

1

Proceedings of the 9th International Conference on Quality Software (QSIC 2009),
IEEE Computer Society Press, Los Alamitos, CA (2009)

Automatic Generation of Normal Forms for Testing Object-Oriented Software *

Huo Yan Chen
Department of Computer Science

Jinan University
Guangzhou 510632, P. R. China

tchy@jnu.edu.cn

T. H. Tse **
Department of Computer Science

The University of Hong Kong
Pokfulam, Hong Kong

thtse@cs.hku.hk

Abstract—Testing object-oriented software is more complex
than its procedural counterpart. The concept of “fundamen-
tal pairs” was introduced in our TACCLE methodology for
testing object-oriented software. It was proved that, al-
though the set of fundamental pairs is only a proper subset
of equivalent ground terms, the use of fundamental pairs as
test cases covers the use of equivalent ground terms.
Recently, we found that any normal form consists of only a
creator, or a creator followed only by constructors but not
transformers; and yet the reverse is not necessarily true.
Thus, the generation of patterns of normal forms is non-
trivial and warrants further study. Motivated by this finding
and based on further pattern analyses of normal forms and
tree models with pruning techniques, we propose an algo-
rithm to generate representative normal forms according to
patterns and develop a corresponding automatic tool. This
work improves the automation, coverage, and adequacy of
selecting (equivalent) fundamental pairs as test cases.

Keywords—algebraic specification; object-oriented pro-
gram; software testing; equivalent fundamental pair;
normal form

I. INTRODUCTION

The testing of object-oriented software requires new
theories and techniques that are different from those for

∗ © 2009 IEEE. This material is presented to ensure timely dissemina-

tion of scholarly and technical work. Personal use of this material is
permitted. Copyright and all rights therein are retained by authors or
by other copyright holders. All persons copying this information are
expected to adhere to the terms and constraints invoked by each
author’s copyright. In most cases, these works may not be reposted
without the explicit permission of the copyright holder. Permission to
reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted component of this work in
other works must be obtained from the IEEE.

† This research is supported by a Union Grant of the Guangdong
Province and National Natural Science Foundation of China
(#U0775001), a Grant of National Natural Science Foundation of
China (#60773083), grants of the Guangdong Province Science
Foundation (#7010116 and #8151063201000022), and the General
Research Fund of the Research Grant Council of Hong Kong (project
no. 717308).

‡ All correspondence should be addressed to Prof. T. H. Tse at Depart-
ment of Computer Science, The University of Hong Kong, Pokfulam,
Hong Kong. Tel: (+852) 2859 2183. Email: thtse@cs.hku.hk.

its procedural counterpart [17]. Algebraic specifications
have been used to generate test cases since the 1980s. The
DAISTS system developed by Gannon et al. [9] inputs a
tuple of arguments into both sides of an algebraic axiom,
and employs a user-supplied equality function to check
the output. An error is revealed when the outputs from the
two sides do not agree.

A general theory for software testing based on alge-
braic specifications, including regularity, uniformity, and
oracle hypotheses, was proposed by Bernot et al. [1].
Based on the theory, they developed a tool to generate test
cases by replacing all the variables in the axioms with
ground terms [1][2][6].

Doong and Frankl proposed an algebraic specification
language LOBAS, which is more suitable for object-
oriented programming. Based on LOBAS, a tool named
ASTOOT was developed to generate class-level test cases,
including equivalent terms through rewriting and non-
equivalent terms by exchanging path conditions [7][8].

Following up on ASTOOT, Chen et al. [3][4][5] fur-
ther proposed a methodology called TACCLE for object-
oriented class-level testing. The concept of a fundamental
pair, defined as a pair of terms constructed by replacing
all the variables on both sides of an axiom by normal
forms, is proposed. Obviously, the set of fundamental
pairs is a proper subset of the set of equivalent ground
terms. It is proved that a complete implementation of a
canonical specification is consistent with respect to all
equivalent terms if and only if it is consistent with respect
to all fundamental pairs. In other words, the use of fun-
damental pairs as test cases covers the use of equivalent
ground terms for the same purpose, and hence testers need
only concentrate on the testing of fundamental pairs. In
order to do this, an algorithm GFT has been proposed for
generating finite number of equivalent fundamental pairs
as test cases using axioms and normal forms. The normal
forms used in the original GFT algorithm are generated
manually.

The TACCLE project has attracted a lot of attention
among researchers on software testing. More notable
examples are [13][15][16][18][20][21].

