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Abstract—Model-based testing helps test engineers auto-

mate their testing tasks so that they can be more cost-effective. 

When the model is changed due to the evolution of the 

specification, it is important to maintain the test suites up to 

date for regression testing. A complete regeneration of the 

whole test suite from the new model, although inefficient, is 

still frequently used in practice. To handle specification 

evolution effectively, we propose a test case reusability analysis 

technique to identify reusable test cases of the original test 

suite based on graph analysis, so that we can generate new test 

cases to cover only the change-related parts of the new model. 

Our experiment on four large protocol document testing 

projects shows that the technique can significantly reduce 

regression testing time when compared with complete re-

generation of the test suites. 
Keywords—model-based testing; regression testing; 

protocol document testing  

I.  INTRODUCTION 

Test engineers have tried hard to automate their testing 

tasks to make them more cost-effective Model-based testing 
(MBT) is one of the most promising approaches to achieve 
this goal. Test engineers use model-based testing to ensure 
the consistency between a specification and the implementa-
tion under test (IUT). In the approach to MBT adopted for 
this work, test engineers first write model programs accord-
ing to the specification [7]. A model program, or simply a 
model, is a description of the state contents and update rules 
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for the IUT. Different model programs target different re-
quirements. A set of test cases, also known as a test suite, is 
automatically generated from each model program for 
testing. 

The specification may evolve during the lifetime of 
application when requirements are added, corrected, and 
removed. The model program will also be updated to reflect 
the change. We refer to the model before the change as the 
original model program and the one after the change as the 
new model program. Since the test suite generated from the 
original model may not attest to the new specification, it is 
important to maintain the test suite to reflect the new model 
effectively. A straightforward approach is to regenerate a 
new test suite from the new model program, which is often 
used in practice. This approach, however, is time-consuming 
for complex models. For example, a complete regeneration 
of the full test suite for the model of a typical protocol testing 
project in the context of Microsoft’s protocol documentation 
testing project [7] may take hours or even a full day. Test 
engineers must then execute all the newly generated test 
cases and check possibly unaffected features that are ir-
relevant to the specification change, which may take several 
days or even weeks to finish. What is more, test engineers in 
this project aim at achieving high requirement coverage, 
which is a measure of the requirements covered by the 
execution of test cases. But the complete regeneration of the 
test suite based on the new model may change the require-
ment coverage drastically for various reasons. On the other 
hand, if we maximally reuse existing test cases, regression 
testing can be more effective and requirement coverage can 
be much more stable. As a result, both researchers and test 
engineers are seeking solutions that (a) enable them to 
generate test cases targeting only the features affected by 
specification change and (b) maximally reuse existing (valid) 
test cases. 

In previous work, Tahat et al. [16] propose selective 
regression test case generation techniques to generate regres-
sion test cases to test the modified parts of the model. Korel 
et al. [12] propose to define the model change as a set of 
elementary modifications. They further adopt test case reduc-
tion strategies to reduce the regression test suite based on 
dependence analysis of deterministic Extended Finite State 
Machines (EFSM). However, their solution solves only part 
of the test suite maintenance problem for model-based 
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regression testing. 
Their work falls short in the following aspects of model-

based regression testing: First, if the model evolves, some 
test cases will become obsolete as they only test nonexistent 
features of the changed specification. It would be a waste of 
time to execute all of them. Second, when the model evolves, 
some test cases are still valuable as they test unchanged parts 
of the new model. It would save time to identify reusable test 
cases and avoid regeneration. Furthermore, if the IUT has 
not changed, as is often the case in protocol document 
testing, test engineers do not need to rerun the reusable test 
cases to verify the features, which will not only reduce cost 
but also preserve stability of the requirement coverage of the 
test suite. Third, previous work uses deterministic EFSM to 
model the behaviors of the implementation under test. How-
ever, many real-life applications are nondeterministic and 
reactive in nature. To cater for a broader range of appli-
cations, we use nondeterministic Action Machines (AM) [9] 
rather than EFSM as the basis of our work. 

A simple approach is to regenerate test cases for the new 
model, compare the regenerated test suite with the original, 
and execute only those test cases not found in the original 
test suite. This solution has a couple of problems. First, the 
regeneration of test cases for the new model can be time-
consuming. Second, the pair-wise comparison between test 
cases is also costly because a test case can be complex in 
format, such as in the form of graphs or in C# code. 

To address these issues, we propose a REusable Test case 
analysis technique for mOdel-based Regression Testing 
(RETORT) to identify the reusable test cases and generate a 
smaller set of new test cases to cover the new model. How 
can we determine whether a test case is obsolete with respect 
to the new model? The exploration of a model program 
results in a model graph (representing a state machine). An 
intuitive approach is to compare the original and the new 
model graph to find the nodes and edges in the original 
model that have been modified, and label a test case as 
reusable if it never reaches these nodes and edges in the 
original model. On the other hand, the identification of the 
modified nodes and edges between two graphs is equivalent 
to the subgraph isomorphism problem, which is NP-
complete [6]. Given that the state space of a model graph can 
be huge, the time-complexity of the intuitive approach can be 
prohibitive. 

