two algorithms are unaffected by test suite 
size. It is also interesting to note that the position of the best 
test case for each task also plays a role in the efficiency of 
TGPM-ALL. In Figure 4, we include two scenarios: ALL 
(worst) and ALL (random). ALL (worst) always assigns the 
test case with the latest deadline as the correct test case for 
each task. ALL (random), on the other hand, randomly 
assigns the correct test case for each task in the simulation. 
We see that the increase of execution time in the scenario of 
ALL (worst) is noticeably faster than in the scenario of ALL 
(random). This reflects the performance / energy tradeoff for 
both the tasks and the frequency assignment algorithm itself. 
TGPM-1 ensures shorter completion of tasks and efficient 
frequency assignment by switching to full speed after the 
most probable test case fails to hold. 
 

 

Figure 4. Effects of test suite size on efficiency. 

 
There are a couple of threats to validity about the experi-

ment. First, owing to the use of synthetic test cases, our 
simulation model cannot accurately model the fact that the 
first test case for each task always has the highest probability 
of predicting the actual execution times than remaining 
cases. It may be to the advantage of TGPM-1 if we consider 
overall energy consumption in the long run with probabili-
ties. Second, we only compare one instance of TGPM-N in 
this paper. The results of other instances are uncertain. How-
ever, we believe that they tend to lie between TGPM-ALL 
and TGPM-1. 

VI. CONCLUSION 

Energy efficiency of embedded systems is becoming 
more important owing to environmental issues. Most 
processors today support DVFS, which allows the scaling 
down of CPU voltage and frequency to save energy. Many 
proposed frequency assignment strategies only consider 
minimizing power consumption and meeting real-time task 

deadlines. We have presented a heuristic algorithm to handle 
the frequency assignment problem for embedded systems 
with multiple soft deadlines. We have modeled the problem 
as a convex optimization problem and utilized the Interior 
Point method in our algorithm to solve for optimal 
frequencies. To allow flexibility in maintaining performance, 
our approach accepts multiple target deadlines for each task. 
We have developed the TGPM algorithms to try all or part of 
the supplied test cases. We have also reported an experiment 
on the performance and efficiency aspect of our MATLAB 
implementation. The empirical results show that the TGPM 
algorithms can be effective in leveraging performance and 
energy savings. 

There are various future directions to explore. First, it 
will be interesting to study the effects of multiple deadlines 
with a real execution on an embedded system, possibly with 
multi-core processors. Careful selection and filtering of test 
cases can significantly improve the performance of TGPM. 
Automation of this process will simplify and contribute to 
better energy savings. Another direction is to explore more 
efficient algorithms to solve the optimization problem. 

REFERENCES 

[1] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge 
University Press, Cambridge, 2004. 

[2] D.J. Brown and C. Reams. Toward energy-efficient computing. 
ACM Queue, 8 (2): 30–43, 2010. 

[3] B. Chen, W.P.T. Ma, Y. Tan, A. Fedorova, and G. Mori. 
GreenRT: a framework for the design of power-aware soft real-
time applications. In Proceedings of the Workshop on the 
Interaction between Operating Systems and Computer Architec-
ture (in conjunction with the 35th International Symposium on 
Computer Architecture (ISCA-35)). Beijing, China, 2008. 

[4] K. Choi, W. Lee, R. Soma, and M. Pedram. Dynamic voltage and 
frequency scaling under a precise energy model considering 
variable and fixed components of the system power dissipation. 
In Proceedings of the 2004 IEEE/ACM International Conference 
on Computer-Aided Design (ICCAD ’04), pages 29–34. IEEE 
Computer Society, Los Alamitos, CA, 2004. 

[5] Drive Smart Calculator. Available at http://www. 
drivesmartsavegreen.com/calculator.html. Last access March 
2010. 

[6] M.R. Garey and D.S. Johnson. Computers and Intractability: A 
Guide to the Theory of NP-Completeness. W.H. Freeman, New 
York, NY, 1990. 

