

1

To appear in Proceedings of the 10th International Conference on Quality Software (QSIC 2010),

IEEE Computer Society Press, Los Alamitos, CA (2010)

Regression Testing Process Improvement for Specification Evolution

of Real-World Protocol Software

*

†

Bo Jiang, T. H. Tse

‡

The University of Hong Kong

Pokfulam, Hong Kong

{bjiang, thtse}@cs.hku.hk

Wolfgang Grieskamp, Nicolas Kicillof, Yiming Cao, Xiang Li
Microsoft Corp.

Redmond, WA, USA and Beijing, China

{wrwg, nicok, yimingc, xiangli}@microsoft.com

Abstract—Model-based testing helps test engineers auto-

mate their testing tasks so that they can be more cost-effective.

When the model is changed due to the evolution of the

specification, it is important to maintain the test suites up to

date for regression testing. A complete regeneration of the

whole test suite from the new model, although inefficient, is

still frequently used in practice. To handle specification

evolution effectively, we propose a test case reusability analysis

technique to identify reusable test cases of the original test

suite based on graph analysis, so that we can generate new test

cases to cover only the change-related parts of the new model.

Our experiment on four large protocol document testing

projects shows that the technique can significantly reduce

regression testing time when compared with complete re-

generation of the test suites.
Keywords—model-based testing; regression testing;

protocol document testing

I. INTRODUCTION

Test engineers have tried hard to automate their testing

tasks to make them more cost-effective Model-based testing
(MBT) is one of the most promising approaches to achieve
this goal. Test engineers use model-based testing to ensure
the consistency between a specification and the implementa-
tion under test (IUT). In the approach to MBT adopted for
this work, test engineers first write model programs accord-
ing to the specification [7]. A model program, or simply a
model, is a description of the state contents and update rules

* © 2010 IEEE. This material is presented to ensure timely dissemination

of scholarly and technical work. Personal use of this material is permitted.

Copyright and all rights therein are retained by authors or by other copy-

right holders. All persons copying this information are expected to

adhere to the terms and constraints invoked by each author’s copyright.

In most cases, these works may not be reposted without the explicit

permission of the copyright holder. Permission to reprint / republish this

material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse

any copyrighted component of this work in other works must be obtained

from the IEEE.

† This research is supported in part by the General Research Fund of the

Research Grants Council of Hong Kong (project nos. 716507 and 717308)

and an internship at Microsoft Corp.

‡ All correspondence should be addressed to Prof. T. H. Tse at Department

of Computer Science, The University of Hong Kong, Pokfulam, Hong

Kong. Tel: (+852) 2859 2193. Email: thtse@cs.hku.hk.

for the IUT. Different model programs target different re-
quirements. A set of test cases, also known as a test suite, is
automatically generated from each model program for
testing.

The specification may evolve during the lifetime of
application when requirements are added, corrected, and
removed. The model program will also be updated to reflect
the change. We refer to the model before the change as the
original model program and the one after the change as the
new model program. Since the test suite generated from the
original model may not attest to the new specification, it is
important to maintain the test suite to reflect the new model
effectively. A straightforward approach is to regenerate a
new test suite from the new model program, which is often
used in practice. This approach, however, is time-consuming
for complex models. For example, a complete regeneration
of the full test suite for the model of a typical protocol testing
project in the context of Microsoft’s protocol documentation
testing project [7] may take hours or even a full day. Test
engineers must then execute all the newly generated test
cases and check possibly unaffected features that are ir-
relevant to the specification change, which may take several
days or even weeks to finish. What is more, test engineers in
this project aim at achieving high requirement coverage,
which is a measure of the requirements covered by the
execution of test cases. But the complete regeneration of the
test suite based on the new model may change the require-
ment coverage drastically for various reasons. On the other
hand, if we maximally reuse existing test cases, regression
testing can be more effective and requirement coverage can
be much more stable. As a result, both researchers and test
engineers are seeking solutions that (a) enable them to
generate test cases targeting only the features affected by
specification change and (b) maximally reuse existing (valid)
test cases.

In previous work, Tahat et al. [16] propose selective
regression test case generation techniques to generate regres-
sion test cases to test the modified parts of the model. Korel
et al. [12] propose to define the model change as a set of
elementary modifications. They further adopt test case reduc-
tion strategies to reduce the regression test suite based on
dependence analysis of deterministic Extended Finite State
Machines (EFSM). However, their solution solves only part
of the test suite maintenance problem for model-based

mailto:thtse@cs.hku.hk
Administrator
 HKU CS Tech Report TR-2010-02

2

regression testing.
Their work falls short in the following aspects of model-

based regression testing: First, if the model evolves, some
test cases will become obsolete as they only test nonexistent
features of the changed specification. It would be a waste of
time to execute all of them. Second, when the model evolves,
some test cases are still valuable as they test unchanged parts
of the new model. It would save time to identify reusable test
cases and avoid regeneration. Furthermore, if the IUT has
not changed, as is often the case in protocol document
testing, test engineers do not need to rerun the reusable test
cases to verify the features, which will not only reduce cost
but also preserve stability of the requirement coverage of the
test suite. Third, previous work uses deterministic EFSM to
model the behaviors of the implementation under test. How-
ever, many real-life applications are nondeterministic and
reactive in nature. To cater for a broader range of appli-
cations, we use nondeterministic Action Machines (AM) [9]
rather than EFSM as the basis of our work.

A simple approach is to regenerate test cases for the new
model, compare the regenerated test suite with the original,
and execute only those test cases not found in the original
test suite. This solution has a couple of problems. First, the
regeneration of test cases for the new model can be time-
consuming. Second, the pair-wise comparison between test
cases is also costly because a test case can be complex in
format, such as in the form of graphs or in C# code.