Administrator
 HKU CS Tech Report TR-2009-17

2

Recently, we found that any normal form consists of
only a creator, or a creator following only by constructors
but not transformers; but the reverse is not necessarily
true. Thus, the generation of representative normal forms
is not trivial.1 An algorithm and the corresponding tool to
aid the generation of representative normal forms are
necessary and significant. If the generated normal forms
do not cover all possible patterns within a given length,
the resulting tests will not be adequate. Based on pattern
analysis, a tree model, and pruning technique, we propose
an algorithm GNF to generate normal forms. We also
implement a tool to aid the process.

This paper is organized as follows: Section 2 presents
the basic concepts used in the paper. Section 3 describes
the structural pattern analysis of normal forms. Section 4
investigates the generation of representative normal forms
using Algorithm GNF and a computer-aided tool. Finally,
Section 5 gives a conclusion.

II. BASIC CONCEPTS

We summarize the basic concepts of algebraic specifi-
cations in this section. More details can be found in
[3][4][5][10][11][14][19].

The syntax declaration and semantic definition are the
two main components of an algebraic specification of a
class. The syntax declaration specifies the input and out-
put parameters of each operator. The semantic definition
specifies the equational axioms, which describe the beha-
vior related to each operator.

Example 1. The following example (from [3]) shows
an algebraic specification of the class IntStack of integer
stacks:

 module INTSTACK
 class IntStack
 import classes
 Int
 Bool
 operations
 new: → IntStack
 _.empty: IntStack → Bool
 .push(): IntStack Int → IntStack
 _.pop: IntStack → IntStack
 _.top: IntStack → Int ∪ {NIL}
 variables
 S: IntStack
 N: Int
 axioms
 a1: new.empty = true
 a2: S.push(N).empty = false
 a3: new.pop = new
 a4: S.push(N).pop = S
 a5: new.top = NIL

a6: S.push(N).top = N

1 See, for instance, Example 2 and Proposition 4 in Section 3.2.

A syntactically valid sequence of operations in a given
algebraic specification is called a term. For example,
new.push(1).push(2).pop is a term in the class of integer
stacks above, but new.push(1).push(2).top.pop is not.

A term without variables is known as a ground term.
In this paper, we will only consider ground terms because
actual test cases do not involve variables.

Suppose a ground term u0 contains a sub-term v0 that
is an instance of the left-hand side v of the axiom a: v = v’.
Suppose further that, after replacing the sub-term v0 by
the corresponding instance of the right-hand side v’, we
obtain a new ground term u1. Then, we say that the
ground term u0 can be transformed into (or rewritten as)
the ground term u1 using the axiom a as a rewriting rule.
We denote this process by the notation u0 ==(a)==> u1.
For example,

new.push(1).push(2).pop ==(a4)==> new. push(1).

A term is said to be a normal form if it cannot be
transformed using any axiom in the specification. For
instance, new.push(1).push(2) is a normal form but
new.push(1).push(2).pop is not.

A fundamental pair is defined as a pair of terms
generated by substituting all the variables on both sides of
an axiom by their normal forms.

An algebraic specification is said to be canonical if
any ground term will be transformed by the axioms in the
specification into a unique normal form. For instance, the
specification in Example 1 is canonical, but it is not if we
change the axiom a4 to S = S.push(N).pop. We only dis-
cuss canonical specifications in this paper.

Two ground terms u1 and u2 in a canonical specifica-
tion are said to be equivalent (denoted by u1 ∼ u2) if they
have same normal form. For instance,

new.push(1).push(2).pop ∼ new.push(2).pop.push(1).

In a given class C, operations or methods generating
new objects of C are called creators. Operations or
methods changing the values of attributes of object in C
are called constructors or transformers. The difference
between constructors and transformers is that constructors
can appear in normal forms but transformers cannot. Op-
erations that only output the values of attributes of objects
in C are called observers. In Example 1, for instance, the
operation new is a creator, _.push(N) is a constructor,
_.pop is a transformer, and _.empty and _.top are
observers.

III. PATTERN ANALYSIS OF NORMAL FORMS

A. Properties of Normal Forms

The following important properties of normal forms
follow directly from the definitions of terms, axioms,
normal forms, constructors, and transformers:

3

Proposition 1. For any sub-term t’ of a term t, if t’
is not a normal form, then t is not a normal form
either.

Proposition 2. A term is not a normal form if any
of its sub-terms matches the left-hand side of an
axiom.

Proposition 3. A term is a normal form if none of
its sub-terms matches the left-hand side of any
axiom.

B. A Case Study

We begin the investigation of structural patterns of
normal forms with a case study.