[7] Global Action Plan. Inefficient ICT Sector’s Carbon Emissions 
Set to Surpass Aviation Industry: December 2007. Available at 
http://globalactionplan.org.uk/first-national-survey-reveals-60-
businesses-are-lacking-support-sustainable-ict-strategies-
december-. 

[8] I. Hong, G. Qu, M. Potkonjak, and M.B. Srivastava. Synthesis 
techniques for low-power hard real-time systems on variable 
voltage processors. In Proceedings of the IEEE Real-Time 
Systems Symposium (RTSS ’98), pages 178–187. IEEE Computer 
Society, Los Alamitos, CA, 1998. 

[9] Intel Corporation. Processors: Frequently asked questions for 
Intel Speedstep Technology. Available at http://www.intel.com/ 
support/processors/sb/CS-028855.htm. Last access March 2010. 

[10] S. Liu, Q. Wu, and Q. Qiu. An adaptive scheduling and voltage / 
frequency selection algorithm for real-time energy harvesting 
systems. In Proceedings of the 46th Annual Design Automation 
Conference (DAC ’09), pages 782–787. ACM, New York, NY, 
2009. 



9 

[11] Millennium Development Goals Indicators. Carbon Dioxide 
Emissions (CO2), Thousand Metric Tons of CO2 (CDIAC). 2009. 
Available at http://mdgs.un.org/unsd/mdg/SeriesDetail.aspx?srid 
=749&crid=. 

[12] C. Moler. Cleve's corner: roots — of polynomials, that is. The 
MathWorks Newsletter, 5 (1): 8–9, 1991. 

[13] National Semicondutor. CO2 Calculator. Available at http:// 
www.national.com/analog/powerwise/co2_calculator. Last access 
March 2010. 

[14] M. Rauch, A. Gal, and M. Franz. Dynamic adaptive power 
management for — and by — a Java virtual machine. Technical 
Report No. 06-19. Donald Bren School of Information and 
Computer Science, University of California, Irvine, Irvine, CA, 
2006. 

[15] K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg. FAST: 
frequency-aware static timing analysis. ACM Transactions on 
Embedded Computing Systems, 5 (1): 200–224, 2006. 

[16] C.-S. Shih and J.W.S. Liu. Acquiring and incorporating state-
dependent timing requirements. Requirements Engineering, 9 (2): 
121–131, 2004. 

[17] Y. Shin and K. Choi. Power conscious fixed priority scheduling 
for hard real-time systems. In Proceedings of the 36th annual 
ACM/IEEE Design Automation Conference (DAC ’99), pages 
134–139. ACM, New York, NY, 1999. 

[18] J.A. Stankovic, K. Ramamritham, and M. Spuri. Deadline 
Scheduling for Real-Time Systems: Edf and Related Algorithms. 
Kluwer Academic Publishers, Norwell, MA, 1998. 

[19] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for 
reduced CPU energy. In Proceedings of the 1st USENIX 
conference on Operating Systems Design and Implementation 
(OSDI ’94), page Article No. 2. USENIX Association, Berkeley, 
CA, 1994. 

[20] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. 
Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. 
Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenstrom. 
The worst-case execution-time problem: overview of methods 
and survey of tools. ACM Transactions on Embedded Computing 
Systems, 7 (3): Article No. 36, 2008. 

[21] X. Zhong and C.-Z. Xu. System-wide energy minimization for 
real-time tasks: lower bound and approximation. In Proceedings 
of the 2006 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD ’06), pages 516–521. ACM, New York, 
NY, 2006. 

[22] D. Zhu and H. Aydin. Energy management for real-time 
embedded systems with reliability requirements. In Proceedings 
of the 2006 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD ’06), pages 528–534. ACM, New York, 
NY, 2006. 

[23] D. Zhu, R. Melhem, and D. Mosse. The effects of energy 
management on reliability in real-time embedded systems. In 
Proceedings of the 2004 IEEE/ACM International Conference on 
Computer-Aided Design (ICCAD ’04), pages 35–40. IEEE 
Computer Society, Los Alamitos, CA, 2004. 

 

 

 

 

 