To address these issues, we propose a REusable Test case
analysis technique for mOdel-based Regression Testing
(RETORT) to identify the reusable test cases and generate a
smaller set of new test cases to cover the new model. How
can we determine whether a test case is obsolete with respect
to the new model? The exploration of a model program
results in a model graph (representing a state machine). An
intuitive approach is to compare the original and the new
model graph to find the nodes and edges in the original
model that have been modified, and label a test case as
reusable if it never reaches these nodes and edges in the
original model. On the other hand, the identification of the
modified nodes and edges between two graphs is equivalent
to the subgraph isomorphism problem, which is NP-
complete [6]. Given that the state space of a model graph can
be huge, the time-complexity of the intuitive approach can be
prohibitive.

Each test case corresponds to a sequence of invocations
of the IUT and events received from the IUT. Our idea is to
match every invocation/event sequence of the original model
in the new model graph by means of graph analysis. If we
can successfully match a sequence, then the corresponding
test case is reusable; otherwise, it is obsolete. Since a test
case only represents a small fraction of the graph space, the
time-complexity can be reduced. Meanwhile, we also label
all the edges covered by reusable test cases. After that, our
technique builds a subgraph containing all uncovered edges.
Finally, we generate new test cases from the subgraph to
achieve edge coverage.

We implement our RETORT technique as a new feature
for Spec Explorer [7][17], a model-based specification-

testing tool built by Microsoft

1. We apply the technique to
the regression testing of several real-life protocol documents.
The results show that our technique can significantly reduce
regression-testing time and maximally maintain the stability
of requirement coverage.

The contributions of the paper are as follows. First, it
proposes a test case reusability analysis and test case genera-
tion technique for regression testing of real-world specifica-
tion evolutions. Second, we evaluate the proposed technique
on the regression testing of four large protocols. The results
show it can identify many reusable and time-consuming test
cases successfully to save regression testing time. Finally,
our analysis of the results also suggests better model modifi-
cation styles for engineers to follow so that the reusability of
the generated test cases can be maximized during regression
testing.

We organize the rest of paper as follows: Section 2 brief-
ly introduces the preliminaries of model-based testing with
Spec Explorer. Section 3 presents a motivating example for
the proposed model-based regression testing technique that
caters for an evolving specification. Section 4 describes in
detail the algorithms for the technique. Section 5 presents an
empirical study and a results analysis. Section 6 describes
related work, followed by the conclusion in Section 7.

II. PRELIMINARIES

A. Model-Based Testing with Spec Explorer

In this section, we briefly introduce the process of model-
based testing with Spec Explorer for ease of understanding
of the subsequent sections.

Test engineers first familiarize themselves with the given
specification, and start writing model programs in a main-
stream programming language (C#). They define a basic
model program M0 as well as the trace patterns correspond-
ing to test purposes that achieve the desired requirement
coverage. The model program is then composed in parallel
with each trace pattern in order to reduce the (often infinite)
state space of the model program. This composition results in
a set of sub-models of M0, denoted by Mi (i = 1, 2, ..., n).

Spec Explorer is then used to explore the sub-models Mi
to generate model graphs Gi (i = 1, 2, ..., n) representing
nondeterministic state machines, and to generate one test
suite from each graph (hence, n is also the number of test
suites for the testing project under study). Spec Explorer
stores the generated model graphs Gi as intermediate results
for test case generation and viewing by test engineers. States
are represented in a model graph Gi by three kinds of nodes:
an option node, a choice node, and an accepting node. If we
view the testing of an IUT as a game between testers and the
IUT, then an option node represents a state where testers can
make a move by invoking the interfaces provided by the
IUT, whereas a choice node represents a state where testers
have to watch and wait for the IUT to take steps. In other
words, the outgoing edges of an option node represent
actions taken by testers while outgoing edges of a choice
node represent actions taken by the IUT. Finally, an

1 Spec Explorer is available free of charge at http://tinyurl.com/specexplorer.

3

(i) Original Model Graph (ii) New Model Graph

(iii) Test Cases (Graph) for the Original Model

M M’ Changed
Model

(iv) Test Cases (Graph) for the New Model

(vi) Delta Test Cases(v) Reusable Test Cases

Reusability
Analysis

Th
e

M
od

el
Te

st
 S

ui
te

 b
y

R
eg

en
er

at
io

n
Te

ch
ni

qu
e

Te
st

 S
ui

te
 b

y
R

ET
O

R
T

Te
ch

ni
qu

e New Test Case Generation
for Uncovered Edges

Model Modification

Figure 1. Motivating example: SMB2 protocol testing.

accepting node means that the interactions with the IUT can
end.

The test case generation step splits each model graph Gi
into a set of subgraphs Gij (j = 1, 2, ..., mi) in test normal form
based on the edge coverage criterion, where mi is the number
of test cases in test suite i. A subgraph is in test normal form
if there is only one outgoing edge for every option node. In
other words, steps taken by testers are determined. We refer
to subgraph Gij as a test case graph because each Gi corres-
ponds to a test suite and each subgraph Gij corresponds to a
test case. There are two strategies to generate test case
graphs in Spec Explorer: long and short. Both of them try to
achieve edge coverage, but the short strategy will stop when-
ever an accepting node is reached, while the long strategy
will try to cover as many edges as possible. In general, a
subgraph generated from the short strategy is much smaller
than the model graph whereas a subgraph generated from the
long strategy can be as large as the model graph. Finally,
Spec Explorer generates a test case in C# from each test
graph Gij.

There are two key differences between the state machine
model used by Spec Explorer and the EFSM model used by
previous work on model-based regression testing. First, Spec
Explorer uses action machines (AMs) to represent the update
semantics of an action method [9]. The AM framework pro-
vides a solid mathematical foundation for handling arbitra-
rily complex states. In this way, Spec Explorer can use state-
based expressions to describe action parameter combina-
tions, and other configurations. Second, the state machine
used by Spec Explorer is also nondeterministic in nature as it
contains choice nodes that represent nondeterministic beha-

viors of the IUT. A choice node in a state machine means
that the IUT may perform any one of the operations
represented by the outgoing edges of the node. For the same
test case, the generated test code must be prepared to handle
any of these actions taken by the IUT.