Each test case corresponds to a sequence of invocations 
of the IUT and events received from the IUT. Our idea is to 
match every invocation/event sequence of the original model 
in the new model graph by means of graph analysis. If we 
can successfully match a sequence, then the corresponding 
test case is reusable; otherwise, it is obsolete. Since a test 
case only represents a small fraction of the graph space, the 
time-complexity can be reduced. Meanwhile, we also label 
all the edges covered by reusable test cases. After that, our 
technique builds a subgraph containing all uncovered edges. 
Finally, we generate new test cases from the subgraph to 
achieve edge coverage. 

We implement our RETORT technique as a new feature 
for Spec Explorer [7][17], a model-based specification-

testing tool built by Microsoft 

1. We apply the technique to 
the regression testing of several real-life protocol documents. 
The results show that our technique can significantly reduce 
regression-testing time and maximally maintain the stability 
of requirement coverage. 

The contributions of the paper are as follows. First, it 
proposes a test case reusability analysis and test case genera-
tion technique for regression testing of real-world specifica-
tion evolutions. Second, we evaluate the proposed technique 
on the regression testing of four large protocols. The results 
show it can identify many reusable and time-consuming test 
cases successfully to save regression testing time. Finally, 
our analysis of the results also suggests better model modifi-
cation styles for engineers to follow so that the reusability of 
the generated test cases can be maximized during regression 
testing. 

We organize the rest of paper as follows: Section 2 brief-
ly introduces the preliminaries of model-based testing with 
Spec Explorer. Section 3 presents a motivating example for 
the proposed model-based regression testing technique that 
caters for an evolving specification. Section 4 describes in 
detail the algorithms for the technique. Section 5 presents an 
empirical study and a results analysis. Section 6 describes 
related work, followed by the conclusion in Section 7. 

II. PRELIMINARIES 

A. Model-Based Testing with Spec Explorer 

In this section, we briefly introduce the process of model-
based testing with Spec Explorer for ease of understanding 
of the subsequent sections. 

Test engineers first familiarize themselves with the given 
specification, and start writing model programs in a main-
stream programming language (C#). They define a basic 
model program M0 as well as the trace patterns correspond-
ing to test purposes that achieve the desired requirement 
coverage. The model program is then composed in parallel 
with each trace pattern in order to reduce the (often infinite) 
state space of the model program. This composition results in 
a set of sub-models of M0, denoted by Mi (i = 1, 2, ..., n). 

Spec Explorer is then used to explore the sub-models Mi 
to generate model graphs Gi (i = 1, 2, ..., n) representing 
nondeterministic state machines, and to generate one test 
suite from each graph (hence, n is also the number of test 
suites for the testing project under study). Spec Explorer 
stores the generated model graphs Gi as intermediate results 
for test case generation and viewing by test engineers. States 
are represented in a model graph Gi by three kinds of nodes: 
an option node, a choice node, and an accepting node. If we 
view the testing of an IUT as a game between testers and the 
IUT, then an option node represents a state where testers can 
make a move by invoking the interfaces provided by the 
IUT, whereas a choice node represents a state where testers 
have to watch and wait for the IUT to take steps. In other 
words, the outgoing edges of an option node represent 
actions taken by testers while outgoing edges of a choice 
node represent actions taken by the IUT. Finally, an  

                                                           
1 Spec Explorer is available free of charge at http://tinyurl.com/specexplorer. 
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Figure 1. Motivating example: SMB2 protocol testing.

accepting node means that the interactions with the IUT can 
end. 

The test case generation step splits each model graph Gi 
into a set of subgraphs Gij (j = 1, 2, ..., mi) in test normal form 
based on the edge coverage criterion, where mi is the number 
of test cases in test suite i. A subgraph is in test normal form 
if there is only one outgoing edge for every option node. In 
other words, steps taken by testers are determined. We refer 
to subgraph Gij as a test case graph because each Gi corres-
ponds to a test suite and each subgraph Gij corresponds to a 
test case. There are two strategies to generate test case 
graphs in Spec Explorer: long and short. Both of them try to 
achieve edge coverage, but the short strategy will stop when-
ever an accepting node is reached, while the long strategy 
will try to cover as many edges as possible. In general, a 
subgraph generated from the short strategy is much smaller 
than the model graph whereas a subgraph generated from the 
long strategy can be as large as the model graph. Finally, 
Spec Explorer generates a test case in C# from each test 
graph Gij. 

There are two key differences between the state machine 
model used by Spec Explorer and the EFSM model used by 
previous work on model-based regression testing. First, Spec 
Explorer uses action machines (AMs) to represent the update 
semantics of an action method [9]. The AM framework pro-
vides a solid mathematical foundation for handling arbitra-
rily complex states. In this way, Spec Explorer can use state-
based expressions to describe action parameter combina-
tions, and other configurations. Second, the state machine 
used by Spec Explorer is also nondeterministic in nature as it 
contains choice nodes that represent nondeterministic beha-

viors of the IUT. A choice node in a state machine means 
that the IUT may perform any one of the operations 
represented by the outgoing edges of the node. For the same 
test case, the generated test code must be prepared to handle 
any of these actions taken by the IUT. 

B. Current Practice of Regression Testing in Spec Explorer 

Regression testing support within Spec Explorer is still 
an emerging feature. When a specification evolves, the 
original sub-models Mi will change to Mi’ accordingly. Their 
corresponding model graphs will also change to Gi’. Tradi-
tionally, test engineers using Spec Explorer used to com-
pletely abandon all existing test cases and regenerate new 
test cases for each Gi’ again by splitting the graph Gi’ into 
new test case graphs Gij’. They then generated the test cases 
from the new test case graphs Gij’ and executed them all. 