Example 2. The following is an algebraic specifica-
tion for a class Book in a simplified library system, where
a book can only be reserved by one borrower. For ease of
presentation, the side effects of some operations are omit-
ted and some attributes are also omitted.

 module BOOK
 class Book
 import classes
 String
 Integer
 Loc = { onShelf, atCounter, onLoan,
 onLoan&reserved}
 operations
 newBook(_, _): String Integer → Book
 // First parameter captures the name of the book;
 second parameter captures the call number
 _.name: Book → String
 _.number: Book → Integer
 _.location: Book → Loc
 _.borrow: Book → Book
 _.return: Book → Book
 variables
 B: Book
 S: String
 I: Integer
 axioms
 a11: newBook(S, I).name = S
 a12: newBook(S, I).number = I
 a13: newBook(S, I).location = onShelf
 a21: B.borrow.name = B.name
 a22: B.borrow.number = B.number
 a23: B.borrow = B if B.location
 = onLoan&reserved
 a24: B.borrow.location = onLoan
 if B.location ∈ {onShelf, atCounter}
 a25: B.borrow
 = newBook(B.name, B.number).borrow
 if B.location ∈ {onShelf, atCounter}
 and B ≠ newBook(_, _)
 a26: B.borrow.location = onLoan&reserved
 if B.location = onLoan
 a31: B.return.name = B.name
 a32: B.return.number = B.number

 a33: B.return = B
 if B.location ∈ {onShelf, atCounter}
 a34: B.return.location = onShelf
 if B.location = onLoan
 a35: B.return.location = atCounter
 if B.location = onLoan&reserved
 a41: B.borrow.return = B

if B.location = onShelf

The normal form patterns of the class Book are ana-
lyzed as follows. For simplicity, we will use nw, b, and r
to denote newBook(S, I), borrow, and return, respectively.
We will also use bk to denote k consecutive borrow opera-
tions, rj to denote j consecutive return operations, and
“...” to denote a finite sequence of operations.

Analysis.

(1) nw is a normal form pattern because it cannot be
rewritten according to any axiom.2

(2) nw.b is also a normal form pattern because it
cannot be rewritten according to any axiom.

(3) nw.b2 is also a normal form pattern because it
cannot be rewritten according to any axiom.

(4) According to axioms a13, a24, and a26, nw.b2.location
can be transformed into onLoan&reserved. As a
result, according to axiom a23, the term nw.b3 can be
transformed into nw.b2. Thus nw.b3 is not a normal
form pattern.

(5) Hence, nw.b3... is not a normal form pattern.

(6) nw.r is not a normal form pattern because nw.r
==(a13, a33)==> nw.

(7) Hence, nw.r... is not a normal form pattern.

(8) nw.b.r is not a normal form pattern because nw.b.r
==(a13, a41)==> nw.

(9) Hence, nw.b.r... is not a normal form pattern.

(10) nw.b2.r is a normal form pattern because it cannot
be rewritten according to any axiom.

(11) nw.b2.r.b is not a normal form pattern because
nw.b2.r.b ==(a13, a24, a26, a35, a25)==> nw.b.

(12) Hence, nw.b2.r.b... is not a normal form pattern.

(13) nw.b2.r2 is not a normal form pattern because
nw.b2.r2 ==(a13, a24, a26, a35, a33)==> nw.b2.r.

(14) Hence, nw.b2.r2... is not a normal form pattern.

Notes.

(a) Each of the four normal form patterns (nw, nw.b,
nw.b2, nw.b2.r) represents a set of normal forms of the
class Book. For example,

nw.b2.r = {newBook(S, I).borrow.borrow.return |
S ∈ String, I ∈ Integer}.

2 The term or any part of it does not match the left-hand side of

any axiom.

4

(b) Both borrow and return are constructors. There is no
transformer in the class Book.

(c) The above analysis covers all possible terms that
consist of only a creator, or a creator followed only by
constructors but not transformers.

(d) The left-hand sides of the axioms a11, a12, a13, a21, a22,
a24, a26, a31, a32, a34, and a35 end with observers. They
are transformed into normal forms representing the
values of the attributes of the class Book.

(e) The values of the location attribute of the normal
forms patterns nw, nw.b, nw.b2, and nw.b2.r are
onShelf, onLoan, onLoan&reserved, and atCounter,
respectively.

From the above analysis and notes, we observe that the
class Book has four and only four normal form patterns:

newBook(S, I), newBook(S, I).borrow,
newBook(S, I).borrow.borrow, and
newBook(S, I).borrow.borrow.return.