B. Current Practice of Regression Testing in Spec Explorer

Regression testing support within Spec Explorer is still
an emerging feature. When a specification evolves, the
original sub-models Mi will change to Mi’ accordingly. Their
corresponding model graphs will also change to Gi’. Tradi-
tionally, test engineers using Spec Explorer used to com-
pletely abandon all existing test cases and regenerate new
test cases for each Gi’ again by splitting the graph Gi’ into
new test case graphs Gij’. They then generated the test cases
from the new test case graphs Gij’ and executed them all.

When a change in the specification is small, the
difference between Mi and Mi’ may also be small (or even
non-existing for some i). The corresponding model graph Gi
and Gi’ will not differ much. Thus, many of the test case
graphs Gij may still be valid subgraphs of the new model
graph Gi’. In other words, test cases of the original model
may still be reusable for the new model.

C. Protocol Document Testing

In this section, we briefly introduce protocol document
testing, which will be our focus in this paper. We can regard
protocol documents as specifications of protocol software for
interoperability. Protocol document testing [8] is the testing
of the conformance between protocol documents and proto-
col implementations. A protocol implementation sometimes

4

precedes a full interoperability specification by years. As a
result, protocol implementations are mature and correct prod-
ucts while protocol specifications tend to have faults. There-
fore, it is often a fault in the document rather than the IUT
that causes a failure in a test. When a fault is exposed, the
documents (that is, the specification) are revised, modify the
corresponding model, and perform regression testing again.

Thus, a key difference between protocol document test-
ing and the testing of other application is that the IUT or the
protocol implementation rarely changes during regressions.
If the IUT has no fault, the reusable test cases will invoke
exactly the same call sequences on the implementation and
handle the events returned by the implementation in the same
manner. In other words, the test results will be the same and
it would be a waste of time to run the reusable test cases
again. For regression testing of protocol documents, there-
fore, successful identification of reusable test cases is crucial
to cost saving.

III. MOTIVATING EXAMPLE

We use a modified version of the SMB2 sample in the
Spec Explorer distribution to motivate our regression testing
technique RETORT. The sample is a simplified test suite
that tests some aspects of the Server Message Block version
2 (SMB2) protocol, which supports the sharing of file and
print resources between machines.

The testing project uses adapters to expose the interfaces
and hide network transmission complexity from the test
cases (which act as protocol clients) that interact with a
SMB2 server. It includes a model program from which two
sub-models are selected based on two scenarios: The first
scenario is to interact with the SMB2 server synchronously
and the second one is to interact with the server asynchron-
ously. The sub-model used for test case generation is the
union of the first two sub-models. After exploring it, Spec
Explorer produces a model graph as shown in Figure 1(i).
There are two branches from the start node of this graph: The
left branch is for the synchronous scenario, and the right one
is for the asynchronous scenario.

In order to generate test cases, Spec Explorer traverses
the model graph, splitting it into nine test case graphs as
shown in Figure 1(iii), and generates C# code from these
graphs. If we look into the graphs in detail, we find that the
eight test cases on the left are for the synchronous scenario
while the rightmost one is for the asynchronous scenario.

Suppose we introduce a model change to the model for
the asynchronous scenario, by changing the credit window
size from 2 to 1 during the connection and session setup. As
a result, the model change will propagate to the model used
for constructing test cases. We can generate a new model
graph from it, as shown in Figure 1(ii). There are still two
branches in the new model graph, the one on the left is the
unchanged synchronous scenario, and the one on the right,
within the triangle, is the changed asynchronous scenario. To
make the test suite consistent with the new model, test
engineers usually regenerate the whole test suite again as
shown in Figure 1(iv) and then execute it in full. This,
however, leads to several problems.

First, even for unchanged parts of the model (such as the
synchronous scenario), the newly generated test cases may
be different from the reusable test cases owing to the impact
of the model change. Thus, requirement coverage of the new
model will fluctuate owing to the regeneration of the test
suite. Second, since test engineers cannot predict the test
results and runtime requirement coverage of the new test
cases (because of non-determinism), they need to execute
them all, which is very time-consuming. In the SMB2
example, it takes around 42 minutes to build the new model
graph, generate nine new test cases, and execute all of them.

On the other hand, when we conduct reusability analysis
with our RETORT technique, we find that eight out of nine
test cases in the sample test suite for the original model are
still reusable, as shown in Figure 1(v). We only need to
generate new test cases to verify the changed parts of the
model, that is, the asynchronous scenario within the triangle
in Figure 1(ii). To cater for the uncovered parts of the model,
only one new test case needs to be generated by RETORT,
as shown in Figure 1(vi). Thus, by identifying the reusable
test cases, we can avoid running them again to save
execution time. The total time for RETORT to conduct
reusability analysis, new test case generation, and execution
of new test case takes only 5 minutes, which is a great saving
compared with 42 minutes for the regeneration technique.
Furthermore, since the requirement coverage of the reusable
test cases is preserved, the requirement coverage of the new
test suite will not fluctuate much.

To conduct reusability analysis on the test cases of the
original model to determine whether they are obsolete or
reusable, we start from the initial state of each test case and
try to match the labels of the outgoing edges with the labels
of the outgoing edges in the new model. These labels are
events that trigger the IUT or actions that arise from it. If we
can reach the final state of a test case, then it is reusable;
otherwise, it is obsolete. For eight of the test cases in our
example, we can successfully match their subgraphs within
the new model. However, for the test case in the asynchron-
ous scenario, its test case graph cannot match any parts of the
new model graph, which makes it obsolete.

During the reusability analysis, we also mark the changed
edges as well as the edges solely covered by obsolete test
cases. In this way, RETORT produces a subgraph containing
the start node, the uncovered edges, and the shortest paths
from the start node to the uncovered edges. It then generates
new test cases so that all the edges of the subgraph will be
covered.

We can also use techniques proposed in previous work to
find the impacts and side effects on test case generation or
reduction due to the changed edges [1][12]. Since the proto-
col implementation rarely changes in protocol document
testing, testers only have to execute the newly generated test
cases. Finally, RETORT merges the newly generated test
cases and the reusable test cases as a new test suite for the
new model (Figure 1(v) and Figure 1(vi)) for future
specification evolution.