When a change in the specification is small, the 
difference between Mi and Mi’ may also be small (or even 
non-existing for some i). The corresponding model graph Gi 
and Gi’ will not differ much. Thus, many of the test case 
graphs Gij may still be valid subgraphs of the new model 
graph Gi’. In other words, test cases of the original model 
may still be reusable for the new model. 

C. Protocol Document Testing 

In this section, we briefly introduce protocol document 
testing, which will be our focus in this paper. We can regard 
protocol documents as specifications of protocol software for 
interoperability. Protocol document testing [8] is the testing 
of the conformance between protocol documents and proto-
col implementations. A protocol implementation sometimes 
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precedes a full interoperability specification by years. As a 
result, protocol implementations are mature and correct prod-
ucts while protocol specifications tend to have faults. There-
fore, it is often a fault in the document rather than the IUT 
that causes a failure in a test. When a fault is exposed, the 
documents (that is, the specification) are revised, modify the 
corresponding model, and perform regression testing again. 

Thus, a key difference between protocol document test-
ing and the testing of other application is that the IUT or the 
protocol implementation rarely changes during regressions. 
If the IUT has no fault, the reusable test cases will invoke 
exactly the same call sequences on the implementation and 
handle the events returned by the implementation in the same 
manner. In other words, the test results will be the same and 
it would be a waste of time to run the reusable test cases 
again. For regression testing of protocol documents, there-
fore, successful identification of reusable test cases is crucial 
to cost saving. 

III. MOTIVATING EXAMPLE 

We use a modified version of the SMB2 sample in the 
Spec Explorer distribution to motivate our regression testing 
technique RETORT. The sample is a simplified test suite 
that tests some aspects of the Server Message Block version 
2 (SMB2) protocol, which supports the sharing of file and 
print resources between machines. 

The testing project uses adapters to expose the interfaces 
and hide network transmission complexity from the test 
cases (which act as protocol clients) that interact with a 
SMB2 server. It includes a model program from which two 
sub-models are selected based on two scenarios: The first 
scenario is to interact with the SMB2 server synchronously 
and the second one is to interact with the server asynchron-
ously. The sub-model used for test case generation is the 
union of the first two sub-models. After exploring it, Spec 
Explorer produces a model graph as shown in Figure 1(i). 
There are two branches from the start node of this graph: The 
left branch is for the synchronous scenario, and the right one 
is for the asynchronous scenario. 

In order to generate test cases, Spec Explorer traverses 
the model graph, splitting it into nine test case graphs as 
shown in Figure 1(iii), and generates C# code from these 
graphs. If we look into the graphs in detail, we find that the 
eight test cases on the left are for the synchronous scenario 
while the rightmost one is for the asynchronous scenario. 

Suppose we introduce a model change to the model for 
the asynchronous scenario, by changing the credit window 
size from 2 to 1 during the connection and session setup. As 
a result, the model change will propagate to the model used 
for constructing test cases. We can generate a new model 
graph from it, as shown in Figure 1(ii). There are still two 
branches in the new model graph, the one on the left is the 
unchanged synchronous scenario, and the one on the right, 
within the triangle, is the changed asynchronous scenario. To 
make the test suite consistent with the new model, test 
engineers usually regenerate the whole test suite again as 
shown in Figure 1(iv) and then execute it in full. This, 
however, leads to several problems. 

First, even for unchanged parts of the model (such as the 
synchronous scenario), the newly generated test cases may 
be different from the reusable test cases owing to the impact 
of the model change. Thus, requirement coverage of the new 
model will fluctuate owing to the regeneration of the test 
suite. Second, since test engineers cannot predict the test 
results and runtime requirement coverage of the new test 
cases (because of non-determinism), they need to execute 
them all, which is very time-consuming. In the SMB2 
example, it takes around 42 minutes to build the new model 
graph, generate nine new test cases, and execute all of them. 

On the other hand, when we conduct reusability analysis 
with our RETORT technique, we find that eight out of nine 
test cases in the sample test suite for the original model are 
still reusable, as shown in Figure 1(v). We only need to 
generate new test cases to verify the changed parts of the 
model, that is, the asynchronous scenario within the triangle 
in Figure 1(ii). To cater for the uncovered parts of the model, 
only one new test case needs to be generated by RETORT, 
as shown in Figure 1(vi). Thus, by identifying the reusable 
test cases, we can avoid running them again to save 
execution time. The total time for RETORT to conduct 
reusability analysis, new test case generation, and execution 
of new test case takes only 5 minutes, which is a great saving 
compared with 42 minutes for the regeneration technique. 
Furthermore, since the requirement coverage of the reusable 
test cases is preserved, the requirement coverage of the new 
test suite will not fluctuate much. 

To conduct reusability analysis on the test cases of the 
original model to determine whether they are obsolete or 
reusable, we start from the initial state of each test case and 
try to match the labels of the outgoing edges with the labels 
of the outgoing edges in the new model. These labels are 
events that trigger the IUT or actions that arise from it. If we 
can reach the final state of a test case, then it is reusable; 
otherwise, it is obsolete. For eight of the test cases in our 
example, we can successfully match their subgraphs within 
the new model. However, for the test case in the asynchron-
ous scenario, its test case graph cannot match any parts of the 
new model graph, which makes it obsolete. 