In Example 2, even though b and r are constructors of
the class Book, nw.b3, nw.b.r, nw.b2.r2, nw.bk.rj...bk’.rj’.bk’’
(k, ..., k’, k’’, i, ..., i’ ≥ 1), and nw.bk.rj...bk’.rj’.bk’’.rj’’ (k, ...,
k’, k’’, i, ..., i’, i’’ ≥ 1) are not normal forms. Hence, we
have:

Proposition 4. If a ground term T is a normal form
of a class C, then T consists of either a creator of C,
or a creator of C following only by constructors
but not transformers of C. However, the converse
does not hold.3

C. More Examples

Example 3. The normal form patterns of the class
IntStack in Example 1 are as follows:

 t0: new,
 t1: new.push(N1),
 t2: new.push(N1).push(N2),
 t3: new.push(N1).push(N2).push(N3),

t4: new.push(N1).push(N2).push(N3).push(N4), ...

Example 4. The following, adapted from [4], is a
simplified algebraic specification of a class SavAcct1 of
savings accounts in a banking system. For ease of presen-
tation, some attributes are omitted and the side effects of
some operations are ignored.

 class SavAcct1
 import classes
 Money
 String
 operations
 newAc(_, _, _): String String Money → SavAcct1

3 This does not contradict the statement “constructors can ap-

pear in normal forms but transformers cannot” in Section 2.

 // The input parameters denote the customer
 name, address, and account balance,
 respectively
 name: SavAcct1 → String
 address: SavAcct1 → String
 balance: SavAcct1 → Money
 setAddress(_): SavAcct1 String → SavAcct1
 credit(_): SavAcct1 Money → SavAcct1
 debit(_): SavAcct1 Money → SavAcct1
 variables
 S, S’: String
 A: SavAcct1
 M: Money
 axioms
 a1: newAc(S, S’, M).name = S
 a2: newAc(S, S’, M).address = S’
 a3: newAc(S, S’, M).balance = M
 a4: A.credit(M).balance = A.balance + M
 a5: A.debit(M).balance = A.balance – M
 if A.balance ≥ M
 a6: A.debit(M).balance = A.balance
 if A.balance < M
 a7: A.setAddress(S).balance = A.balance
 a8: A.credit(M).address = A.address
 a9: A.debit(M).address = A.address
 a10: A.setAddress(S).address = S
 a11: A.credit(M).name = A.name
 a12: A.debit(M).name = A.name
 a13: A.setAddress(S).name = A.name

For simplicity, we will use new, c, d, and st to denote
newAc, credit, debit, and setAddress, respectively. The
normal form patterns are:

 new(S, S’, M), new(S, S’, M).c(M’),
 new(S, S’, M).d(M’), new(S, S’, M).st(S’’),
 new(S, S’, M).op1.op2...opk, ...

where each opi is the pattern c(Mi), d(Mi), or st(Si).

The notion of normal forms depends greatly on the
system of axioms in the algebraic specification of a given
class. When the axioms are changed, the set of normal
forms may also be different. Consider, for instance, the
simplified algebraic specification of the class SavAcct1 of
savings accounts in Example 4. Suppose we revise the
axioms to produce a new specification SavAcct2 as shown
in Example 5 below. The set of normal forms will be
significantly changed.

Example 5. The following is a simplified algebraic
specification of another class SavAcct2 of savings ac-
counts in a banking system. Again, some attributes and
side effects are omitted.

 class SavAcct2
 import classes
 Money
 String

5

 operations
 newAc (_, _, _): String String Money → SavAcct2
 // The input parameters denote the customer
 name, address, and account balance,
 respectively
 name: SavAcct2 → String
 address: SavAcct2 → String
 balance: SavAcct2 → Money
 setAddress(_): SavAcct2 String → SavAcct2
 credit(_): SavAcct2 Money → SavAcct2
 debit(_): SavAcct2 Money → SavAcct2
 variables
 S, S’: String
 A: SavAcct2
 M, M’: Money
 axioms
 a1: newAc(S, S’, M).name = S
 a2: newAc(S, S’, M).address = S’
 a3: newAc(S, S’, M).balance = M
 a4: A.credit(M).balance = A.balance + M
 a5: A.debit(M).balance = A.balance – M
 if A.balance ≥ M
 a6: A.setAddress(S).balance = A.balance
 a7: A.credit(M).address = A.address
 a8: A.debit(M).address = A.address
 if A.balance ≥ M
 // The condition makes a8 independent of a16
 a9: A.setAddress(S).address = S
 a10: A.credit(M).name = A.name
 a11: A.debit(M).name = A.name
 if A.balance ≥ M
 // The condition makes a11 independent of a16