IV. MODEL-BASED TEST SUITE MAINTENANCE

We present the key algorithms in detail in this section.

5

 testCaseNode: The initial node of a test case graph;
 modelGraphNode: The initial node of the model graph;
 testCaseGraph: The test case graph;
 modelProgramGraph: The model graph;
1 private bool IsReproducible(testCaseNode,

 modelGraphNode, testCaseGraph, modelGraph) {
2 testCaseEdges = {outgoing edges of test case node};
3 modelEdges = {outgoing edges of model graph node};
4 childNodes = {child node pair of outgoing edges of test case

 node and model graph node};
5 if (testCaseGraph.ChoiceNodes.Contains(testCaseNode)) {
 // choice node
6 foreach tcEdge in testCaseEdges {
7 bool found = false; // Reset for each test case edge
8 foreach mpEdge in modelEdges {
9 if (match(tcEdge == mpEdge)) {
10 found = true;
 // Store the child nodes of both graph for matching
11 childNodes.Add(tcEdge.Target, mpEdge.Target);
12 coveredEdges.Add(mpEdge);
13 break;
 } // if
 } // foreach mpEdge
14 if (! found) {

 // At least one edge fails to match, obsolete case.
15 childNodes.Clear();
16 return false;
 } // if
 } // foreach tcEdge
17 foreach (node in childNodes)

 // Repeatedly match child nodes
18 if (! IsReproducible(node.tcNode, node.mpNode,

 testCaseGraph, modelProgramGraph))
19 return false;
20 return true;
 } // if choice node
21 else if (testCaseGraph.Nodes.Contains(testCaseNode)) {
 // Not choice node, match any of the edges of model graph
22 if (IsEmpty(testCaseEdges))
23 if (IsAcceptingNode(modelGraphNode))
24 return true; // Successfully reproduce
25 bool match = false;
26 foreach (mpEdge in modelProgramEdges) {
27 if (IsMatch(mpEdge, testCaseEdges.first())) {
 // Try to match along this path
28 coveredEdges.Add(mpEdge);
29 int lastIndex = coveredEdges.IndexOf(mpEdge);
 // Recursively match children.
30 if (IsReproducible(testCaseEdges.first().Target,

 mpEdge.Target, testCaseGraph,
modelProgramGraph)) {

31 match = true; // Successfully reproduce. Reusable.
32 return true;
 }
33 else { // Clear remembered edges when trial fails
34 int index = coveredEdges.IndexOf(edge);
35 int newEdgeCount = coveredEdges.Count - index;
36 coveredEdges.RemoveRange(index,

newEdgeCount);
37 continue;
 } // else

 } // if IsMatch
 } // for each

38 if (! match)
39 return false;
 } // else if not choice node

}

Figure 2. Impact analysis algorithm for identification of

obsolete and reusable test cases.

 modelProgramGraph: Model graph of the new model;
 coveredEdges: Edges covered by the reusable test cases;
1 TestCaseFile BuildSubgraph(modelProgramGraph,

 coveredEdges) {
2 targetNodes = new Vector<Node>;
 // The source nodes of all uncovered edges
3 subgraph = new Graph();
 // New subgraph to cover
4 foreach edge in modelProgramGraph
5 if (! coveredEdges.Contains(edge))
6 uncoveredEdges.add(edge); // Get the uncovered edges
7 // Put the source nodes of uncovered edges in targetNodes
8 foreach edge in uncoveredEdges
9 targetNodes.Add(edge.sourceNode);
 // Build shortest paths from start node to all target nodes
10 // so all uncovered edges are reachable from the start node.
11 ShortestPathAlgorithm spa = new shortestPathAlgorithm

 (modelProgramGraph, modelProgramGraph.StartNode(),
 targetNodes);

12 spa.Run();
13 foreach node in targetNodes {
 // Get the shortest path for each target node

 // and add it to the subgraph
14 path = spa.ResultDict[node];
15 foreach newNode in path.Nodes()
16 subgraph.Add(newNode);
17 foreach newEdge in path.Edges()
18 subgraph.Add(newEdge);
19 } // foreach node
20 // Add the uncovered edges themselves to the subgraph
21 foreach edge in uncoveredEdges
22 detailSubgraph.Add(edge);
 // Feed the subgraph to traversal algorithm

// to generate test case graph
23 TestCaseAlgorithm testCaseAlgm

= new TestCaseAlgorithm (subgraph);
24 testCaseAlgm.Run();
25 newTestCaseGraph = testCaseAlgm.TargetGraph;
 // Generate test case file from newTestCaseGraph
26 return TestCodeGenerator.Generate(newTestCaseGraph);
 }

Figure 3. Test cases augmentation algorithm.

A. Test Case Reusability Analysis for Mode-Based

Regression Testing

Our test case reusability analysis algorithm is shown in
Figure 2. The function IsReproduceable performs the reusa-
bility analysis. It takes four parameters: testCaseGraph is the
graph for a test case in the original model, modelGraph is the
new model graph, and testCaseNode and modelGraphNode
are the current nodes for comparison in the two graphs. Since
our algorithm recursively examines the nodes along the path
of testCaseGraph and modelGraph, the testCaseNode and
modelGraphNode will change dynamically.

The function IsReproducible performs reusability
analysis for two conditions: The first condition (lines 5 to 20)
refers to the case when the node examined is a choice node.
In this situation, the IUT may take one of several choices and
the outgoing edges of the choice node in a test case graph
should match all the outgoing edges of the choice node in the
new model graph. Lines 6 to 13 perform a pairwise match of
all the edges in the two graphs. If any outgoing edge fails to
match, the test case is identified as obsolete (lines 14 to 16).
When all the outgoing edges of a choice node are matched
successfully, the algorithm continues to match the respective

6

target nodes of all the outgoing edges (lines 17 to 19). When
all the respective target nodes and their descendants in the
test case graph match the new model graph, the whole test
case is identified as reusable.