During the reusability analysis, we also mark the changed 
edges as well as the edges solely covered by obsolete test 
cases. In this way, RETORT produces a subgraph containing 
the start node, the uncovered edges, and the shortest paths 
from the start node to the uncovered edges. It then generates 
new test cases so that all the edges of the subgraph will be 
covered. 

We can also use techniques proposed in previous work to 
find the impacts and side effects on test case generation or 
reduction due to the changed edges [1][12]. Since the proto-
col implementation rarely changes in protocol document 
testing, testers only have to execute the newly generated test 
cases. Finally, RETORT merges the newly generated test 
cases and the reusable test cases as a new test suite for the 
new model (Figure 1(v) and Figure 1(vi)) for future 
specification evolution. 

IV. MODEL-BASED TEST SUITE MAINTENANCE 

We present the key algorithms in detail in this section. 
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 testCaseNode: The initial node of a test case graph; 
 modelGraphNode: The initial node of the model graph; 
 testCaseGraph: The test case graph; 
 modelProgramGraph: The model graph; 
1 private bool IsReproducible(testCaseNode, 

 modelGraphNode, testCaseGraph, modelGraph) { 
2 testCaseEdges = {outgoing edges of test case node}; 
3 modelEdges = {outgoing edges of model graph node}; 
4 childNodes = {child node pair of outgoing edges of test case 

 node and model graph node}; 
5 if (testCaseGraph.ChoiceNodes.Contains(testCaseNode)) { 
 // choice node 
6  foreach tcEdge in testCaseEdges { 
7 bool found = false; // Reset for each test case edge 
8 foreach mpEdge in modelEdges { 
9  if (match(tcEdge == mpEdge)) { 
10   found = true; 
     // Store the child nodes of both graph for matching 
11      childNodes.Add(tcEdge.Target, mpEdge.Target); 
12   coveredEdges.Add(mpEdge);  
13   break; 
  } // if 
   } // foreach mpEdge 
14   if (! found) { 

  // At least one edge fails to match, obsolete case. 
15  childNodes.Clear(); 
16  return false; 
   } // if 
  } // foreach tcEdge 
17  foreach (node in childNodes) 

 // Repeatedly match child nodes 
18   if (! IsReproducible(node.tcNode, node.mpNode, 

  testCaseGraph, modelProgramGraph))  
19  return false; 
20  return true; 
 } // if choice node 
21 else if (testCaseGraph.Nodes.Contains(testCaseNode)) { 
  // Not choice node, match any of the edges of model graph 
22  if (IsEmpty(testCaseEdges)) 
23  if (IsAcceptingNode(modelGraphNode))  
24  return true; // Successfully reproduce 
25  bool match = false; 
26  foreach (mpEdge in modelProgramEdges) { 
27  if (IsMatch(mpEdge, testCaseEdges.first())) {  
   // Try to match along this path 
28    coveredEdges.Add(mpEdge); 
29    int lastIndex = coveredEdges.IndexOf(mpEdge); 
    // Recursively match children. 
30    if (IsReproducible(testCaseEdges.first().Target, 

   mpEdge.Target, testCaseGraph, 
modelProgramGraph)) { 

31    match = true; // Successfully reproduce. Reusable. 
32     return true;  
   } 
33   else { // Clear remembered edges when trial fails 
34   int index = coveredEdges.IndexOf(edge); 
35   int newEdgeCount = coveredEdges.Count - index; 
36   coveredEdges.RemoveRange(index, 

newEdgeCount); 
37   continue; 
  } // else 

 } // if IsMatch 
 } // for each 

38  if (! match) 
39   return false; 
 } // else if not choice node 

} 

Figure 2. Impact analysis algorithm for identification of 

obsolete and reusable test cases. 

 modelProgramGraph: Model graph of the new model; 
 coveredEdges: Edges covered by the reusable test cases; 
1 TestCaseFile BuildSubgraph(modelProgramGraph, 

 coveredEdges) { 
2 targetNodes = new Vector<Node>;  
 // The source nodes of all uncovered edges 
3 subgraph = new Graph(); 
 // New subgraph to cover 
4 foreach edge in modelProgramGraph 
5  if (! coveredEdges.Contains(edge)) 
6   uncoveredEdges.add(edge); // Get the uncovered edges 
7 // Put the source nodes of uncovered edges in targetNodes 
8 foreach edge in uncoveredEdges 
9  targetNodes.Add(edge.sourceNode); 
 // Build shortest paths from start node to all target nodes  
10 // so all uncovered edges are reachable from the start node. 
11 ShortestPathAlgorithm spa = new shortestPathAlgorithm 

 (modelProgramGraph, modelProgramGraph.StartNode(), 
 targetNodes); 

12 spa.Run(); 
13 foreach node in targetNodes { 
  // Get the shortest path for each target node 

 // and add it to the subgraph 
14  path = spa.ResultDict[node]; 
15  foreach newNode in path.Nodes() 
16   subgraph.Add(newNode); 
17  foreach newEdge in path.Edges() 
18   subgraph.Add(newEdge); 
19 } // foreach node 
20 // Add the uncovered edges themselves to the subgraph 
21 foreach edge in uncoveredEdges 
22  detailSubgraph.Add(edge); 
 // Feed the subgraph to traversal algorithm 

// to generate test case graph 
23 TestCaseAlgorithm testCaseAlgm 

= new TestCaseAlgorithm (subgraph); 
24 testCaseAlgm.Run(); 
25 newTestCaseGraph = testCaseAlgm.TargetGraph; 
 // Generate test case file from newTestCaseGraph 
26 return TestCodeGenerator.Generate(newTestCaseGraph); 
 } 

Figure 3. Test cases augmentation algorithm. 