 a12: A.setAddress(S).name = A.name
 a13: A.credit(M).debit(M’) = A.credit(M – M’)
 if M > M’
 a14: A.credit(M).debit(M’) = A.debit(M’ – M)
 if M < M’ ∧ A.balance ≥ M’–M
 a15: A.credit(M).debit(M’) = A if M = M’
 a16: A.debit(M) = A if A.balance < M
 a17: A.debit(M).credit(M’) = A.credit(M’ – M)
 if M ≤ A.balance ∧ M < M’
 a18: A.debit(M).credit(M’) = A.debit(M – M’)
 if M ≤ A.balance ∧ M > M’
 a19: A.debit(M).credit(M’) = A
 if M ≤ A.balance ∧ M = M’
 a20: A.credit(M).credit(M’) = A.credit(M + M’)
 a21: A.debit(M).debit(M’) = A.debit(M + M’)
 if M + M’ ≤ A.balance
 a22: A.setAddress(S1).setAddress(S)
 = A.setAddress(S)

We will again use new, c, d, and st to denote newAc,
credit, debit, and setAddress, respectively. The normal
form patterns are:

 new(S, S’, M),
 new(S, S’, M).c(M’),
 new(S, S’, M).d(M’),
 new(S, S’, M).st(S’’),
 new(S, S’, M).st(S1).op1.st(S2).op2...st(Sk).opk,

 new(S, S’, M).st(S1).op1.st(S2).op2...st(Sk),
 new(S, S’, M).op1.st(S1).op2.st(S2)...opk.st(Sk),
 new(S, S’, M).op1.st(S1).op2.st(S2)...opk, ...

where opi is one of the patterns c(Mi) or d(Mi). Notice that,
although c and d are constructors, ground terms of the
form new.op1.op2...opk (where k > 1 and each opi is one of
the patterns c(Mi) or d(Mi)) are not normal forms as they
can be rewritten as one of the patterns new.c(M) or
new.d(M).

IV. GENERATING NORMAL FORMS FROM PATTERNS

From Proposition 4 and the examples above, we real-
ize that the generation of normal form patterns is non-
trivial. This section presents an algorithm GNF and a
corresponding tool to aid the generation process. The
algorithm requires the following additional definitions.

A. Principal Operators, Normal Forms, and Axioms

It is obvious from the definitions of creators, construc-
tors, transformers, and observers that, by using only the
syntax declaration in the algebraic specification of a given
class, we can distinguish creators and observers from each
other, and also distinguish them from constructors and
transformers. We cannot, however, distinguish construct-
ors and transformers from each other using only the
syntax declaration. We need to use the semantic defini-
tions in the algebraic specification for this purpose. For
this reason, we propose to bundle constructors and trans-
formers together, thus:

Definition 1 (Principal Operator). We refer to a
constructor or transformer in the algebraic speci-
fication of a class C as a principal operator of C.

In Example 1, the normal form of the term
new.push(1).push(2).top is 2. It is, in fact, a value of the
attribute top of the class IntStack. We do not consider such
kind of simple normal form in this paper. We only
consider principal normal forms, which are defined as
follows:

Definition 2 (Principal Normal Form). A normal
form in the algebraic specification of a class C is
known as a principal normal form of C if it ends
with a principal operator of C.

Obviously, a principal normal form of C returns an
object of class C.

Definition 3 (Principal Axiom). An axiom in the
algebraic specification of a class C is called a
principal axiom if its left-hand side ends with a
principal operator of C, and is called an attributive
axiom if its left-hand side ends with an observer
of C.

In example 1, for instance, a4 is a principal axiom and a6
is an attributive axiom.

6

Definition 4 (Length). The number of operators in
a given normal form is known as the length of the
normal form.

In Example 2, for instance, the length of the normal form
newBook(S, I).borrow.borrow.return is 4.

B. Tree model

In this subsection, we set up a tree model for principal
normal forms.

Definition 5 (Principal Normal Form Pattern
Tree). Suppose the algebraic specification of a
given class C contains creators cr1, cr2, …, cri, and
principal operators pr1, pr2, …, prj. We construct a
tree TC using the following procedure:

(i) Construct a node “” as the root, and take cr1,
cr2, …, cri as child nodes of “”.

(ii) For each node crk (k = 1, 2, …, i), take pr1,
pr2, …, prj as its child nodes.

(iii) For each node prm (m = 1, 2, …, j), take pr1,
pr2, …, prj again as its child nodes, and so on.