The second condition (lines 21 to 39) refers to the case
when the current node to match is an option node or
accepting node. The algorithm first checks whether the node
in the test case graph is an accepting node and the corres-
ponding node in the new model graph is an accepting node
(lines 22 to 24). If so, the node is matched successfully.
Otherwise, the node in the test case graph is an option node,
which should have one and only one outgoing edge because
a test case graph must be in test normal form.

However, the corresponding node in the new model
graph may have more than one outgoing edges. The
algorithm tries to match the outgoing edge of the test case
node with each of the outgoing edges of the model graph
node (lines 26 and 27). Whenever two edges match
successfully, they are added to the set of coveredEdges
(lines 12 and 28). The algorithm then continues to recur-
sively match the target node of the outgoing edge in the
model graph with the target node of the outgoing edge in the
test case graph (lines 30 and 31). If two target nodes and
their descendents match recursively, the option node is
tagged as a match. However, if the two target nodes or any
of their descendents fail to match, the algorithm will
continue to try and match the outgoing edge of the node in
the test case graph with other outgoing edges of the node in
the new model graph. Any falsely remembered edges during
the trial are removed from the coveredEdges set (lines 33 to
37). Finally, if the algorithm cannot match any of the out-
going edges of the model graph, the node is marked as a
non-match (lines 38 and 39), which means that the test case
is obsolete.

B. Test Case Augmentation

Using the test case reusability algorithm, we have parti-
tioned the test suite for the original model into reusable and
obsolete test cases. We have also logged all the edges
covered by reusable test cases. Since we want to achieve
edge coverage, we need a test case augmentation algorithm,
which generates new test cases to cover all uncovered edges.
The algorithm is shown in Figure 3. It starts by finding all
the uncovered edges of the new model program graph based
on all the edges covered by reusable test cases (lines 4 to 6).
Then, to cover the uncovered edges using new test cases
effectively, we first build a shortest path from the initial node
of the model graph to the source node of each uncovered
edge (lines 8 to 12). After that, we combine all the shortest
paths to form a subgraph (lines 13 to 19). We also add each
uncovered edge to the subgraph (lines 21 and 22). Finally,
we split the subgraph into new test case graphs in test normal
form (lines 23 to 25), and generate the test cases from the
new test case graphs to achieve edge coverage (line 26).

In fact, our work is complementary to previous work on
model-based regression test-case generation and reduction at
this step [1][12]. For example, we can adopt the change
impact analysis technique proposed in [1][12] to investigate
the impact or side-effect of model change on other parts of

the model. We can then generate new test cases to cover all
affected parts of the model not covered by reusable test
cases.

To make the test-suite maintenance technique applicable
to a succession of model changes, our tool merges the test
case graphs of newly generated test cases and reusable test
cases to form a test case graph for the current model. We can
use this new test case graph for regression testing when the
specification evolves again.

V. EVALUATION

In this section, we conduct an empirical study to evaluate
the effectiveness of RETORT in supporting specification
evolution. In protocol document testing, test engineers want
to cover as much as possible the requirements specified in a
protocol specification to gain confidence on the correctness
of the protocol documents. In this context, the experiment
evaluates RETORT and the regeneration technique (REGEN)
with respect to requirement coverage and time costs.

A. Research Questions

RQ1. When compared with REGEN, how well does
RETORT save time costs in regression testing when dealing
with a model change?

RQ2. When compared with REGEN, how well does
RETORT preserve requirement coverage when handling a
model change?

The answer to these research questions can tell whether
RETORT can be more useful to test engineers than REGEN.

B. Subject Programs

We use four real-life Microsoft protocol document
testing projects to evaluate the effectiveness of our
technique. All the detailed specifications of these protocols
are available from the MSDN website [14]. The aim of
protocol document testing is to verify the conformance
between protocol documents (that is, specifications) and
protocol implementations.

The first protocol is BRWS, the Common Internet File
System (CIFS) Browser protocol. It defines the message
exchange between the service clearinghouse, printing and
file-sharing servers, and clients requesting a particular
service. CMRP is the Failover Cluster: Management API
(ClusAPI) protocol. It is used for remotely managing a
failover cluster. WSRM is the Windows System Resource
Manager protocol, which manages processor and memory
resources and accounting functions in a computer. COMA is
the Component Object Model Plus (COM+) Remote Admin-
istration protocol, which allows clients to configure software
components and control the running of instances of these
components.

The descriptive statistics of the subjects are shown in
Table I. The column No. of Regression Versions contains the
number of modified versions used in the experiments. All of
these versions involve real modifications of the model made
by test engineers, including new action additions, action
deletions, action changes, parameter domain changes, and so
on. We obtained these modified versions and their previous
versions from the version control repository. The column

7

Total No. of Test Suites shows the total number of test suites
across all regression versions for each testing project. Each
test suite for the same testing project may cover a different
aspect of the requirements. The column Total No. of Test
Cases shows the total number of test cases across all test
suites and all versions for each testing project. The columns
Total States and Total Edges show the total number of states
and edges of all the model graphs generated from the model
programs of a protocol.

TABLE I. SUBJECT PROTOCOL DOCUMENT TESTING PROJECTS

Subject
No. of

Regression
Versions

Total No. of
Test Suites

Total No.
of Test
Cases

Total
States

Total Edges

BRWS 4 46 448–530 156–170 171–180

CMRP 3 30
1655–

1750

47957–

47998

67941–

67900

COMA 3 211
2310–

2402

24577–

25300

52816–

534899

WSRM 3 45
1487–

1510
980–997 1055-1604

C. Experimental Environment

We implemented our regression tool as a standalone tool
for Spec Explorer 2010 in Visual Studio 2008 team suite
edition. We conduct our experiment on a PC with a Pentium
3.0 GHz processor and 2 GB of RAM running Windows 7.