A. Test Case Reusability Analysis for Mode-Based 

Regression Testing 

Our test case reusability analysis algorithm is shown in 
Figure 2. The function IsReproduceable performs the reusa-
bility analysis. It takes four parameters: testCaseGraph is the 
graph for a test case in the original model, modelGraph is the 
new model graph, and testCaseNode and modelGraphNode 
are the current nodes for comparison in the two graphs. Since 
our algorithm recursively examines the nodes along the path 
of testCaseGraph and modelGraph, the testCaseNode and 
modelGraphNode will change dynamically. 

The function IsReproducible performs reusability 
analysis for two conditions: The first condition (lines 5 to 20) 
refers to the case when the node examined is a choice node. 
In this situation, the IUT may take one of several choices and 
the outgoing edges of the choice node in a test case graph 
should match all the outgoing edges of the choice node in the 
new model graph. Lines 6 to 13 perform a pairwise match of 
all the edges in the two graphs. If any outgoing edge fails to 
match, the test case is identified as obsolete (lines 14 to 16). 
When all the outgoing edges of a choice node are matched 
successfully, the algorithm continues to match the respective 
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target nodes of all the outgoing edges (lines 17 to 19). When 
all the respective target nodes and their descendants in the 
test case graph match the new model graph, the whole test 
case is identified as reusable. 

The second condition (lines 21 to 39) refers to the case 
when the current node to match is an option node or 
accepting node. The algorithm first checks whether the node 
in the test case graph is an accepting node and the corres-
ponding node in the new model graph is an accepting node 
(lines 22 to 24). If so, the node is matched successfully. 
Otherwise, the node in the test case graph is an option node, 
which should have one and only one outgoing edge because 
a test case graph must be in test normal form. 

However, the corresponding node in the new model 
graph may have more than one outgoing edges. The 
algorithm tries to match the outgoing edge of the test case 
node with each of the outgoing edges of the model graph 
node (lines 26 and 27). Whenever two edges match 
successfully, they are added to the set of coveredEdges 
(lines 12 and 28). The algorithm then continues to recur-
sively match the target node of the outgoing edge in the 
model graph with the target node of the outgoing edge in the 
test case graph (lines 30 and 31). If two target nodes and 
their descendents match recursively, the option node is 
tagged as a match. However, if the two target nodes or any 
of their descendents fail to match, the algorithm will 
continue to try and match the outgoing edge of the node in 
the test case graph with other outgoing edges of the node in 
the new model graph. Any falsely remembered edges during 
the trial are removed from the coveredEdges set (lines 33 to 
37). Finally, if the algorithm cannot match any of the out-
going edges of the model graph, the node is marked as a 
non-match (lines 38 and 39), which means that the test case 
is obsolete. 

B. Test Case Augmentation 

Using the test case reusability algorithm, we have parti-
tioned the test suite for the original model into reusable and 
obsolete test cases. We have also logged all the edges 
covered by reusable test cases. Since we want to achieve 
edge coverage, we need a test case augmentation algorithm, 
which generates new test cases to cover all uncovered edges. 
The algorithm is shown in Figure 3. It starts by finding all 
the uncovered edges of the new model program graph based 
on all the edges covered by reusable test cases (lines 4 to 6). 
Then, to cover the uncovered edges using new test cases 
effectively, we first build a shortest path from the initial node 
of the model graph to the source node of each uncovered 
edge (lines 8 to 12). After that, we combine all the shortest 
paths to form a subgraph (lines 13 to 19). We also add each 
uncovered edge to the subgraph (lines 21 and 22). Finally, 
we split the subgraph into new test case graphs in test normal 
form (lines 23 to 25), and generate the test cases from the 
new test case graphs to achieve edge coverage (line 26). 

In fact, our work is complementary to previous work on 
model-based regression test-case generation and reduction at 
this step [1][12]. For example, we can adopt the change 
impact analysis technique proposed in [1][12] to investigate 
the impact or side-effect of model change on other parts of 

the model. We can then generate new test cases to cover all 
affected parts of the model not covered by reusable test 
cases. 

To make the test-suite maintenance technique applicable 
to a succession of model changes, our tool merges the test 
case graphs of newly generated test cases and reusable test 
cases to form a test case graph for the current model. We can 
use this new test case graph for regression testing when the 
specification evolves again. 

V. EVALUATION 

In this section, we conduct an empirical study to evaluate 
the effectiveness of RETORT in supporting specification 
evolution. In protocol document testing, test engineers want 
to cover as much as possible the requirements specified in a 
protocol specification to gain confidence on the correctness 
of the protocol documents. In this context, the experiment 
evaluates RETORT and the regeneration technique (REGEN) 
with respect to requirement coverage and time costs. 

A. Research Questions 

RQ1. When compared with REGEN, how well does 
RETORT save time costs in regression testing when dealing 
with a model change? 