(iv) The sequence of operators in the nodes along
a path from the root “” to any node nr is a
term of C. We refer to this term as an
associated term of the node nr. For any given
node ns, if its associated term ts is not a normal
form, we can conclude from Proposition 1 that
the associated terms for all child nodes of ns
are all not normal forms either. Hence, we
remove ns and any of its child nodes from the
tree TC. In other words, we prune the subtree
with root ns. The associated terms of the
remaining nodes are normal forms.

We refer to the tree TC constructed by the above
procedure with pruning as the principal normal
form pattern tree of class C. In fact, it is a model
of the structural pattern of the principal normal
forms of C.

We note also the following:

(a) In step (4) of Definition 5, we can use Proposition 2 to
determine that an associated term t of a node is not a
normal form, and use Proposition 3 to determine that
an associated term t is a normal form. Since we con-
struct the tree TC top-down, we need only check
whether the current associated term t matches with the
left-hand sides of axioms. We need not check this for
the proper sub-terms of t, as all the proper sub-terms
of t have already been verified to be normal forms.

(b) Step (4) in Definition 5 provides a pruning rule for
principal normal form pattern trees.

(c) A principal normal form pattern tree may be finite or
infinite. In the following figures, “…” denotes poten-
tially infinite subtrees.

Example 6. A principal normal form pattern tree for
the class Book in Example 2 is shown in Figure 1.

Example 7. A principal normal form pattern tree for
the class IntStack in Example 3 is shown in Figure 2.

Example 8. A principal normal form pattern tree for
the class SavAcct1 in Example 4 is shown in Figure 3.

Example 9. A principal normal form pattern tree for
the class SavAcc2 in Example 5 is shown in Figure 4.

Figure 1. Principal normal form pattern tree
for the class Book in Example 2.

Figure 2. Principal normal form pattern tree

for the class IntStack in Example 3.

push

push

...

newBook

borrow

borrow

return

7

Figure 3. Principal normal form pattern tree
for the class SavAcct1 in Example 4.

Figure 4. Principal normal form pattern tree
for the class SavAcct2 in Example 5.

C. Algorithm GNF

We can now describe Algorithm GNF to aid the
Generation of principal Normal Form patterns from the
algebraic specification of a given class C. The fundamental
concept behind the algorithm is as follows: In order to
generate principal normal form patterns for class C, we
need only enumerate the associated terms by traversing the
nodes in the principal normal form pattern tree of class C
using a top-down breadth-first strategy in conjunction with
the pruning technique described in Section 4.3. On the
other hand, we need not actually construct and store the tree
structure. The tree model simply helps us visualize the
(traversing) strategy and the (pruning) technique. We need
not even refer to the notions of trees, paths, nodes, or asso-
ciated terms in the actual algorithm.

Algorithm GNF.

(1) Analyze the syntax declaration of the algebraic speci-
fication of class C (or interact with the requirements

analyst) to determine the set CR of creators and the set
CT of principal operators. (They may contain para-
meters.) Obtain the set AX of principal axioms of the
algebraic specification.

(2) Ask the requirements analyst or tester to specify the
maximum length Lmax of the target principal normal
forms, where Lmax ≥ 1.

(3) Let PPNF denote the set of all Potential Principal
Normal Form patterns generated so far, PPNF0 denote
the set of the Potential Principal Normal Form patterns
generated in the last execution of step (4), and PPNF1
denote the set of the Potential Principal Normal Form
patterns that will be generated in the next execution of
step (4). Initialize PPNF to CR 4, PPNF0 to CR, and
PPNF1 to ∅, where the parameters for each cr ∈ CR
are bound to the corresponding variables. Let L denote
the maximum length of the principal normal forms in

4 Obviously, creators must be principal normal forms.

debitcredit

credit

setAddr debitcredit

setAddr

setAddr

newAc

debitcredit

debit

setAddr

...

newAc

credit

credit

setAddr

... ...

debit

setAddr setAddr

...

debit

credit

setAddr

... ...

debit

setAddr setAddr

...

credit

setAddr

... ...

debit

setAddr setAddr

...

8

the current PPNF. Initialize L to 1.

(4) For each t ∈ PPNF0, do {
 For each ct ∈ CT (where the parameters in ct are
 all be bound to corresponding variables), do {
 If t.ct can match 5 the left-hand side of an
 axiom in AX
 skip the term t.ct; 6
 Else, PPNF1 = PPNF1 ∪ { t.ct }; 7
 };
 };
 If PPNF1 ≠ ∅, {
 L = L + 1;
 PPNF = PPNF ∪ PPNF1;
 };
 PPNF0 = PPNF1;
 PPNF1 = ∅;

(5) If L ≠ Lmax and PPNF0 ≠ ∅, go to (4);

(6) Interact with the requirements analyst or tester to review
the PPNF and produce a set FPNF of Final Principal
Normal Form patterns of the given class C.