D. Experiments and Discussions

1) Experiment Procedure. For each protocol, we first
perform regression testing with the regeneration technique,
which abandons the original test suite, generates new test
cases to cover the new model, and executes these test cases.
We then conduct regression testing with RETORT, which
performs reusability analysis on the test suite of the original
model with the algorithm in Figure 2, generates new test
cases with the algorithm in Figure 3, and executes them. For
each technique, we measure the time taken to generate the
test suite for the new model, the time taken to execute the
test suite, and hence the total regression testing time.

2) Results.

a) Comparison of Test Suite Maintenance Times
between RETORT and REGEN. In this section, we compare
the time for test suite maintenance between the RETORT
and REGEN techniques. The time cost for test suite
maintenance is the total time taken to generate the new test
suite according to the new model. For RETORT, it includes
the time to conduct reusability analysis for identifying
obsolete and reusable test cases, the time to generate new
test cases to cover the subgraph composed from uncovered
edges, and the time to combine the reusable and new test
cases into a new test suite. For REGEN, it includes the time
to generate a new model graph from the new model, the
time to split the graph into new test case graphs, and the
time to generate new test cases from them.

We then compute the total time for test suite maintenance
over all test suites by RETORT and REGEN, respectively,
and compare them for each protocol as shown in Figure 4.
The x-axis in the figure shows the four protocols while the y-

axis shows the test suite maintenance time (in seconds)
summed up over all suites. There are two bars for each
protocol. The bar on the left represents the total test suite
maintenance time over all test suites for RETORT while the
one on the right represents the corresponding time for
REGEN. We can see that RETORT requires much less main-
tenance time than REGEN for every protocol. The total time
saving for BRWS, CMRP, COMA, and WSRM is around
300 seconds, 1300 seconds, 800 seconds, and 600 seconds,
respectively.

Figure 4. Comparison of total test suite maintenance times

on all test suites between RETORT and REGEN.

Figure 5. ANOVA analysis of test suite maintenance times.

We know from Figure 4 that RETORT can reduce the
total test suite maintenance time for every protocol. To
decide whether the time saving is significant, we conduct an
ANalysis Of VAriance (ANOVA) on the test suite mainten-
ance time for each suite to compare RETORT with REGEN,
as shown in the notched box-and-whisker plots in Figure 5.
The concave parts of the boxes are known as notches. In
general, if the notches around the medians in two boxes do
not overlap, then there is a significant difference in these two
medians with a 95% confidence level. We see from the
figure that, for each protocol, the median for RETORT is
lower than that of REGEN, and the notches for the RETORT

0

500

1000

1500

2000

2500

3000

3500

BRWS CMRP COMA WSRM
To

ta
l T

e
st

 S
u

it
e

 M
ai

n
te

n
an

ce

Ti
m

e
 (

se
co

n
d

s)
Protocols

RETORT
REGEN

8

box never overlap with the notches of the REGEN box.
Hence, RETORT uses significantly less time for test suite
maintenance than REGEN at a confidence level of 95%.

We have looked into the test suites in detail to determine
why the maintenance time for RETORT is more favorable
than that of REGEN. We have found that the time taken to
analyze the reusability of a test case is only about 1/50 of the
time taken to generate a new test case. Thus, when there are
reusable test cases, the time needed to conduct reusability
analysis is much less than the time needed to regenerate
them. Since the final test suite sizes for RETORT and
REGEN are almost the same, conducting fast reusability
analysis rather than slow regeneration of reusable test cases
makes a big difference.

b) Comparison of Test Suite Execution Times between
RETORT and REGEN. Having compared the test case
maintenance times between the RETORT and REGEN tech-
niques, we also want to know whether RETORT can save
time in test suite execution in the protocol document testing
scenario. For each protocol, we measure the time taken to
execute every test suite generated by RETORT and
REGEN. Note that we do not have to run reusable test cases
in protocol document testing because the IUT is mature and
rarely changes.

Figure 6. Comparison of total test suite execution times

on all test suites between RETORT and REGEN.

We then compute the total time for test suite execution
summed up over all test suites by RETORT and REGEN,
respectively, and compare them for each protocol as shown
in Figure 6. The x-axis in the figure shows the four
protocols while the y-axis shows the test suite execution
time in seconds. Again, the left-hand bar represents the total
test suite execution time for RETORT while the right-hand
one represents the corresponding time for REGEN. We can
see that RETORT uses much less execution time than
REGEN for every protocol. The total time saving for
BRWS, CMRP, COMA, and WSRM is around 302 minutes,
862 minutes, 486 minutes, and 576 minutes, respectively.

We have found from Figure 6 that RETORT can reduce
the total test suite execution time for each protocol. Let us
further determine whether the time saving is significant. We
conduct an ANOVA analysis on the execution time on each

test suite for each protocol to compare RETORT with
REGEN, as shown in the notched box-and-whisker plots in
Figure 7. We can see that, for each protocol, the median for
RETORT is lower than that of REGEN, and the notches of
the RETORT box do not overlap with the notches of the
REGEN box. This means that RETORT uses significantly
less time for test suite execution than REGEN, at a confi-
dence level of 95%.

We have looked into the test suites in detail and found
that most test cases are reusable. As a result, the test case
execution time by RETORT is a small fraction of that by
REGEN. For example, one of the test suites for COMA
contains 50 test cases. Using RETORT, we successfully
identify 35 reusable test cases and take only 8 minutes to
finish the execution of newly generated test cases. However,
REGEN takes about 26 minutes to execute the regenerated
test suite.

Figure 7. ANOVA analysis of test suite execution times.

Figure 8. Comparison of total regression times on all test suites

between RETORT and REGEN.

c) Comparison of Total Regression Time between
RETORT and REGEN. Having compared the test suite main-
tenance time and test suite execution time separately
between RETORT and REGEN, we continue to compare the
total regression testing time between them. The total

0

200

400

600

800

1000

1200

1400

1600

BRWS CMRP COMA WSRM

To
ta

l T
e

st
 S

u
it

e
 E

xe
cu

ti
o

n

Ti
m

e
 (

m
in

u
te

s)

Protocols

RETORT

REGEN

0

200

400

600

800

1000

1200

1400

1600

BRWS CMRP COMA WSRM

To
ta

l R
e

gr
e

ss
io

n
 T

e
st

in
g

Ti
m

e
 (

m
in

u
ts

)

Protocols

RETORT
REGEN

9

regression time is the sum of the test suite maintenance time
and the test suite execution time.