RQ2. When compared with REGEN, how well does 
RETORT preserve requirement coverage when handling a 
model change? 

The answer to these research questions can tell whether 
RETORT can be more useful to test engineers than REGEN. 

B. Subject Programs 

We use four real-life Microsoft protocol document 
testing projects to evaluate the effectiveness of our 
technique. All the detailed specifications of these protocols 
are available from the MSDN website [14]. The aim of 
protocol document testing is to verify the conformance 
between protocol documents (that is, specifications) and 
protocol implementations. 

The first protocol is BRWS, the Common Internet File 
System (CIFS) Browser protocol. It defines the message 
exchange between the service clearinghouse, printing and 
file-sharing servers, and clients requesting a particular 
service. CMRP is the Failover Cluster: Management API 
(ClusAPI) protocol. It is used for remotely managing a 
failover cluster. WSRM is the Windows System Resource 
Manager protocol, which manages processor and memory 
resources and accounting functions in a computer. COMA is 
the Component Object Model Plus (COM+) Remote Admin-
istration protocol, which allows clients to configure software 
components and control the running of instances of these 
components. 

The descriptive statistics of the subjects are shown in   
Table I. The column No. of Regression Versions contains the 
number of modified versions used in the experiments. All of 
these versions involve real modifications of the model made 
by test engineers, including new action additions, action 
deletions, action changes, parameter domain changes, and so 
on. We obtained these modified versions and their previous 
versions from the version control repository. The column 
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Total No. of Test Suites shows the total number of test suites 
across all regression versions for each testing project. Each 
test suite for the same testing project may cover a different 
aspect of the requirements. The column Total No. of Test 
Cases shows the total number of test cases across all test 
suites and all versions for each testing project. The columns 
Total States and Total Edges show the total number of states 
and edges of all the model graphs generated from the model 
programs of a protocol. 

TABLE I.  SUBJECT PROTOCOL DOCUMENT TESTING PROJECTS 

Subject 
No. of 

Regression 
Versions 

Total No. of 
Test Suites 

Total No. 
of Test 
Cases 

Total 
States 

Total Edges 

BRWS 4 46 448–530 156–170 171–180 

CMRP 3 30 
1655–

1750 

47957–

47998 

67941–

67900 

COMA 3 211 
2310–

2402 

24577–

25300 

52816–

534899 

WSRM 3 45 
1487–

1510 
980–997 1055-1604 

 

C. Experimental Environment 

We implemented our regression tool as a standalone tool 
for Spec Explorer 2010 in Visual Studio 2008 team suite 
edition. We conduct our experiment on a PC with a Pentium 
3.0 GHz processor and 2 GB of RAM running Windows 7. 

D. Experiments and Discussions 

1) Experiment Procedure. For each protocol, we first 
perform regression testing with the regeneration technique, 
which abandons the original test suite, generates new test 
cases to cover the new model, and executes these test cases. 
We then conduct regression testing with RETORT, which 
performs reusability analysis on the test suite of the original 
model with the algorithm in Figure 2, generates new test 
cases with the algorithm in Figure 3, and executes them. For 
each technique, we measure the time taken to generate the 
test suite for the new model, the time taken to execute the 
test suite, and hence the total regression testing time. 

2) Results. 

a) Comparison of Test Suite Maintenance Times 
between RETORT and REGEN. In this section, we compare 
the time for test suite maintenance between the RETORT 
and REGEN techniques. The time cost for test suite 
maintenance is the total time taken to generate the new test 
suite according to the new model. For RETORT, it includes 
the time to conduct reusability analysis for identifying 
obsolete and reusable test cases, the time to generate new 
test cases to cover the subgraph composed from uncovered 
edges, and the time to combine the reusable and new test 
cases into a new test suite. For REGEN, it includes the time 
to generate a new model graph from the new model, the 
time to split the graph into new test case graphs, and the 
time to generate new test cases from them. 

We then compute the total time for test suite maintenance 
over all test suites by RETORT and REGEN, respectively, 
and compare them for each protocol as shown in Figure 4. 
The x-axis in the figure shows the four protocols while the y-

axis shows the test suite maintenance time (in seconds) 
summed up over all suites. There are two bars for each 
protocol. The bar on the left represents the total test suite 
maintenance time over all test suites for RETORT while the 
one on the right represents the corresponding time for 
REGEN. We can see that RETORT requires much less main-
tenance time than REGEN for every protocol. The total time 
saving for BRWS, CMRP, COMA, and WSRM is around 
300 seconds, 1300 seconds, 800 seconds, and 600 seconds, 
respectively. 

 

 

Figure 4. Comparison of total test suite maintenance times 

on all test suites between RETORT and REGEN. 

 

 

Figure 5. ANOVA analysis of test suite maintenance times. 

We know from Figure 4 that RETORT can reduce the 
total test suite maintenance time for every protocol. To 
decide whether the time saving is significant, we conduct an 
ANalysis Of VAriance (ANOVA) on the test suite mainten-
ance time for each suite to compare RETORT with REGEN, 
as shown in the notched box-and-whisker plots in Figure 5. 
The concave parts of the boxes are known as notches. In 
general, if the notches around the medians in two boxes do 
not overlap, then there is a significant difference in these two 
medians with a 95% confidence level. We see from the 
figure that, for each protocol, the median for RETORT is 
lower than that of REGEN, and the notches for the RETORT 
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box never overlap with the notches of the REGEN box. 
Hence, RETORT uses significantly less time for test suite 
maintenance than REGEN at a confidence level of 95%. 