(7) Output the FPNF.

We note that the concept of term matching in step (4) of
Algorithm GNF is also known as unification in artificial
intelligence. Effective algorithms for unification can be
found in standard texts on logic programming. In fact, if
Prolog were used to implement Algorithm GNF, the term
matching process would be rather simple. The drawback, of
course, would be the user interface.

In step (2) of Algorithm GNF, if the target maximum
length Lmax of principal normal forms specified by the
requirements analyst or tester is greater than the actual
maximum length of principal normal forms of the given
class 8, the execution of Algorithm GNF will be automati-
cally terminated by the condition PPNF0 = ∅ in step (5). If
the actual maximum length of principal normal forms of the
given class is infinite, or is larger than the target maximum
length Lmax, then Algorithm GNF will enumerate principal
normal forms from a length of 1 to the given length Lmax.

For a given class, the numbers of creators, principal
operators, and principal axioms are not large in general, and
hence the number of loops in Algorithm GNF is not large.
Furthermore, the pruning technique in GNF significantly
improves the efficiency of the algorithm.

5 We need not check whether each proper sub-term of t.ct can

match with the left-hand side of an axiom in AX, as it has been
checked in a previous execution of step (4).

6 This is equivalent to pruning in the tree model. The term t.ct
here is not a normal form.

7 According to Proposition 3, the term t.ct here must be a prin-
cipal normal form.

8 In Example 2, for instance, the actual maximum length of the
principal normal forms of the class Book is 4.

D. Computer-Aided Tool GNF

A prototype computer-aided tool GNF for the algorithm
has been implemented using Java in JDK-6- windows-i586
on Eclipse-SDK-3.2.1-win32 under Microsoft Windows XP.
It contains eight main class modules, namely TxtFile,
FileTransformer, XmlFile, Specification, StringTransformer,
ConditionHandler, NormalformGenerator, and OutputNF.
The algebraic specifications are expressed in XML.

Experiments have been conducted on the classes Book,
IntStack, SavAcct1, and SavAcct2, and have generated 4, 20,
40, and 30 principal normal forms, respectively. The expe-
rimental results are shown in Figures 1 to 4, respectively,
and confirm the analyses in Examples 2 to 5, respectively.
More details can be found in [11].

V. LIMITATION AND FUTURE WORK

In this paper, we assume that any given specification of
a class must be canonical with proper imports. We have
explained in our earlier paper [4] that this assumption is
reasonable.

As future work, we will consider the optimization of
Algorithm GNF, an implementation of this optimized algo-
rithm in Prolog, and more experiments on the new imple-
mentation.

VI. CONCLUSION

The testing of equivalent fundamental pairs is an
effective approach for object-oriented class level testing.
However, in the previous algorithm for selecting equivalent
fundamental pairs, normal forms have to be supplied
manually. We find that the structural patterns of normal
forms and their generation are nontrivial. Hence, a new
algorithm is necessary for improving the coverage of
normal forms and the efficiency of testing fundamental
pairs.

Based on normal form patterns, a tree model, and a
pruning technique, this paper presents an algorithm to
generate representative normal forms. A corresponding
computer-aided tool has been developed. Experimentation
shows that it can cover patterns of normal forms within a
user-defined maximum length. The pruning technique
based on the tree model improves the time and space per-
formances of the tool.

ACKNOWLEDGMENT

Our thanks are due to Miss Mei-Ling He for her contri-
butions to the implementation and experimentation of the
prototype tool GNF.

REFERENCES

[1] G. Bernot, M.-C. Gaudel, and B. Marre. Software testing
based on formal specifications: a theory and a tool. Soft-
ware Engineering Journal, 6 (6): 387–405, 1991.

[2] L. Bouge, N. Choquet, L. Fribourg, and M.-C. Gaudel.
Test sets generation from algebraic specifications using

9

logic programming. Journal of Systems and Software, 6:
343–360, 1986.

[3] H. Y. Chen, T. H. Tse, F. T. Chan, and T. Y. Chen. In black
and white: an integrated approach to class-level testing of
object-oriented programs. ACM Transactions on Software
Engineering and Methodology, 7 (3): 250–295, 1998.