We then compute the total time for regression testing
over all test suites by RETORT and REGEN, respectively,
and compare them for each protocol as shown in Figure 8.
The x-axis in the figure shows the four protocols while the
y-axis shows the total regression testing time in minutes.
Again, the bar on the left represents the total regression
testing time for RETORT while the one on the right
represents the corresponding time for REGEN. We can see
that RETORT uses much less regression time than REGEN
for every protocol. The total time saving for BRWS, CMRP,
COMA, and WSRM is around 308 minutes, 883 minutes,
500 minutes, and 587 minutes, respectively.

We further conduct an ANOVA analysis on the regres-
sion testing time on each suite for each protocol to compare
RETORT with REGEN, as shown in Figure 9. We observe
that, for each protocol, the median for RETORT is lower
than that of REGEN, and the notches of the RETORT box
never overlap with those of the REGEN box. This means that
RETORT incurs significantly less time for regression testing
than REGEN, at a confidence level of 95%.

0

10

20

30

40

50

60

70

80

90

R
e

g
re

s
s

io
n

 T
e

s
ti

n
g

 T
im

e

(m
in

u
te

s
)

BRWS CMRP COMA WSRM

REGEN

REGEN

REGEN

REGEN

RETORT

RETORT

RETORT

RETORT

Figure 9. ANOVA analysis of regression testing times.

Based on the above discussions, our answer to research
question RQ1 is that RETORT can significantly save
regression-testing time when compared with REGEN.

a) Requirement Coverage by Reusable Test Cases.
When a specification evolves, test engineers want the
requirement coverage to remain stable despite model
changes.

Our experimental results are shown in Figure 10. The x-
axis lists various test suites for each protocol while the y-
axis shows the percentage of requirements covered by the
reusable test cases in the respective test suite (as against the
requirements covered by all test cases in that test suite).
Each line in the figure represents a different protocol. From
the area between the curve and the x-axis, we can compute
the accumulated percentage of requirement coverage by
reusable test cases as against all test cases. For BRWS,
CMRP, COMA, and WSRM, the accumulated percentages
of requirement coverage are 46%, 49%, 54%, and 41%.
Thus, test engineers can be sure that, on average, around 40%

of the requirements are covered without even generating and
executing any new test cases for the protocols under study.

Furthermore, if we measure the requirement coverage of
a final test suite (containing both reusable and new test
cases) generated by RETORT, it is always approximately
equal to that of the corresponding original test suite.

Thus, our answer to research question RQ2 is that RE-
TORT can preserve the requirement coverage of the original
test suite to around 40% using reusable test cases only, and
close to 100% with the final test suite.

3) Lessons Learned. We have carefully analyzed the
results for all test suites and found RETORT to be more
effective for some model modifications than others in sav-
ing regression testing time. The difference is related to the
modification styles of modelers. Our technique is more
effective for model changes in which modelers add new
branches to optional nodes to cover a new requirement
scenario. In this case, the new branch will generate indepen-
dent test cases while most existing test cases are still
reusable. In contrast, when model changes are made by
sequentially appending operations to the current model pro-
gram, our technique is ineffective. This modification style
will insert additional nodes to existing paths of the original
model graph. Since none of the existing test cases contains
these newly added nodes, they invariably fail to reach a final
state in the new model graph.

Figure 10. Percentage of requirement coverage

of reusable test cases across all test suites.

The lesson learned from our findings is that modelers
should try to adopt a test-friendly modeling style to enhance
the reusability of existing test cases. More specifically, they
should try to put different requirement scenarios into differ-
ent branches of an option node when introducing modifica-
tions in the model program. This is similar to what we do in
writing unit test cases: we want our test cases to be
independent of one another, each covering a different
requirement. In this way, we can improve their reusability to
save regression time and stabilize requirement coverage.

E. Threats to Validity

In this paper, we only evaluate our test suite maintenance
technique on the testing of protocol documents whose corres-
ponding IUTs are mature and stable. A thorough evaluation

0

0.2

0.4

0.6

0.8

1

P
e

rc
e

n
ta

ge
 o

f
R

e
q

u
ir

e
m

e
n

t
C

o
ve

ra
ge

All Test Suites

BRWS
CMRP
COMA
WSRM

10

of our technique on the regression testing of specification
evolutions of other types of applications may further streng-
then the validity of our evaluation. Another threat to validity
is that we only measure the time costs of applying our
regression testing technique. Further measures for the regres-
sion fault detection capability of our technique will also
strengthen the validity of our empirical study.

VI. RELATED WORK

Model-based testing allows testers to verify an
implementation under test with respect to a model of the
specification [2]. In addition to Spec Explorer, there are
other model-based testing tools [13]. Korel et al. [12] present
a model-based regression testing approach that uses EFSM
model dependence analysis to reduce regression test suites.
Their approach automatically identifies the difference be-
tween the original and the new models as a set of elementary
model modifications. For each elementary modification, they
perform regression test reduction to reduce the regression
test suite based on EFSM dependence analysis. El-Fakih et al.
[4] and Schieferdecker et al. [15] also propose techniques to
re-test communication software. Our work is complementary
to theirs in that ours are applicable to the more practical
action machines and useful for protocol software.