We have looked into the test suites in detail to determine 
why the maintenance time for RETORT is more favorable 
than that of REGEN. We have found that the time taken to 
analyze the reusability of a test case is only about 1/50 of the 
time taken to generate a new test case. Thus, when there are 
reusable test cases, the time needed to conduct reusability 
analysis is much less than the time needed to regenerate 
them. Since the final test suite sizes for RETORT and 
REGEN are almost the same, conducting fast reusability 
analysis rather than slow regeneration of reusable test cases 
makes a big difference. 

b) Comparison of Test Suite Execution Times between 
RETORT and REGEN. Having compared the test case 
maintenance times between the RETORT and REGEN tech-
niques, we also want to know whether RETORT can save 
time in test suite execution in the protocol document testing 
scenario. For each protocol, we measure the time taken to 
execute every test suite generated by RETORT and 
REGEN. Note that we do not have to run reusable test cases 
in protocol document testing because the IUT is mature and 
rarely changes. 

 

 

Figure 6. Comparison of total test suite execution times 

on all test suites between RETORT and REGEN. 

We then compute the total time for test suite execution 
summed up over all test suites by RETORT and REGEN, 
respectively, and compare them for each protocol as shown 
in Figure 6. The x-axis in the figure shows the four 
protocols while the y-axis shows the test suite execution 
time in seconds. Again, the left-hand bar represents the total 
test suite execution time for RETORT while the right-hand 
one represents the corresponding time for REGEN. We can 
see that RETORT uses much less execution time than 
REGEN for every protocol. The total time saving for 
BRWS, CMRP, COMA, and WSRM is around 302 minutes, 
862 minutes, 486 minutes, and 576 minutes, respectively. 

We have found from Figure 6 that RETORT can reduce 
the total test suite execution time for each protocol. Let us 
further determine whether the time saving is significant. We 
conduct an ANOVA analysis on the execution time on each 

test suite for each protocol to compare RETORT with 
REGEN, as shown in the notched box-and-whisker plots in 
Figure 7. We can see that, for each protocol, the median for 
RETORT is lower than that of REGEN, and the notches of 
the RETORT box do not overlap with the notches of the 
REGEN box. This means that RETORT uses significantly 
less time for test suite execution than REGEN, at a confi-
dence level of 95%. 

We have looked into the test suites in detail and found 
that most test cases are reusable. As a result, the test case 
execution time by RETORT is a small fraction of that by 
REGEN. For example, one of the test suites for COMA 
contains 50 test cases. Using RETORT, we successfully 
identify 35 reusable test cases and take only 8 minutes to 
finish the execution of newly generated test cases. However, 
REGEN takes about 26 minutes to execute the regenerated 
test suite. 

 

 

Figure 7. ANOVA analysis of test suite execution times. 

 

Figure 8. Comparison of total regression times on all test suites 

between RETORT and REGEN. 

c) Comparison of Total Regression Time between 
RETORT and REGEN. Having compared the test suite main-
tenance time and test suite execution time separately 
between RETORT and REGEN, we continue to compare the 
total regression testing time between them. The total 
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regression time is the sum of the test suite maintenance time 
and the test suite execution time. 

We then compute the total time for regression testing 
over all test suites by RETORT and REGEN, respectively, 
and compare them for each protocol as shown in Figure 8. 
The x-axis in the figure shows the four protocols while the 
y-axis shows the total regression testing time in minutes. 
Again, the bar on the left represents the total regression 
testing time for RETORT while the one on the right 
represents the corresponding time for REGEN. We can see 
that RETORT uses much less regression time than REGEN 
for every protocol. The total time saving for BRWS, CMRP, 
COMA, and WSRM is around 308 minutes, 883 minutes, 
500 minutes, and 587 minutes, respectively. 

We further conduct an ANOVA analysis on the regres-
sion testing time on each suite for each protocol to compare 
RETORT with REGEN, as shown in Figure 9. We observe 
that, for each protocol, the median for RETORT is lower 
than that of REGEN, and the notches of the RETORT box 
never overlap with those of the REGEN box. This means that 
RETORT incurs significantly less time for regression testing 
than REGEN, at a confidence level of 95%. 
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Figure 9. ANOVA analysis of regression testing times. 

Based on the above discussions, our answer to research 
question RQ1 is that RETORT can significantly save 
regression-testing time when compared with REGEN. 

a) Requirement Coverage by Reusable Test Cases. 
When a specification evolves, test engineers want the 
requirement coverage to remain stable despite model 
changes. 

Our experimental results are shown in Figure 10. The x-
axis lists various test suites for each protocol while the y-
axis shows the percentage of requirements covered by the 
reusable test cases in the respective test suite (as against the 
requirements covered by all test cases in that test suite). 
Each line in the figure represents a different protocol. From 
the area between the curve and the x-axis, we can compute 
the accumulated percentage of requirement coverage by 
reusable test cases as against all test cases. For BRWS, 
CMRP, COMA, and WSRM, the accumulated percentages 
of requirement coverage are 46%, 49%, 54%, and 41%. 
Thus, test engineers can be sure that, on average, around 40% 

of the requirements are covered without even generating and 
executing any new test cases for the protocols under study. 