[4] H. Y. Chen, T. H. Tse, and T. Y. Chen. TACCLE: a
methodology for object-oriented software testing at the
class and cluster levels. ACM Transactions on Software
Engineering and Methodology, 10 (1): 56– 109, 2001.

[5] H. Y. Chen, T. H. Tse, and Y. T. Deng. ROCS: an
object-oriented class-level testing system based on the
relevant observable contexts technique. Information and
Software Technology, 42 (10): 677–686, 2000.

[6] P. Dauchy, M.-C. Gaudel, and B. Marre. Using algebraic
specifications in software testing: a case study on the
software of an automatic subway. Journal of Systems and
Software, 21 (3): 229–244, 1993.

[7] R.-K. Doong and P. G. Frankl. Case studies on testing
object-oriented programs. In Proceedings of the 4th ACM
Annual Symposium on Testing, Analysis, and Verification
(TAV 4), pages 165–177. ACM Press, New York, NY,
1991.

[8] R.-K. Doong and P. G. Frankl. The ASTOOT approach to
testing object-oriented programs. ACM Transactions on
Software Engineering and Methodology, 3 (2): 101– 130,
1994.

[9] J. D. Gannon, P. R. McMullin, and R. Hamlet. Data abs-
traction, implementation, specification, and testing. ACM
Transactions on Programming Languages and Systems, 3
(3): 211–223, 1981.

[10] J. A. Goguen and R. Diaconescu. Towards an algebraic
semantics for the object paradigm. In Recent Trends in
Data Type Specification: Proceedings of the 9th
International Workshop on Specification of Abstract Data
Types, volume 785 of Lecture Notes in Computer Science,
pages 1–29. Springer, Berlin, Germany, 1994.

[11] J. A. Goguen and J. Meseguer. Unifying functional,
object-oriented, and relational programming with logical
semantics. In Research Directions in Object- Oriented
Programming, B. Shriver and P. Wegner (editors), pages
417–477. MIT Press, Cambridge, MA, 1987.

[12] M.-L. He. The Investigation on a Semi-Automatic Tool
for Generating Normal Forms for Object-Oriented Soft-
ware Testing at Class Level. Master’s Thesis, Department
of Computer Science, Jinan University, Guangzhou,
China, 2008.

[13] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland,
J. Derrick, J. Dick, M. Gheorghe, M. Harman, K. Kapoor,
P. Krause, G. Luettgen, A. J. H. Simons, S. Vilkomir, M.
R. Woodward, and H. Zedan. Using formal specifications
to support testing. ACM Computing Surveys, 41 (2): 1–76,
2009.

[14] P. Jalote. Specification and testing of abstract data types.
In Proceedings of the 7th Annual International Computer
Software and Applications Conference (COMPSAC 1983),
pages 508–511. IEEE Computer Society Press, New York,
NY, 1983.

[15] L. Mariani and M. Pezze. Testing object-oriented soft-
ware. In Emerging Methods, Technologies, and Process
Management in Software Engineering, A. De Lucia, F.
Ferrucci, G. Tortora, and M. Tucci (editors), pages 85–
105. Wiley, New York, NY, 2008.

[16] A. J. H. Simons. JWalk: a tool for lazy, systematic testing
of Java classes by design introspection and user interac-
tion. Automated Software Engineering, 14 (4): 369–418,
2007.

[17] M. D. Smith and D. J. Robson. A framework for testing
object-oriented programs. Journal of Object-Oriented
Programming, 5 (3): 45–53, 1992.

[18] T. H. Tse, F. C. M. Lau, W. K. Chan, P. C. K. Liu, and C.
K. F. Luk. Testing object-oriented industrial software
without precise oracles or results. Communications of the
ACM, 50 (8): 78–85, 2007.

[19] D. A. Wolfram and J. A. Goguen. A sheaf semantics for
FOOPS expressions. In Object-Based Concurrent Pro-
gramming: Proceedings of the ECOOP 1991 Workshop,
volume 612 of Lecture Notes in Computer Science, pages
81–98. Springer, Berlin, Germany, 1992.

[20] B. Yu, L. Kong, Y. Zhang, and H. Zhu. Testing Java
components based on algebraic specifications. In Pro-
ceedings of the 1st International Conference on Software
Testing, Verification, and Validation (ICST 2008), pages
190–199. IEEE Computer Society Press, Los Alamitos,
CA, 2008.

[21] H. Zhu. A note on test oracles and semantics of algebraic
specifications. In Proceedings of the 3rd International
Conference on Quality Software (QSIC 2003), pages 91–
98. IEEE Computer Society Press, Los Alamitos, CA,
2003.