Chakrabarti and Srikant [3] propose the use of explicit
state space enumeration to extract a finite state model to
compute good test sequences to verify subsequent versions
of the IUT. Our technique differs from theirs in that we
target at maximally reusing the original test suite based on
the new model graph rather than generate all new test cases
from scratch. Farooq et al. [5] present a methodology for
regression test case selection using UML state machines and
class diagrams. Their approach focuses on finding the impact
of changes in class diagrams on state machines and hence on
the test suite. Our technique differs from theirs in two
aspects: First, we focus on nondeterministic action machines
while they focus on UML state machines. Second, our
technique can generate new test cases to cover those parts of
the new model not covered by any original test cases. Their
technique mainly partitions existing test suites into resettable,

reusable, and obsolete test cases. Harrold and Orso [10] give
an overview of the major issues in software regression test-
ing. They analyze the state of the research and the state of
the practice in regression testing, and discuss the major open
challenges in regression testing.

VII. CONCLUSION

Model-based testing is effective in systematically testing
the conformance between a specification and the implemen-
tation under test. When the specification has evolved, the
model must also be updated accordingly. This in turn makes
the original test suite obsolete or inadequate. Testers may
simply regenerate all the test cases and execute them again,
but they may lose the opportunity to save time by utilizing
reusable test cases. In this paper, we propose a test case re-
usability analysis technique known as RETORT for model-
based regression testing. It can identify obsolete and reusable
test cases effectively, generate new test cases to cover

changed parts of the model, and combine the reusable and
new test cases to form a new test suite for future regression
testing. Our experiment on four large protocol document
testing projects shows that RETORT can significantly reduce
the regression testing time and maintain the stability of
requirement coverage when compared with a complete re-
generation of the whole test suite. Finally, further analysis
reveals a useful modeling practice that enables modelers to
modify the models in such a way that the reusability of the
generated test cases can be improved.

It will be interesting to extend our technique to handle
scenarios where both the specification and the implementa-
tion under test may evolve, and investigate test case prioriti-
zation techniques that can increase the fault detection rate for
model-based conformance regression testing.

REFERENCES

[1] R. Alur, C. Courcoubetis, and M. Yannakakis. Distinguishing tests
for nondeterministic and probabilistic machines. In Proceedings of
the 27th Annual ACM Symposium on Theory of Computing (STOC
1995), pages 363–372. ACM Press, New York, NY, 1995.

[2] M. Barnett, W. Grieskamp, L. Nachmanson, W. Schulte, N. Tillmann,
and M. Veanes. Towards a tool environment for model-based testing
with AsmL. In Proceedings of the 3rd International Workshop on
Formal Approaches to Testing of Software (FATES 2003), volume
2931 of Lecture Notes in Computer Science, pages 252–266.
Springer, Berlin, Germany, 2004.

[3] S. K. Chakrabarti and Y. N. Srikant. Specification based regression
testing using explicit state space enumeration. In Proceedings of the
International Conference on Software Engineering Advances. IEEE
Computer Society Press, Los Alamitos, CA, 2006.

[4] K. El-Fakih, N. Yevtushenko, and G. von Bochmann. FSM-based re-
testing methods. In Proceedings of the IFIP 14th International Confe-
rence on Testing Communicating Systems (TestCom 2002), pages
373–390. Kluwer, Deventer, The Netherlands, 2002.

[5] Q. Farooq, M. Z. Z. Iqbal, Z. I. Malik, and A. Nadeem. An approach
for selective state machine based regression testing. In Proceedings of
the 3rd International Workshop on Advances in Model-Based testing
(A-MOST 2007). ACM Press, New York, NY, 2007.

[6] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, New York,
NY, 1990.

[7] W. Grieskamp. Multi-paradigmatic model-based testing. In Formal
Approaches to Software Testing and Runtime Verification, volume
4262 of Lecture Notes in Computer Science, pages 1–19. Springer,
Berlin, Germany, 2006.

[8] W. Grieskamp, N. Kicillof, D. MacDonald, A. Nandan, K. Stobie,
and F. Wurden. Model-based quality assurance of windows protocol
documentation. In Proceedings of the 1st International Conference on
Software Testing, Verification, and Validation (ICST 2008), pages
502–506. IEEE Computer Society Press, Los Alamitos, CA, 2008.

[9] W. Grieskamp, N. Kicillof, and N. Tillmann. Action machines: a
framework for encoding and composing partial behaviors. Interna-
tional Journal of Software Engineering and Knowledge Engineering,
16 (5): 705–726, 2006.

[10] M. J. Harrold and A. Orso. Retesting software during development
and maintenance. In Frontiers of Software Maintenance (FoSM
2008), pages 99–108. IEEE Computer Society Press, Los Alamitos,
CA, 2008.

[11] C. Jard and T. Jeron. TGV: theory, principles and algorithms: a tool
for the automatic synthesis of conformance test cases for non-
deterministic reactive systems. International Journal on Software
Tools for Technology Transfer, 7 (4): 297–315, 2005.

[12] B. Korel, L. H. Tahat, and B. Vaysburg. Model based regression test
reduction using dependence analysis. In Proceedings of the IEEE

11

International Conference on Software Maintenance (ICSM 2002),
pages 214–223. IEEE Computer Society Press, Los Alamitos, CA,
2002.

[13] V. V. Kuliamin, A. K. Petrenko, A. S. Kossatchev, and I. B.
Burdonov. The UniTesK approach to designing test suites. Program-
ming and Computer Software, 29 (6): 310–322, 2003.

[14] MSDN. http://msdn.microsoft.com/. Last access: December 3, 2009.

[15] I. Schieferdecker, H. Knig, and A. Wolisz, Editors. Testing of
Communicating Systems XIV: Applications to Internet Technologies
and Services. IFIP Advances in Information and Communication
Technology, Vol. 82. Springer, Berlin, Germany, 2002.

[16] L. H. Tahat, A. Bader, B. Vaysburg, and B. Korel. Requirement-
based automated black-box test generation. In Proceedings of the
25th Annual International Computer Software and Applications
Conference (COMPSAC 2001), pages 489–495. IEEE Computer
Society Press, Los Alamitos, CA, 2001.

[17] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann,
and L. Nachmanson. Model-based testing of object-oriented reactive
systems with Spec Explorer. In Formal Methods and Testing, volume
4949 of Lecture Notes in Computer Science, pages 39–76. Springer,
Berlin, Germany, 2008.