Furthermore, if we measure the requirement coverage of 
a final test suite (containing both reusable and new test 
cases) generated by RETORT, it is always approximately 
equal to that of the corresponding original test suite. 

Thus, our answer to research question RQ2 is that RE-
TORT can preserve the requirement coverage of the original 
test suite to around 40% using reusable test cases only, and 
close to 100% with the final test suite. 

3) Lessons Learned. We have carefully analyzed the 
results for all test suites and found RETORT to be more 
effective for some model modifications than others in sav-
ing regression testing time. The difference is related to the 
modification styles of modelers. Our technique is more 
effective for model changes in which modelers add new 
branches to optional nodes to cover a new requirement 
scenario. In this case, the new branch will generate indepen-
dent test cases while most existing test cases are still 
reusable. In contrast, when model changes are made by 
sequentially appending operations to the current model pro-
gram, our technique is ineffective. This modification style 
will insert additional nodes to existing paths of the original 
model graph. Since none of the existing test cases contains 
these newly added nodes, they invariably fail to reach a final 
state in the new model graph. 

 

 

Figure 10. Percentage of requirement coverage 

of reusable test cases across all test suites. 

The lesson learned from our findings is that modelers 
should try to adopt a test-friendly modeling style to enhance 
the reusability of existing test cases. More specifically, they 
should try to put different requirement scenarios into differ-
ent branches of an option node when introducing modifica-
tions in the model program. This is similar to what we do in 
writing unit test cases: we want our test cases to be 
independent of one another, each covering a different 
requirement. In this way, we can improve their reusability to 
save regression time and stabilize requirement coverage. 

E. Threats to Validity 

In this paper, we only evaluate our test suite maintenance 
technique on the testing of protocol documents whose corres-
ponding IUTs are mature and stable. A thorough evaluation 

0

0.2

0.4

0.6

0.8

1

P
e

rc
e

n
ta

ge
 o

f 
R

e
q

u
ir

e
m

e
n

t 
C

o
ve

ra
ge

All Test Suites

BRWS
CMRP
COMA
WSRM



 

 

10 
 

of our technique on the regression testing of specification 
evolutions of other types of applications may further streng-
then the validity of our evaluation. Another threat to validity 
is that we only measure the time costs of applying our 
regression testing technique. Further measures for the regres-
sion fault detection capability of our technique will also 
strengthen the validity of our empirical study. 

VI. RELATED WORK 

Model-based testing allows testers to verify an 
implementation under test with respect to a model of the 
specification [2]. In addition to Spec Explorer, there are 
other model-based testing tools [13]. Korel et al. [12] present 
a model-based regression testing approach that uses EFSM 
model dependence analysis to reduce regression test suites. 
Their approach automatically identifies the difference be-
tween the original and the new models as a set of elementary 
model modifications. For each elementary modification, they 
perform regression test reduction to reduce the regression 
test suite based on EFSM dependence analysis. El-Fakih et al. 
[4] and Schieferdecker et al. [15] also propose techniques to 
re-test communication software. Our work is complementary 
to theirs in that ours are applicable to the more practical 
action machines and useful for protocol software. 

Chakrabarti and Srikant [3] propose the use of explicit 
state space enumeration to extract a finite state model to 
compute good test sequences to verify subsequent versions 
of the IUT. Our technique differs from theirs in that we 
target at maximally reusing the original test suite based on 
the new model graph rather than generate all new test cases 
from scratch. Farooq et al. [5] present a methodology for 
regression test case selection using UML state machines and 
class diagrams. Their approach focuses on finding the impact 
of changes in class diagrams on state machines and hence on 
the test suite. Our technique differs from theirs in two 
aspects: First, we focus on nondeterministic action machines 
while they focus on UML state machines. Second, our 
technique can generate new test cases to cover those parts of 
the new model not covered by any original test cases. Their 
technique mainly partitions existing test suites into resettable, 

reusable, and obsolete test cases. Harrold and Orso [10] give 
an overview of the major issues in software regression test-
ing. They analyze the state of the research and the state of 
the practice in regression testing, and discuss the major open 
challenges in regression testing.  

VII. CONCLUSION 

Model-based testing is effective in systematically testing 
the conformance between a specification and the implemen-
tation under test. When the specification has evolved, the 
model must also be updated accordingly. This in turn makes 
the original test suite obsolete or inadequate. Testers may 
simply regenerate all the test cases and execute them again, 
but they may lose the opportunity to save time by utilizing 
reusable test cases. In this paper, we propose a test case re-
usability analysis technique known as RETORT for model-
based regression testing. It can identify obsolete and reusable 
test cases effectively, generate new test cases to cover 

changed parts of the model, and combine the reusable and 
new test cases to form a new test suite for future regression 
testing. Our experiment on four large protocol document 
testing projects shows that RETORT can significantly reduce 
the regression testing time and maintain the stability of 
requirement coverage when compared with a complete re-
generation of the whole test suite. Finally, further analysis 
reveals a useful modeling practice that enables modelers to 
modify the models in such a way that the reusability of the 
generated test cases can be improved. 

It will be interesting to extend our technique to handle 
scenarios where both the specification and the implementa-
tion under test may evolve, and investigate test case prioriti-
zation techniques that can increase the fault detection rate for 
model-based conformance regression testing. 
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